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Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
4Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile

5Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA),
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In this article we revisit the discussion of renormalons in the frame of a scalar self-interacting λϕ4 theory
in the presence of thermomagnetic effects, i.e., magnetic and thermal effects. Our results for the evolution
of the residues is now given by an explicit analytic expression, valid for all values of temperature, without
the necessity of separating the discussion in a low- and a high temperature region analyses. We carry out the
same discussion for the case of an external constant electric field, obtaining also in this case an analytic
expression for the whole range o temperature. In both cases, the location of the poles in the Borel plane does
not change with respect to the vacuum case. Their residues, however, acquire a dependence on temperature
and the external field. Results are presented for the evolution of residues in the thermomagnetic and
thermoelectric cases. We show a comparison with our previous results in the thermomagnetic case,
presenting also in detail the mathematical techniques needed for our analytic expressions to be valid in the
whole range of temperatures.
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I. INTRODUCTION

We know since the work by Dyson on the validity of
perturbative expansions in quantum electrodynamics
(QED) [1] that power series expansions in quantum field
theory (QFT), in general, are divergent objects. When
going to high orders in perturbative expansions, the
divergence grows like n!, where n is the order of expansion,
and this is due, essentially, to the multiplicity of diagrams
that contribute to Green functions at such expansion order.
A way or procedure to improve the convergence relies on
the Borel transform [2–4]. However, in some cases even the
Borel transformed series are divergent, spoiling the mean-
ing of the whole procedure. The singularities responsible
for this divergent behavior are the renormalons. Beyond
such a singularity, perturbation theory does not make any
sense. For a classical review, see Ref. [5]. Recently there
has been a renewed interest in the subject by considering

one loop renormalization group equation in multifield
theories [6] or by considering finite temperature mass
correction in the λϕ4 theory, reanalyzing the temperature
dependence of poles and their residues [7]. Quite recently,
the relation between renormalons and analytic transseries
has been considered in the context of field theories in two
dimensions [8]. It is also quite interesting the relation
between resurgence and transseries where it is possible to
give sense to divergent perturbative series by invoking
some additional information on the structure of coupling
singularities in the complex plane [9]. The phenomeno-
logical relevance of transseries in the resurgent framework
has been stressed in a recent article on the muon g − 2

anomaly through a discussion of infrared renormalons in
the QCD Adler function [10]. The occurrence of renorma-
lons in QFT has recently been discussed from a quite
general point of view, in fact without reference to Feynman
diagrams. A careful discussion of the renormalization
group, recasting as a resurgent equation, shows clearly
the presence of such singularities [11]. The relation of
renormalons to nonlocal effects has also been stressed in
the literature [12]. In a future article we plan to explore
transseries for perturbative expansions in QFT, in the
presence of external effects like temperature and external
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fields. Other sources of divergences, as instantons in
quantum chromodynamics (QCD) [13,14], will not be
considered here.
In peripheral heavy ion collisions, huge magnetic fields

appear [15]. In fact, the biggest fields existing in nature. The
interaction between the produced pions in those collisions
may be strongly affected by the magnetic field. Temperature
is, of course, also present in such scenario. In fact, several
studies on the behavior of different physical parameters in
the presence of external magnetic field and/or temperature
have been carried out by different authors [16–40]. In the
same way, if we consider now peripheral collisions of
asymmetric nuclei, for example Cu-Au collisions, we expect
the appearance of a strong electric, dipole-type, field due to
the imbalance between the number of positive charges in
both nuclei. The relevance of the appearance of such an
electric field has been considered in the discussion of the
phase diagram of some QFT models as, for example, a
two-flavor Nambu-Jona-Lasinio model [41]. Quite recently,
now in the context of a λΦ4 theory, we have explored,
through a discussion of the effective potential, the emergence
of catalysis or inverse electric-catalysis for any value of
temperature [42].
In the present article we analyze, in the frame of a self-

interacting scalar λϕ4 theory, the influence of a magnetic
field and an electric field, taken separately, together
with temperature on the position of the UV renormalons
(the only relevant in λϕ4 theory) and their residues in the
Borel plane.
Finally, we would like to mention also other extensions

as the q-Borel series allowing the discussion of series
whose coefficients grow like ðk!Þq [43]. Also, there have
been new attempts to find corrections to the Beta function
in QED with Nf flavors by considering closed chains of
diagrams, like renormalons, and computing corrections of
order N−2

f and N−3
f [44]. These authors found a new

logarithmic branch cut whose physical role is not clear.
Probably the same situation will occur in self-interacting
scalar theories with several components.
This article is organized as follows. In Sec. II we present

a brief introduction about Borel summable series and poles
in the Borel plane. In Sec. III we present for completeness
the calculation of the vacuum renormalon, i.e., in the
absence of temperature and/or external fields. In Sec. IV
we present the pure thermal discussion of the renormalon,
obtaining a single analytic expression valid for the whole
range of temperature. Section V presents the case where
temperature and magnetic field effects are included in the
renormalon-type corrections to the propagator. Section VI
presents the case that includes temperature and electric field
effects. In Sec. VII we show some numerical comparisons
between the electric and the magnetic situation, both in the
magnetic and in the electric field cases, being our expres-
sions valid for the whole range of temperature. Finally in
Sec. VIII we present our conclusions.

