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The effect of the temporal pulse shape of intense pulses on the momentum distribution of eþe− pairs is
studied using the quantum kinetic equation. Two closely resembling temporal envelopes, namely,
Gaussian and Sauter, keeping all the other pulse parameters the same, are considered to this end.
Contrary to the common perception which can be gauged from the interchangeable use of these temporal
profiles, the longitudinal momentum spectrum of the pairs created by the two pulses is found to differ
significantly in all the temporal regimes. For the pulses having a few cycles of oscillations, the temporal
profile of the pulse is revealed in the oscillatory interference pattern riding over the otherwise smooth
longitudinal momentum spectrum at asymptotic times. The onset of the oscillation due to the quantum
interference of reflection amplitudes from the scattering potential due to the pulses having a temporal
structure of multiple barriers takes place for fewer-cycle oscillations for the Gaussian pulse compared to
that for the Sauter pulse. Furthermore, the oscillation amplitude for the same number of oscillations
within the pulse duration is larger for the Gaussian pulse. The presence of the carrier-envelope phase and
the frequency chirping is found to magnify these differences. In the absence of any appreciable
interference effect for the pulses having less than five oscillations, the longitudinal momentum spectrum
has a higher peak value for the Sauter pulse at asymptotic times. On the other hand, before the transient
stage of evolution, the peak of the spectrum shows the opposite trend.
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I. INTRODUCTION

Particle-antiparticle pair production from the vacuum in
the presence of an external gauge field or space-time
curvature is one of the intriguing phenomena in the realm
of quantum field theory [1]. In the presence of the spatio-
temporally homogeneous strong electric field, the generation
of particle-antiparticle pairs is known as the Schwinger
mechanism [2]. Another remarkable phenomenon of the
black hole evaporation which includes the emission of all
kinds of particles because of the very strong gravitational
field of the black hole is known as Hawking radiation [3].
The underlying physics behind these phenomena is that in
the presence of the very strong background fields the
vacuum is not stable because of the quantum fluctuation,
and virtual particle-antiparticle pairs are separated by the
energy of the background field or space-time causality to
become a real one. According to the Minkowski vacuum,
there is no real particles for all observers/detectors at rest or
moving at a constant velocity (via Lorentz invariance).

However, yet another interesting quantum effect arises in
the presence of constant acceleration. Here, an accelerating
detector measures a thermal bath with the temperature
determined by the acceleration. The temperature is known
as the Unruh temperature, and the effect is known as the
Unruh effect [4].
In principle, the generation of a particle-antiparticle pair

can be described either perturbatively in the process of
highly energetic photons interacting with the heavy nucleus
or nonperturbatively for the decay of the vacuum in the
presence of a strong electric field [5,6]. Despite being
fundamentally important, the latter one lacks experimental
verification because of its requirement of the peak field
strength closer to ES ¼ 1.32 × 1018 V=m [7] (see the details
of laser field parameters in [8]). Of late, the rapid develop-
ment toward the generation of an ultra-intense laser electro-
magnetic (EM) field has inspired worldwide efforts to set up
facilities such as the European Extreme Light Infrastructure
for Nuclear Physics [9,10] and X-ray free electron laser at
DESY, Hamburg, using the self-amplified spontaneous
emission principle [11] for its experimental verification
among other QED phenomena [5,12–14]. In fact, nonlinear
Compton scatterings were observed in the collision of a
46.6 GeV electron beam with terawatt laser pulses of 1053
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and 527 nm with intensity I ¼ 1022 W=cm2 [15,16]
at SLAC.
While the efforts are on for its experimental verification,

the Schwinger mechanism was theoretically analyzed for
various configurations of EM fields of the light sources
currently available or expected to be available in the near
future [13]. The theoretical description of Schwinger used
an electric field constant in time and uniform in space. The
formalism was extended for time and space varying fields
due to ultra-intense laser pulses [10,17–23]. However, as
the pulse duration is reduced further in the range of a few
hundreds of attoseconds when it is not much larger than the
characteristic Compton time, use of the Schwinger formula
to describe the pair production rate is questionable.
Furthermore, in such cases, the transient and nonequilibrium
dynamics of the produced particles can only be described in
the framework of the quantum kinetic equation (QKE)
[18,20,24–39]. This methodology has strong relevance in
the context of the momentum distribution of the created pairs
in a semiclassical approximation where the asymptotic
reflection coefficient gives the average particle numbers in
a particular mode [40]. The longitudinal momentum spec-
trum (LMS) of created particles has also been studied in a
nonpertubative multiphoton regime where the Keldysh
adiabaticity parameter is ξ ¼ mω0=eE ∼ 1 for a given field
strength E and frequency ω0 [41]. The semiclassical
formulation was used in studying the time-domain multi-
ple-slit interference effect from a vacuum in [42]. The kinetic
theory was used to study the rich dynamical behavior of the
pair creation process for the time-dependent but spatially
homogeneous field configuration [28,32,43]. In particular, it
was shown that a quasiparticle mode evolves through three
distinct temporal stages, namely, the quasielectron-positron
plasma (QEPP) stage, the transient stage, and finally, the
residual electron-positron plasma (REPP) stage [37–39].
The temporal characteristics of the pulses consist of a

temporal profile with a given pulse duration τ, number of
oscillations ωτ with ω being the carrier frequency, carrier-
envelope phase (CEP) i.e., the phase difference between the
high-frequency carrier wave and the temporal pulse envelope
function, and frequency chirp parameter(s). Gaussian and
Sauter are the two most commonly used (quite often
interchangeably) temporal profiles. A simple Sauter pulse
without any oscillation (also known as smooth Sauter pulse)
offers analytical solutions for the momentum distribution
[35] and the dynamics of produced pairs [20]. However, a
Sauter pulse with a few-cycle oscillations is no longer
analytically tractable. On the other hand, for a oscillating
electric field Gaussian pulse, it is possible to express the
vector potential in an analytically closed form in terms of the
error function. These analytical conveniences have led
researchers to use Sauter and Gaussian temporal profiles
for the kinetic studies of the pairs created by the smooth and
oscillating electric field pulses, respectively [29], sometimes
even in the same report [38]. This is possibly due to the

perception that both the pulses should give very similar
results because of their close resemblance. This, to the best
of our knowledge, has not been verified so far. This is one
of the motivations of this study. While the evolution of
individual modes was studied in Refs. [38,39], the evolution
of the longitudinal momentum distribution as a whole has
not been reported so far. This is the second motivation for
our study. In this paper, we, therefore, use QKE to present a
detailed comparative study of the evolution of longitudinal
momentum distribution of the pairs created by these two
pulses (Sauter and Gaussian) for a given pulse duration,
number of few-cycle oscillations, CEP, and frequency chirp.
We find that the LMS of the pairs for the Sauter and

