
Quantum speedup for track reconstruction in particle accelerators

D. Magano ,1,2 A. Kumar,1,3 M. Kālis ,4 A. Locāns,4 A. Glos,5 S. Pratapsi,1,2 G. Quinta,1 M. Dimitrijevs ,4

A. Rivošs,4 P. Bargassa ,6,7 J. Seixas,2,6,8 A. Ambainis,4 and Y. Omar1,2,6
1Physics of Information and Quantum Technologies Group, Instituto de Telecomunicações,

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
2Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

3Department of Mathematics, Clarkson University, Potsdam, New York 13699, USA
4Center for Quantum Computer Science, Faculty of Computing, University of Latvia,

Raiņa bulv. 19, Rıga LV-1586, Latvia
5Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,

Bałtycka 5, 44-100 Gliwice, Poland
6Portuguese Quantum Institute, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

7Laboratório de Instrumentação e Física Experimental de Partículas,
Av. Pr. Gama Pinto 2, 1649-003 Lisbon, Portugal

8Center for Physics and Engineering of Advanced Materials, Av. Rovisco Pais 1,
1049-001 Lisbon, Portugal

(Received 12 September 2021; accepted 18 February 2022; published 19 April 2022)

To investigate the fundamental nature of matter and its interactions, particles are accelerated to very high
energies and collided inside detectors, producing a multitude of other particles that are scattered in all
directions. As charged particles traverse the detector, they leave signals of their passage. The problem of
track reconstruction is to recover the original trajectories from these signals. This challenging data analysis
task will become even more demanding as the luminosity of future accelerators increases, leading to
collision events with a more complex structure. We identify four fundamental routines present in every
local tracking method and analyze how they scale in the context of a standard tracking algorithm. We show
that for some of these routines we can reach a lower computational complexity with quantum search
algorithms. Although the found quantum speedups are mild, this constitutes, to the best of our knowledge,
the first rigorous evidence of a quantum advantage for a high-energy physics data processing task.

DOI: 10.1103/PhysRevD.105.076012

I. INTRODUCTION

Most of our understanding about fundamental inter-
actions and the subnuclear structure of matter comes from
exploring the results of colliding highly energetic particles
in accelerator machines. These collisions produce a myriad
of secondary particles, which must be detected and their
trajectories subsequently reconstructed. The search for new
physics beyond the Standard Model depends on being able
to detect and process extremely rare events among vast
amounts of data. Experimental high-energy physics (HEP),
especially the Large Hadron Collider (LHC) program at the
European Organization for Nuclear Research (CERN), is
for this reason one of the most computationally demanding
activities in the world [1]. Moreover, this demand is
expected to grow dramatically after 2026 with the upcom-
ing High-Luminosity phase of the LHC [2], and even more
so in future machines, such as the Future Circular Collider
[3]. As such, processing the data obtained in the particle
detectors into useful information that can be analyzed by
high-energy physicists will become such a formidable task

that it will likely require completely new technological
paradigms. Quantum computing, promising significant
speedups or reduced computational and energetic resources
for specific problems, may play a key role in overcoming
these challenges.
In recent years, quantum solutions have been proposed for

specific tasks in HEP data processing and analysis. These
include track reconstruction [4–9], event selection [10–17],
and event simulation [18]. These promising proposals were
typically conceived already with a quantum framework in
mind, and were tested with very small problem instances due
to the present quantum hardware limitations (for details on
the computational scaling of previous quantum algorithms
for track reconstruction see the Appendix A). Therefore, it
remained an open question whether one could prove a
quantum speedup for a relevant task meeting the large-scale
requirements of modern HEP data processing. One route
toward this goal is to consider the computational complexity
of standardHEPalgorithms andwhether quantumcomputers
could be used to improve it. In [19], for example, the classical
and quantum computational scaling of a well-known jet

PHYSICAL REVIEW D 105, 076012 (2022)

2470-0010=2022=105(7)=076012(19) 076012-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5015-4217
https://orcid.org/0000-0001-9426-9497
https://orcid.org/0000-0002-4225-7889
https://orcid.org/0000-0001-8612-3332
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.076012&domain=pdf&date_stamp=2022-04-19
https://doi.org/10.1103/PhysRevD.105.076012
https://doi.org/10.1103/PhysRevD.105.076012
https://doi.org/10.1103/PhysRevD.105.076012
https://doi.org/10.1103/PhysRevD.105.076012


clustering algorithm is studied: a quantum algorithm with
speedup is found, aswell as an alternative classical algorithm
that matches the quantum performance, therefore establish-
ing no quantum advantage.
In this article, we consider the problem of track

reconstruction (also known as tracking) from a computa-
tional complexity perspective. In particle physics experi-
ments, bunches of accelerated particles are collided inside
tracking detectors. At these collisions, new particles are
created and scattered in all directions. As charged particles
cross the detector’smultiple layers, they leave signals of their
passage, which are converted into three-dimensional points
called hits. The collection of hits that are left by such a
particle is called that particle’s track. The event record of an
experiment consists of the totality of signals fromall particles
of an interaction (or possibly several interactions) after one
full readout of the detector. The goal of tracking is to
reconstruct the particles’ tracks from the event record—
see Fig. 1 for an illustration of the problem. Given that in real
experiments an event can contain several thousand hits, most
combinations of hits (track candidates)will not correspond to
an actual particle. Therefore, we need efficient algorithms to
be able to reconstruct the tracks in a reasonable time.
The current tracking methods can be broadly classified

into local and global methods [20]. Global methods treat all
hit information in an equal and unbiased way and are
essentially clustering algorithms in some feature space.
All the quantum approaches so far were based on global
methods. However, because these methods can be very
inefficient in terms of speed, local methods are still the
standard at several reconstruction programs in high-energy
physics [21–23]. For this reason, theywill be the focus of this
article.
We identify four fundamental computational routines that

are present in every local tracking method: seeding, track

building, cleaning, and selection. In the first stage, seeding,
we form initial rudimentary track candidates, called seeds,
using just a few hits. Then, in the track building stage, we
extrapolate the seeds trajectories along the expected path of
the particle and build track candidates by adding compatible
hits from successive detector layers. This strategymay lead to
multiple track candidates describing the same particle. To
avoid such redundancies, we apply a cleaning process that
removes track candidates that are too similar. Finally, only
the track candidates that respect some quality criteria (based
on the quality of the fit between the trajectory and the
corresponding hits) are output from the reconstruction
process—this is called the selection stage. Figure 2 provides
a summary of the four stages.
For each of these stages, we analyze the computational

scaling of the combinatorial track finder (CTF) algorithm
[21], which was the basis of the tracking program of the
CMS collaboration during the 2016 LHC run [24]. While
we focus on the CTF for concreteness, we point out that the
underlying structure is the same as for most local track
reconstruction methods, such as the ones used in ATLAS
[22] or Belle II [23]. For both the seeding and track building
stages, we show that we can reproduce the same output (up
to bounded error probability) with lower quantum complex-
ity by an adequate use of quantum search routines. For the
cleaning routine, we find an alternative classical algorithm
with improved scaling that is optimal up to polylogarithmic
factors. The selection stage is already trivially optimal from
a complexity perspective. We emphasize that the four
tracking routines are analyzed independently, adding flex-
ibility to our results. For example, the CMS collaboration
recently adopted a different seeding strategy [25], but the
structure of the other three stages remains unchanged.
Finally, we consider executing the entire reconstruction
coherently, where we do not register the outputs of the

(a) (b)

FIG. 1. Illustration of track reconstruction. Transverse view (with respect to the beam line) of a tracking detector with cylindrical layers
(dashed grey lines). The input to tracking is a set of hits (red circles) corresponding to detections of the particles’ passage (a). We recover
the original trajectories (blue lines) by grouping hits that belong to the same particle, i.e., by reconstructing the particles’ tracks (b).

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-2



(a) (b)

(c) (d)

FIG. 2. Track reconstruction: the four stages. In these figures, the charged particles resulting from a collision travel from left to right,
recording hits (circles) as they cross the detector layers (dotted grey lines). (a) Seeding. Local track reconstruction methods start by
forming seeds, rudimentary track candidates with just a few hits. In this figure we highlight in green a possible seed with three hits.
(b) Track building. The trajectory of each seed is extrapolated throughout the detector, building track candidates by adding compatible
hits layer by layer. (c) Cleaning. The found tracks are here represented in different colours. During the cleaning stage, if two track
candidates share too many hits one of them gets discarded. The pink track, for example, is filtered at this stage because of the hits it
shares with the green one. (d) Selection. Only the track candidates that satisfy certain quality criteria are selected as the output of the
reconstruction process.

TABLE I. Summary of the results. We present the complexity of the algorithms for each of the track reconstruction stages, both the
classical and quantum versions. n is the number of charged particles present in the event record, c is the number of hits used to form the
seeds, kseed is the number of seeds generated, and kcand is the number of built candidate tracks. The two rows for the track cleaning stage
refer to the original version of [21] and to the one we propose. On the quantum side some entries are marked as “…” where we did not
propose/expect a quantum algorithm with advantage over the classical one. In the penultimate row we write the complexity of the full
track reconstruction, assuming the four stages are executed sequentially. We combine Theorems 2–8 using kseed ¼ OðncÞ and
kcand ¼ OðkseedÞ. The final row shows that the quantum advantage can be further improved provided that the number of reconstructed
tracks is OðnÞ.
Tracking stages Input size Output size Classical complexity Quantum complexity

Seeding OðnÞ kseed OðncÞ (Theorem 2) Õð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kseed · nc

p Þ (Theorem 3)
Track building kseed þOðnÞ kcand Oðkseed · nÞ (Theorem 4) Õðkseed ·

ffiffiffi
n

p Þ (Theorem 5)
Cleaning (original) kcand OðkcandÞ Oðk2candÞ (Theorem 6) …
Cleaning (improved) kcand OðkcandÞ ÕðkcandÞ (Theorem 7) …
Selection OðkcandÞ OðkcandÞ OðkcandÞ (Theorem 8) …
Full reconstruction n OðncÞ Oðncþ1Þ (Theorems 2, 4, 7, 8) Õðncþ0.5Þ (Theorems 3, 5, 7, 8)
Full reconstruction with
OðnÞ reconstructed tracks

n OðnÞ Oðncþ1Þ (Theorems 2, 4, 7, 8) Õðnðcþ3Þ=2Þ (Theorem 9)

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-3



individual stages, but are only interested in the final
reconstructed tracks. We show that this scenario can lead
to further quantum advantage. Our results are summarized
at the end of the article in Table I.