II. THE BOREL TRANSFORM

We will briefly recall the Borel transform method
designed to make sense of potentially divergent series
[2]. For a divergent perturbative expansion

D½a� ¼
X∞
n¼1

Dnan; ð1Þ

the Borel transform B½b� of the series D½a� is defined
through

B½b� ¼
X∞
n¼0

Dnþ1

bn

n!
: ð2Þ

The inverse transform is,

D½a� ¼
Z

∞

0

db e−b=aB½b�: ð3Þ

We need the last integral to be convergent, being B½b�
free form singularities in the range of integration. If these
conditions are fulfilled, we say that the original series D½a�
is Borel summable.
It is easy to check that all convergent series are also Borel

summable. For the case of divergent series this is not
necessarily the case. If we find poles in the 0 −∞ range of
integration of the previous equation, the series is no longer
Borel summable. In this case, however, it is still possible to
make sense to this integral through a prescription for the
integration path in the complex [b]-plane, avoiding the
pole. This will be, however, a prescription-dependent
result.
A classical reference about divergent series is the book

by Hardy, [45].
It is known that perturbative expansions in quantum field

theory are not Borel summable. There are two sources for
the appearance of singularities in the Borel plane: renor-
malons and instantons. Here we do not want to comment
about the latter possibility. In QCD, renormalons have been
a matter of debate since these objects may affect our
understanding of the gluon condensate [5].

III. RENORMALONS IN THE VACUUM

In the λϕ4 theory the renormalon type diagrams that
produce poles in the Borel plane correspond to a correction
to the two-point function.
First we remind the calculation of this diagram with the

insertion of k bubbles, summing then over k and studying
the behavior of its transform in the Borel plane.
Wewill denote by RkðpÞ the diagram of order k shown in

Fig. 1, where p is the four-momentum entering and leaving
the diagram and q is the four momentum that goes around
the chain of bubbles
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RkðpÞ ¼
Z

d4q
ð2πÞ4

i
ðpþqÞ2 −m2þ iϵ

½BðqÞ�k−1
ð−iλÞk−2 : ð4Þ

In this expression, BðqÞ corresponds to the contribution
of one bubble in the chain which is equivalent, of course, to
the one-loop correction, in the s-channel, of the vertex, the
so called fish-diagram (see Fig. 2). The factor ð−iλÞk−2 has
been added to cancel the vertices that have been counted
twice along the chain.
The expression for BðqÞ is a well-known result [46]

BðqÞ ¼ ð−iλÞ2
2

Z
d4k
ð2πÞ4

i
k2 −m2 þ iϵ

×
i

ðkþ qÞ2 −m2 þ iϵ
ð5Þ

given by

BðqÞ ¼ −iλ2

32π2

�
Δ−

Z
1

0

dx log

�
m2 −q2xð1− xÞ− iϵ

μ2

��
ð6Þ

where Δ is the divergent part that will be canceled by
counterterms in the renormalization procedure, being μ
an arbitrary mass-scale associated to the regularization
procedure, which always appear when we go through the
renormalization program.
The contribution to the renormalon comes from

the deep Euclidean region in the integral in Eq. (4),
i.e., where −q2 ≫ m2. In this way, BðqÞ in Eq. (6) can be
approximated as:

BðqÞ ≈ −iλ2

32π2
logð−q2=μ2Þ; ð7Þ

Inserting this result in Eq. (4) and performing a Wick
rotation, we find

RkðpÞ ¼
−iλk

ð32π2Þk−1
Z

d4q
ð2πÞ4

1

ðpþ qÞ2 þm2

× ½logðq2=μ2Þ�k−1: ð8Þ

This is an ultraviolet divergent expression. However,
since the theory is renormalizable, we can separate this
expression into a finite and a divergent part. We are only
interested in the finite part. For this we expand the
propagator in powers of 1=q2, neglecting the first two
terms that leave divergent integrals. We can do this because
of the appearance of counterterms.
So, we find