Gaussian pulses differ significantly at all the temporal stages
of the evolution. However, for the qualitative description of
the difference, only two temporal regions seem to be
relevant. The first one is the region from the QEPP stage
to the transient stage (referred to as the transient region
hereafter), and the second one is the region well beyond the
transient stage (also referred as the asymptotic region).
This paper is structured as follows: In Sec. II, we discuss

briefly the relevance of the aforesaid pulses to the counter-
propagating configuration of intense ultra-short pulses. We
also outline the basic formulation of QKE in the context of
particle production from the time-dependent but spatially
uniform electric fields. We present our numerical results for
the oscillating electric field with Sauter and Gaussian pulses
with different values of ωτ parameters in Sec. III. The effect
of varying the CEP and the linear frequency chirp on the
LMS is also studied in this section. The results are
qualitatively explained by invoking the equivalence between
the pair creation by the EM field and the over-the-barrier
scattering problem and also quantitatively by analyzing
the structure of turning points in the complex t-plane in
stationary phase approximations. Although our study per-
tains to the tunneling regime of pair production we also
briefly present the effect of temporal profile on the LMS in
the multiphoton regime of pair production toward the end of
the section. We conclude in Sec. IV. Details of the calcu-
lation based on the turning point structure showing the
essential difference in the LMS of the two temporal pulse
forms are relegated to the Appendix.

II. THEORY

A. Electric field model

In order to study the effect of the temporal envelope on
the LMS of created pairs, we consider a spatially homo-
geneous electric field,

EðtÞ ¼ E0gðtÞ sinðωtþ ϕÞ; HðtÞ ¼ 0; ð1Þ

where gðtÞ is the temporal envelope function to describe the
electric field of a finite duration, and ϕ is the CEP [44–46]
which plays an important role in the laser matter interaction
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for the ultra-short pulses. Now, we discuss for the pulse
profile with time-independent frequency; i.e., ω is constant.
If we take gðtÞ ¼ expð−t2=2τ2Þ, we get the spatially uniform
but temporally oscillating electric field with the Gaussian
profile EðtÞ ¼ E0 expð−t2=2τ2Þ sinðωtþ ϕÞ, where τ is the
total pulse duration, and its product with the frequency ω;
i.e., ωτ gives the number of oscillations within the pulse
envelope. On the other hand, gðtÞ ¼ cosh−2ðt=τÞ represents
the oscillating electric field with the Sauter pulse pro-
file EðtÞ ¼ E0 cosh−2ðt=τÞ sinðωtþ ϕÞ.
It should be noted here that a possible method of

achieving such an electric field is to use two counter-
propagating laser beams when both of them are either
linearly e-polarized or circularly polarized in right-left
combination [47,48]. Figure 1 shows the shape of the
time-dependent electric field for Sauter and Gaussian
pulses with different values of the ωτ parameter. The
values of the ωτ parameter are taken as 3 and 7. The
shapes of the smooth Sauter [EðtÞ ¼ E0 cosh−2ðt=τÞ] and
Gaussian [EðtÞ ¼ E0 expð−t2=2τ2Þ] fields are shown as a
reference. We use Eq. (1) for the oscillating electric fields
to calculate the LMS of created particles.

B. Frequency chirping for the finite electric pulse with
harmonic oscillations

Now, we discuss the EM field with frequency chirping.
Suppose we have plane EM wave propagation along the z
direction with wave vector kẑ, for which we can write the
electric and magnetic fields as

Eðr; tÞ ¼ E0ðr⊥Þ expð−iψÞ
and

Bðr; tÞ ¼ B0ðr⊥Þ expð−iψÞ:

Here, E0ðr⊥Þ and B0ðr⊥Þ are constant, and ψ ¼ ω0t−
kz ¼ ω0ðt− z=cÞ, where k ¼ ω0=c. We further have

ψ ¼ ω0ðt − zÞ, where c ¼ 1 (in natural unit) is taken.
Now to get the finite pulsed electric and magnetic fields,
we follow the transformation in the plane wave factor as

expð−iψÞ → if0ðψÞ;

where fðψÞ ¼ gðψ=ω0τÞ expð−iψÞ, and prime denotes the
derivative with respect to the phase ψ . This kind of
substitution satisfies the Maxwell’s equations up to the
orders of 1=ω0τ, where ω0 is the central frequency of the
pulse with pulse duration τ. The envelope gðψ=ω0tÞ is
assumed to be 1 at the center of the pulse, gð0Þ ¼ 1, and
exponentially decreasing for jψ j ≫ ω0τ. Now, if we con-
sider the frequency chirping (here, we concentrate up to
linear frequency chirping), which we have by the following
substitution into the phase factor as

ψ → ψ 0 ¼ ψ

1 − bψ

for jbψ j < 1. Up to linear order of ψ , we have

ψ 0 ¼ ψ þ bψ2:

Therefore, we have

fðψ 0Þ ¼ g

�
ψ þ bψ2

ωtτ

�
exp ð−iðψ þ bψ2ÞÞ:

Here, we are interested in the z ¼ 0 plane, i.e., in a plane
passing through the focal center for which we have
ψ 0 ¼ωtt−kz¼ωtt¼ω0tþbω2

0t
2, i.e., ωt ¼ ω0 þ bω2

0t.
So if we do the above substitution, we can rewrite fðψ 0Þ as

fðψ 0Þ ¼ g

�
ωtt
ωtτ

�
exp ð−iðω0 þ bω2

0tÞtÞ

¼ g

�
t
τ

�
exp ð−iðω0 þ bω2

0tÞtÞ:

In Sec. III E, we define β ¼ bω2
0 as the linear frequency chirp

parameter.

C. Quantum kinetic equation

The theory of pair production due to the Schwinger
mechanism is nonperturbative. One has to, therefore,
strive for finding an exact solution of the Dirac equation,
and quantum kinetic theory is one such description,
particularly well suited for the case of pair production
being effected by the ultra-short laser pulses [35,36,49]. In
the presence of the time-dependent but spatially uniform
electric field, the vacuum state evolves to a state where
mixing between the positive and negative energy states
takes place. Enormous analytical simplification results
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FIG. 1. Plot of oscillating electric field with Sauter (dashed
line) and Gaussian (solid line) pulses for the number of
oscillations ωτ ¼ 3 (blue) to ωτ ¼ 7 (black). The smooth Sauter
and Gaussian fields (red) are given as a reference. The field
parameters are E0 ¼ 0.1, τ ¼ 100, ϕ ¼ π=2, and all the units are
taken in the electron mass unit.
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by the diagonalization of the underlying Hamiltonian
through the Bogoliubov transformation in the quasipar-
ticle basis,

