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We analyzed the invariant mass spectrum of near-threshold exotic states for one-channel candidates with
a deep neural network. It can extract the scattering length and effective range, which would shed light on
the nature of given states, from the experimental mass spectrum. As an application, the mass spectrum of
the Xð3872Þ and the Tþ

cc are studied. The obtained scattering lengths, effective ranges, and most relevant
thresholds are consistent with those from fitting to the experimental data. The advantage of the neural
network is that it is more stable than the fitting, especially for low-statistic data. The network, which
provides another way to analyze the experimental data, can also be applied to other one-channel near-
threshold exotic candidates.
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I. INTRODUCTION

The color confinement property of quantum chromody-
namics (QCD) allows for the existence of any color neutral
object. That challenges the conventional quark model, in
which hadrons are made of either quark-antiquark (mesons)
or three quarks (baryons). Especially, the observed exotic
hadrons beyond the conventional configurations provide a
way to decode the mystery of hadronization. Up to now,
tens of exotic candidates have been reported and studied
from various aspects [1–10]. One important feature is that
most of them are very close to nearby thresholds, as an
indication of a large mixture of continuum [5]. In principle,
all the configurations with the same quantum number can
mix with each other. However, which configuration plays
an important role, either a large size hadronic molecule or
compact object is still a well-established question. The key
value is the probability 1 − λ2 (with λ2 the wave function
renormalization constant) of finding continuum in a given
physical state. A typical example is deuteron, for instance,
see Refs. [11,12] discussed by Weinberg in the 1960s.
This method has been intensively used for discussing the
nature of exotic candidates in both the hadronic molecular

picture [5] and compact one [13]. The value of λ2 is related
to scattering length [5],
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of the elastic channel [5] for the one-channel case in the
low-energy limit, which means that the formulas work in
the near-threshold energy region. Here, γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEB
p

is the
binding momentum with reduced mass μ and binding
energy EB.

1
β is the order of range correction. Here, λ2¼0

and λ2 ¼ 1 are for the pure molecule and compact object,
respectively. In other words, to the leading order,
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for the pure molecule, and

a ¼ −O
�
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for the compact object. As a result, extraction of the
scattering length and effective range from the experimental
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data is a direct way to shed light on the nature of interested
hadrons. Recent and typical examples are the Xð3872Þ
[14–16] and Tþ

cc [15,17–19] from both experimental and
theoretical sides. This work aims at developing a deep
learning network for automatically extracting the scattering
length and effective range from experimental data directly.
The final goal is to set up a deep learning network
implementing a multichannel case. As the first step, this
work starts from the one-channel case. This method has
been successfully applied to the Pcð4312Þ [20], the πN
system [21,22], and the nucleon-nucleon system [23,24],
focusing on various facts. For instance, Ref. [20] sets a
classifier, instead of extracting scattering length and effec-
tive range, of a given state by a bottom-up approach to
avoid model dependence.

II. PHYSICS FRAMEWORK

The expressions of scattering length [Eq. (1)] and
effective range [Eq. (2)] are obtained by matching the
effective range expansion scattering amplitude,

TNRðEÞ ¼ −
2π

μ

1

1=aþ ðr=2Þk2 − ik
; ð5Þ

to the explicit scattering amplitude, where the subscript
“NR” indicates the nonrelativistic expression. Here,
μ ¼ m1m2

m1þm2
and E are the reduced mass and total energy

of the two-particle system, respectively. Accordingly,
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μðE −m1 −m2Þ
p

is the three momentum of the
scattering particle in the center-of-mass frame. m1 and m2

are the masses of the two particles.
As the line shape of a state is dominated by the elastic to

elastic1 scattering amplitude [25] once the elastic channel is
predominant in the production vertex, one can consider that

the line shapes are described by jTNRðEÞj2 convoluted with
a Gaussian function,

GðxÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
x2

2σ2 ; ð6Þ

where the mean value is set to zero, up to a phase space
factor. That is,

PDFðE; a; r; threshold; σÞ ¼
Z

jTNRðEÞj2GðE0 − EÞdE0:

ð7Þ

The σ denotes the resolution which depends on the energy
resolution of measuring the invariant mass spectrum. Based
on the probability density function defined as Eq. (7), we
generate 150000 line shapes for training with the param-
eters within the regions

a ∈ ½4.93; 14.80� fm; ð8Þ

r ∈ ½0.49; 0.99� ∪ ½−9.87;−0.49� fm; ð9Þ

m1 þm2 ∈ ½2.8; 3.9� GeV; ð10Þ

σ ∈ ½0.5; 10� MeV: ð11Þ

The regions of scattering length and effective range allow for
both bound and virtual states [26]. The threshold region
covers a charmonium(like) energy region, as mass resolution
actually depends on the momentum resolution, which is
not a constant generally, in the experiment. The constant
resolution is only an average effect to determine which is a
tough job in the experiment. Thus, we set it as a free
parameter to allow for the possibility to extract the resolution
from a well-established line shape. As a result, the resolution
region is set to cover the usual experimental values.
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FIG. 1. The distributions for the parameter threshold and σ at the generation level.

1Here, elastic channel means the channel strongly coupled to
the interested state.
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The training/testing datasets are generated with the
Monte Carlo technique based on the open source software
ROOT [27]. The four parameters are vectorized as

parameters vector ¼ ða; r; threshold; σÞ: ð12Þ
Within the ranges of Eqs. (8), (9), (10), and (11), 150000
samples of the parameter vectors and corresponding histo-
grams are uniformly generated. Here, 45000 samples are
used for testing the performance after training. These
samples are indexed as

datasets ¼ fHi; ai; ri; thresholdi; σig; i ¼ 1;…; 150000;

ð13Þ

where Hi represents a histogram hosting 100 paired
values, i.e., the mass spectrum. Figure 1 illustrates uniform
distributions of the parameter σ and threshold. Figure 2
illustrates 2D histograms for the parameters a and r (left
column). Given a specific value of parameter vector, the
example mass spectra are illustrated in the right column
of Fig. 2.
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FIG. 2. The left panels show 2D histograms for the parameters a and r at generation levels in cases of a bound state (a), a resonance (b),
and a virtual state (c). The right panels show 200 data points illustrated in histograms for a bound state (a), a resonance (b), and a virtual
state (c), respectively, for a specific value of parameter vectors.
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III. TRAINING

A multilayer perception [28]-based ResNet [29] is
implemented with PyTorch [30] to regress the four param-
eters a, r, threshold, and σ by training the generated dataset.
The parameters a and r are simultaneously regressed with a
model, and the other two are individually regressed with
another two models as shown in Fig. 3. Three models are
built with an identical structure, in which the input layer is
set to 200 × 1 vector, followed by a dimensional reduction
layer. The three ResBlocks compress into one or two
outputs and finally connect to the parameter labels.
The ResBlock introduces a shortcut connection between
the relu nonlinear activation layer and the last layer of the
block. In this way, solving the models with the Adam [31]
optimizer is of high efficiency if we choose an optimization
metric as the mean squared error function. A reasonable
solution could be obtained around 1000 training epochs
using an initial learning rate value of 0.001 and random-
izing the neuron weights with a normal distribution while
setting the neuron bias to zero. Note that our labeled values
have been applied with normalization and nondimension-
alization. The goodness of a solution can be measured by
the correlation coefficients, i.e., Fig. 4, which are around
one indicating the equivalence of the predicted values and
the labeled values.
At the beginning of training, the model needs to be

initialized. The weights of neurons are randomly initialized
with a normal distribution, and the biases of neurons are
set to zero. The threshold values of dropout layers are set to
0.3. The label values for the parameters a and r are applied
with dimensionless normalization,