II. THE TRACKING PROBLEM

We present a simplified model of tracking, omitting
some details that do not significantly influence the com-
plexity analysis. In Appendix B we formalize further our
assumptions and discuss how they could be relaxed.
Let n denote the number of charged particles present in

the event record. Their trajectories originate from a fixed
interaction region, but not necessarily from a single
collision spot (this accounts for the pileup effect [21]).
Since the detector is immersed in a quasiuniform co-axial
magnetic field, we expect the particles to follow helical
trajectories aligned with the field’s direction. We model the
particles’ trajectories as independent and identically dis-
tributed random variables, such that the underlying prob-
ability distribution is strictly positive on the corresponding
parameter space. The assumption that the different trajec-
tories are uncorrelated represents a common practice in
track reconstruction. The detector consists of a set of L
cylindrical sensor layers aligned with the beam line. The
layers are indexed from 0 to L − 1 (the most inner layers
having the smallest indices). We assume that each particle
traverses every layer exactly once. As a particle crosses a
layer, it leaves a complex signal resulting from the
interaction with the sensor’s pixels. We treat these signals
simply as three-dimensional points, called hits. Thus, we
require the granularity of the sensors to be high enough
such that each detected hit can always be differentiated
from others. At every layer, we identify the hits with labels
from f0;…; n − 1g, using the notation ml;j for the coor-
dinates of jth hit in layer l. It is possible that some hits are
not measured at all due to sensor inefficiencies, that is, we
do not necessarily have a hit ml;j for every pair ðl; jÞ.

III. COMPUTATIONAL MODEL

The running time of any tracking algorithm is the result of
different factors. Naturally, the larger the number of recorded
particles the more demanding track reconstruction becomes.
At the LHC, sophisticated computational architectures are
employed to optimize the running time [26,27]. Furthermore,
the parameters of the tracking software (such as theminimum
pT of the tracks, see Appendix C) are carefully adjusted to
achieve in useful time a track reconstruction with the desired
accuracy, under some assumptions on the observed events.
In this work, we offer a different perspective on tracking,

focusing on the computational complexity of the problem.
In other words, we are interested in understanding how it
fundamentally scales with input size. As is common in the
theoretical analysis of algorithms, we concern ourselves
with the asymptotic limit of arbitrarily large number

of particles. We adopt the standard “big O” notation for
asymptotic upper bounds. For two functions f and g fromN
to R we say that f ¼ OðgÞ if ∃C;x0 > 0∶ ∀ x; ðx > x0 ⇒
fðxÞ<C · gðxÞÞ. We write f ¼ ΩðgÞ if g ¼ OðfÞ.
We say that f ¼ ΘðgÞ if f ¼ OðgÞ and g ¼ OðfÞ. By
“constant time,” we mean Oð1Þ.
For our complexity analysis we only consider the

dependence on the variable n, the number of particles.
Evidently, the data in the event record also depends on
quantities like the number of layers of the detector, the
granularity of the sensors, or the efficiency of the detectors.
But these are fixed from the experimental hardware and do
not vary from event to event. On the other hand, we expect
the average n to grow as we increase the beam’s instanta-
neous luminosity. Thus, we believe n to be an appropriate
measure of the size of the input to the tracking problem.
When considering the classical algorithms we assume

that, given ðj; lÞ, we can access ml;j in constant time.
Moreover, simple arithmetic operations on the hit’s coor-
dinates are counted as taking Oð1Þ time. In the context of
the quantum algorithms, we work in the circuit model,
measuring time as the number of quantum gates used. We
assume access to a QRAM that is able to load classical data
in coherent superposition in logarithmic time in the number
of memory cells [28]. That is, we have access to a unitaryQ
such that, given a superposition jψi ¼Pl;j αl;jjl; jij0i,
applying Q yields the state

Qjψi ¼
X
l;j

αl;jjl; jijbijml;ji: ð1Þ

In this expression, jbi is a flag qubit indicating whether
the index j corresponds to an actual hit in layer l (there may
be fewer than n detections per layer). If so, jml;ji is a
computational basis quantum state encoding the coordi-
nates of the jth hit of layer l (otherwise, this register can be
in an arbitrary state, say, the all-zero state).
Our conclusions will be critically dependent on the

existence of a QRAMwith the above mentioned properties,
which represents a common practice in theoretical work on
quantum algorithms. Nevertheless, we point out that,
even though there have been proposals of physical archi-
tectures for implementing QRAM [29], there are still
significant challenges to overcome before such a device
can be realized in practice.
Our choices of computational models represent the dis-

tinct standard practices in classical/quantum algorithm
analysis. To attenuate the differences in the computational
models, we present the results in Õ notation, that is, omitting
the polylogarithmic dependencies in the complexities.
Another difference between the classical and quantum

scenarios is that all the presented classical algorithms are
deterministic, meaning that for a given input they will
always output the same answer. On the other hand, our
quantum algorithms are probabilistic. That is, they output
the correct answer with some constant probability. This

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-4



probability can always be amplified to 1 − ϵ, for any
ϵ ∈ ½0; 1½, at a cost of Oðlogð1=ϵÞÞ repetitions.

IV. FOUR STAGES IN TRACKRECONSTRUCTION

A. On the density of hits

Naturally, the number of hits in the event record grows
proportionally to the number of particles. In fact, for any
fixed region of the detector we expect the number of
registered hits to grow linearly with n. In Appendix B we
rigorously establish the following Lemma, which will
become useful for the complexity analysis:
Lemma 1: For almost all events, the number of hits in

any fixed, open (nonempty) subset of any detector layer
grows as ΘðnÞ.

B. Seeding

Local track reconstruction methods start by forming
rudimentary track candidates, known as track seeds, with
just a small number of hits from a specific region of the
detector (usually the innermost layers due to their higher
granularities). In the seeding scheme of [21], seeds are
formed with only three hits. But our analysis easily extends
to seeds with c hits, so in what follows we consider this
more general scenario. We impose some constraints on
the trajectories defined by the seeds, namely a minimum
transverse momentum and a maximum transverse and
longitudinal distances to the presumed production point
of the particle. Any hit c-tuplet disobeying these conditions
is not considered a valid seed.
The CTF’s seeding routine first searches over the first

two seeding layers of the detector for pairs of hits that are
compatible with the seeding criteria. These pairs are
extended into hit triplets by searching over the third layer
for compatible hits (meaning that we want the hit triplets to
respect the imposed conditions on the seeds’ trajectories).
These triplets are extended in a similar way into hit
quadruplets, then hit 5-tuplets, and so on until the cth
layer is reached. In Appendix G we provide a pseudo-code
representation of the seeding routine (Algorithm 1).
Suppose, now, that we have carried this process until the

jth layer (for somegeneral j between 2 and c − 1). Each hit j-
tuplet determines a region in the (jþ 1)th layer where we
could find a hit continuation compatible with the seeding
constraints—see Fig. 3 for an illustration of the j ¼ 2 case.
According to Lemma 1, we expect to find ΘðnÞ hits in that
region. So, the number of selected tuplets grows by a
multiplicative ΘðnÞ factor at each layer (although the
multiplicative constant shrinks as j increases), resulting in
ΘðncÞ seeds.
Theorem 2: The CTF’s seeding algorithm, Algorithm 1

(classical), has complexityOðncÞ, where c is the number of
hits per seed.
In practice, the number of seeds may be much smaller

than nc. However, the result of Theorem 1 is independent of

how many seeds are actually formed. In contrast, it is
simple to see that quantum computers can reach a lower
complexity if kseed, the number of seeds, scales better than
OðncÞ. Indeed, let Oseed be an operator that, given a state
jj0;…; jc−1i, applies a −1 phase if ðm0;j0 ;…;mc−1;jc−1Þ
corresponds to a valid seed, and leaves it unmarked
otherwise. Within the QRAM model presented in Sec. III,
we can implement Oseed with a Õð1Þ-sized circuit. Then,
the idea is to use Grover’s quantum search algorithm
[30,31] to find the good seeds. Let

G ≔ H · ð2j0ih0j − IÞ ·H ·Oseed; ð2Þ

where H is the Walsh-Hadamard transform [32]. Starting
with a uniform superposition over the hit c-tuplets, we keep
applying G

O

 ffiffiffiffiffiffiffiffiffi
nc

kseed

s !
ð3Þ

times to amplify the probability of sampling a good seed to
Ωð1Þ. Repeating this ÕðkseedÞ times suffices to sample all
good seeds with high probability. We note that this
approach works even if kseed is a priori unknown since
it can be determined with quantum counting [33]. The
detailed steps are presented in Algorithm 2.
Theorem 3: Algorithm 2 (quantum) generates all

seeds with bounded-error probability in expected time
Õð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kseed · nc
p Þ, where kseed is the total number of generated

seeds.

FIG. 3. Searching for seeds. The dotted grey lines represent the
first three detector layers (transverse view). The yellow region
around the beam axis (the black dot) is the region where we admit
the collisions may occur. In this illustration, we are forming a
seed with the two hits from the inner layers marked in red. For
any hit in the third layer (orange circles) to be considered
compatible with this seed, it must lie in the green region. This
is the region where the trajectories that respect the seeding criteria
and that pass through the two red hits cross. In blue we draw two
trajectories originating from the outer edge of the collision region.

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-5



For the proofs Theorems 2 and 3 we refer the reader to
Appendix C.

C. Track building

The CTF’s track building phase is based on the combi-
natorial Kalman filter [34] method, which is an adaptation of
the Kalman filter [35] for tracking problems. We build track
candidates starting from the seeds by adding new hits, layer
by layer, until the end of the detector is reached. The idea is
that, at each step,we extrapolate the candidate trajectory until
it intersects the subsequent layer. Then, to every hit on that
layer we attribute a χ2 value, which essentially translates the
distance between the hit and the intersection point of the
trajectory with the layer (for detailed definition see
Appendix D). We add the hits with lowest χ2 value to the
track candidate and then update the trajectory’s parameters
according to the Kalman filter method.
Crucially, at each propagation step we may branch each

track candidate into new candidates if several continuation
hits are consistent with the present knowledge of track
parameters. The possibility that the expected hit is simply
missing (for example, due to device inefficiencies) also gives
rise to a new branch with no hit added at that layer—this is
known as a “ghost hit.” Following an argument similar to that
of the previous section (relying on Lemma 1), we would
expect ΘðnÞ new branches to be formed per layer per track
candidate.However, to prevent a rapid increase in the number
of tracks theCTFalgorithm imposes a limit of five candidates
retained at each step per starting seed. These five candidates
are selected based on their quality score, which is the number
of hits added to the track (excluding ghost hits) minus a
scaled sum of χ2 values for each of the hits.
In summary, for each track candidate, the propagation

step involves: extrapolating the trajectory onto the next
layer (Oð1Þ time), selecting the five best branches (OðnÞ
time), and updating the trajectory parameters for each
branch (also Oð1Þ time). For more details on the track
building stage, we refer the reader to Appendix D. For a
pseudocode of the track building stage see Algorithm 3.
Theorem 4: Starting from kseed seeds, the CTF’s track

building algorithm, Algorithm 3 (classical), has complex-
ity Oðkseed · nÞ.
With access to a quantum computer, at each propagation

step we can prepare all new branches in superposition. We
propose using Dürr and Høyer’s quantumminimum finding
algorithm [36] to select the best five ones in Õð ffiffiffi

n
p Þ time,

circumventing the classical cost of having to inspect the
OðnÞ branches one-by-one. In more detail, suppose that we
have followed a track candidate up to layer l − 1. Calling
the QRAM, we can build a quantum circuitOfind that, given
a state jl; jijqi, applies a −1 phase if adding the hit ðj; lÞ
yields a new track candidate with χ2 value smaller than y.
We then perform quantum search with Ofind as the oracle,
setting some initial y ← y0. If we find a hit with corre-
sponding χ2 value y0 < y0, we run the quantum search

again with y ← y0 (see Algorithm 4 for the detailed steps).
With high probability, in Õð ffiffiffi

n
p Þ this procedure will have

converged to the branch with the lowest χ2 value.
Theorem 5: Starting from kseed seeds, Algorithm 5

(quantum) performs track building with bounded-error
probability in Õðkseed ·

ffiffiffi
n

p Þ time.
The full proofs of Theorems 4 and 5 are provided in

Appendix D.