HðtÞ¼
X
s;p

ωðp; tÞðB†
p;sðtÞBp;sðtÞ−D−p;sðtÞD†

−p;sðtÞÞ; ð2Þ

where ω2ðp; tÞ ¼ ϵ2⊥ þ P2
3ðtÞ is the total energy squared of

the quasiparticle. Here, ϵ2⊥ ¼ m2 þ p2⊥ is the transverse
energy squared, and P3ðtÞ ¼ p3 − eAðtÞ is the z component
of the time-dependent kinematic momentum which is
responsible for the particle acceleration dP3ðtÞ=dt ¼
eEðtÞ; e is the electronic charge. Bp;sðtÞ, B†

p;sðtÞ, and
Dp;sðtÞ, D†

p;sðtÞ are the slowly varying parts of the
time-dependent creation and annihilation operators for
quasiparticles and anti(quasi)particles respectively, see, for
example, Ref. [50]. These operators satisfy the following
Heisenberg-like equation of motion:

dBp;sðtÞ
dt

¼ −
eEðtÞϵ⊥
2ω2ðp; tÞD

†
−p;sðtÞ þ i½HðtÞ; Bp;sðtÞ�;

dDp;sðtÞ
dt

¼ eEðtÞϵ⊥
2ω2ðp; tÞB

†
−p;sðtÞ þ i½HðtÞ; Dp;sðtÞ�: ð3Þ

Quantum kinetic theory deals with the evolution of the
quasiparticle distribution function which is defined as
fsðp; tÞ ¼ h0injB†

psðtÞBpsðtÞj0ini [20,50]. A straightfor-
ward use of the Hisenberg-like equation of motion in
Eq. (3) results in the following dynamical equation for the
distribution function fsðp; tÞ,

dfsðp; tÞ
dt

¼ −
eEðtÞϵ⊥
2ω2ðp; tÞRefϕsðp; tÞg; ð4Þ

where the function ϕsðp; tÞ ¼ h0injD−psðtÞBpsðtÞj0ini
gives a measure of particle-antiparticle correlation that
is the complex order parameter describing the evolution of
the initial vacuum state, see Ref. [51]. It satisfies the
equation

dϕsðp; tÞ
dt

¼ eEðtÞϵ⊥
ω2ðp; tÞ ½2fsðp; tÞ− 1�− 2iωðp; tÞϕsðp; tÞ: ð5Þ

Since the distribution function and the particle-antiparticle
correlation function do not depend on the spin s, we can drop
the spin index s in fsðp; tÞ and ϕsðp; tÞ. By introducing
two auxiliary functions uðp; tÞ ¼ −Re½ϕðp; tÞ� which gives
the measure of the vacuum polarization, and vðp; tÞ ¼
Im½ϕðp; tÞ�which provides a measure of the counter reaction
of the vacuum in response to the strong external gauge field,
QKE can be written in the form of three coupled first-order
differential equations as

dfðp; tÞ
dt

¼ eEðtÞϵ⊥
2ω2ðp; tÞ uðp; tÞ;

duðp; tÞ
dt

¼ eEðtÞϵ⊥
ω2ðp; tÞ ½1 − 2fðp; tÞ� − 2ωðp; tÞvðp; tÞ;

dvðp; tÞ
dt

¼ 2ωðp; tÞuðp; tÞ: ð6Þ

This set of coupled differential equations for fðp; tÞ; uðp; tÞ,
and vðp; tÞ has the first integral of motion ð1 − 2fðp; tÞÞ2 þ
uðp; tÞ2 þ vðp; tÞ2 ¼ 1 [52]. It may be noted here that the
above QKE are obtained by ignoring the effect of created
pairs on the external electric field and the collisional effects
of the pairs. These equations can be cast into a single first-
order integro-differential equation,

dfðp; tÞ
dt

¼ eEðtÞϵ2⊥
2ω2ðp; tÞ

Zt

−∞

dt0
eEðt0Þ
ω2ðp; t0Þ

× ½1 − 2fðp; t0Þ� cos½2Θðp; t; t0Þ�; ð7Þ

with Θðp; t1; t2Þ ¼
R t2
t1 dt

0ωðp; t0Þ being the dynamical
phases accumulated between initial and final states in
the presence of the time-dependent gauge field. This form
of QKE [Eq. (7)] has a nonlocal time structure; i.e.,
dfðp; tÞ=dt depends on all the time history it passes
through by the term 1 − 2fðp; t0Þ which carries the
quantum statistical information due to the Pauli exclusion
principle and the highly oscillating phase kernel
cos½2Θðp; t; t0Þ� and hence not amenable to numerical
methods. We, therefore, solve Eq. (6) numerically for a
time-dependent smooth and oscillating electric field with
ultra-short Sauter and Gaussian pulse profiles as discussed
in Sec. II Awith the initial conditions fðp; tiÞ ¼ uðp; tiÞ ¼
vðp; tiÞ ¼ 0 as ti → −∞ and present our results in Sec. III.

III. RESULTS

In this section, we present the LMS of the created
particle based on the numerical solution of Eq. (6) for time-
dependent Sauter and Gaussian pulses, thereby showing its
sensitivity to the temporal envelope of the pulse.

A. LMS of created particles in the transient
and asymptotic regions

The virtual electron-positron pairs in the initial vacuum
state interact with the electric field. However, initially, the
pairs are in the off-shell mass configuration. As time
progresses, the pairs acquire energy from the electric field
and move toward the on-shell mass configuration. In this
process, the distribution function exhibits three distinct
dynamical stages [53–57]. In the first stage, which is known
as the QEPP stage, the distribution function shows oscil-
lations of the electric field. In the second stage, the
distribution function shows rapid oscillations. In this stage
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which is known as the transient stage, the dynamics is
governed by the electric field, the vector potential, and the
accumulated phase through the highly oscillating kernel
which can be easily seen from the kinetic equation as given
by Eq. (7). This is why the oscillations in the transient stage
are so rapid. The transient stage is signified by particles
reaching the on-shell configuration from the initial off-shell
mass configuration [34]. As mentioned in the previous
subsection, the electron-positron pairs are correlated which
is quantified by the complex order parameter ϕðp; tÞ. The
distribution function fðp; tÞ undergoing rapid oscillations in
the transient stage was attributed to a sudden increase in the
phase of a complex order parameter ϕðp; tÞ [51] which
results in the dephasing in the correlation between quasi-
particle pairs. After this dephasing, the electron-positron
pairs turn into “independent particles”. This stage is known
as REPP stage [37,38].
The evolution for a smooth Gaussian pulse has not been

reported so far, while that for the oscillating electric field
with Sauter pulses was reported recently [51]. However,

there are no results available for the pulse parameters of
both the pulses we wish to consider in this paper.
We, therefore, show the complete evolution of the

quasiparticle distribution function for the smooth and
oscillating electric field (ωτ ¼ 4, 6) with Gaussian (in the
left panel) and Sauter (right panel) pulses in Fig. 2 for the
longitudinal momentum value p3 ¼ 0. The insets of Fig. 2
show the evolution of the quasiparticle distribution func-
tion in the transient stage of evolution characterized by
rapid oscillations. We note here that the transient stage
occurs at earlier times for the Gaussian pulse than the
Sauter pulse.
Use of the QKE formalism allows us to study the