Rk ¼ −i
�

λ

32π2

�
k
4

Z
∞

Λ
dq½logðq2=μ2Þ�k−1q3

×

�
m4

q6
−
m6

q8
þ � � �

�
ð9Þ

with Λ > 0. The dependence on the external momentum p
has disappeared. The lower limit Λ comes from the fact that
we are interested in the deep Euclidean region. It has to be
fixed in order to fulfill this condition.
Introducing q ¼ μet in the first two terms of Eq. (9), and

fixing Λ ¼ μ, we find

Rk ¼ −i
�

λ

32π2

�
k 4m4

μ2

Z
∞

0

dte−2tð2tÞk−1

×

�
1 −

m2

μ2
e−2t

�

¼ −i
�

λ

32π2

�
k 2m4

μ2
ΓðkÞ þ i

�
λ

64π2

�
k 2m6

μ4
ΓðkÞ

¼ −i
�

λ

32π2

�
k
m̃2ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ ð10Þ

with m̃2 ¼ 2m4=μ2. We see that this diagram grows like k!,
inducing then a pole in the Borel plane.
By taking the series ΣRk,

D½λ� ¼
X
k

−i
ð32π2Þk ΓðkÞλ

k; ð11Þ

its Borel transform is given by

B½b� ¼
X
k

�
Rk

λk

�
bk−1

ðk − 1Þ! ;

¼ −im̃2
1

1 − b=32π2
þ i

m2

μ2
m̃2

1

1 − b=64π2
; ð12Þ

identifying, finally, the leading pole on the positive semireal
axis in the Borel plane b ¼ 32π2 and the second pole
in b ¼ 64π2.

FIG. 1. Renormalon-type contribution to the two point function.

FIG. 2. Fish-diagram.

RENORMALONS IN A SCALAR SELF-INTERACTING THEORY: … PHYS. REV. D 105, 076011 (2022)

076011-3



IV. THERMAL RENORMALONS

We are going to calculate the renormalon contribution to
the two point function at finite temperature. In a previous
article [47] we went through this discussion but it was
necessary to separate the high and low temperature cases.
Now we have at our disposal new techniques that leave a
closed analytic expression, valid for the whole temperature
range, for the thermal corrections we are looking for.
Temperature is introduced in the frame of the imaginary
time formalismwhere bosonicMatsubara frequencies appear
[48,49]

k4 → ωn ¼
2πn
β

; n ∈ Z; ð13Þ

where β ¼ 1=T, and where the integral in k4 converts into a
sum according to,

Z
d4k
ð2πÞ4 fðkÞ →

1

β

X
n∈Z

Z
d3k
ð2πÞ3 fðiωn; kÞ: ð14Þ

The diagram to be calculated is

RT;k ¼
1

ð−iλÞk−2
Z

d4q
ð2πÞ4 iDðpþ qÞ½BTðqÞ�k−1: ð15Þ

Notice that in principle the Dðpþ qÞ propagator could be
temperature dependent. However, in our previous work [50]
when we considered the pure magnetic corrections case, we
showed that if the propagator Dðpþ qÞ included magnetic
effects, its contribution to BðqÞ is subleading. The same
situation happens also here, when dealing only with temper-
ature corrections. Therefore, our calculation will be carried
out by considering only BðqÞ as temperature dependent,
whereas Dðpþ qÞ will be handled without temperature
effects. First let us consider one bubble

BTðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3 D

TðkÞDTðkþ qÞ; ð16Þ

where

DTðkÞ ¼ 1

ω2
n þ k2 þm2

; ð17Þ

therefore

BTðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3

1

ω2
n þ k2 þm2

×
1

ðωn þ ωÞ2 þ ðkþ qÞ2 þm2
: ð18Þ

The sum over Matsubara frequencies is calculated using
well-known techniques [48], getting

BTðqÞ ¼ ð−iλÞ2
2

i
Z

d3k
ð2πÞ3

−s1s2
4E1E2

×
1þ nðs1E1Þ þ nðs2E2Þ

iω − s1E1 − s2E2

; ð19Þ

where

E2
1 ¼ k2 þm2; s1 ¼ �1;

E2
2 ¼ ðkþ qÞ2 þm2; s2 ¼ �1;

niðEiÞ ¼ 1=ðeEi=T − 1Þ:

We obtain

BTðqÞ ¼ ð−iλÞ2
2

i
Z

d3k
ð2πÞ3

1

4E1E2

×

�
ð1þ n1 þ n2Þ

�
1

iω−E1 −E2

−
1

iωþE1 þE2

�

− ðn1 − n2Þ
�

1

iω−E1 þE2

−
1

iωþE1 −E2

��

≡BvacðqÞ þBTðqÞ; ð20Þ

where

BvacðqÞ ¼
ð−iλÞ2

2
i
Z

d3k
ð2πÞ3

1

4E1E2

×

�
1

iω − E1 − E2

−
1

iωþ E1 þ E2

�
; ð21Þ

is the vacuum part equal to Eq. (7) in the deep Euclidean
region. Notice that we will use the notation BTðqÞ for the
total fish diagram, including both vacuum and the thermal
corrections, whereas BTðqÞ will refer only to thermal
corrections to the fish