anorm ¼ ageneration
amax

; ð14Þ

rnorm ¼ rgeneration − rmin

rmax − rmin
; ð15Þ

where ageneration and rgeneration are the generated values.
amax, rmax, and rmin are their maximum and minimum
values. These two parameters are simultaneously regressed
because they are largely correlated for given cases, while
the threshold and σ are individually regressed since they are
independent. To solve our model, the Adam [31] optimizer,
one of the most widely used optimizers which combines the
momentum algorithm and the RMSProp algorithm [32],
is used. It does not only fasten the convergence but also
reduce the fluctuation of the loss function, which is defined
as the MSELoss function (the mean squared error loss) to
measure the Euclidean distance between the prediction
values and the label values. A reasonable solution can be
achieved by using around 1000 training epochs with an
initial learning rate value of 0.001, which is automatically
and dynamically adjusted during the training cycle. As
illustrated in Fig. 5, the MSELoss function converges
rapidly after 200 iterations for the regression.

IV. EVALUATION

We further extract the distribution of the difference
between the predicated values and the label values as shown
in Fig. 6 (left column), in which plots (a1–d1) are for the
parameters a, r, threshold, and σ. These distributions are
obtained by testing 45000 samples. The mean measures
the deviation of the predicted values from the labeled ones.

FIG. 3. The structure of the ResNet-based neural network used in this work.
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The root-of-mean-square (RMS) measures the intrinsic
uncertainties of this method. Relevant numbers are summa-
rized in the Table I. For a straightforward comparison, we
extract the parameters from directly fitting to our testing
samples. Among the 15000 samples, only 10074 fitting give
acceptable χ2s, i.e., less than 100. For those successful

fittings, the distributions of the differences between the fitted
parameters and their real values are shown in the right
column of Fig. 6. We have found that biases of the deep
learning could be neglected for all parameters, and intrinsic
uncertainties could be neglected for the parameters a,
threshold, and σ.

FIG. 5. The MSELoss function converges as training epoches increase.
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FIG. 4. Correlations between predicted value and input label value. (a) is for scattering length a. (b),(c), and (d) are for effective ranges
within the regions [0.49,0.99] fm, ½−9.87;−2.47� fm, and ½−2.47;−0.49� fm, respectively. (e) is for threshold. (f) is for resolution
parameter σ.
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FIG. 6. Distributions of the difference between prediction values and label values for each parameter. Distributions in the left column
are obtained with deep learning while those in the right column with the fitting method.
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V. APPLY TO THE Xð3872Þ AND THE T +
cc

During the last decades, tens of exotic candidates have
been reported [1–10]. Among them, the first and most
interesting one is the Xð3872Þwhich was reported by Belle
Collaboration in 2003 [33]. Intensive studies have been put
forward to understand its nature. For instance, the popular
explanations are the DD̄� þ c:c: hadronic molecule,

compact tetra-quark, and the normal charmonium with
the mixture of the DD̄� þ c:c: hadronic molecule. For the
detailed discussions, we refer to Refs. [1–10]. The first two
scenarios can be distinguished by the pole counting near the
DD̄� þ c:c: threshold, i.e., two poles and one pole for
compact and hadronic molecules [5], respectively. These
pole positions are largely related to the values of scattering
length and effective range. Thus, extracting these two values
could help to shed light on the nature of exotic hadrons.
Besides the Xð3872Þ, another interesting one is Tþ

cc [17,34]
reported by LHCb in the D0D0πþ channel. Since it is very
close to the D�þD0 and DþD�0 channels, it is viewed as a
partner of the Xð3872Þ in the molecular picture. In the
isospin limit, i.e., neglecting the mass differences between
charged and neutral charmed mesons, the Xð3872Þ and the
Tþ
cc are only one-channel cases, i.e., the DD̄� þ c:c: and

DD� channel, respectively. Thus, we take them as an
illustration of the applicability of our network. Although,
their isospin breaking effect has several impacts on physical
observables [35–44], as the first step, we start from the one-
channel case and check the applicability.
Our network is applied to the experimental data of the