quasiparticle LMS at any instant of time and hence the
evolution thereof. As mentioned before, we, however,
restrict ourself to two distinct temporal regimes, namely,
the transient regime (consisting of QEPP and transient
stages) and the asymptotic region (well beyond the
transient stage in REPP stage). Figure 3 shows momentum
spectra for smooth Sauter and Gaussian pules at t ¼ 70,
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280, 560, and 1050. The spectra, which have smooth
unimodal structures, change rapidly in the transient
region. The location of the central peak and the peak
height of the LMS are quite different for both the pulses.
In particular, the spectrum for the Gaussian pulse has a
larger peak height than that for the Sauter pulse in this
region, as seen in Figs. 3(a) and 3(b). However, in the
asymptotic region, the momentum spectra for both the
pulses become centrally symmetric about p3 ¼ 0, see
Figs. 3(c) and 3(d). Contrary to the trend in the transient
region, the peak height is larger for the Sauter pulse in the
asymptotic region. For the smooth Sauter pulse with the
electric field EðtÞ ¼ E0 cosh−2ðt=τÞ and the corresponding
vector potential AðtÞ ¼ −E0τ tanhðt=τÞ, QKE in Eq. (7)
was shown to have exact solution in the asymptotic region
[58]. It was shown [40] that in the stationary phase
approximation the asymptotic time spectrum is governed
by the structures of the turning points tp in the complex
time plane which are defined by the relation ωðp; tpÞ ¼ 0.
In this case, tp ¼ τ tanh−1ðð�im − p3Þ=eE0τÞ þ inπτ
where n is an integer. The turning points appear as
complex conjugate pairs. For p3 ¼ 0, all the turning

points are located on imaginary axis. The dominant
contribution to the LMS comes from the n ¼ 0 turning
points. Thus, the pair creation mechanism is governed by
the single pair of the turning points, and the asymptotic
particle spectrum has a smooth unimodal profile.
We now consider the oscillating electric field with

Sauter and Gaussian pulse profiles for ωτ ¼ 4 and 6, and
show in Fig. 4 the momentum spectra in the transient
region (t ¼ 70, 280) and in the asymptotic region
(t ¼ 1050). The momentum spectra in the transient
region, much like the trend discussed above, significantly
differ for the two pulses for the same number of
oscillations, with the peak height for the Sauter pulse
being consistently lower than that for the Gaussian pulse.
In the asymtotic region, oscillations over the otherwise
smooth unimodal LMS for the oscillating electric field
with a Gaussian pulse were reported in [40,59]. These
results are reproduced here for the ready reference here
while comparing the results obtained for the correspond-
ing Sauter pulses. We find that the oscillation becomes
noticeable for ωτ ≥ 4 for the Gaussian pulse and for ωτ ≥
6 for the Sauter pulse, see the lower panel of Figs. 4 and 5.
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For the same number of oscillations, the amplitude of
oscillations is larger for the Gaussian pulse than that for the
Sauter pulse, as seen in Fig. 5. In fact, the spectrum for the
ωτ ¼ 6Gaussian pulse is similar to that for the Sauter pulse
with ωτ ¼ 7 (Fig. 5) as far as the oscillations in both cases
are concerned (note the scaling factors). As long as the
oscillations are not prominent (ωτ ≤ 5), the spectrum has a
higher peak value for the Sauter pulse than that for the
Gaussian pulse. With the increase in the oscillation ampli-
tude in the LMS for Gaussian pulses, the trend reverses
for (ωτ ≥ 6).

B. Scattering potential structure for the Gaussian
and Sauter pulses

The physical explanation of the onset of oscillation over
the otherwise smooth LMS induced due to the oscillating
electric field within the Gaussian pulse was provided in
[29] by mapping the problem of pair creation by the
spatially uniform time-dependent pulses to the well
studied over-the-barrier scattering problem of quantum
mechanics. It was shown that the pairs creation is related
to the reflection of the initial t → −∞ quasiparticle mode
with longitudinal momentum p3 (transverse momentum
p⊥ ¼ 0without any loss of generality) at asymptotic times
t → ∞ due to the time-dependent scattering potential,
VðtÞ ¼ −ðp3 − eAðtÞÞ2. We use the same physical picture
to explain the suppression of oscillations in the LMS of
the pairs created by the Sauter pulse compared to that by
the corresponding Gaussian pulse. In Fig. 6, we show the

scattering potential VðtÞ ¼ −ðp3 − eAðtÞÞ2 for both
smooth and oscillating electric fields with Sauter and
Gaussian pulse profiles with ωτ ¼ 3, 4, 5, 6, 7 for the
longitudinal momentum p3 ¼ 0. The potential is symmetric
about t ¼ 0. It is smooth, having a single bump (or barrier)
for the smooth one, and the oscillating electric field pulses
having a small number of oscillations, ωτ ≤ 3 [out of all
these, VðtÞ for only the oscillating electric field pulses with
ωτ ¼ 3 is shown here]. As the value of ωτ is increased, the
structure of the potential gets more bumpy causing multiple
reflections of the incident wave. It is the interference of the
multiple reflected waves which results in the oscillations in
the LMS at asymptotic times. For ωτ ¼ 4, the scattering
potential, as shown in Fig. 6(a), has three bumps—the larger
one in the center and two smaller ones on either side of the
central one toward the tail region of the pulse. For the Sauter
pulse, on the other hand, the scattering potential has one
bump in the center, with the side bumps being hardly visible.
Hence, the LMS for the Sauter pulse with ωτ ¼ 4 in Fig. 4
does not show the interference effects. On the other hand, the
spectrum for the corresponding Gaussian pulse in Fig. 4 does
show a mild interference effect in the form of very small
amplitude oscillations over the smooth unimodal profile.
With the increase in the number of oscillations, the

existing side bumps become more prominent, and additional
side bumps appear in the scattering potential. In all the cases,
however, the side bumps for the Sauter pulse is less
prominent than those for the corresponding Gaussian pulse.
The relative strength of the prominent side bumps with
respect to the central one is nearly 1=3 for the Sauter pulse
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FIG. 6. Over-the-barrier scattering potential VðtÞ ¼ −ðp3 − eAðtÞÞ2 for time-dependent oscillating electric field with Gaussian and
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and 1=2 for the Gaussian pulse with ωτ ¼ 6. For ωτ ¼ 7, it
is about 1=2 for the Sauter pulse and 2=3 for the Gaussian
pulse. This explains the relative suppression of oscillations in
the LMS for the Sauter pulse.
The side bumps for the Sauter pulse become visible for

ωτ ¼ 5 [Fig. 6(b)], but these are too small to cause any
discernible interference effects in the LMS. The onset of
oscillation in the LMS for the Sauter pulse takes place only
at ωτ ¼ 6. In Fig. 6, we compare the scattering potential due
to the Sauter pulsewithωτ ¼ 7with that due to the Gaussian
pulse with ωτ ¼ 6. The similarity of the two potential
structures explains the similarity in the LMS for the two
pulses with a different number of oscillations.
It may be helpful to relate the difference in the

scattering potential due to Sauter and Gaussian pulses
to their respective electric field profiles. As seen in Fig. 1,
for higher values of ωτ, the oscillations located away from
the center of the temporal envelope are more intense for
the Gaussian pulse making thereby the corresponding side
bumps more prominent.