BTðqÞ¼
ð−iλÞ2

2
i
Z

d3k
ð2πÞ3

1

4E1E2

×

�
ðn1þn2Þ

�
1

iω−E1−E2

−
1

iωþE1þE2

�

− ðn1−n2Þ
�

1

iω−E1þE2

−
1

iωþE1−E2

��
; ð22Þ

being the temperature dependent part. Since the contribution
to the renormalon comes from the deep Euclidean region, we
calculate Eq. (22) in the limit −q2 ≫ m2, obtaining

BTðqÞ ≈
iλ2

4π2q2

Z
∞

0

dk
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p 1

e
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
=T − 1

: ð23Þ

The previous integral can be obtained analytically [42],
getting
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BTðqÞ ≈
iλ2

4π2q2
X∞
n¼1

mT
n

K1ðnm=TÞ ð24Þ

whereK1 is the modified Bessel function of the second kind.
Hence the contribution for one bubble is

BTðqÞ≈−iλ2

32π2

�
logðq2=μ2Þ− 8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ
�
: ð25Þ

Now we have to insert this temperature dependent fish
diagram term in the chain of bubbles that define the
renormalon-type diagram. We find

RT;k ¼
1

ð−iλÞk−2
Z

d4q
ð2πÞ4 iDðpþ qÞ

�
−iλ2

32π2

�
k−1

×
�
logðq2=μ2Þ − 8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ
�k−1

; ð26Þ

As we already mentioned, we proceed to expand the
propagator Dðpþ qÞ in powers of 1=q2 neglecting the first
two terms that give rise to divergent integrals. We have then
to calculate

RT;k ¼
1

ð−iλÞk−2
Z

d4q
ð2πÞ4

�
m4

q6
−
m6

q8
þ � � �

�

×

�
−iλ2

32π2

�
k−1�

logðq2=μ2Þ

−
8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ
�

k−1
: ð27Þ

Using the binomial theorem

ðAþ BÞN ¼ AN þ N · AN−1Bþ � � � ; ð28Þ

we get

RT;k ¼ −i
λk

ð32π2Þk−1
Z

d4q
ð2πÞ4

�
m4

q6
−
m6

q8
þ � � �

�

×

�
logðq2=μ2Þk−1 − ðk − 1Þ 8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ

× logðq2=μ2Þk−2 þ � � �
�
: ð29Þ

Notice that the vacuum leading term as well as the next to
leading order (NLO) vacuum term can be extracted from the
first two terms inside the first square parenthesis, together
with the first term of the second square parenthesis in the
previous equation. The leading term in the magnetic field
strength is obtained by multiplying the first term of the first
square parenthesis with the second term of the second square

parenthesis in the above equation. The next terms are
subleading.
In this way, following the same procedure of Sec. III

and performing the angular integrals we find

RT;k ¼ −i4m4

�
λ

32π2

�
k
Z

dq

�ðlogðq2=μ2ÞÞk−1
q3

−
m2

q5
logðq2=μ2Þk−1 − ðk − 1Þ8ðlogðq2=μ2ÞÞk−2

q5

×
X∞
n¼1

mT
n

K1ðnm=TÞ þ � � �
�
: ð30Þ

Using the change of variable q ¼ μet, dq ¼ μetdt,

RT;k ¼ −i
�

λ

32π2

�
k 4m4

μ2

Z
dt

�
e−2tð2tÞk−1

−
m2

μ2
e−4tð2tÞk−1 − ðk − 1Þ8e−4tð2tÞk−2

μ2

×
X∞
n¼1

mT
n

K1ðnm=TÞ þ � � �
�
; ð31Þ

we see the appearance of the Gamma function in both
terms. Using the definition of m̃, we have

RT;k ¼ −im̃2

�
λ

32π2

�
k
ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ

− 2i
m̃2

μ2

�
λ

64π2

�
k
8
X∞
n¼1

mT
n

K1ðnm=TÞΓðkÞ þ � � � ;

ð32Þ

where we have used also the property Γðzþ 1Þ ¼ zΓðzÞ,
Eq. (32) can be written as

RT;k ≡ −im̃2

�
λ

32π2

�
k
ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ

− 2i
m̃2

μ2

�
λ

64π2

�
k
ΓðkÞFT þ � � � ; ð33Þ

where

FT ¼ −8
X∞
n¼1

mT
n

K1

�
nm
T

�
: ð34Þ

Now we can find the Borel transform B½b� of ΣRT;k,
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B½b� ¼
X
k

�
RT;k

λk

�
bk−1

ðk − 1Þ! ;

¼ −im̃2
X
k

�
1

32π2

�
k
bk−1 þ

�
im2

μ2
m̃2 −

2im̃2

μ2
FT

�

×
X
k

�
1

64π2

�
k
bk−1 þ � � � : ð35Þ

These sums correspond to a well-known geometrical series,
obtaining then our final result

B½b�¼ −im̃2

b−32π2
þ
�
i
m2

μ2
m̃2−

2im̃2

μ2
FT

�
1

b−64π2
þ���: ð36Þ

The main difference with respect to what we found in [47] is
that Eq. (36) is valid for the whole range of temperature.
The location of the poles in the Borel plane, as expected,
does not depend on temperature. The residues, nevertheless,
get an explicit temperature dependence.

