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We introduce a modification of the Dyson series based on perturbative unitarity as a starting point.
The presented approach systematically avoids singularities and double-counting related to the presence of
unstable particles as intermediate states and, at the same time, does not rely on a specific choice of the
renormalization scheme.
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I. INTRODUCTION

In particle physics, either at colliders or in astroparticle
calculations, some of the final states may be produced from
the decay of heavy unstable particles. At higher perturba-
tive orders, new production channels occur, where the same
unstable particles appear in diagrams as internal lines. Such
contributions lead to singularities, which are cured when
including finite widths originating from the imaginary part
of the self-energy in a resummed propagator. The cure is
not perfect—the resonant enhancement reproduces the
leading-order result, which seems to be accounted for
twice. This double-counting is well known in the literature
and often targeted with more or less physically motivated
subtraction schemes, including explicit diagram removal
[1,2], the exclusion of the near-resonance parts of the phase
space [3], or the diagram subtraction also known as the
Prospino scheme [4–6], in which a dedicated counterterm is
introduced to remove the singularity.
An accurate description of unstable particles requires a

more sophisticated approach, especially for near-threshold
calculations. Within the complex mass scheme, the com-
plex valued counterterms are used to remove the double-
counting [7–10]. Unstable-particle effective theory, on the
other hand, relies on the systematic expansion in powers of
small width-to-mass ratios [11–13]. Both of these
approaches preserve gauge invariance.
This work introduces an alternative unitarity-based

prescription leading to nonsingular results free of dou-
ble-counting. Instead of modifying the perturbation theory
by the expansion of finite-width propagators [14–17],

we apply the cutting rules to forward diagrams with bare
propagators only [18]. Propagators of unstable particles
are cut following the standard Cutkosky rules as well. It
is further shown that in comparison to the subtraction
schemes mentioned above [1–6], additional finite terms are
restored in the next-to-leading order (NLO) corrections.
From this perspective, it becomes clear that the source of
the problems is how the Dyson series is used in the
unstable-particle case. We suggest its modification to
describe resonant particle production. However, in the
beginning, the Dyson series is avoided altogether.
Employing a simple scalar model, it is demonstrated that

neither singularity nor double-counting is present in a fixed-
order calculation. The loop corrections to particle masses
and the Lehmann-Symanzik-Zimmermann (LSZ) reduction
reduction factors are obtained from cuts of forward dia-
grams. Those are carefully treated as distributions, as it is in
modified perturbation theory [14–17]. However, by cutting
the forward diagrams, we always obtain polynomials in the
coupling constant only, and no logarithms in couplings may
appear in higher-order corrections [19].

II. UNSTABLE PARTICLES IN
FIXED-ORDER CALCULATIONS

Let us, for the sake of simplicity, consider a massive
scalar field ϕ coupled to two massless scalars, φ and η,
through the Lagrangian density

L ⊃ −
1

2
mϕ2 − ληϕηη

� −
1

3!
λφϕφ

3: ð1Þ

We consider ϕ and φ as real, while η is complex. For a
while, we assume that ϕ → ηη̄ is the only decay channel of
ϕ. We will comment on general branching ratios later.
Assuming the collisions of two φ particles, what, at the

leading Oðλ2φÞ order, is the production rate of a single ηη̄
pair? Above the on-shell production threshold, the leading
contribution will come from φφ → ϕφ followed by the

*peter.matak@fmph.uniba.sk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 076019 (2022)

2470-0010=2022=105(7)=076019(5) 076019-1 Published by the American Physical Society

https://orcid.org/0000-0003-1420-1148
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.076019&domain=pdf&date_stamp=2022-04-27
https://doi.org/10.1103/PhysRevD.105.076019
https://doi.org/10.1103/PhysRevD.105.076019
https://doi.org/10.1103/PhysRevD.105.076019
https://doi.org/10.1103/PhysRevD.105.076019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ϕ → ηη̄ decay. Therefore, the leading-order amplitude
squared reads

jMj2LOðm2Þ ¼ λ2φ
4π

s −m2

2s
ð2Þ

where the final-state phase space integration has already
been performed.
While working with zero-width propagators only, the

higher Oðλ2φλ2ηÞ corrections to ηη̄ production should be
obtained from cutting the forward diagram in Fig. 1. Let us
start with the sum of the following two cut diagrams