C. Turning point structure for Sauter
and Gaussian pulses

Mapping the calculation of the reflection amplitude of
the over-the-barrier scattering problem to finding the poles
in the complex t plane has been gainfully employed to
solve many problems in physics for a long time, starting
with Landau and Lifshitz [60], Pokrovsky [61], and Brezin
and Itzykson [17]. In [29,40], this theoretical framework
was used to calculate the LMS of the created pairs by the
spatially uniform time-dependent pulses. In particular, it
was shown that for a subcritical field reflection amplitude
in the asymptotic time limit Rpð∞Þ, satisfying the condition
jRpð∞Þj ≪ 1 can be expressed as a sum involving all the
turning points,

Rpð∞Þ ≈
X
tp

ð−1Þpeiπ=2e−2i
R

tp
−∞

dt0ωðp;t0Þ: ð8Þ

As mentioned earlier, turning points tp are defined in the
complex t plane by the relation ωðp; tpÞ ¼ 0. They appear in
complex conjugate pairs as the vector potential AðtÞ consid-
ered here is real. It was argued in Ref. [31] that the function
expð−2i R tp

−∞ dt0ωðp; t0ÞÞ is oscillatory along the real axis of
the complex t plane and exponentially decaying along the
imaginary axis. Thus, only the pairs of turning points located
near the real axis contribute significantly to the reflection
amplitude, and the corresponding terms in the expression of
the reflection amplitude represent the reflection due to the
significant bumps/barriers of the scattering potential dis-
cussed in the previous subsection. If the reflection is
governed by more than a single pair of turning points, the
resulting LMS of pairs will show interference effects in form
of oscillations. For definiteness, the asymptotic momentum
distribution fpð∞Þ ¼ jRpð∞Þj2 is given by [40]

fpð∞Þ ≈
X
tp

e−2K
ðpÞ
p

þ 2
X
tp0≠tp

ð−1Þðp−p0Þ cosð2Θðp;p0Þ
p Þe−KðpÞ

p −Kðp0Þ
p ; ð9Þ

where KðpÞ
p ¼ j R tp

t�p dtωðp; tÞj and Θðp;p0Þ
p ¼R Reðtp0 Þ

ReðtpÞ dtωðp;tÞ.
In Eq. (9), the first term on the right-hand side contains the
contribution of reflections from all the pairs of turning points,
and the second term represents the inference of reflected
waves from different pairs of turning points. Because of the

exponential suppression factor expð−2KðpÞ
p Þ, the dominant

contribution to the asymptotic distribution function comes
from those pairs of turning points which are closer to the real
axis. Therefore, a closer look into the structures of the turning
points in Fig. 7 for both pulses will be able to shed light on
the nature of the resulting LMS in the asymptotic region. As
mentioned earlier, for p3 ¼ 0 (and p⊥ ¼ 0, considered for
convenience), all the turning points are located on the
imaginary axis for the smooth Sauter pulse. The separation
between successive turning points is πτ which is enormous.
The pair creation, therefore, is dictated by the single pair of
turning points which is closest to the real axis and is given by
tp ¼ τ tanh−1ðð�im − p3Þ=eE0τÞ ¼ �9.96687i. Turning
points for the corresponding Gaussian pulse are very close
to those for the Sauter pulse, with the relevant pair closest to
the real axis being �9.98339i. Thus, in both the cases, the
asymptotic LMS has smooth unimodal profile. Since the
turning point for the Sauter pulses is slightly closer to the real
axis, the resulting LMS has a somewhat larger peak value as
shown is Fig. 3.
We present in Fig. 7 the turning point structure for the

oscillating electric field with pulse profiles with ωτ ¼ 3,
4, 5, 6 and 7 for the longitudinal momentum mode p3 ¼ 0.
For the oscillating electric field pulses, besides the central
turning point pair on the imaginary axis, there are other
pairs of turning points symmetrically located on either
side of the imaginary axis. Although these turning points
are located much closer to the real axis compared to the
n ≠ 0 turning points for the smooth pulses, for the values
of ωτ ≤ 3, they are still far off to give any significant
contribution to the reflection amplitude. As the value of
ωτ is increased, more pairs of turning points have
comparable imaginary values of t, thereby giving rise
to the possibility of the interference effects in the
asymptotic reflection coefficient and hence the oscillatory
pattern in the LMS of created particles. For the Gaussian
pulse with ωτ ¼ 4, there are two such pairs symmetrically
located on either side of the central pair, at a distance of
83.1 unit along the real axis (note that the side bumps of
the scattering potential also appear close to these loca-
tions, see Fig. 6). The distance of these turning points
from the real axis is 13.7068 unit which is comparable to
the distance of 9.7359 unit of the central pair. For the
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Sauter pulse, the corresponding additional turning point
pairs are located at a distance of 19.5236 units which is more
than twice the distance at which the central turning point pair
is located. This explains the suppression of oscillations in
the LMS for the Sauter pulse. It is only at ωτ ¼ 6 that the
noncentral turning point pairs are located at a distance
(12.2396 units) from the real axis which is comparable to
that for the central turning point pair. These turning points
cause oscillations in the LMS. The Appendix contains a
detailed calculation of the interference effect in the LMS
which brings out that the onset of oscillations for the
Gaussian pulse takes place for ωτ ¼ 4, whereas for the
Sauter pulse, oscillations start at ωτ ¼ 6.
For the same number of oscillations within the pulse

duration, the amplitude of oscillations in the LMS is larger for
the Gaussian pulse as the turning points causing the
interference lie closer to the real axis in this case than those
for the Sauter pulse. The turning point structures for
the Gaussian pulse with ωτ ¼ 6 and the Sauter pulse with
ωτ ¼ 7 are quite similar as shown in Fig. 7 (bottom right).
This is consistent with the similarity of the scaled scattering
potentials for the two pulses, as shown in Fig. 6 (bottom
right), and also explains the strong resemblance between
oscillations in the respective momentum spectra (Fig. 5).
The central pair of turning points for the Sauter pulse is

always slightly closer to the real axis than that for the
Gaussian pulse. Therefore, unless the interference effect due

to the other pairs of turning points becomes strong enough,
the LMS for the Sauter pulse has a higher peak value.