V. THERMOMAGNETIC RENORMALONS

In this section we are going to calculate the renormalon
contribution taking finite temperature and also the presence
of a weak external magnetic field.Wewant to stress that for a
strong magnetic field, we did not find renormalons. For our
calculation we need the magnetic bosonic propagator in the
weak field region eB ≪ m2, which is given by [51]

iDBðkÞ⟶eB→0 i
k2k − k2⊥ −m2

−
iðeBÞ2

ðk2k − k2⊥ −m2Þ3

−
2iðeBÞ2k2⊥

ðk2k − k2⊥ −m2Þ4 : ð37Þ

The corresponding expression for the renormalon type
diagram is now given by

RB;T;k ¼
1

ð−iλÞk−2
Z

d4q
ð2πÞ4 iDðpþ qÞ½BðT;BÞðqÞ�k−1; ð38Þ

where ðT; BÞ refers to finite temperature and weak magnetic
field effects. Following the same procedure, let us first
consider one bubble

BðT;BÞðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3 iD̃

ðT;BÞðkÞ

× iD̃ðT;BÞðkþ qÞ; ð39Þ

where iD̃ðT;BÞðkÞ is the finite temperature propagator, up to
order ðeBÞ2 in the magnetic field, defined as

iD̃ðT;BÞðkÞ≡ iDTðkÞ þ iDðT;BÞðkÞ; ð40Þ

with

iDTðkÞ ¼ −
i

ω2
n þ k2 þm2

and

iDðT;BÞðkÞ ¼ iðeBÞ2
ðω2

n þ k2 þm2Þ3 −
2iðeBÞ2k2⊥

ðω2
n þ k2 þm2Þ4 : ð41Þ

Therefore, using this notation Eq. (39) becomes

BðT;BÞðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3

× ðiDTðkÞ þ iDðT;BÞðkÞÞ
× ðiDTðkþ qÞ þ iDðT;BÞðkþ qÞÞ; ð42Þ

Note that the previous multiplication will produce terms of
order greater than ðeBÞ2. If we restrict ourselves up to order
ðeBÞ2, we obtain

BðT;BÞðqÞ ¼ D1ðk; qÞ þD2ðk; qÞ þD3ðk; qÞ; ð43Þ

with

D1ðk;qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

TðkÞiDTðkþqÞ; ð44Þ

D2ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

TðkÞiDðT;BÞðkþ qÞ;

ð45Þ

D3ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

ðT;BÞðkÞiDTðkþ qÞ:

ð46Þ

It is straightforward to prove that D2ðk; qÞ ¼ D3ðk; qÞ.
Notice that D1ðk; qÞ is the bubble with only temperature
corrections obtained in the previous section [Eq. (16)], hence

D1ðk;qÞ¼
−iλ2

32π2

�
log

�
q2

μ2

�
−

8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ
�
: ð47Þ

Now we have to calculate D3ðk; qÞ. Since we know that
D2ðk; qÞ ¼ D3ðk; qÞ, we have
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D3ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

ðT;BÞðkÞiDTðkþ qÞ

¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3

×

�
iðeBÞ2

ðω2
n þ k2 þm2Þ3 −

2iðeBÞ2k2⊥
ðω2

n þ k2 þm2Þ4
�

×

�
−

i
ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
;

≡D3.1ðk; qÞ þD3.2ðk; qÞ ð48Þ

with

D3.1ðk; qÞ ¼
ð−iλÞ2iT

2

X
n

Z
d3k
ð2πÞ3

ðeBÞ2
ðω2

n þ k2 þm2Þ3

×

�
1

ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
; ð49Þ

and

D3.2ðk; qÞ ¼
ð−iλÞ2iT

2

X
n

Z
d3k
ð2πÞ3

2ðeBÞ2k2⊥
ðω2

n þ k2 þm2Þ4

×

�
−1

ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
: ð50Þ

Let us first calculate D3.1ðk; qÞ,

D3.1ðk;qÞ ¼
ð−iλÞ2
2 ·2!

� ∂
∂m̃2

�
2

ðeBÞ2iT
X
n

Z
d3k
ð2πÞ3

×

�
1

ω2
nþk2þ m̃2

��
1

ðωnþωÞ2þðkþqÞ2þm2

�
;

ð51Þ

where we have used

1

2!