D. Cleaning

The combinatorial Kalman filter method may yield
multiple tracks corresponding to the same particle, by
either starting from different seeds, or when a seed grows
into more than one track. To avoid this, the cleaning stage
calculates the fraction of shared hits between all pairs of
track candidates

Nhits
shared

min ðNhits
1 ; Nhits

2 Þ ; ð4Þ

where Nhits
1 (Nhits

2 ) is the number of hits used in forming the
first (second) track and Nhits

shared is the number shared hits
between the two tracks. If for any pair this fraction exceeds
a fixed threshold value, the worst track (i.e., the one with
the lowest quality score) gets discarded—see Algorithm 6.
This pairwise comparison method leads to a quadratic
scaling with the number of track candidates.
Theorem 6: CTF’s cleaning algorithm, Algorithm 6

(classical), has complexity Oðk2candÞ, where kcand is the
number of track candidates in the input.
Now consider, for simplicity, that all tracks have the

same number of hits, say L. We can find an asymptotically
more efficient classical algorithm by observing that (a) there
is an integer r (independent of n) such that two tracks
exceed the allowed fraction of shared hits if and only if they
have r hits in common and (b) each track only has ðLrÞ ¼
Oð1Þ distinct r-tuples of hits. We start by sorting the
candidate tracks by quality score, such that if we need to
discard one of two tracks we choose the one that is further
down the list. Evidently, the first track t1 is going to be
included in the output. We create a self-balancing binary
search tree T , like a red-black tree ([37], for example),
containing all of the r-tuples of hits of t1 (with some
induced order on the r-tuples). We then move to the second
track in the list t2. For every r-tuple of t2, we search for a
match in the tree T . If we do not find any, we insert all of
t2’s r-tuples into T and we add t2 to the output. Otherwise,
t2 is not included in the output and we leave the tree
unchanged. We repeat this procedure for the remaining
tracks. In the end, the output contains all the desired tracks.
In Appendix E we extend this method to the case of general
track sizes, resulting in Algorithm 7, and prove
Theorem 7: Algorithm 7 (classical) performs track

cleaning in ÕðkcandÞ time, where kcand is the number of
track candidates in the input.

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-6



E. Selection

The selection routine filters out the track candidates
whose quality score falls bellow a specified threshold—see
Algorithm 8. Since the quality score of any track candidate
is independent of all the other tracks, this stage clearly
scales linearly with the number of track candidates.
Theorem 8: CTF’s selection algorithm, Algorithm 8

(classical), has complexity OðkcandÞ, where kcand is the
number of track candidates in the input.

V. RECONSTRUCTING TRACKS IN
SUPERPOSITION

We have seen that the seeding stage may exhibit
quantum speedup if the number of seeds, kseed, is consid-
erably smaller than the total number of combinations of
c-tuplets, nc (Theorem 3). However, in general, the number
of seeds will scale like ΘðncÞ, and the quantum complexity
will be the same as the classical one. In that case, only the
track building stage shows a proven lower complexity:
Oðncþ1Þ classical (Theorem 4) versus Oðncþ0.5Þ quantum
(Theorem 5). If the four stages are run sequentially, the
track building stage will dominate the CTF’s complexity
(both in the classical and quantum cases).
Now suppose that we are only interested in the final

reconstructed tracks. Instead of producing the output of
each stage before continuing with the next one, we propose
an algorithm, relying on quantum superposition over all
track candidates, that reconstructs the full tracks one-by-
one. This further improves the quantum advantage pro-
vided that the number of reconstructed tracks is OðnÞ.
Intuitively, this condition means that the CTF can be
applied in the asymptotic regime while keeping a constant
fraction of tracks that do not correspond to a real charged
particle. We point out that, in practice, particle physicists
empirically adjust the parameters of the tracking software
according to the luminosity regime to obtain a reasonable
fake track rate for most events. Alternatively, one may think
that we are only interested in reconstructing the best OðnÞ
tracks.
The promise that onlyOðnÞ tracks are to be found among

ΘðncÞ track candidates suggests the use of quantum search,
as we did with seeding. This is complicated for two reasons:
(a) the track building routine forgets information by selecting
only some track candidates in each layer, i.e., it is not
reversible, while quantum search relies on (reversible)
unitary transformations; (b) the cleaning operation for each
track candidate depends on information about other tracks.
To rectify point (a) we apply the principle of deferred
measurements [32] to create a sequence of unitary trans-
formations that mimic the CTF algorithm. To rectify point
(b) we adapt our improved cleaning algorithm, coherently
accessing the nodes of the search tree via QRAM.
More concretely, after reconstructing the first i tracks, we

build a circuit Ui that prepares a superposition of all ÕðncÞ

fully built tracks, flagging the ones that have already been
accepted as reconstructed tracks. This circuit only requires
Õðlog nc · ffiffiffi

n
p Þ gates using our quantum routine for track

building (Section IV C). Then, we sample the best-scoring
track candidate in that superposition that does not overlap
with any previously reconstructed track candidates to
form the (iþ 1)th track in the output. Using quantum
minimum finding, this can be done with Oð ffiffiffiffiffi

nc
p Þ calls

toUi. We repeat this procedure until no new valid tracks are
found—OðnÞ times due to the promise. Our proposal is
summarized in Algorithm 9. For a detailed construction of
the unitaries Ui we refer to Appendix F.
Theorem 9: Suppose that the total number of recon-

structed tracks is OðnÞ. Then, Algorithm 9 (quantum)
outputs the tracks reconstructed by the full CTF algorithm
(seeding, track building, cleaning, and selection) with
bounded-error probability in Õðnðcþ3Þ=2Þ time.

VI. CONCLUSIONS

We have identified four fundamental routines present in
local track reconstruction methods (seeding, track building,
cleaning, and selection), and analyzed how each scales with
the number of recorded hits, n, proposing quantum algo-
rithms where we could find advantage (seeding and track
building). The seeding stage, which runs on OðncÞ time
classically (Theorem 2), has a quantum computational
complexity of Õð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kseed · nc
p Þ (Theorem 3), where c is

the number of hits per seed and kseed is the total number of
generated seeds. Classical track building has complexity
Oðkseed · nÞ (Theorem 4), whereas we develop a quantum
algorithm that scales as Õðkseed ·

ffiffiffi
n

p Þ (Theorem 5). These
speedups are based on quantum search routines. The
combinatorial track finder’s version of the cleaning routine
has complexity Oðk2candÞ (Theorem 6), where kcand is the
number of processed track candidates, and we show that
this can be improved to ÕðkcandÞ (Theorem 7) via a
structured search scheme. The selection stage was already
optimal from the complexity perspective (Theorem 8). If
the four stages are run sequentially, the track building
routine dominates the complexity of the reconstruction:
Oðncþ1Þ classically and Õðncþ0.5Þ quantumly. However,
we show that, if the number of reconstructed tracks isOðnÞ,
we can combine all previous algorithms to perform track
reconstruction in Õðnðcþ3Þ=2Þ time (Theorem 9). These
results are summarized in Table I. We recall that all of our
quantum algorithms assume access to a QRAM storing the
classical hit data.
Our work develops a rigorous computational framework

to analyze the track reconstruction problem that is both
sufficiently abstract to encompass different experiments (like
CMS, ATLAS, or Belle II) and sufficiently strong to predict
the scaling of the combinatorial track finder algorithm for
high luminosity regimes. Although the reached quantum
speedups are evidently mild, we conjecture that they are the

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-7



best possible while constrained to matching the exact output
of the corresponding classical algorithm (up to bounded-
error probability) at arbitrarily fine scales. In otherwords, the
direct quantization of (local) trackingmethodsmaynot be the
best path to establish a significant advantage in quantum
computing for HEP problems. Instead, one may find more
success by breaking the direct correspondence with the
classical setting and designing completely new tracking
algorithms that inherently take advantage of the features
of quantum processors. There have been proposals in this
direction [4,5,7], but they have not yet shown clear evidence
of quantum speedup (refer to Appendix A for details).
In summary, we offer the first rigorous quantum speedup

for relevant HEP data processing tasks. Moreover, our
comprehensive analysis of the combinatorial track finder
algorithm reveals that classical improvements to the com-
putational complexity are also possible. And, even though
asymptotic results may be of limited use for practical
problems, and quantum hardware may still be far from
being able to address big data problems, we hope our
original approach to tracking can motivate further inves-
tigations on the potential of quantum computation to tackle
the increasingly challenging, and potentially intractable
classically, high-energy physics data analysis problems.

ACKNOWLEDGMENTS

The authors would like to thank Felice Pantaleo for
precious discussions about the classical Combinatorial
Track Finder algorithm. Furthermore, the authors acknowl-
edge project QuantHEP Quantum Computing Solutions
for High-Energy Physics, supported by the EU H2020
QuantERA ERA-NET Cofund in Quantum Technologies,
and FCT—Fundação para a Ciência e a Tecnologia
(QuantERA/0001/2019). D.M., A,K, S,P, G,Q., P. B., J. S.,
Y. O. thank the support from FCT, namely through Project
No. UIDB/50008/2020. D.M. acknowledges the support
from FCT through scholarship No. 2020.04677.BD.M. K.
thanks MikroTik for the scholarship administrated by the UL
Foundation. A. G. has been partially supported by National
Science Center under Grant agreements No. 2019/32/T/ST6/
00158 andNo. 2019/33/B/ST6/02011.S. P. thanks the support
from the la Caixa foundation through scholarship No. LCF/
BQ/DR20/11790030. G. Q. thanks the support from FCT
through Project No. CEECIND/02474/2018.