D. LMS for Sauter and Gaussian pules with
variation in CEP

Thus far, the CEP ϕ is taken to be π=2 in order to match
the maximum of the oscillating electric field to the
maximum of the temporal envelope. In this case, both
Sauter and Gaussian pulses are nearly identical in the
central part. Therefore, the overall profile and the center of
the momentum spectra discussed so far are quite similar for
both the pulses. The noticeable difference between the two
pulses in the noncentral region is reflected in the suppres-
sion of oscillations in the LMS for the Sauter pulse. For
other values of ϕ, the maximum of the electric field is
pushed away from the central region towards one of the tail
regions, making it asymmetrically distributed in the pulse
envelope. It is, therefore, expected that variation in ϕ will
make the difference in the momentum spectra for the Sauter
and Gaussian pulses more pronounced.
The dashed line of Fig. 8 shows the LMS of the created

particles for the Sauter pulse with ωτ ¼ 5 with CEP
ϕ ¼ π=4. The corresponding spectrum for Gaussian pulse
was reported in Fig. 3 of Ref. [59]. In the spectrum for the
Sauter pulse, the oscillations are drastically suppressed.
The peak value is lower, the width becomes larger, and the
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FIG. 7. Turning points tp in the complex t plane for the oscillating electric field with Sauter (blue dots) and Gaussian pulses (red dots)
with same number of oscillations. ωτ ¼ 3, 4, 5, 6, and 7 from top left to bottom middle. The plot at the bottom right shows the turning
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center is located at p3 ¼ −1.262 which corresponds to
kinetic momentum P3ð∞Þ ¼ 130.816 keV. Note that the
spectrum for the Gaussian pulse has a maximum at kinetic
momentum of P3ð∞Þ ¼ 102 keV.
To understand the origin of these differences, we plot the

vector potential for ϕ ¼ π=4 for both pulses as shown in

Fig. 9(a). The respective scattering potentials using the
values of p3 at which the spectra are centered are shown
Fig. 9(b). These, as expected, are asymmetric. The dom-
inant potential barrier located at t ¼ 14.2 is nearly the same
for both the pulses. The additional barriers on either side of
this barrier, located at t ¼ −48.2 and t ¼ 89, are signifi-
cantly weaker for the Sauter pulse, suppressing thereby the
interference effects in the reflection coefficient and hence
the oscillations in the LMS of created pairs. The explan-
ation can be substantiated by looking at the turning point
structure for both the pulses with ϕ ¼ π=4 as shown in the
left panel of Fig. 10. We take the longitudinal momentum
p3 ¼ −1.262 for the Sauter pulse and p3 ¼ −1.286 for the
Gaussian pulse. It shows that for the Gaussian pulse, the
dominant turning points are located at tp1

¼ −29.31þ
i9.466 and tp2

¼ 31.45þ i9.939, whereas for the Sauter
pulse, these points are located at tp1

¼ −46.13þ i11.83
and tp2

¼ 15.56þ i9.466. As for the Sauter pulse,
Imðtp1Þ ¼ 11.83 and Imðtp2Þ ¼ 9.466, and the main con-
tribution in the pair production comes from the tunneling
from tp2

to t�p2
. The oscillations which are caused by the

interference between the neighboring turning points are
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suppressed by the exponential factor. However, for the
Gaussian pulse, the imaginary value of the turning points
are close enough, and we observe strong oscillations as
shown in Ref. [59].
In Fig. 8, the LMS for the Sauter pulse with ϕ ¼ 0 should

be compared with that reported for the Gaussian pulse in
Fig. 4 of Ref. [59]. All the aforesaid differences in the
momentum spectra are once again seen here. The feature of
the LMS can be explained by looking at the turning point
structure for both the pulses with ϕ ¼ 0 as shown in the right
panel of Fig. 10. We take the longitudinal momentum of
p3 ¼ −1.714 for the Sauter pulse and p3 ¼ −1.83 for the
Gaussian pulse. It shows that for the Gaussian pulse the
dominant turning points are located at tp1

¼ −45.69þ
i10.52 and tp2

¼ 15.5þ i9.732, whereas for the Sauter
pulse, these points are located at tp1

¼ −28.84þ i10.52
and tp2

¼ 30.57þ i10.52. Here, for the Sauter pulse,
Imðtp1Þ ¼ Imðtp2Þ ¼ 10.52. The other turning points are
equidistant from the imaginary axis, and the spectrum shows
the oscillations which are caused by the interference among
the neighboring turning points. The result is consistent with
the scattering potentials for both the pulses with CEP ϕ ¼ 0.
Figure 11 shows the vector potential AðtÞ [Fig. 11(a)] and
the scattering potential VðtÞ [Fig. 11(b)]. Both AðtÞ and VðtÞ
are symmetric about t ¼ 0, and we take the longitudinal
momentum as p3 ¼ −1.830 for the Gaussian pulse and
p3 ¼ −1.7143 for the Sauter pulse. The scattering potential
shows multiple bumps with comparable potential strength,
and hence, the reflection amplitude is the sum of all the

reflected waves by the scattering potential bumps. Therefore,
the reflectance coefficient which is related to the LMS of the
created particles shows the oscillations due to the interfer-
ence of the reflected waves.

E. LMS for Sauter and Gaussian pulses with
frequency chirping

Frequency chirping is an important parameter for ultra-
short pulses, and it has resulted in many interesting effects
for pair production by different types of EM fields, see, for
example, Ref. [62] and references therein. The effect of the
frequency chirping of the temporal pulse profile in the LMS
of the created particles has been studied in [29,62]. Here, we
use the expression of the electric field for the ultra-short
pulses with the linear frequency chirp parameter β which is
given by EðtÞ ¼ E0gðtÞ sinðωtþ βt2 þ ϕÞ with gðtÞ being
either a Gaussian or Sauter envelope. The presence of β
modifies the frequency in a time-dependent way—for
negative times the effective frequency is lower, while for
positive times the effective frequency is higher. As discussed
in the previous subsection, the tail regions of the two pulse
forms may differ significantly in the presence of frequency
chirping and hence give rise to different LMS of created
particles at asymptotic times. In order to verify this claim, we
plot the LMS as seen in Fig. 12 for the oscillating electric
field with a Sauter pulse with ωτ ¼ 5 and values of
β ¼ 0.00025, 0.0005, 0.00075. We compare our results
with those obtained with the corresponding Gaussian pulses
reported in Fig. 3 of Ref. [29]. For a small value of linear
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FIG. 11. Plots of AðtÞ and VðtÞ for Gaussian (dashed line) and Sauter (line) with ϕ ¼ 0. The VðtÞ ¼ −ðp3 − eAðtÞÞ2 is plotted for the
longitudinal momentum values p3 ¼ −1.830 for the Gaussian pulse and p3 ¼ −1.7143 for the Sauter pulse. All the units are taken in
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FIG. 12. Asymptotic distribution function of the created particles in the presence of a time-dependent oscillating electric field with a
Sauter pulse as a function of the longitudinal momentum of the particles for different values of the linear frequency chirp parameter (β):
(a) β ¼ 0.00025, (b) β ¼ 0.0005, (c) β ¼ 0.00075. The transverse momentum of the created particle is taken to be zero (p⊥ ¼ 0), and all
the units are taken in electronic mass unit. The field parameters are E0 ¼ 0.1, τ ¼ 100, central frequency ωτ ¼ 5, and CEP ϕ ¼ π=2.
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chirp β ¼ 0.00025, the asymptotic LMS for the Sauter pulse
shows a small oscillation over the smooth profile for a
negative value of p3. For the Gaussian pulse, the oscillations
in the spectrum are much more pronounced, and the
spectrum is not centered at p3 ¼ 0, see the top left plot
of Fig. 3 in Ref. [29]. As we increase the value of β, the
shape of the distribution for the Sauter pulse remains intact,
although the oscillation amplitude gets enhanced. However,
for the Gaussian pulse, it has been shown in [29] that the
LMS becomes highly oscillating with the irregular profile.