� ∂
∂m̃2

�
2 1

k2 þ m̃2
¼ 1

ðk2 þ m̃2Þ3 : ð52Þ

We have again the expression found in the previous section
[Eq. (18)], with the difference that we have to derive with
respect to m̃2 twice. In this way, we obtain

D3.1ðk; qÞ ¼
ð−iλÞ2
32π2

ðeBÞ2

×

�
1

2m2q2
−

4

q2
X∞
n¼1

n
4mT

K1ðnm=TÞ
�
: ð53Þ

In a similar fashion we calculate D3.2ðk; qÞ,

D3.2ðk;qÞ ¼
ð−iλÞ2
3!

� ∂
∂m̃2

�
3

ðeBÞ2iT
X
n

Z
d3k
ð2πÞ3

×

�
k2⊥

ω2
nþk2þ m̃2

��
−1

ðωnþωÞ2þðkþqÞ2þm2

�
;

ð54Þ

where we have used

−
1

3!

� ∂
∂m̃2

�
3 1

k2 þ m̃2
¼ 1

ðk2 þ m̃2Þ4 : ð55Þ

Here we have once again the expression given in the
previous section [Eq. (18)], with the difference that we have
to derive three times with respect to m̃2. Hence, we obtain

D3.2ðk; qÞ ¼
ðeBÞ2ð−iλÞ2i

2 · 3!

�
−3!

96π2m2q2

þ 2

6π2q2
X∞
n¼1

3n
8mT

K1ðnm=TÞ
�
: ð56Þ

Taking into account the results D1ðk; qÞ, D2ðk; qÞ, and
D3ðk; qÞ, we obtain for BðT;BÞðqÞ

BðT;BÞðqÞ ¼ −iλ2

32π2

�
log

�
q2

μ2

�
−

8

q2
X∞
n¼1

mT
n

K1

�
nm
T

�

þ ðeBÞ2
q2

�
2

3m2
−
X∞
n¼1

n
mT

K1

�
nm
T

���
: ð57Þ

Following the same procedure of the previous section,
we have to calculate the renormalon-type diagram

RB;T;k ¼
1

ð−iλÞk−2
Z

d4q
ð2πÞ4 iDðpþ qÞ½BðT;BÞðqÞ�k−1; ð58Þ

obtaining

RB;T;k ¼ −im̃2

�
λ

32π2

�
k
ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ

− 2i
m̃2

μ2

�
λ

64π2

�
k
ΓðkÞ

�
8
X∞
n¼1

mT
n

K1

�
nm
T

�

þ ðeBÞ2
�

2

3m2
−
X∞
n¼1

n
mT

K1

�
nm
T

���
: ð59Þ

This can be written as

RB;T;k ≡ −im̃2

�
λ

32π2

�
k
ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ

− 2i
m̃2

μ2

�
λ

64π2

�
k
ΓðkÞFB;T þ � � � ; ð60Þ
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where

FB;T ¼ −8
X∞
n¼1

mT
n

K1

�
nm
T

�

þ ðeBÞ2
�

2

3m2
−
X∞
n¼1

n
mT

K1

�
nm
T

��
: ð61Þ

Now we can find the Borel transform B½b�

B½b� ¼ −im̃2

b− 32π2
þ
�
i
m2

μ2
m̃2 −

2im̃2

μ2
FB;T

�
1

b− 64π2
þ � � � :

ð62Þ

As in the pure thermal situation, the location of the poles
does not depend in this case on temperature and on the
strength of the magnetic field. The residue, however,
becomes thermomagnetic dependent.

VI. THERMOELECTRIC RENORMALONS

Thermoelectric corrections will be handled using an
electric field dependent finite temperature bosonic propaga-
tor. We are going to introduce the propagator taking first only
the external electric field into account, incorporating then,
later, finite temperature effects. The bosonic propagator in
Euclidean space is given by [42]

DðkÞ ¼
Z

∞

0

ds
e−sð

tanhðeEsÞ
eEs k2kþk2⊥þm2Þ

coshðeEsÞ ; ð63Þ

where e is the electric charge, kk and k⊥ refer to ðk4; 0; 0; k3Þ
and ð0; k1; k2; 0Þ, respectively. Note that in the Euclidean
version k2 ¼ k2k þ k2⊥ ¼ k24 þ k23 þ k21 þ k22. Since we will

be interested in the weak electric field region where
eE ≪ m2, by expanding the previous expression we get
up to order OðE2Þ [42]

iDEðkÞ ≈ i
k2 þm2

þ iðeEÞ2
�
−

1

ðk2 þm2Þ3 þ
2k2k

ðk2 þm2Þ4
�

≈
i

k2 þm2
þ iðeEÞ2

�
1

ðk2 þm2Þ3 −
2ðk2⊥ þm2Þ
ðk2 þm2Þ4

�
:

ð64Þ

The corresponding expression for the renormalon type
diagram is now given by

RE;T ¼ 1

ð−iλÞk−2
Z

d4q
ð2πÞ4 iDðpþ qÞ½BðT;EÞðqÞ�k−1; ð65Þ

where ðE;BÞ refers to finite temperature and weak electric
field effects. Following the same procedure presented in the
previous sections let us first consider one bubble