APPENDIX A: OTHER QUANTUM ALGORITHMS
FOR TRACK RECONSTRUCTION

Quantum-based algorithms have been previously devel-
oped for track reconstruction and related problems, but none
of them show clear evidence of quantum speedup. [4,5]
approach tracking as a combinatorial optimization problem
to be solved with quantum annealing, and [7] suggest a
hybrid graphneural networkmodel. References [6,9] address
the related (but not equivalent) problems of track clustering

and track recognition, respectively. One should be cautious
before drawing a direct comparison with the currently
used tracking algorithms, as is done in this paper. First,
these studies do not guarantee the same or better output
quality than the current classical approach. Second, previous
papers do not present a rigorous computational complexity
analysis, thus it is unclear how they scale with the number of
hits n.
In [4,5] track reconstruction is formulated as a quadratic

unconstrained binary optimization (QUBO) problem, which
can be naturally mapped to a quantum annealer. In [5] the
binary variables represent hit doublets Sij, and in [4] hit
triplets Sijk. With both approaches the idea is that in the
optimal solution the variables assigned with þ1 correspond
to connections between hits left by the same particle. The
computational complexity of the QUBO polynomial formu-
lation is dominated by the calculation of the “reward”
coefficients (see original references for details),

X
ijk

bijkSijSjk ðdoubletsÞ; ðA1Þ

X
ijklp

bijklpSijkSklp ðtripletsÞ; ðA2Þ

where the coupling coefficients (bijk orbijklp) are determined
classically. We see that the amount of coupling coefficients
that need to be pre-processed to define the QUBO poly-
nomial representing the full event isΘðn3Þ for the case of hit
doublets and Θðn5Þ for the case of hit triplets. It is unclear
how the annealing time scaleswith n and the required quality
of the solution. The annealing time required to find the global
minimum of the QUBO polynomial is likely to scale
exponentially with respect to the number of variables in
the polynomial [5, Section 2.5]. [5] consider dividing the
problem into smaller subproblems to enable embedding on
current quantum annealers and reduce run-time, but the
asymptotic scaling of these subproblems is not analyzed.
Reference [7] proposed a hybrid classical-quantum

graph neural network model. After classical preprocessing,
they get a graph of connections between the hits of size
Oðn2Þ. Their model predicts the probability of each such
connection linking to consecutive hits from the same
particle. The complexity of this algorithm will also depend
on the number of hidden classical nC and quantum nQ
dimensions and on the number of training iterations nI .
Although they show that small values of nC, nQ, and nI are
enough to get relatively accurate results for their (toy)
datasets, it is difficult to assess whether the proposed
algorithm would achieve similar results to the CTF
algorithm, and it is unclear whether increasing the size of
the network (nC, nQ, nI) would improve the results
sufficiently.

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-8



APPENDIX B: MORE ON THE TRACKING
PROBLEM

The work presented in the main text is based on a
simplified model of the problem of track reconstruction.
Here we describe in more detail the assumptions behind
that model.
Assumptions about the particles’ trajectories. Let n

denote the number of charged particles present in the
event record. Their trajectories originate from a fixed
interaction region, but we do not assume that they come
from a single collision spot. The detector is immersed in a
quasiuniform coaxial magnetic field, so we expect the
particles to follow helical trajectories aligned with the
field’s direction. These trajectories can be described by
five parameters [38]. Let P ⊂ R5 be the five-dimensional
cuboid corresponding to the trajectories’ parameter space.
Each experiment that produces a sequence of particle
trajectories is governed by a physical process that implicitly
selects these parameters for each trajectory; in the forth-
coming, we call this procedure an event. We model this
formally as a random variable π∶Ω → P that selects a
parameter with respect to a probability space ðΩ;F ; PÞ that
accounts for various physical parameters, such as noise, etc.
We make the mild assumption that π follows a probability
distribution pπ on P that is strictly positive. With our
model, an event is generated by drawing n random samples
π1;…; πn, each following pπ (that is, we treat them as i.i.d.
random variables).
Assumptions about the detector’s layers. The detector

has a fixed geometry with a discrete set of sensor layers.
We consider that the detector has L cylindrical layers
aligned with the beam line. The layers are indexed from 0 to
L − 1 (the most inner layers having the smallest indices).
We assume that each particle traverses every layer and that
they never return to a previously visited layer. We assume
the layers to be continuous two-dimensional surfaces
Cl, l ∈ f0;…; L − 1g.
Assumptions about the hits’ data.As a particle traverses a

layer, it leaves a complex signal resulting from the interaction
with the sensor’s pixels. We treat these signals simply as
three-dimensional points, called hits. We assume that the
granularity of the sensors is high enough such that each
detected hit can be differentiated from other hits. Since each
trajectory leaves a unique hit on each layer l, formally we
have a continuous map Hl∶P → Cl, relating each trajectory
to its point of intersection with layer l. At every layer, we
identify the hits by labels from f0;…; n − 1g. We use the
notation ml;j for the coordinates of jth hit in layer l. It is
possible that some hits are not measured at all due to sensor
inefficiencies. That is, we do not necessarily have a hitml;j

for every pair ðl; jÞ. Thismeans thatwemay not be able to tell
the exact value of n directly from the event record, as it is
possible that there is no layer registering all particles. In that
case, we would be indexing the hits with labels from
f0;…; n� − 1g, where n� is the largest number of hits

measured in any layer. We consider that n� ¼ n for sim-
plicity, but every result in this paper would hold the same as
long as n� ¼ ΘðnÞ.
Under these assumptions, we expect the number of

measured hits per layer to grow proportionally to n.
Moreover, we can establish the following useful lemma:
Proof of Lemma 1.—The trajectories are determined

by the parameters in P. If S ⊂ Cl is open and nonempty,
then US ≔ H−1

l ðSÞ ∈ P is open and nonempty and by
assumption, the probability that a trajectory has parameters
in US is pS ≔ pπðUSÞ > 0. If π1;…; πn are n random
samples of parameters drawn without replacement and
following pπ, then the strong law of large numbers implies
that almost surely, the number of parameters sampled from
US grows as ΘðnÞ. Applying Hl to this gives the growth of
the number of hits in S. ▪
In our model we have omitted some details that, despite

being a crucial part of real particle physics experiments, do
not significantly influence our complexity analysis. We
now comment on how some of these assumptions could be
relaxed in the context of our analysis.
First, we should note that most local tracking algorithms,

including the CTF, reconstruct tracks by multiple iterations.
That is, the sequence of the four computational routines
(seeding, track building, cleaning, and selection) is called
several times for the same event record. The idea of this
iterative tracking is that the initial iterations search for the
tracks that are easiest to find (high transverse momentum,
and produced near the interaction region). After each
iteration, the hits associated to the reconstructed tracks
are removed, thereby simplifying the subsequent iterations.
As far as our complexity analysis is concerned, the most
significant modification from iteration to iteration is the
number of hits used to form seeds. In [21], the first iteration
forms seeds with hit triplets. But in some subsequent
iterations seeds are formed by picking just two hits, as
we can use the results of the previous iteration to recon-
struct the collision vertices, which serve as the “third hit.”
In our work, we have analyzed the general case of forming
seeds with c hits.
Regarding our model for the generation of the trajecto-

ries, we assumed that the probability distribution pπ on
parameter space P was strictly positive. This was not
deduced from explicit particle physics calculations, but is a
rather lax assumption that includes the seemingly reason-
able assumption that no scattering direction is forbidden.
We have also assumed that an event is generated by
drawing n random samples π1;…πn, each following pπ .
Underlying this there is the physical assumption that
the trajectories of the charged particles are treated as
uncorrelated.
We also assumed that each hit can always be differ-

entiated from other hits. In the n → ∞ limit, this requires
infinite detector’s granularity. But the underlying idea is
simply that the experimental precision keeps up with the
increase in the beam’s luminosity in the sense that we can

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-9



always distinguish one detection from another. Indeed, if it
were not the case there would be no point in going to very
high luminosities.
Another of our assumptions was that the layers were

continuous surfaces, as this made the description of the
algorithm clearer (especially for the track building stage).
In reality, the layers are formed by overlapping sensor
modules. This means that it is possible for a particle to
leave more than one detection per layer. To accommodate
this possibility, at each layer the CTF selects compatible
modules, which are the ones whose boundaries are up to a
given distance from the predicted measurement. These
modules are divided into module groups in such a way that
no two modules in the same group overlap. Only the best
measurement from each group is considered to integrate the
track candidate. Again, we only allow up to five new track
candidates per step. At each iteration there areOð1Þmodule
groups, each with OðnÞ hits, so the claimed complexity
remains the same.
Furthermore, we assumed that the detector was a

collection of L ¼ Oð1Þ cylindrical layers. This is simplified
description of real detectors. For example, the CMS tracker
has a barrel-like shape, with thirteen cylindrical layers
aligned with the beam line and fourteen disk layers in the
transverse plane. We did not include the detailed geometry
of the detector in our discussion in order to simplify the
exposition. In fact, our analysis holds for any disposition of
layers as long as we assume that each particle only traverses
one layer at a time and that their trajectories do not return to
a previously visited layer.
We have considered that the hit data is given in the form

of three-dimensional points. Actually, as a charged particle
traverses a layer, it activates multiple sensor pixels. Then,
the signals in neighboring pixels are grouped together to
form three-dimensional clusters. The centroid of each
cluster determines a hit’s position. But the cluster shape
also carries information. In particular, in some cases it is
possible to exclude a hit from a given track based on the
incompatibility between the hit’s cluster shape and the
track’s trajectory. We may see this as a motivation to think
about the case where kseed ¼ OðnaÞ with a < c—even
though the cluster shape information does not provide a
mean to find the good seeds faster, it guarantees that we can
recognize them.
In summary, we see that several of our simplifying

assumptions could be lifted without changing our con-
clusions. Arguably, the strongest assumption was ignoring
the hits’ cluster shape information, as that might be used to
exclude kseed ¼ OðncÞ as a worst-case scenario.

APPENDIX C: THE SEEDING ALGORITHMS

1. Classical

The purpose of the seeding stage is to provide initial
track candidates, formed by c hits, and their trajectory

parameters. The CTF algorithm [21] generates seeds by
selecting c-tuplets of hits from the c most inner layers.
We now describe this process in detail. First, we search

over the first two seeding layers of the detector for pairs of
hits that are compatible with the seeding criteria. These
criteria include:
(1) Minimum transverse momentum. We impose a

minimum value, p0, on the transverse component
of the particle’s momentum with respect to the
direction of the magnetic field, pT . Recall that in
a uniform magnetic field the trajectory of a particle is
an helix aligned with the field and pT is proportional
to the radius of the helix. So, pT > p0 is equivalent
to geometric condition that we only accept trajecto-
ries with a minimum radius.

(2) Maximum transverse and longitudinal distance of
closest approach to the beam-spot. The beam-spot,
r0, is the point where we expect that the collisions
takes place (this is estimated independently of track
reconstruction—see [21, Section 6]). It does not
mean that all trajectories originate from that exact
point, but we disregard trajectories that are far away
from it. More precisely, we enforce that all trajecto-
ries cross a cylinder centered at r0 aligned with the
beam axis with radius ρ0 and height z0 (these are the
maximum transverse and longitudinal distances,
respectively).