ð3Þ

where we suppress the particle labels. Here the diagrams to
the right side of the cut come with complex conjugation.
Denoting

ð4Þ

the diagrams in Eq. (3) lead to

Z
s

0

dk2jMj2LOðk2Þδðk2 −m2Þ2Re
�

Σðk2Þ
k2 −m2 þ iϵ

�
: ð5Þ

Splitting the self-energy Σðk2Þ into its real and imaginary
parts, ΣRðk2Þ and ΣIðk2Þ, respectively, and employing the
identities

1

k2 −m2 þ iϵ
¼ P

1

k2 −m2
− iπδðk2 −m2Þ ð6Þ

and [20]

2δðk2 −m2ÞP 1

k2 −m2
¼ −

∂
∂k2 δðk

2 −m2Þ; ð7Þ

one can easily verify that the real part ΣRðk2Þ contributes to
the NLO corrections by

jMj2;ϕNLO¼
�
ΣRðk2Þ

∂
∂k2þ

∂ΣRðk2Þ
∂k2

�����
k2¼m2

jMj2LOðk2Þ: ð8Þ

The two terms are well expected, representing the mass
correction and LSZ reduction factor known from the basic
renormalization theory.
The imaginary part ΣIðk2Þ enters the calculation in a

more interesting way through

2

π

Z
s

0

dk2jMj2LOðk2ÞΣIðk2Þπ2δðk2 −m2Þ2: ð9Þ

Fortunately, this expression (containing the square of the
delta function) is singular and ready to cancel a similar
disaster elsewhere, such that only a finite part will be left.
To see that explicitly, we consider the remaining cut of the
diagram in Fig. 1,

ð10Þ

leading to

−
1

π

Z
s

0

dk2jMj2LOðk2ÞΣIðk2Þ
���� 1

k2 −m2 þ iϵ

����
2

: ð11Þ

Adding a narrow finite width Γ into Eq. (11) gives

���� 1

k2 −m2 þ imΓ

����
2

→
π

mΓ
δðk2 −m2Þ: ð12Þ

With ΣIðk2Þ → −mΓ, the leading-order result of Eq. (2) is
obtained, and the double-counting occurs. We instead
suggest adding the singular expression of Eq. (9) to
Eq. (11) to obtain

���� 1

k2 −m2 þ iϵ

����
2

−
2ϵ2

½ðk2 −m2Þ2 þ ϵ2�2 : ð13Þ

Here we used the imaginary part of Eq. (6) to express the δ
function in Eq. (9). To see the connection with Eq. (12), we
can multiply this formula by ϵ=ðmΓÞ and get

1

mΓ

�
ϵ

ðk2 −m2Þ2 þ ϵ2
−

2ϵ3

½ðk2 −m2Þ2 þ ϵ2�2
�
: ð14Þ

The two terms correspond to two different representations
of the same δ function, and thus, after the integration over
the phase space, they cancel each other. Therefore, contrary
to common wisdom, there is no double-counting and no
singularity in the end. In principle, one may ignore the

FIG. 1. Forward scattering diagram generating the NLO
corrections to ηη̄ production in φφ collisions according to
Lagrangian density in Eq. (1).
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contribution of Eq. (9) and introduce a counterterm of the
same form by hand, which may be understood as an
analogy of the diagram subtraction [4–6]. However, when
going from Eq. (13) to Eq. (14), a finite part is lost. We
instead rewrite Eq. (13) in terms of a principal value [25]