Xð3872Þ [33] and the Tþ
cc [17,34] with the three-body phase

space subtracted, i.e., the S-wave J=ψπþπ− and the S-wave
D0D0πþ phase space, respectively. The obtained parame-
ters of the two states are collected in Tables II and III,
respectively, comparing to those from fitting with Eq. (5).
As shown in the two tables, the values of scattering lengths,
effective ranges, and relevant thresholds from the two
methods are consistent with each other within 1σ uncer-
tainty. The resolution parameter σ has a large deviation,
which is because it is regressed individually and has larger
uncertainty than those of scattering lengths and effective
ranges. Especially, the absolute value of effective ranges of
the Tþ

cc from the two methods are not as large as that in
Refs. [17,34]. The importance of this value is largely
related to the nature of the Tþ

cc [15,17–19]. As a result,

TABLE I. The biases and errors information of models.

Methods → Deep learning Fitting

Parameters↓ Bias Uncertainty Bias Uncertainty

a (fm) −0.010 1.040 −1.67 2.740
r (fm) −0.033 0.268 −0.038 0.244
threshold (MeV) 0.75 0.52 −0.16 0.31
σ (MeV) −0.0001 0.06 −0.0098 0.10

TABLE II. Parameters of the Xð3872Þ from deep learning
(second column) and fit (third column) to the data directly.

Xð3872Þ Parameters Deep learning Fit

Parameter a (fm) 8.76� 1.75 9.95� 0.34
Parameter r (fm) 0.56� 0.55 0.32� 0.08
Parameter threshold (MeV) 3871.30� 0.52 3871.20� 0.01
Parameter σ (MeV) 1.20� 0.15 1.70� 0.16

TABLE III. Parameters of the Tþ
cc from deep learning (second

column) and fit (third column) to the data directly.

Tþ
cc parameters Deep learning Fit

Parameter a (fm) 8.23� 1.04 13.74� 4.77
Parameter r (fm) −2.79� 0.27 −2.15� 0.21
Parameter threshold (MeV) 3874.83� 0.51 3874.53� 0.13
Parameter σ (MeV) 1.10� 0.06 0.11� 0.12

FIG. 7. The resample data of the Xð3872Þ and the Tþ
cc comparing to the experimental data. The experimental data of the Xð3872Þ and

the Tþ
cc are extracted from Ref. [33] and Refs. [17,34], respectively.
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extracting this parameter precisely is valuable. Our network
can also extract the most relevant threshold simultaneously.
The errors of the parameters are obtained in bootstrap

[45]. First, we resample the line shapes of the Xð3872Þ and

the Tþ
cc, as illustrated by Fig. 7. For the ith bin, a new event

Yi ¼ Gðyi; σiÞ is randomly generated with the experimental
central value yi and the experimental error σi as the mean
and the standard deviation of the Gaussian probability
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density function (PDF). Here, G means sampling with the
Gaussian PDF. Here, 10000 Yi samples are generated and
fed into our deep learning approach. Five samples are
plotted in Fig. 7 comparing to the experimental data. For a
given parameter, all the predicted values form a Gaussian-
like distribution, as shown by Figs. 8 and 9. The RMS of
this distribution is taken as a quoted uncertainty, which is
propagated from the experimental errors.

VI. CONCLUSION

We train a neural network to analyze the experimental
mass spectra of exotic states. The 150000 data samples are
generated based on effective range expansion and used for
training the network, which can extract scattering length,
effective range, the most relevant threshold, and the
experimental resolution. The obtained parameters are con-
sistent with those from the fitting. The advantage of the
neural network is that it is more stable than the fitting,
especially for low-statistic data. In addition, the compat-
ibility of the neural network is larger than the fitting. In

principle, all theoretical models can be encoded in one
neural network, leaving it easier for experimental analysis.
As an application, the mass spectrum of the Xð3872Þ and
the Tþ

cc are studied. This network can also be applied for
other one-channel near-threshold exotic states.
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