For the purposes of our complexity analysis, the most
important point about these criteria is that they can be
checked for any c-tuplet in OðcÞ ¼ Oð1Þ time. For each
pair of hits ðm0;j0 ;m1;j1Þ that we formed, we search over
the third layer for hits compatible with the seeding
constraints. That is, we select a hit m2;j2 if the trajectory
defined by ðm0;j0 ;m1;j1 ;m2;j2Þ satisfies the conditions
of (1) and (2) above. Then, for each hit triplet ðm0;j0 ;
m1;j1 ;m2;j2Þ, we search over the fourth layer for hits m3;j3
such that the trajectory that best fits ðm0;j0 ;m1;j1 ;m2;j2 ;
m3;j3Þ satisfies the seeding constraints. This process is
repeated until the cth layer is reached. For a for a
pseudocode representation see Algorithm 1 in Appendix G.
Proof of Theorem 2.—Suppose that we have built a

seed up to layer l ∈ 1;…c − 2. Selecting the hits in the
(lþ 1)th layer that constitute valid continuations for
the seed takes OðnÞ time: there are OðnÞ candidate
hits and, for each (lþ 1)-tuplet, verifying if it satisfies
the seeding criteria takes Oð1Þ time. So, if there are
Nl seeds at layer l, iterating over to layer lþ 1 takes
OðNl · nÞ time.
We now estimate Nl. For each seed that we have built at

layer l, the seeding constraints define a (nonempty) region
over the (lþ 1)th layer where any hit could be used to
continue that seed—see Fig. 3 of the main text. According
to Lemma 1, in that region we expect there to be ΘðnÞ hits.
So, the number of formed seeds will increase by a
multiplicative factor of ΘðnÞ when going from layer l to

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-10



layer lþ 1. As we start with n seeds at layer 0, we end up
with Nl ¼ Oðnlþ1Þ.
So, the complexity of the algorithm is

nþ
Xc−1
l¼1

Nl−1 ·OðnÞ ¼ OðncÞ: ðC1Þ

▪
We point out that during the proof of Theorem 2 we have

also established that Algorithm 1 forms at most ΘðncÞ
seeds.
We recall that the version of the CTF presented in [21]

forms seeds with just three hits. Theorem 2 applies to that
case by making c ¼ 3. We are trying to fit the tracks into
helices aligned with the detector axis. So, we could not fix
the five parameters defining such helices with fewer than
three points without critically relying on the estimate for the
beam-spot. Actually, in general three points determine a
countable family of such helices. If we assume that the
trajectories do not realize “a full turn” between these points,
this degeneracy is broken. However, then we do not have
the guarantee that there is an helix passing exactly through
the three points. In practice, as there are experimental
uncertainties about the hits’ positions, this is not a concern.
The seeding strategy that we have described was used at

tracking programme of the CMS collaboration during the
2016 LHC run [24]. Meanwhile, CMS has adopted a
different seeding method [25], based on the concept of
cellular automata. This more sophisticated algorithm yields
seeds of various sizes, and already includes a cleaning and
selection phases. Perhaps more importantly, its design is
extremely parallelizable. This means that it can become
very efficient in terms of speed, scaling better than the
corresponding computational complexity.

2. Quantum

Consider a unitary transformation Useed that recognizes
if a hit c-tuplet forms a valid seed. That is, given a
state jm0;j0 ;…;mc−1;jc−1i, Useed applies a −1 phase if
ðm0;j0 ;…;mc−1;jc−1Þ passes the seeding stage, and other-
wise the state is left unchanged. Since any classical
computation can be simulated by a quantum computer
[32], this is clearly possible. Moreover, because we can
recognize if a hit c-tuplet constitutes a valid seed with a
Oð1Þ-sized circuit, we can also build a quantum circuit for
Useed using Oð1Þ gates. Using Useed and Q, it is straightfor-
ward to form a unitary transformation Oseed acting on
fj0i; j1ig⊗3 log n (possibly along some ancillary qubits)
that marks the state jj0;…; jc−1i with a −1 phase if the
corresponding hit c-tuplet constitutes a good seed. If any of
the pairs of indices ð0; j0Þ;…; ðc; jc−1Þ does not correspond
to a hit, we assume that Oseed leaves the state jj0;…; jc−1i
unchanged. We can run the circuit for Oseed in
OðlogðnÞÞ time.

We start by preparing all c-tuplets in superposition. For
simplicity, we assume that n is a power of two. Starting
from the all-zero state, we can do this by applying c log n
parallel single-qubit Hadamard gates (also known as the
Walsh-Hadamard transform, H). Now define θ and m as

θ ¼ arcsin

� ffiffiffiffiffiffiffiffiffi
kseed
nc

r �
; m ¼

�
π

4θ

�
: ðC2Þ

From Grover’s algorithm,
Theorem 10 (Quantum search [30,31]): Let m and G

be defined as in (C2) and (2), respectively. Then, if we
measure the state

Gm ·

�
1ffiffiffiffiffi
nc

p
Xn−1

j0;…;jc−1¼0

jj0;…; jc−1i
�

ðC3Þ

in the computational basis we will find a good seed (i.e., a
c-tuplet ðj0;…; jc−1Þ such that ðm0;j0 ;…;mc−1;jc−1Þ passes
the seeding stage) with probability at least 1=2.
Preparing the state (C3) involves calling the operator G

m ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc=kseed

p Þ times, representing a complexity ad-
vantage over what we could do classically. Note, however,
that applying Grover’s algorithm requires determining m,
which we cannot do since we do not know a priori what is
the value of kseed. For that purpose, we can use the quantum
counting algorithm of Brassard, Høyer, and Tapp [33]:
Theorem 11 (Quantum counting [33]): There is a

quantum algorithm that outputs kseed with probability at
least 3=4, using an expected number of Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

nckseed
p Þ calls

to G.
Combining these techniques, we propose performing

seeding with Algorithm 2.
Proof of Theorem 3.—Assume that quantum counting

succeeds, that is, we have correctly estimated k̃ ¼ kseed in
step 1 in Õð ffiffiffiffiffiffiffiffiffiffiffiffiffi

nckseed
p Þ time. The probability of sampling a

new good seed in step 4 after having already found k of
them is (Theorem 10)

1

2

kseed − k
kseed

: ðC4Þ

Then, determining the expected time to find all good seeds
is equivalent to the coupon collector’s problem. In par-
ticular, the probability that we run step 4 more than
10kseed log kseed times is less than 1=4. That is, with
probability at least 3=4 we spend Õð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc · kseed
p Þ time on

loop 3-6. Since quantum counting succeeds with proba-
bility at least 3=4 (Theorem 11), Algorithm 2 outputs all
seeds in Õð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc · kseed
p Þ time with probability no less

than 1=2. ▪
If kseed ¼ OðnaÞ, then we can perform seed generation

up to bounded error with complexity

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-11



Õðncþa
2 Þ: ðC5Þ

In the worst-case scenario, this shows no advantage over
the classical algorithm (as is expected from Lemma 1). But
for any a < c we reach a lower complexity than the
classical seeding (Theorem 2).

APPENDIX D: THE TRACK BUILDING
ALGORITHMS

1. Classical

The track building stage extrapolates the seeds trajecto-
ries along the expected path of the particle and builds track
candidates by adding compatible hits from successive
detector layers, updating the parameters at each layer.
More precisely, the track building strategy is based on
the combinatorial Kalman filter [34], which in turn is an
adaptation of the Kalman filter [35] for tracking problems.
We now describe this method.
Say that a trajectory at layer l − 1 is described by a five

vector pl−1. The propagated state vector pl at next layer is
modelled by the system equation

pl ¼ Flpl−1 þ wl: ðD1Þ

Fl, known as the process matrix, describes the propagation
of a charged particle in a uniform magnetic field from layer
l − 1 to l. wl is a random variable called process noise. A
measurement ml at layer l is given by

ml ¼ Hlpl−1 þ el; ðD2Þ

where Hl is the measurement matrix and el is the
measurement noise. We assume that we know the covari-
ance matrices for the process and measurement noises.
Note that, in general, we could replace equations (D1) and
(D2) by nonlinear relations. But the linear model usually
suits the purpose of track reconstruction.
Suppose that we have built a track up to layer l − 1 with

the measurements (i.e., hits)m0;j0 ;m1;j1 ;…,ml−1;jl−1 . With
this information, we describe our prediction of the trajec-
tory at this layer by a state vector pl−1jl−1 and correspond-
ing covariance matrix. Without knowing which hit from
layer l belongs to this track, we predict that the state vector
at layer l is

pljl−1 ¼ Flpl−1jl−1: ðD3Þ

We say that the predicted measurement at layer l is

mljl−1 ¼ Hlpljl−1: ðD4Þ

This would be the location of the lth hit if we had perfect
knowledge of the trajectory and there were no process/
measurement errors. In reality, we do not expect to find any

hit exactly at this predicted measurement. When consid-
ering an actual measurementml;j, we say that the predicted
residual is

rljl−1ðml;jÞ ¼ ml;j −mljl−1 ðD5Þ

The predicted χ2 value is defined as

χ2ljl−1ðml;jÞ ¼ rljl−1ðml;jÞTR−1
ljl−1rljl−1ðml;jÞ; ðD6Þ

where Rljl−1 is the covariance matrix of the predicted
residual. Intuitively, a high χ2 value tells us that the
measurement is unlikely to belong to the track. Then,
when evaluating which hit to add to the track, only the ones
whose predicted χ2 value is below some fixed threshold χ20
pass to the filtering phase. Suppose that ml;j satisfies this
criterion. Based on this measurement, we update the state
vector prediction to

pljl ¼ pljl−1 þKlrljl−1ðml;jÞ; ðD7Þ

where Kl is the Kalman gain matrix, which is calculated
based on the covariance matrices of state vector, the process
noise and the measurement noise (see [34] for explicit
expression). We say that the filtered residual for this
measurement is

rljlðml;jÞ ¼ ml;j −Hlpljl: ðD8Þ

The filtered χ2 value is

χ2ljlðml;jÞ ¼ rljlðml;jÞTR−1
ljl rljlðml;jÞ; ðD9Þ

Rljl being the covariance matrix of the filtered residual.
One can show that the predicted and filtered χ2 values are
actually identical (see [34]), that is,

χ2ljl−1ðmlÞ ¼ χ2ljlðmlÞ; ∀ ml ∈ R3: ðD10Þ

This means that we can determine the filtered χ2 value
without explicitly updating the trajectory. The total χ2 value
of the track at layer l is the sum of the filtered (or predicted)
χ2 values from all previously visited layers

χ2≤lðm0;j0 ;…;ml;jlÞ ¼
Xl
i¼0

χ2ijiðmi;jiÞ: ðD11Þ

In general, we may have several hits passing to the
filtering phase. As we are not sure which one truly belongs
to the track, we form new candidate tracks each including a
different hit. These tracks are then followed independently.
Also, to accommodate the possibility of detection ineffi-
ciencies the CTF permits adding a “ghost hit” if no suitable
hit is found. However, to avoid a rapid increase in the
number of tracks, we impose a limit of λ tracks retained at