−
∂
∂k2 P

1

k2 −m2
ð15Þ

such that the integration can be easily performed by parts,
which finally gives the on-shell ηη̄ production corrections
in the form of

jMj2;ηη̄NLO ¼ λ2φ
ð4πÞ3

λ2η
2s

�
ln j m2

s −m2
j − s

m2

�
: ð16Þ

The commonly used diagram subtraction scheme [4–6]
requires subtracting

jMj2LOðm2ÞΣIðm2Þ θð ffiffiffi
s

p
−mÞ

ðk2 −m2Þ2 þ ϵ2
ð17Þ

from the integrand in Eq. (11) with ϵ playing a role of a
regulator. The so-called counterterm has been introduced to
remove the resonant enhancement and prevent the
reappearance of the leading-order contribution. In our
simple model, for ϵ → 0 this rather ad hoc procedure
results in a similar expression as shown in Eq. (16), without
the second −s=m2 term in the bracket—the lost finite part
mentioned earlier. Although the diagram subtraction is
known to preserve the gauge invariance in a real-world
theory in the limit of vanishing regulator [6], the omission
of a finite part of the NLO corrections leads to a systematic
error in the calculations. Using a unitarity-based fixed-
order approach instead, nothing is added nor subtracted,
and thus the gauge invariance should not be compromised.

III. CUTTING FIRST AND MODIFYING
THE DYSON SERIES

We may ask how it could happen that the contribution of
Eq. (9), which is crucial for the finiteness and consistency
of the calculation, has been overlooked in previous studies
for years. The answer can be immediately seen from
Eq. (7), showing the mass and LSZ corrections in a
different way than how they usually appear. Usually, the
Dyson series is summed first. Then, the pole and the
residuum are extracted. The summation of the Dyson series
for unstable particles leads to a finite imaginary part of the
propagator. Such an internal line cannot be cut [26], and the
singularity of Eq. (9) is obscured. Introducing a finite width
removes the singularity of Eq. (11) as well. However, it has
to be done consistently to prevent double-counting.
Let us generalize the procedure leading to Eq. (16),

hopefully obtaining a description reliable even for near-
threshold calculations, where higher orders have to be

included systematically. Instead of summing the Dyson
series for the propagator (finding its pole and residuum), we
sum the series of forward diagrams similar to Fig. 1 with
any number of the −iΣðk2Þ insertions in the propagator of
ϕ. Possible cuttings of such diagrams fall into two groups.
First, there are two cuts analogous to those that appear in
Eq. (3), in which only the first or last ϕ line is cut. Defining

ð18Þ

these cuts lead to the expression as in Eq. (5) with Σðk2Þ
replaced by Σ̃ðk2Þ. Second, when any of the self-energies or
the connecting intermediate lines are cut, by unitarity and
optical theorem, it will contribute to Eq. (11) by the
imaginary part of Σ̃ðk2Þ. Summing the geometric series
of Eq. (18), we obtain

Σ̃Rðk2Þ ¼
ðk2 −m2Þ2ΣR − ðk2 −m2ÞðΣ2

R þ Σ2
IÞ

ðk2 −m2 − ΣRÞ2 þ Σ2
I

; ð19Þ

Σ̃Iðk2Þ ¼
ðk2 −m2Þ2ΣI

ðk2 −m2 − ΣRÞ2 þ Σ2
I
: ð20Þ

And now a miracle happens. Equation (19) implies

Σ̃Rðk2Þ
����
k2¼m2

¼ 0;
∂Σ̃Rðk2Þ

∂k2
����
k2¼m2

¼ −1: ð21Þ

Plugging this into Eq. (8), the first term vanishes, while the
second completely cancels the leading-order contribution
of Eq. (2). Therefore, the threat of double-counting is
eliminated in a manifest way and it is the leading-order part
to be removed. We note that it has been achieved without
employing a specific renormalization scheme, such as the
complex mass scheme, where the complex-valued counter-
term removes the double-counting [10]. The analog of
Eq. (9) vanishes for Σ̃Iðk2Þ, while from Eq. (11) the
contribution of the modified Dyson series is obtained in
the form of

−
1

π

Zs

0

dk2
jMj2LOðk2ÞΣI

½k2 −m2 − ΣRðk2Þ�2 þ Σ2
I
: ð22Þ

Including the counterterms to absorb the ultraviolet diver-
gence is straightforward now. We denote the renormalized
mass and the real part of the self-energy as m̄ and Σ̄Rðk2Þ,
respectively. Specifying the renormalization conditions as
in the on-shell scheme,