F. LMS in the multiphoton regime

LMS in the multiphoton regime for the Gaussian pulse
was reported in Refs. [41,57]. It was shown that the
spectrum takes the shape of a multimodal function in this
regime. In order to explore the effect of the temporal profile
on the LMS in this regime, we analyze the spectrum of
created particles in the multiphoton regime for both
Gaussian and Sauter pulses. We choose the parameters
of the laser pulse in such a way that the Keldysh parameter
ξ varies from ξ ≪ 1 to ξ ≫ 1. Figure 13 shows the LMS for
both pulses for the smooth profile (governed by the
temporal envelope function as EðtÞ ¼ E0 expð−t2=2τ2Þ
for the Gaussian pulse and EðtÞ ¼ E0 cosh−2ðt=τÞ for the
Sauter pulse) and the oscillating electric field pulses with a
few-cycle oscillations ωτ ¼ 1, 2, 3, 4 and 5 for t ¼ 10τ.
In Fig. 13(a), this is shown for the smooth Sauter and

Gaussian pulses with τ ¼ 10 and E0 ¼ 0.1. The Keldysh
parameter in this case is close to 1. It gives an intermediate
regime of pair production via tunneling and multiphoton
processes which is known as the nonperturbative multi-
photon regime. The spectrum has a unimodal profile
centered at p3 ¼ 0, and its peak value is larger for the
Sauter pulse than that for the Gaussian pulse. This unim-
odal profile persists for the pulses having a few-cycle
oscillation up to ωτ ¼ 3 [see Figs. 13(b)–13(d)]. The
interference of multiphoton processes with different photon
numbers is found for the oscillating electric field Gaussian
pulse with ωτ ¼ 4. The LMS, in this case, has a trimodal
profile as seen in Fig. 13(e). The central peak which is
located at p3 ¼ 0 is much more prominent than the two
symmetrical side peaks which are located at p3 ¼ �0.37.
However, for the Sauter pulse, the spectrum is still unim-
odal except for the slight modulation. The peak value of the
spectrum for the Gaussian pulse is larger than that for the
Sauter pulse. Figure 13(f) shows the spectrum for ωτ ¼ 5
for both the pulses. The profile is bimodal wherein the
peaks are symmertically located about p3 ¼ 0 at
p3 ¼ �0.25. Its peak value, in this case too, is larger for
the Gaussian pulse.

IV. CONCLUSION

To conclude, the effect of the temporal pulse shape of
intense ultra-short pulses on the longitudinal momentum
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FIG. 13. LMS of created particles in the presence of a time-dependent smooth and oscillating electric field with Sauter (blue dashed
line) and Gaussian pulses (red solid line) for (a) smooth, (b) ωτ ¼ 1, (c) ωτ ¼ 2, (d) ωτ ¼ 3, (e) ωτ ¼ 4, (f) ωτ ¼ 5 in the intermediate
and multiphoton regimes at t ¼ 10τ. The value of the transverse momentum is taken to be zero, and all the units are taken in electron
mass unit. The field parameters are E0 ¼ 0.1, τ ¼ 10, and CEP ϕ ¼ π=2.
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distribution of eþe− pairs is studied using the quantum
kinetic equation. It is shown that the distribution is quite
sensitive to the temporal profile—to the extent that the two
closely resembling temporal envelopes, namely, Gaussian
and Sauter, with the same pulse parameters give rise to
significantly different LMS of pairs at all the temporal
stages of evolution. The temporal stages are classified, for
convenience, into two distinct regions—transient and
asymptotic regions. It is found that the transient region
for the Gaussian pulse has a larger temporal extent. In the
transient region, the spectrum is smooth with a single peak
for both the pulses. However, the location of the peak, the
peak height, and the width are different for any instant of
time, and they evolve differently with time. However, the
peak height for the Gaussian pulse is consistently higher
than that for the Sauter pulse.
In the other regime, where the spectrum does not change

with time, the peak position of the spectrum nearly coincides
in both the cases. However, in the asymptotic region, just
contrary to the trend in the transient region, the peak height
of the spectrum for the Gaussian pulse is lower than that for
the Sauter pulse as long as the number of a few-cycle
oscillation ωτ is less than 5. The LMS for the oscillating
electric field with Gaussian pulse profile shows oscillations
over the smooth profile due to the quantum mechanical
interference of the multiple reflections of quasiparticle waves
from bumpy time-dependent potential. These oscillations are
suppressed in the case of the Sauter pulse. The onset of
oscillation takes place at ωτ ¼ 6 for the Sauter pulse
compared to ωτ ¼ 4 for the Gaussian pulse. Furthermore,
for the same value of ωτ, the amplitude of oscillation is
smaller for the Sauter pulse. In fact, it is due to this
interference effect that the peak height of the LMS for
the Gaussian pulse takes over that for the Sauter pulse for
ωτ ≥ 5. The sensitivity of the LMS to the temporal pulse
forms is explained by analyzing the shape of potential
causing over-the-barrier reflections and also the turning
point structure in the complex time plane for the two pulse
forms.
The differences in the asymptotic time LMS of the two

pulses get much more prominent on increasing the linear
frequency chirp in these pulses and also on varying the
CEP. Furthermore, the profile and the location of the
spectrum are vastly different for the two pulses.
The foregoing observation about the sensitivity of the

