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In this paper, we present a detailed derivation of relativistic first-order spin hydrodynamics using the
Chapman-Enskog method to linearize the nonlocal collision term for massive fermions proposed in
Weickgenannt et al. [Phys. Rev. D 104, 016022 (2021)], which well describes spin-orbit coupling in the
collision process and is relevant for the research on local spin polarization. Based on this collisional term,
we provide a formal discussion about first-order spin hydrodynamics and determine the motion equations
of fluid variables and nonequilibrium corrections to the energy-momentum and spin tensors. The results
indicate that the motion equations show no differences compared to spinless first-order hydrodynamics and
the energy-momentum tensor receives no corrections from spin as far as first-order theory is concerned,
which calls for the construction of second-order theory of fluids naturally incorporating the effect of
spin-orbit coupling.
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I. INTRODUCTION

Recent developments in the experiments of relativistic
noncentral heavy-ion collisions have seen great progress in
measuring the spin-related observables of Λ hyperons, the
results of which show the phenomena of spin polarization
[1,2]. This originates from the conversion of orbital angular
momentum carried by the media, quark-gluon plasma
(QGP), into spin angular momentum via the well-known
mechanism of orbit-spin coupling. Many theoretical
researches on the global polarization of Λ hyperons have
been carried out and provide a good description of
experimental data. See related works in [3–11].
Afterward, the STAR Collaboration published measure-
ments of differential spin polarization, i.e. the dependance
of Λ polarization on the azimuthal angle and transverse
momentum [12,13]. However, theoretical calculation fol-
lowing previous models cannot explain the experimental
data satisfyingly and even predicts the opposite depend-
ance, which is usually called “spin sign problem” [14,15].
Resolving this problem calls for new theoretical frame-
works. Among all the candidates, spin hydrodynamics is a
promising one which extends ordinary fluid models by
including the spin degree of freedom. On the other hand,
these direct experimental measurements of quantum effects

in relativistic heavy-ion collisions provide the opportunity
to study the evolution of spinful fluids.
There aremany efforts following this direction to try to get

insight into the spin sign prolem. “Ideal” spin hydrody-
namics was proposed in the context of the QGP [16] and for
massive spin-1=2 fermions [17]. See also relevant discus-
sions in [18,19]. Recently, first-order spin hydrodynamics
including nonequilibrium corrections has also been put into
efforts [20–22] based on general arguments. The related
researchwork on first-order spin hydrodynamics can be also
found in [23] using the method of relaxation time approxi-
mation. Though with great progress in investigating spinful
fluids, it is noted that the ultimate goal for us is to construct a
causal and numerically stable theory of spin hydrodynamics,
which allows the numerical implementation and simulation
of the evolution of the fluid system, and eventually provides
us with quantitative explanations of the spin-related exper-
imental phenomena. To that end, the hydrodynamic equa-
tions and relevant transport coefficients must be obtained in
a first-principle fashion, which equivalently means that the
macroscopic evolution of spinful fluids is dictated by
the microscopic theory of spin transport. Therefore it is
necessary to derive the quantum transport equations with
proper collision terms, which lays the basis for the con-
struction of a causal and numerically stable theory of spin
hydrodynamics. The related developments in spin transport
can be found in [24–28].
In this paper, we try to derive relativistic first-order spin

hydrodynamics frommicroscopic theory, which is based on
the framework of the Chapman-Enskog expansion. To
make it, the transport equation along with the nonlocal
collision term proposed in [24] is adopted as the starting
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point of our derivation. This paper is organized as follows.
In Sec. II we present a brief review of the relativistic
transport equation with the nonlocal collision term. After
that, the local equilibrium distribution is discussed and the
conditions for global equilibrium are determined in Sec. III.
In Sec. IV, we derive the motion equations of all hydro-
dynamic variables. In Sec. V we adopt the Chapman-
Enskog expansion to derive first-order spin hydrodynamics
and provide the detailed form of the deviation function
from local equilibrium distribution function up to first order
in gradients. The corrections to various tensors we are
concerned about are calculated in Sec. VI. Discussions and
outlook are given in Sec. VII. Natural units kB¼c¼ℏ¼1
are used. The metric tensor here is given by gμν ¼
diagð1;−1;−1;−1Þ, while Δμν ≡ gμν − uμuν is the projec-
tion tensor orthogonal to the four-vector fluid velocity uμ.
In addition, we employ the symmetric/antisymmetric

shorthand notations:

XðμνÞ ≡ ðXμν þ XνμÞ=2; ð1Þ

X½μν� ≡ ðXμν − XνμÞ=2; ð2Þ

Xhμνi ≡
�Δμ

αΔν
β þ Δν

αΔ
μ
β

2
−
ΔμνΔαβ

3

�
Xαβ: ð3Þ

Specially, we decompose the derivative ∂ according to

∂μ ¼ uμDþ∇μ; D≡ uμ∂μ; ∇μ ≡ Δμν∂ν: ð4Þ
And the following notations for the derivatives of uμ are
often used:

σμν ≡∇hμuνi; θ≡∇μuμ: ð5Þ

II. NONLOCAL TRANSPORT EQUATIONS
AND EXTENDED PHASE SPACE

We start with a quantum transport equation with a
nonlocal collision term for massive fermions which is
presented in [24]. The evolution of the system is governed
by the proposed on-shell Boltzmann equation incorporating
the variable s as a classical description of spin degrees of
freedom,

δðp2 −m2Þp · ∂fðx; p; sÞ ¼ δðp2 −m2ÞC½f�; ð6Þ

with the nonlocal collision term given by

C½f�≡
Z

dΓ1dΓ2dΓ0W½fðxþΔ1;p1;s1ÞfðxþΔ2;p2;s2Þ

−fðxþΔ;p;sÞfðxþΔ0;p0;s0Þ�

þ
Z

dΓ2dS1ðpÞW2fðxþΔ1;p;s1ÞfðxþΔ2;p2;s2Þ;

ð7Þ

with the measure defined as dΓ≡ d4pδðp2 −m2ÞdSðpÞ
and the newly introduced measure dSðpÞ will be
further discussed hereafter. Here the transition rates W is
shown by

W ≡ δð4Þðpþ p0 − p1 − p2Þ
1

8

X
s;r

hsrðp; sÞ

×
X

s0;r0;s1;s2;r1;r2

hs0r0 ðp0; s0Þhs1r1ðp1; s1Þhs2r2ðp2; s2Þ

× hp; p0; r; r0jtjp1; p2; s1; s2i
× hp1; p2; r1; r2jt†jp; p0; s; s0i ð8Þ

with

hsrðp; sÞ≡ δsr þ
1

2m
ūsðpÞγ5s · γurðpÞ; ð9Þ

where the γ matrices, spinor usðpÞ, and spin indices r, s
above all correspond to the spinor description for fermions
as often used, and the matrix element of t is the conven-
tional scattering amplitude defined in quantum field theory.
To proceed, we briefly review the transport equation with
the collision term. The crucial point for the nontrivial
extension of the collision term is reflected in the Enskog-
type shift Δ manifesting the nonlocality of collisions with
its definition given by

Δμ ≡ −
1

2mðp · t̂þmÞ ϵ
μναβpν t̂αsβ; ð10Þ

where t̂μ is the timelike unit vector which is (1; 0) in the
frame where pμ is measured. To note, such an appealing
structure of the transport equation originates from the
nontrivial tensor structure of particle fields, or equivalently
the nontrivial dynamics introduced by spin angular
momentum compared to related discussions about scalar
field in [29]. A conclusion can be drawn that this shift well
captures the properties of spin-orbit coupling in nonlocal
collisions, which is highly relevant for solving the spin sign
problem of local polarization of Λ. Here we only focus on
the first term Eq. (7) which describes momentum- and spin-
exchange interactions, while the second term corresponds
to spin exchange without momentum exchange [30]. When
neglecting spin, hsr → δsr and the collision term recovers
the widely used local form of two-body scattering.
It is now time to fix our focus on the classical description

of spin. Spin here is treated as an additional variable in
phase space [19,25,31–34], which is immediately con-
nected to the first-principle quantum description to a
“classical” description of spin. Moreover, the authors of
[24] make good use of this concept to combine the full
dynamics of the Wigner function into one scalar equation
and gives a natural interpretation for the conservation laws
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and the collisional invariants. Then the covariant integra-
tion measure for spin is presented as