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-12



each step (the default in [21] being λ ¼ 5). If at any point
this limit is surpassed, we abandon the worst tracks. To
decide this, each track candidate is attributed a quality score
ql of the form

ql ¼ l −mghost − ω · χ2≤l; ðD12Þ

where mghost is the number of ghost hits included in the
track and ω is some configurable weight (we omitted the
dependence on the measurements). At any step we can
discard a candidate track if it contains too many ghost hits
or the total χ2 value exceeds a given threshold. Otherwise,
the procedure is continued until the end of the detector is
reached (that is, we arrive at l ¼ L − 1). The quality score
(D12) at that point is said to be the quality score of the track
candidate. The tracks that reach this step are accepted for
the next stage of the CTF algorithm. The steps of the track
building stage are summarized in Algorithm 3.
Before proving Theorem 4, it is important to understand

howmany candidate hits pass to the filtering phase. The space
of points with acceptable predicted χ2 value (equation (D6)

fml ∈ R3∶χ2ljl−1ðmlÞ < χ20g ðD13Þ

is an ellipsoid around the predicted measurement. The
intersection of this ellipsoid with the layer’s surface yields
a region in that layer whose area is independent of n. By
Lemma 1, we may find ΘðnÞ hits in that region. Therefore,
Lemma 12: The filtering step takes OðnÞ time.
Proof of Theorem 4.—Starting froma single seed,weonly

propagate up to λ ¼ Oð1Þ tracks from layer to layer. For each
of these, the analytical continuationof the trajectory fromone
layer to another (Equations (D3) and (D4) is performed in
Oð1Þ time. As we have seen with Lemma 12, performing
filtering requires OðnÞ time per track candidate. Finally, in
OðnÞ time we can determine the λ tracks with best quality
score (D12) that are propagated to the next layer. The number
of layersL isOð1Þ. Combining everything, we reach the find
a complexity of Oðkseed · nÞ. ▪

2. Quantum

We have seen that, at each step of the track building
stage, OðnÞ hits undergo the filtering step, while only at
most λ ¼ Oð1Þ of them form new track candidates. Our
idea is to use quantum search to perform filtering, reducing
its complexity from OðnÞ (Lemma 12) to Õð ffiffiffi

n
p Þ.

Suppose that we have followed a track up to layer l − 1
according to the track building method described in
Section D 1. In particular, we have evaluated the predicted
state vector and corresponding covariance matrix. Based on
this information, we can calculate predicted χ2 value
(equation (D6) for any measurement in layer l in Oð1Þ
time. Let Oχ be a unitary transformation that, given the
index of a measurement, calculates the predicted χ2 value

of adding that measurement to the track:

Oχ jl; jijxi ¼ jl; jijx ⊕ χ2ljl−1ðml;jÞi: ðD14Þ

Like in the seeding algorithm, we can build a quantum
circuit for Oχ using the classical circuit to compute the
predicted χ2 value and the QRAM operator Q, requiring a
total of Oðlog nÞ gates. Using Oχ we can build a quantum
circuit Ofind that marks a state jl; jijyi if χ2ljl−1ðml;jÞ is
smaller than the threshold y

Ofindjl; jijyi ¼
�−jl; jijyi; if χ2ljl−1ðml;jÞ < y

þjl; jijyi; otherwise:
ðD15Þ

By the quantum minimum finding algorithm of Dürr and
Høyer [36], we can find the measurement ml;j that
minimizes χ2ljl−1 with Oð ffiffiffi

n
p Þ calls to Ofind:

Theorem 13 (Quantum minimum finding [31]): If
there is a measurement ml;j such that χ2ljl−1ðml;jÞ < χ20,

Algorithm 4 finds the measurement that minimizes χ2ljl−1
with probability at least 1=2 in Õð ffiffiffi

n
p Þ time.

With this result, our strategy for track building becomes
the following. Starting from a single seed, we do track
finding by propagating up to λ tracks from layer to layer.
For each of these tracks, we apply quantum minimum
finding λ times to find the λ measurements with lowest
predicted χ2 value (after we have found a minimum of χ2ljl−1
we can arbitrarily increase the χ2 value of that measurement
to ensure that we do not find it again in the following run of
quantum minimum finding). Out of the up to λ2 resulting
track candidates, we select the λ ones with best quality
score and continue propagating those. Note that this implies
applying quantum minimum finding up to Lλ2nc times,
which means that the probability of correctly reproducing
the result of the classical track building decreases with n.
Fortunately, we can make the probability of success
bounded by always repeating the quantum minimum
finding routine Oðlog nÞ times. We propose doing track
building as in Algorithm 5.
Proof of Theorem 5.—In Algorithm 5, instead of looping

over the candidate measurements at each layer (line 8 in
Algorithm 3), we find the best measurements with a
quantum minimum finding routine. We stop after having
selected λ measurements per candidate track as we
know that only up to λ tracks are kept at each layer
(per seed). Each run of quantum minimum finding takes
Õð ffiffiffi

n
p Þ time—Theorem 13. So, the result holds as long as

we show that the probability of success is bounded by 1=2.
The probability that we fail to select the best available
measurement in steps 9-10 is upper bounded by

1

3Lλ2nc
: ðD16Þ

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-13



Then, the probability that we do not fail any of the Lλ2n3

times we run steps 9-10 is lower bounded by�
1 −

1

3Lλ2nc

�
Lλ2nc

≥
2

3
: ðD17Þ

▪

APPENDIX E: THE CLEANING ALGORITHMS

CTF’s cleaning algorithm compares every pair of tracks
coming from the finding stage. This approach does not take
into account any structure of the tracks. Indeed, it would
work the same if instead of calculating the fraction of
shared hits we were calling a black box that outputted
“clean/not clean” when given two tracks. We now present a
different way to perform cleaning that takes better advan-
tage of the structure of the problem.
We begin by reviewing the case where all the candidate

tracks have L hits, that is, each candidate track contains
exactly one hit per layer. Then, each candidate track can be
uniquely identified with a vector in f0;…; n − 1gL. As an
example, if L ¼ 4 and a given track t contains the zeroth hit
from the first layer, the second hit from the second layer, the
fourth hit from the third layer, and the fourth hit from the
fourth layer, its corresponding track vector is (0,2,4,4).
With f being the maximum allowed fraction of shared hits,
define r ¼ ⌈fL⌉. We say a vector of length L is an r-tuple
of a track if it is equal to the track vector at r entries and
contains the symbol “_” at the others. For example,
ð0; 2; ; Þ and ð0; ; 4; Þ are 2-tuples of the track t men-
tioned above. Note that there are ðLrÞ ¼ Oð1Þ such r-tuples.

Two tracks exceed the allowed fraction of shared hits if and
only if they have (at least) r hits in common, that is, if they
have a matching r-tuple.
The algorithm starts by sorting the candidate tracks by

quality score. This way, if we need to discard one of two
tracks we choose the one that is further down the list. We
then iterate over the sorted tracks. Evidently, the first track
t1 is going to be included in the output. We create a self-
balancing binary search tree T (like a red-black tree—
see, for example, [37]) containing all of the r-tuples of t1
(with some induced order on the r-tuples). We then move to
the second track in the list t2. For every r-tuple of t2, we
search for a match in the tree T . If we do not find any, we
insert all of t2 ’s r-tuples into T and we add t2 to the output.
Otherwise, t2 is not included in the output and we leave the
tree unchanged. We repeat this procedure for the remaining
tracks. In the end, the output contains all the desired tracks.
See Fig. 4 for an illustration of the algorithm.
With each accepted track only ðLrÞ ¼ Oð1Þ elements are

inserted in T . Since kcand candidate tracks reach the
cleaning stage, the size of the tree never exceeds
OðkcandÞ. So, we guarantee Oðlog kcandÞ complexity for
the search and insertion tasks. This means that we only
spend Oðlog kcandÞ time per candidate track. Overall, our
cleaning algorithm has complexity Oðkcand log kcandÞ.
To generalize this to the case of varied number of hits per

track, note that we can only find up to L ¼ Oð1Þ different
track sizes. Let R ¼ ⌈fL⌉. We initialize R2 empty balanced
binary search trees T i;j for i; j ∈ f1; 2;…; Rg. The first
track t1 is immediately included in the output. Say it has L1

hits and let r1 ¼ ⌈fL1⌉. We insert all of the r-tuples of t1

FIG. 4. Cleaning with r-tuples tree. For this example, the first three elements of the sorted list of track vectors are t1 ¼ ð0; 1; 2; 1Þ,
t2 ¼ ð2; 0; 3; 0Þ, and t3 ¼ ð0; 1; 3; 3Þ. Suppose we want to exclude tracks that share two or more hits. We have build a red-black tree with
the 2-tuples of t1 and t2 (blue and green circles, respectively). The line of the circles is red or black according to the color of the
corresponding node (see [37] for construction of red-black trees). In this illustration, we are searching for 2-tuples of t3 in the tree. We
see that 2-tuple ð0; 1; ; Þ is already present in the tree—the path with orange leads to a node with that 2-tuple. So, t3 is not going to be
included in the output.

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-14



for r ≤ r1 into T r;r1 . Let the second track t2 have size L2

and r2 ¼ ⌈fm2⌉. There are two cases to consider when two
tracks share more than minðr1; r2Þ hits:
(a) r1 ≤ r2: the overlapping tuples are represented in

T r1;r1 . Searching all trees T r;r for r ≤ r2 will reveal
the overlap.

(b) r1 > r2: the overlapping tuples are represented in
T r2;r1 . Searching all trees T r2;r for r > r2 will reveal
the overlap.