BðT;EÞðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3 iD̃

ðT;EÞðkÞ

× iD̃ðT;EÞðkþ qÞ; ð66Þ

where iD̃ðT;BÞðkÞ is the finite temperature propagator, up to
order ðeBÞ2 in the magnetic field, given by

iD̃ðT;EÞðkÞ≡ iDTðkÞ þ iDðT;EÞðkÞ; ð67Þ

with

iDTðkÞ ¼ −
i

ω2
n þ k2 þm2

and

iDðT;EÞðkÞ ¼ iðeEÞ2
ðω2

n þ k2 þm2Þ3

−
2iðeEÞ2ðk2⊥ þm2Þ
ðω2

n þ k2 þm2Þ4 : ð68Þ

Therefore, using this notation Eq. (66) becomes

BðT;EÞðqÞ ¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3

× ðiDTðkÞ þ iDðT;EÞðkÞÞ
× ðiDTðkþ qÞ þ iDðT;EÞðkþ qÞÞ; ð69Þ

Note that the previous multiplication will produce terms of
order greater than ðeEÞ2. If we restrict ourselves up to order
ðeEÞ2, we obtain

BðT;EÞðqÞ ¼ D1ðk; qÞ þD2ðk; qÞ þD3ðk; qÞ; ð70Þ

with

D1ðk;qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

TðkÞiDTðkþqÞ; ð71Þ

D2ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

TðkÞiDðT;EÞðkþ qÞ;

ð72Þ

D3ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

ðT;EÞðkÞiDTðkþ qÞ:

ð73Þ

It is straightforward to prove that D2ðk; qÞ ¼ D3ðk; qÞ.
Notice that D1ðk; qÞ is the bubble with only temperature
corrections obtained in the previous section [Eq. (16)], hence

D1ðk;qÞ¼
−iλ2

32π2

�
log

�
q2

μ2

�
−

8

q2
X∞
n¼1

mT
n

K1ðnm=TÞ
�
: ð74Þ
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Now we have to calculate D3ðk; qÞ. Since we know that
D2ðk; qÞ ¼ D3ðk; qÞ, we have

D3ðk; qÞ ¼
ð−iλÞ2

2
iT
X
n

Z
d3k
ð2πÞ3 iD

ðT;EÞðkÞiDTðkþ qÞ

¼ ð−iλÞ2
2

iT
X
n

Z
d3k
ð2πÞ3

×

�
iðeEÞ2

ðω2
n þ k2 þm2Þ3 −

2iðeEÞ2ðk2⊥ þm2Þ
ðω2

n þ k2 þm2Þ4
�

×

�
−

i
ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
;

≡D3.1ðk; qÞ þD3.2ðk; qÞ ð75Þ

with

D3.1ðk; qÞ ¼
ð−iλÞ2iT

2

X
n

Z
d3k
ð2πÞ3

ðeEÞ2
ðω2

n þ k2 þm2Þ3

×

�
1

ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
; ð76Þ

and

D3.2ðk; qÞ ¼
ð−iλÞ2iT

2

X
n

Z
d3k
ð2πÞ3

2ðeEÞ2ðk2⊥ þm2Þ
ðω2

n þ k2 þm2Þ4

×

�
−1

ðωn þ ωÞ2 þ ðkþ qÞ2 þm2

�
: ð77Þ

Let us first calculate D3.1ðk; qÞ,

D3.1ðk;qÞ¼
ð−iλÞ2
2 ·2!

� ∂
∂m̃2

�
2

ðeEÞ2iT
X
n

Z
d3k
ð2πÞ3

×

�
1

ω2
nþk2þ m̃2

��
1

ðωnþωÞ2þðkþqÞ2þm2

�
;

ð78Þ

where we have used the relation of Eq. (52). This expression
is analogue of Eq. (51). Hence, we obtain

D3.1ðk; qÞ ¼
ð−iλÞ2
32π2

ðeEÞ2

×
�

1

2m2q2
−

4

q2
X∞
n¼1

n
4mT

K1ðnm=TÞ
�
: ð79Þ

In a similar way we calculate D3.2ðk; qÞ,

D3.2ðk;qÞ¼
ð−iλÞ2
3!