Z
dSðpÞ≡

ffiffiffiffiffiffiffi
p2

3π2

s Z
d4sδðs · sþ 3Þδðp · sÞ; ð11Þ

And the following properties are helpful for our later
calculation:Z

dSðpÞ ¼ 2; ð12aÞ
Z

dSðpÞsμ ¼ 0; ð12bÞ
Z

dSðpÞsμsν ¼ −2
�
gμν −

pμpν

p2

�
; ð12cÞ

Z
dSðpÞsμsνsρ ¼ 0; ð12dÞ

Z
dSðpÞΣμν

s Σαβ
s ¼ 2

m2
ðgμαgνβp2 þ gμβpνpα

þ gναpμpβ − ½μ ↔ ν�Þ: ð12eÞ

Therefore the tensors particle current, energy-momentum
tensor, and spin tensor we are concerned about can be
written as

Nμ ≡
Z

dΓpμfðx; p; sÞ; ð13Þ

Tμν
HW ≡

Z
dΓpμpνfðx; p; sÞ; ð14Þ

Sλ;μνHW ≡
Z

dΓpλ

�
1

2
Σμν
s −

1

2m2
p½μ∂ν�

�
fðx; p; sÞ; ð15Þ

where we have chosen the psudogauge proposed by
Hilgevoord andWouthuysen (HW) [35,36].When including
nonlocal collisions, Tμν

HW has an antisymmetric component
belonging to the order of Oð∂2Þ [25], which is neglected in
our constructing first-order theory. In the following sections,
when nothing confusing occurs, the subscript HW will be
omitted.

III. EQUILIBRIUM

In this section, we will show that the collision term
Eq. (7) is consistent with the standard form of spin-
dependent local equilibrium distribution function [16,37],

fleqðx; p; sÞ ¼
1

ð2πÞ3 exp
�
ξ − β · pþ ΩμνΣ

μν
s

4

�
; ð16Þ

where Ωμν represents spin potential, while βμ ≡ uμ
T ; ξ≡

μ
T ;Σ

μν
s ≡ − 1

m ϵ
μναβpαsβ with the temperature T, and the

chemical potential μ introduced for conserved particle
number (only elastic scatterings are considered). The
exponent in Eq. (16) is exactly the linear combination
of all conserved quantities, and ξ, β, and Ωμν are the
correspondent Lagrangian multipliers maximizing the total
entropy of the system. To prove this, the substitution of
Eq. (16) into Eq. (7) leads to

C½fleq� ¼ −
1

ð2πÞ6
Z

dΓ0dΓ1dΓ2W expð2ξ − β · ðpþ p0ÞÞ

×

�
−∂μξðΔμ

1 þ Δμ
2 − Δμ − Δ0μÞ

þ ∂μβνðΔμ
1p

ν
1 þ Δμ

2p
ν
2 − Δμpν − Δ0μp0νÞ

−
1

4
ΩμνðΣμν

s1 þ Σμν
s2 − Σμν

s − Σμν
s0 Þ

�
; ð17Þ

where the local equilibrium distribution is taylor expanded
to first order in Ω assuming small spin potential (if the
system in discussion is close to the state of global
equilibrium, Ω is about the order of the gradient of the
β field). Assuming total angular momentum Jμν ¼
2Δ½μpν� þ 1

2
Σμν
s is conserved in collisions, we can conclude

that it is the global equilibrium distribution function that
makes the collision term vanish contrary to traditional
definition for local equilibrium when including spin. In that
case, the conditions for vanishing Eq. (17) are

∂ðμβνÞ ¼ 0; ξ ¼ const;

Ωμν ¼ −∂ ½μβν� ¼ const: ð18Þ
As is shown clearly in Eq. (18), the spin potential Ωμν is
fixed to thermal vorticity 1

2
ð∂νβμ − ∂μβνÞ, and βμ can be

further decomposed into a translation (aμ) and a rigid
rotation (Ωμνxν) in global equilibrium,

βμ ¼ aμ þΩμνxν; aμ ¼ const; ð19Þ
which are consistent with the previous conclusions drawn
in [16,37].