If we do not find any match, we insert all of the r-tuples of t2
for r ≤ r2 into T r;r2 and add t2 to the output. Repeating this
for all tracks will guarantee that there are no two tracks ti and
tj in the output sharing more than minðri; rjÞ hits. We write
down our improved version of cleaning in Algorithm 7.
Proof of Theorem 7.—The reasoning is essentially the

same as for constant-sized tracks. For each accepted
candidate track the number of tuples inserted into the
corresponding search tree s bounded by L

r ¼ Oð1Þ.
Therefore, no tree will contain more than OðkcandÞ ele-
ments, and the search and insert operations can always be
performed in Oðlog kcandÞ time. Since there are R2 ¼ Oð1Þ
trees, we spend Oðlog kcandÞ per track candidate. ▪

APPENDIX F: MORE ON RECONSTRUCTING
TRACKS IN SUPERPOSITION

We start by slightly adjusting the steps in the classical CTF
track building algorithm (Algorithm 3). For a given seed,
CTF selects up to λ track candidates in each layer to
propagate to the next layer. If fewer track candidates have
acceptable χ2 value, fewer than λ track candidates are formed.
Here we form exactly λ new track candidates for every given
track candidate. If there is at least one hit with χ2l ðml;jÞ < χ20,
we use λ hits with the lowest χ2 values to build the new track
candidates. If there is no such hit, we use one ghost hit and
λ − 1 hits with the lowest χ2 values. We also build tracks for
all triplets in the seeding layer. This would add substantial
unnecessary work in the classical case, but does not add
complexity if performed in quantum superposition. As in
other sections,we can addplaceholder hits to ensure that each
layer has exactly n hits and all tracks traverse through all L
layers. Thus at the end of the track finding phase we have
exactly λLnc track candidates.
Based on this modified algorithm we construct a family

of unitary transformations Ui that perform seeding, track
finding, cleaning and selection in superposition with the
following effect:

Uij0i ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

λLnc

r �Xki−1
j¼0

jψ jij − qL−1;ji þ
XλLnc−1
j¼ki

jψ jij þ∞i
�

þ ffiffiffi
ϵ

p jψϵij þ∞i: ðF1Þ

Here jψ0i; jψ1i;…; jψki−1i are the computational basis
states encoding track candidates that

(a) the classical CTF algorithm would output after the
track building stage,

(b) do not share too many hits with the i tracks already
added to the output.

qL−1;j is the quality score (D12) at the last layer of the track
encoded in ψ j. We consider −qL−1;j to formulate the task as
a minimization problem. The computational basis states
jψkii; jψkiþ1i;…, jψλLnc−1i encode some track candidates
that do not pass (a) or (b). Note that the tracks that were
previously sampled belong to this set of states. “þ∞” is a
large positive value, so the minimum finding gives answers
only in the useful subset of the entangled computational
basis states. jψϵi is some arbitrary quantum state, and ϵ is
the error probability of Ui, i.e., the probability that the
measurement of Uij0i would produce a result other than
one of ψ0;ψ1;…;ψλLnc−1.
Next we show that such a family of unitary trans-

formations can indeed be constructed. We first consider
the track building (Lemma 14) and cleaning (Lemma 15)
subprocedures. Track building prepares an equal super-
position over the λLnc track candidates with an additional
arbitrary quantum state (F2) representing the error prob-
ability of the algorithm. Selecting the track candidates of
the original CTF after track building step is subsumed by
the selection stage (Theorem 16).
Lemma 14 (Track building in superposition): There

exists a unitary transformation Ubuild (F2) that performs
track building in Õð ffiffiffi

n
p Þ time in superposition.

Ubuildj0i ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

λLnc

r XλLnc−1
j¼0

jψ ji þ
ffiffiffi
ϵ

p jψϵi ðF2Þ

Proof.—Preparing an equal superposition over all the
possible seed c-tuplets, i.e., seeding (implicit in Ubuild), can
be done in Õð1Þ time with the Walsh-Hadamard transform.
We have seen that we can perform track building for one seed
in Õð ffiffiffi

n
p Þ time with constant probability. However, both

quantum minimum finding and its subprocedure—quantum
exponential searching algorithm—usemeasurements.While
we cannot use measurements in our unitary transformations
Ubuild, we can apply the principle of deferred measurements
[32]. Whenever the Algorithm 4 performs a measurement,
we can instead perform CNOT operations on an ancillary
register.When the algorithm conditions a quantum operation
on a measurement result, we can perform a controlled
operation with the ancillary register as the control. The
probability (1 − ϵ) to get the desired result based on
measurements during the procedure or by deferring the
measurement is the same. We can replicate the randomness
in the quantum exponential searching algorithm [31] by
conditioning operations on the equal superposition of the
allowed values f0; 1;…; mg, wherem is an arbitrary integer.
By conditioning on the digits of the binary representation of
these values, as in quantum counting [33], we can ensure that
we only need OðmÞ such operations and the asymptotic

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-15



computational complexity of quantumexponential searching
algorithm remains unchanged (up to constant factors).
One issue with this approach is that both the number of

iterations of the outer loop of the quantum minimum
finding (Algorithm 4) and the time complexity of its
subprocedure—quantum exponential searching [31]—
may be proportional to

ffiffiffi
n

p
. In the classical algorithm, if

the quantum exponential searching takes more time, we can
limit the number of iterations of the outer loop to ensure
running time Õð ffiffiffi

n
p Þ. In the quantum circuit we need to

account for the worst case number of iterations in the main
loop and the worst-case running time in the subprocedure.
This requires more than Õð ffiffiffi

n
p Þ gates. However, we can set

a hard limit on the number of iterations of the main loop.
Since the expected size of the search space decreases by
more than a half with each iteration of the outer loop, the
expected number of iterations to reach the minimum is less
than log nþ 1. If we limit the number of iterations of the
outer loop to γðlog nþ 1Þ for some constant γ, then by
Markov’s inequality the probability that we have not
reached the minimum is less than 1=γ. Since it is still
upper-bounded by a constant, the rest of the analysis does
not change. The limit on the number of iterations also
implies a limit on the number of measurements and the
required number of ancillary registers to account for the
measurements in the quantum procedure. ▪
Lemma 15 (Cleaning in superposition): There exists a

unitary transformation that runs in Õð1Þ time and marks the
track candidates that do not share any r-tuple of hits with
any track already added to the output.
Proof.—We have assumed that all particles traverse all

layers, so all tracks are of length L and are allowed to share
up to exactly r hits for some value of r. As with Algorithm
7, we can generalize it to variable length tracks with a
constant factor increase in complexity. Like in the classical
case, we can test whether an r-tuple has already been added
to the tree T with Oðlog nÞ queries to QRAM storing the
values of the nodes of tree T . Thus each track can be
associated with a list of L

r binary values indicating if an
r-tuple has already been added to the output in Õð1Þ time.
Testing whether any of these values is equal to 1 requires
Oð1Þ gates. Hence the total time required to mark the
necessary track candidates is Õð1Þ. ▪
Lemma 16: Each unitary transformation Ui (F1) can be

built to run in time Õð ffiffiffi
n

p Þ.
Proof.—We already saw that track building requires

Õð ffiffiffi
n

p Þ time (Lemma 14) and testing whether a track
overlaps with any already added to the output takes Õð1Þ
time (Lemma 15). Procedures necessary for the track
selection—marking the tracks that pass the track building
stage in CTF, refitting, recalculating the score and compar-
ing to a threshold value—depend on a constant number of
fixed-precision numbers, and hence can be done in Õð1Þ
time. So the time complexity of Ui is dominated by the
track building and is Õð ffiffiffi

n
p Þ. ▪

We will now describe how we can use transformations
Ui with quantum minimum finding to reconstruct the
tracks one-by-one (Algorithm 9). We will search for
ψ�
i ¼ argminQiðψÞ, where QiðψÞ is the score encoded

in the second register of Uij0i (F1). The time complexity of
the quantumminimum finding [36] remains the same (up to
constant factors) if instead of quantum exponential search-
ing [31] we use amplitude amplification (Theorem 17).
Theorem 17 (Amplitude amplification [39]): LetA be

any quantum algorithm that uses no measurements, and let
a denote the initial success probability of A. There exists a
quantum algorithm that finds a good solution using an
expected number of applications ofA andA−1 which are in
Θð1= ffiffiffi

a
p Þ if a > 0, and otherwise runs forever.

Let a be the probability to find ψ�
i (or any specific track

encoded in fψ0;ψ1;…;ψki−1g) by measuring Uij0i. Then
a ¼ ð1 − ϵÞ=ðλLncÞ and the expected number of calls to Ui
by the quantum minimum finding algorithm for a constant
probability of error is

O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλLncÞ=ð1 − ϵÞ
q 	

¼ Oð
ffiffiffiffiffi
nc

p
Þ: ðF3Þ

As with Algorithm 5, repeating the quantum minimum
finding algorithm Oðlog nÞ times allows us to reduce the
error probability to Oð1=nÞ so that sampling OðnÞ tracks
has a constant probability of error. In particular, since one
application of the quantum minimum finding algorithm
ensures failure probability smaller than 1=2 and there
cannot be more than λnc tracks, the probability to not find
the minimum in any of the iterations (if there are any valid
tracks remaining) after repeating the algorithm ⌈ log 2λnc⌉
times is below 1=2.
Once we have found the best track, we can build a self-

balancing binary tree T to be used in track selection for the
next track. More generally—suppose that we have found
the j best tracks that the CTF algorithm outputs. Each time
we find a new track, we insert it in T . This tree never
exceeds OðnÞ size, and so the insertion operation cost is
Oðlog nÞ. Ui queries T to mark as invalid those tracks that
have an overlap with the i tracks already added to output.
Proof of Theorem 9.—Each iteration of the main loop

in Algorithm 9 takes Õð ffiffiffiffiffi
nc

p
maxi TUi

Þ time, where
maxi TUi

¼ Õð ffiffiffi
n

p Þ (Lemma 16). There are OðnÞ iterations
to reconstruct OðnÞ tracks. Thus the total time complexity
of Algorithm 9 is

Õðn ·
ffiffiffiffiffi
nc

p
·
ffiffiffi
n

p Þ ¼ Õðncþ3
2 Þ: ðF4Þ

▪
We note that for the special case where tracks are not

allowed to share any hits, the approach described in this
section allows the complete removal of the cleaning stage.
Once the best track is found, all the points that belong to it
can be masked (removed) and the algorithm is run again to
find the best track on the remaining points.

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-16



APPENDIX G: PSEUDOCODES

Algorithm 1. Seeding (classical)

input : event record
output: seeds
1 seed list ← fm0;0;m0;1;…;m0;n−1g;
2 foreach layer l from 1 to c − 1 do
3 foreach seed in seed_list do
4 foreach hit ml;j in layer l do
5 if ml;j is a valid continuation for seed then
6 new seed ← seed ∪ ml;j;
7 add new_seed to seed_list
8 remove seed from seed_list
9 output seed_list;

Algorithm 2. Seeding with quantum search

input : event record
output: seeds
1 k̃ ← quantum counting estimation of kseed;

2 m ← bπ=4 arcsinð
ffiffiffiffiffiffiffi
kseed
nc

q
Þc

3 while we have not found k̃ good seeds do
4 prepare and measure state

Gm ·

�
1ffiffiffiffiffi
nc

p
Xn−1

j0;…;jc−1¼0

jj0;…; jc−1i
�
;

5 if outcome j0;…; jc−1 corresponds to a good seed then
6 add ðm0;j0 ;m1;j1 ;m2;j2Þ to output;

Algorithm 4. Quantum minimum finding

input : prediction of track’s state vector at layer l − 1
output: j such that ml;j that minimizes χ2ljl−1
1 initialize j0 ← empty;
2 set y ← χ20;
3 while Ofind has been called less than 22.5

ffiffiffi
n

p
times do

4 apply quantum exponential searching algorithm of [31]
with initial state ð 1ffiffi

n
p
P

n
j¼0 jl; jiÞ · jyi and with Ofind

as oracle;
5 if we find an state jl; ji such that χ2ljl−1ðml;jÞ < y then
6 set j0 ← j;
7 set y ← χ2ljl−1ðml;jÞ;
8 if j0 is not empty then
9 return ml;j0
10 else
11 return “no good measurement”