� ∂
∂m̃2

�
3

ðeEÞ2iT
X
n

Z
d3k
ð2πÞ3

×

� ðk2⊥þm2Þ
ω2
nþk2þ m̃2

��
−1

ðωnþωÞ2þðkþqÞ2þm2

�
;

ð80Þ

where we have used the relation of Eq. (55). This expression
is analogue of Eq. (54). Therefore, we obtain

D3.2ðk;qÞ¼
ð−iλÞ2
32π2

ðeEÞ2
�
−

1

m2q2
−

1

3q2
X∞
n¼1

n
mT

K1ðnm=TÞ

þ1

3

X∞
n¼1

n2

T2
K2ðnm=TÞ

�
: ð81Þ

Following an analogous procedure to the previous sections,
we obtain for the renormalon-type diagram

RE;T;k ≡ −im̃2

�
λ

32π2

�
k
ΓðkÞ þ i

�
λ

64π2

�
k m2

μ2
m̃2ΓðkÞ

− 2i
m̃2

μ2

�
λ

64π2

�
k
ΓðkÞFE;T þ � � � ; ð82Þ

where

FE;T ¼ −8
X∞
n¼1

mT
n

K1

�
nm
T

�

þ ðeEÞ2
�
−

2

m2
−
X∞
n¼1

2n
3mT

K1

�
nm
T

�

þ
X∞
n¼1

2n2

3T2
K2

�
nm
T

��
: ð83Þ

Now we can find the Borel transform B½b�

B½b� ¼ −im̃2

b− 32π2
þ
�
i
m2

μ2
m̃2 −

2im̃2

μ2
FE;T

�
1

b− 64π2
þ � � � :

ð84Þ

We notice that again the position of the poles does not
depend on temperature and on the electric field as well.
However, the residue does get a thermoelectric dependence.
Further, as it occurred in the thermomagnetic case, the strong
electric field limit does not have any effects on the residue of
the renormalons.

VII. RESULTS

According to our previous discussion, the interesting
quantity to beanalyzed is the evolutionof the thermomagnetic
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and thermoelectric residues (FB;T), defined in Eq. (61), and
(FE;T) defined in Eq. (83), respectively. In Fig. 3 we show the
thermomagnetic and thermoelectric evolution of renormalon
residues (FE;T) and (FE;T) as functionof temperature forgiven
strengths eB ¼ 0.9m2

π and eE ¼ 0.9m2
π of the magnetic and

electric fields, respectively. We notice that these residues
have a similar behavior, being both negative, although
initially the thermoelectric renormalon has a more negative
value than themagnetic case. ForT ∼ 130 MeV this behavior
changes being then the magnetic residue more negative than
the electric case. In Fig. 4 the thermomagnetic and thermo-
electric residues are shown as function of their respective field
intensities. The left right panel corresponds to T ¼ 50 MeV
whereas the right panel corresponds to T ¼ 180 MeV.
We notice that their behaviors are opposite. However, for
T ¼ 50 MeVwe see that the thermomagnetic residue grows.
When temperature starts to increase, this behavior changes
until is starts to diminish. The same happens with the
thermoelectric residue. It changes from an initially decreasing
into a growing function. However, both residues have
opposite behaviors as function of their corresponding field
strengths.

VIII. CONCLUSIONS

In this work we have analyzed the thermal behavior of
renormalons in the λϕ4 theory including the presence of an
external weak electric and a weak magnetic field, taken both
cases separately. Our analysis is valid for the whole range of
temperature. First we considered only temperature effects
obtaining a closed analytic expression which coincides, in
the low and high temperature regions, with previous results
reported in [47,52], respectively. In a second step we went
through the calculation of thermomagnetic effects. The
difference with previous results [47] is again the expression
for the temperature dependence. Finally, we addressed the
new issue of thermoelectric effects on renormalons. In this
case we found a competition between the electric and
magnetic effects, having opposite behaviors. Although there
is an approximate temperature T ∼ 130 MeV where the
magnetic and electric field dependent residues, change their
behavior, they continue having this opposite dependence on
the corresponding field strengths. In a future work we will
discuss the simultaneous effect of both fields, i.e., a
thermomagnetic-electric scenario. As a final general com-
ment about our calculation of thermomagnetic and thermo-
electric effects associated to the renormalon diagram, it is
important to stress that the leading renormalon behavior is
associated to the vacuum contribution. Thermal effects, for
example, affect only the residue of subleading poles. In the
case of the influence of external magnetic or electric fields
this conclusion remains valid as well. If we would have
attached the external effects in the single propagator of our
diagram, instead of considering these effects only attached to
the chain of bubbles, no interference effects will appears
between both diagrams that could affect the leading term.
This point has been mentioned in [50]. Finally, thinking
about possible observable consequences, we would like to
consider in a future work renormalons effects in the
determination of π − π scattering lengths described from
the perspective of our model.

FIG. 3. Thermal evolution of the thermomagnetic (FE;T) and
thermoelectric (FE;T) residues for given values eB ¼ 0.9m2

π and
eE ¼ 0.9m2

π of the magnetic and electric field intensities.

FIG. 4. Thermomagnetic and thermoelectric residues (FE;T) and (FE;T) as function of the field intensities. The left panel is for
T ¼ 50 MeV and the right panel for T ¼ 180 MeV.
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