Σ̄Rðm̄2Þ ¼ 0;
∂Σ̄Rðk2Þ

∂k2
����
k2¼m̄2

¼ 0; ð23Þ
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while replacing constant ΣI by −m̄Γ, we obtain a usual
Breit-Wigner shape integrated with the leading-order
amplitude squared.
In Fig. 2, the result of Eq. (22) is seen almost indis-

tinguishable from the fixed-order calculation jMj2LO þ
jMj2;ϕNLO þ jMj2;ηη̄NLO, except for the near-threshold region,
where it smoothly interpolates what otherwise will be an
unphysical peak. For some applications, such as the
corrections to the thermal-averaged reaction rates in dark
matter calculations, as in Ref. [27], the numerical impact of
this peak may be very limited. Therefore, the fixed-order
calculations may be accurate enough unless we are con-
cerned with near-threshold phenomena.
The case of nontrivial branching ratios, in our particular

model, includes the effect of the ϕ → 3φ decay and
analogous contribution to the self-energy, now equal to

ð24Þ

Summing the series of forward diagrams analogous to
Fig. 1, with any number of the self-energy insertions of
either type, leads to Eqs. (19) and (20) with ΣR and ΣI
following from Eq. (24). The imaginary part of the resulting
summed Σ̃ðk2Þ then receives the contributions from cuts of
the ϕ lines connecting self-energy insertions. These cuts
correspond to φφ → ϕφ reaction and have to be multiplied
by the ϕ → ηη̄ branching ratio. The latter is defined as the
ratio of the partial and the total decay widths—the ratio of
the imaginary parts of Eqs. (4) and (24), respectively.

Further contributions to Σ̃Iðk2Þ come from cutting the self-
energy insertions representing the φφ → ηη̄φ and φφ → 4φ
processes. Cutting the self-energies leads to the results
proportional to the partial decay widths. Therefore, even
when using Eq. (22) with the complete self-energy of
Eq. (24) includes both the final states, multiplying the result
by the ϕ → ηη̄ branching ratio gives the desired φφ → ηη̄φ
production rate.
Finally, it may be an instructive exercise to show that in

the case of stable ϕ particle production (introducing η mass
larger than m=2), Eqs. (18)–(20) reproduce the NLO
corrections, although in an unexpected way. Vanishing
the imaginary part of the self-energy in Eq. (18) implies

Σ̃Rðk2Þ ¼ ΣRðk2 −m2ÞP 1

k2 −m2 − ΣR
; ð25Þ

Σ̃Iðk2Þ ¼ −Σ2
Rπδðk2 −m2 − ΣRÞ ð26Þ

for which Eq. (21) remains valid, and the leading-order
contribution is canceled. However, substituting Eq. (26)
into Eq. (11) results in

Zs

0

dk2jMj2LOðk2Þδ½k2 −m2 − ΣRðk2Þ� ð27Þ

leading, up to higher-order terms, to the expressions in
Eqs. (2) and (8). We note that in this case the φφ → ηη̄φ
process has to be considered separately, as it cannot be
related to the self-energy of stable ϕ.

IV. CONCLUSIONS

Perturbative unitarity has been used to describe resonant
particle production. By employing a simple scalar model, it
has been shown that the production rate is free of any
singularities and double-counting, both in the fixed-order
calculation and the resummed case. The former included
the sum over the forward scattering diagrams with any
number of self-energy insertions on the unstable particle
leg followed by their cutting (extraction of the imaginary
part). In the case of stable particle production, the method
reproduces the well-known form of the higher-order
corrections.
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FIG. 2. Total cross section for φφ → φϕðηη̄Þ reaction with
m̄ ¼ 100 GeV, λφ ¼ 1.3, and λη ¼ m̄ × λφ, at the leading-order
(dotted line), next-to-leading order in our unitarity-based fixed-
order approach (solid black line), diagram subtraction (dashed
line), and integrated Dyson-summed cross section according to
Eq. (22) (thick purple line).
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