Algorithm 3. Track building (classical)

input : seeds, generated by Algorithm 1; event record
output: candidate tracks
1 foreach seed do
2 initialize empty list candidate_tracks;
3 estimate initial state vector pc−1jc−1 and quality

factor qc−1 for seed;
4 add (seed, pc−1jc−1, qc−1) to candidate_tracks;
5 foreach layer l from c to L − 1 do
6 foreach (track, pl−1jl−1, ql−1) in

candidate_tracks do
7 evaluate predicted measurement mljl−1;
8 foreach hit ml;j in layer l do
9 if χ2ljl−1ðml;jÞ < χ20 then
10 new track ← trackþml;j;
11 form new candidate track for seed with ml;j;
12 evaluate pljl and quality factor ql for

new_track;
13 add (new_track, pljl, ql) to

candidate_tracks;

(Table continued)

Algorithm 5. Track building with quantum minimum finding

input : seeds, generated by Algorithm 1; event record
output: candidate tracks
1 foreach seed do
2 initialize empty list candidate_tracks;
3 estimate initial state vector pc−1jc−1 and quality factor

qc−1 for seed;
4 add (seed, pc−1jc−1, qc−1) to candidate_tracks;
5 foreach layer l from c to L − 1 do
6 foreach (track, pl−1jl−1, ql−1) in

candidate_tracks do
7 evaluate predicted measurement mljl−1;
8 for i from 1 to λ do
9 run quantum minimum finding (Algorithm 4)

logð3Lλ2ncÞ times (increasing the χ2 value of
already used hits so not to find them again);

10 from the samples of step 9, select the
measurement ml;j with lowest χ2ljl−1;

(Table continued)

Algorithm 3. (Continued)

14 if there is no hit ml;j in layer l such that
χ2ljl−1ðml;jÞ < χ20 then

15 new track ← trackþmljl−1 evaluate
pljl and quality factor ql for new_track;

16 add (new_track, pljl, ql) to
candidate_tracks;

17 remove (track, pl−1jl−1, ql−1) from
candidate_tracks;

18 select the best λ tracks of candidate_tracks;
19 add elements of candidate_tracks to output;

// note: this description uses notation from Appendix D

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-17



Algorithm 6. Cleaning (original)

input : candidate tracks, generated by Algorithm 3
output: cleaned candidate tracks
1 foreach track1 in candidate tracks do
2 foreach track2 (different from track1) in

candidate tracks do
3 if track1 and track2 share more than allowed

fraction of hits then
4 remove the one with lowest quality score from

the set of candidate tracks;
5 output remaining candidate tracks;

Algorithm 5. (Continued)

11 if χ2ljl−1ðml;jÞ < χ20 then
12 new track ← trackþml;j;
13 form new candidate track for seed with ml;j;
14 evaluate pljl and quality factor ql

for new_track;
15 add (new_track, pljl, ql) to

candidate_tracks;
16 if no new candidate track was formed then
17 new track ← trackþmljl−1;
18 evaluate pljl and quality factor ql

for new_track;
19 add (new_track, pljl, ql) to

candidate_tracks;
20 remove (track, pl−1jl−1, ql−1) from

candidate_tracks;
21 select the best λ tracks of candidate_tracks;
22 add elements of candidate_tracks to output;

Algorithm 7. Cleaning (improved)

input : candidate tracks, generated by Algorithm 3
output: cleaned candidate tracks
1 sort candidate tracks by quality score;
2 set R ¼ ⌈fL⌉;
3 initialize empty trees T i;j for i; j ∈ f1;…; Rg;
4 foreach track in candidate track do
5 set r ¼ ⌈fL⌉, where L is number of hits of track;
6 for r0 from 1 to r do
7 foreach r0-tuple of track do
8 if r0-tuple is in T r0;r0 then
9 remove track from set of candidate tracks

(Table continued)

Algorithm 8. Selection (classical)

input : candidate tracks, cleaned by Algorithm 6
output: final reconstructed tracks
1 foreach track in candidate tracks do
2 calculate quality score of track;
3 if quality score of track < threshold then
4 remove track from the set of candidate tracks;
5 output remaining candidate tracks;

Algorithm 9. Track reconstruction in superposition

input : event record
output: reconstructed tracks
1 initialize empty self-balancing binary tree T ;
2 initialize i ← 0;
3 repeat
4 for j from 1 to ⌈ logð2λncÞ⌉ do
5 trackj ← output of the quantum minimum finding

algorithm minimizing QiðψÞ—the score encoded
in the second register of Uij0i (F1);

6 track ← argminjQiðtrackjÞ;
7 if track passes CTF criteria and none of its r-tuples

are in T then
8 foreach r-tuple of track do
9 insert r-tuple into tree T ;
10 add track to output;
11 i ← iþ 1;
12 else
13 stop;
// note: this description uses notation from Appendix F

Algorithm 7. (Continued)

10 for r0 from r to R do
11 foreach r-tuple of track do
12 if r-tuple is in T r;r0 then
13 remove track from set of candidate tracks;
14 if track has not been removed then
15 for r0 from 1 to r do
16 foreach r0-tuple of track do
17 insert r0-tuple into tree T r0;r;
18 output remaining candidate tracks;

D. MAGANO et al. PHYS. REV. D 105, 076012 (2022)

076012-18



[1] J. Albrecht et al. (HEP Software Foundation), Comput.
Softw. Big Sci. 3, 7 (2019).

[2] G. Apollinari, I. B. Alonso, O. Brüning, P. Fessia, M.
Lamont, L. Rossi, and L. Tavian, High-Luminosity Large
Hadron Collider (HL-LHC): Technical design report V. 0.1,
Technical Report No. CERN-2017-007-M, 2017.

[3] A. Abada et al. (FCC Collaboration), Eur. Phys. J. C 79, 474
(2019).

[4] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen, L.
Linder, and A. Smith, Comput. Softw. Big Sci. 4, 1 (2020).

[5] A. Zlokapa, A. Anand, J.-R. Vlimant, J. M. Duarte, J. Job,
D. Lidar, and M. Spiropulu, Quantum Mach. Intell. 3, 27
(2021).

[6] S. Das, A. J. Wildridge, S. B. Vaidya, and A. Jung,
arXiv:1903.08879.

[7] C. Tüysüz, C. Rieger, K. Novotny, B. Demirköz, D. Dobos,
K. Potamianos, S. Vallecorsa, J.-R. Vlimant, and R. Forster,
Quantum Mach. Intell. 3, 29 (2021).

[8] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S.
Vallecorsa, and J.-R. Vlimant, Mach. Learn. 2, 011003
(2021).

[9] G. Quiroz, L. Ice, A. Delgado, and T. S. Humble, Nucl.
Instrum. Methods Phys. Res., Sect. A 1010, 165557 (2021).

[10] A. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu,
Nature (London) 550, 375 (2017).

[11] K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada,
and J. Tanaka, Comput. Softw. Big Sci. 5, 2 (2021).

[12] S. L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou, M.
Livny, F. Carminati, A. Di Meglio, A. C. Y. Li, J. Lykken, P.
Spentzouris, S. Y.-C. Chen, S. Yoo, and T.-C. Wei, J. Phys.
G 48, 125003 (2021).

[13] J. Heredge, C. Hill, L. Hollenberg, and M. Sevior, Comput.
Softw. Big Sci. 5, 27 (2021).

[14] V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa,
E. F. Combarro, G. Dissertori, and F. Reiter, EPJ Web Conf.
251, 03070 (2021).

[15] A. E. Armenakas and O. K. Baker, arXiv:2010.00649.
[16] D. Pires, Y. Omar, and J. Seixas, arXiv:2012.14514.
[17] D. Pires, P. Bargassa, Y. Omar, and J. Seixas, arXiv:2101

.05618.
[18] S. Y. Chang, S. Vallecorsa, E. F. Combarro, and F. Carmi-

nati, arXiv:2101.11132.

[19] A. Y. Wei, P. Naik, A. W. Harrow, and J. Thaler, Phys. Rev.
D 101, 094015 (2020).

[20] R. Mankel, Rep. Prog. Phys. 67, 553 (2004).
[21] The CMS Collaboration, J. Instrum. 9, P10009 (2014).
[22] ATLAS Collaboration, Eur. Phys. J. C 77, 673 (2017).
[23] N. Braun, Combinatorial Kalman Filter and High Level

Trigger Reconstruction for the Belle II Experiment, Springer
Theses (Springer International Publishing, Cham, 2019).

[24] G. Sguazzoni, Nucl. Part. Phys. Proc. 273–275, 2497
(2016).

[25] A. Bocci, V. Innocente, M. Kortelainen, F. Pantaleo, and M.
Rovere, Front. Big Data 3, 49 (2020).

[26] A. Di Meglio, M. Girone, A. Purcell, and F. Rademakers,
CERN openlab white paper on future ICT challenges in
scientific research, Technical Report, Zenodo, 2017,
10.5281/zenodo.998694.

[27] F. Pantaleo, New track seeding techniques for the CMS
experiment, Ph.D. thesis, CERN, 2017.

[28] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.
100, 160501 (2008).

[29] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 78,
052310 (2008).

[30] L. Grover, Phys. Rev. Lett. 79, 325 (1997).
[31] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Fortschr.

Phys. 46, 493 (1998).
[32] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cam-
bridge, England, 2010).

[33] G. Brassard, P. Høyer, and A. Tapp, Lect. Notes Comput.
Sci. 1443, 820 (1998).

[34] R. Frühwirth, Nucl. Instrum. Methods Phys. Res., Sect. A
262, 444 (1987).

[35] R. Kalman, Trans. ASME J. Basic Eng. 82, 36 (1960).
[36] C. Dürr and P. Høyer, arXiv:quant-ph/9607014.
[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms (MIT Press, Cambridge, MA,
2010).

[38] T. Miao, H. Wenzel, F. Yumiceva, and N. Leioatts, Beam
position determination using tracks, Reports No. CERN-
CMS-NOTE:2007-021, No. FERMILAB-FN-0816-E, 2007.

[39] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum
Comput. Inf. 305, 53 (2002).

QUANTUM SPEEDUP FOR TRACK RECONSTRUCTION IN … PHYS. REV. D 105, 076012 (2022)

076012-19

https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://arXiv.org/abs/1903.08879
https://doi.org/10.1007/s42484-021-00055-9
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1016/j.nima.2021.165557
https://doi.org/10.1016/j.nima.2021.165557
https://doi.org/10.1038/nature24047
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.1007/s41781-021-00075-x
https://doi.org/10.1007/s41781-021-00075-x
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1051/epjconf/202125103070
https://arXiv.org/abs/2010.00649
https://arXiv.org/abs/2012.14514
https://arXiv.org/abs/2101.05618
https://arXiv.org/abs/2101.05618
https://arXiv.org/abs/2101.11132
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1088/0034-4885/67/4/R03
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/10.1016/j.nuclphysbps.2015.09.437
https://doi.org/10.3389/fdata.2020.601728
https://doi.org/10.5281/zenodo.998694
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1007/BFb0055035
https://doi.org/10.1007/BFb0055035
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://arXiv.org/abs/quant-ph/9607014