LMS on the temporal pulse profile not only holds for the
tunneling regime of the pair production but also persists in
the intermediate and the multiphoton regimes.
Recently, we came across the publication by Schutzhold

et. al. [63] where the sensitivity of temporal pulse profile is
shown for pair production by a dynamically assisted
Schwinger mechanism. It has been pointed out that the
Fourier transforms in the complex (frequency) plane of
envelopes is fairly different, even while the envelopes look

similar on the real (time) axis. As pointed out earlier, it may
be possible in the foreseeable future to generate such
intense electric fields at the focal region of the counter-
propagating laser beams. However, away from the focus,
the spatial dependence of the laser electromagnetic field no
longer needs to be neglected, and one has to use more
sophisticated methods, like the Dirac-Heisenberg-Wigner
formula, Wentzel-Kramers-Brillouin, and instanton method
[63–76]. Although it may appear somewhat far fetched,
measuring LMS of the pairs may provide a possible method
for the determination of the temporal profile for ultra-short
pulses.
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APPENDIX: ONSET OF OSCILLATIONS IN THE
LMS OF OSCILLATING ELECTRIC FIELD WITH

SAUTER AND GAUSSIAN PULSE PROFILES

In this Appendix, we use Eq. (9) to determine the onset
of oscillations for the oscillating electric field with Sauter
and Gaussian pulse profiles. We first evaluate the integrals

KðpÞ
p ¼ j R tp

t�p dtωðp; tÞj, Θðp;p0Þ
p ¼ R Reðt0pÞ

ReðtpÞ dtωðp; tÞ, and

hence fpð∞Þ for ωτ ¼ 4 and 6 for both pulses. We take
three pairs of turning points (the central one and the
adjacent ones on either side of the central pair), tp1, tp2,
and tp3 and their complex conjugates. Thus we have from
Eq. (9) for the three pairs of turning points

fpð∞Þ ≈ e−2K
ðp1Þ
p þ e−2K

ðp2Þ
p þ e−2K

ðp3Þ
p

− 2 cosð2Θðp1;p2Þ
p Þe−Kðp1Þ

p −Kðp2Þ
p

− 2 cosð2Θðp2;p3Þ
p Þe−Kðp2Þ

p −Kðp3Þ
p

þ 2 cosð2Θðp1;p3Þ
p Þe−Kðp1Þ

p −Kðp3Þ
p ; ðA1Þ

where the three pairs of turning points are taken from left to
right. In Fig. 7, the values of turning points for ωτ ¼ 4 are
tp1 ¼ −83.1þ 13.7068i, tp2 ¼ 0þ 9.7359i, tp3 ¼ 83.1þ
13.7068i for theGaussian pulse,whereas for the Sauter pulse,
the values of turning points are tp1¼−87.056þ19.5236i,
tp2 ¼ 0þ 9.721i, tp3 ¼ 87.056þ 19.5236i. The values

of the integrals for the Sauter pulse are Kðp1Þ
p ¼

jR tp1
t�p1

dtωðp;tÞj¼32.3513, Kðp2Þ
p ¼jR tp2

t�p2
dtωðp;tÞj¼15.3754,

andKðp3Þ
p ¼jR tp3

t�p3
dtωðp;tÞj¼32.3513. Therefore, in Eq. (A1),
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the value of the exponentials are e−2K
ðp1Þ
p ¼ 7.9438 × 10−29,

e−2K
ðp2Þ
p ¼ 4.4165 × 10−14, e−2K

ðp3Þ
p ¼ 7.9438 × 10−29,

e−K
ðp1Þ
p −Kðp2Þ

p ¼ 1.87309 × 10−21, e−K
ðp2Þ
p −Kðp3Þ

p ¼ 1.87309×

10−21, and e−K
ðp1Þ
p −Kðp3Þ

p ¼7.9438×10−29. The orders of the
exponentials show that the main contribution to fp comes
from only one turning point pair, tp2 and its conjugate, which
lie at the center. The LMS, therefore, is unimodal with no
interference effect due to reflections from other turning
points, for ωτ ¼ 4 for the Sauter pulse. A similar calculation

for the Gaussian pulse gives Kðp1Þ
p ¼ 21.8979, Kðp2Þ

p ¼
15.3933, and Kðp3Þ

p ¼ 21.8979, and the value of the

exponentials are e−2K
ðp1Þ
p ¼9.5448×10−20, e−2K

ðp2Þ
p ¼

4.26148 × 10−14, e−2K
ðp3Þ
p ¼ 9.5448 × 10−20, e−K

ðp1Þ
p −Kðp2Þ

p ¼
6.37731 × 10−17, e−K

ðp2Þ
p −Kðp3Þ

p ¼ 6.37731 × 10−17, and

e−K
ðp1Þ
p −Kðp3Þ

p ¼ 9.5448 × 10−20. In this case, the main con-
tribution to the reflection coefficient is from the central turning
point. Hence, the shape of the LMS is unimodal. However, the
interference between the central and the adjacent turning
points also appearswith a relative strengthof about1.5 × 10−3.
So for the Gaussian pulse case, the onset of oscillation takes
place for the first time for ωτ ¼ 4 and the LMS shows small
amplitude oscillations over the unimodal profile.

Now, we calculate fpð∞Þ forωτ ¼ 6 for the Sauter pulse,
which shows for the first time the onset of oscillation in the
LMSas seen in the left panel of Fig. 5. Here, the values of the
turning points for p3 ¼ 0 are tp1 ¼ −54.31278þ 12.2396i,
tp2 ¼ 0þ 9.453768i, tp3 ¼ 54.31278þ 12.2396i and
their complex conjugates. The values of the integrals are

Kðp1Þ
p ¼19.7175,Kðp2Þ

p ¼15.0493, andKðp3Þ
p ¼19.7175. The

values of the exponential are e−2K
ðp1Þ
p ¼ 7.47409 × 10−18,

e−2K
ðp2Þ
p ¼ 8.47864 × 10−14, e−2K

ðp3Þ
p ¼ 7.47409 × 10−18,

e−K
ðp1Þ
p −Kðp2Þ

p ¼ 7.96105 × 10−16, e−K
ðp2Þ
p −Kðp3Þ

p ¼ 7.96105×

10−16, and e−K
ðp1Þ
p −Kðp3Þ

p ¼ 7.47409× 10−18. The value of

the phase integrals for the dominant terms are Θðp1;p2Þ
p ¼R Reðtp2Þ

Reðtp1Þ dtωðp;tÞ¼−81.5475, Θðp2;p1Þ
p ¼R Reðtp3Þ

Reðtp2Þ dtωðp;tÞ¼
81.5475 and cosð2Θðp1;p2Þ

p Þ ¼ cosð2Θðp2;p3Þ
p Þ ¼ 0.9643.

Therefore, the interference term 2cosð2Θðp1;p2Þ
p Þ×

e−K
ðp1Þ
p −Kðp2Þ

p þ2cosð2Θðp2;p3Þ
p Þe−Kðp2Þ

p −Kðp3Þ
p ¼ 3.0708×10−15

becomes comparable to the term e−2K
ðp2Þ
p ¼8.47864×10−14,

representing the reflection from the central turning point.
Here, themodulation over the unimodal profile appears with
the relative strength of 3.6 × 10−2. The peak value of the
distribution is fp¼0ð∞Þ ≈ 8.17154 × 10−14.
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