IV. MOTION EQUATIONS OF
HYDRODYNAMIC VARIABLES

In this section, we derive the motion equations of all
relevant hydrodynamic variables. As is known to all of us,
hydrodynamics is based on macroscopic conservation laws,

∂μNμ ¼ 0; ð20Þ

∂μTμν ¼ 0; ð21Þ

∂λSλ;μν ¼ 2T ½νμ�; ð22Þ
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where aside from charge and energy-momentum we con-
sider also total angular momentum conservation when it
comes to spin hydro. We remind the readers that the
conserved current Nμ is a trivial particle number current
for we take only two body scatterings into account in the
sector of kinetics.
To make the above equations less abstract, we identify

the definitions of the parameters μðxÞ; TðxÞ; uμðxÞ, i.e.
nðxÞ; eðxÞ; uμðxÞ first. We assume that the particle number
density and energy density are completely determined by
the local equilibrium distribution function fð0Þ, which, with
the identification of fluid velocity, amounts to the Landau
matching conditions:

n≡
Z

dΓpμuμfðx; p; sÞ ¼
Z

dΓpμuμfð0Þðx; p; sÞ; ð23Þ

e≡
Z

dΓðpμuμÞ2fðx; p; sÞ ¼
Z

dΓðpμuμÞ2fð0Þðx; p; sÞ;

ð24Þ

and we adopt Landau velocity Tμνuν ¼ euμ. Here fð0Þ
represents the one-particle distribution in local equilibrium
and this expansion is based on small spin potential Ω,

fð0Þ ¼
�
1þ ΩμνΣ

μν
s

4

�
fð0Þws ; ð25Þ

fð0Þws ¼ 1

ð2πÞ3 exp½ξ − β · p�; ð26Þ

where fð0Þws denotes the spinless distribution function in
local equilibrium.
The densities n and e together with the static pressure P

P≡ −
1

3

Z
dΓΔμνpμpμfð0Þðx; p; sÞ ð27Þ

are analytically evaluated using the formulas in
Appendix A,

n ¼ expðξÞn0ðTÞ ¼ expðξÞ T3

2π2
z2K2ðzÞ;

e ¼ expðξÞe0ðTÞ ¼ expðξÞ T4

2π2
z2ð3K2ðzÞ þ zK1ðzÞÞ;

P ¼ expðξÞn0ðTÞT; ð28Þ

with z≡ m
T .

Noting that in local equilibrium, we have

Nð0Þμ ¼
Z

dΓpμfð0Þ ¼ nuμ; ð29Þ

Tð0Þμν ¼
Z

dΓpμpνfð0Þ ¼ euμuν − PΔμν; ð30Þ

Sð0Þλ;μν ¼
Z

dΓpλ

�
1

2
Σμν
s −

1

2m2
p½μ∂ν�

�
fð0Þ

¼ expðξÞ
4

�
n0ðTÞuλΩμν þ

�
6

z2
e0ðTÞ þ P0ðTÞ

T
þ 2n0ðTÞ

�
uλuδu½μΩν�

δ

−
2

z2
e0ðTÞ þ P0ðTÞ

T
ðΔλδu½μΩν�

δ þ uλΔδ½μΩν�
δ þ uδΔλ½μΩν�

δÞ
�

−
expðξÞ
2m2

ðeuλu½μ∂ν�ξ − ðI30uλuρu½μ þ I31uλΔρ½μÞ∂ν�βρÞ

þ expðξÞ
2m2

ðPΔλ½μ∂ν�ξþ I31ðΔλρu½μ þ Δλ½μuρÞ∂ν�βρÞ: ð31Þ

Combining Eqs. (20), (21), (29), and (30) with the
enthalpy h≡ eþ P, we find that

uν∂μTμν ¼ ðeþ PÞθ þ u · ∂e ¼ 0; ð32Þ

Δαν∂μTμν ¼ ðeþ PÞDuα − ∂αPþ uαðu · ∂PÞ ¼ 0; ð33Þ

and

Dn ¼ −nθ; ð34Þ

De ¼ −ðeþ PÞθ; ð35Þ

Duα ¼
1

h
∇αP: ð36Þ

And Eqs. (34) and (35) can be further transformed into the
lowest order evolution equations for β and ξ,

Dβ ¼ 1

D20

ð−I20nθ þ I10hθÞ; ð37Þ
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Dξ ¼ 1

D20

ð−I30nθ þ I20hθÞ; ð38Þ

where the definitions of thermodynamic integrals Inq and
Dnq are put in Appendix A. One of the fascinating features
of spin hydrodynamic theory is that it can describe the
relaxation of spins; therefore, it is important to make out
the motion equation of spin potential, namely, DΩμν. On
the other hand, DΩμν has to be substituted by known
functions and their gradients in order to seek solutions to
the linearized Boltzmann equation in the next section. The
motion equation for Ω has been formulated by some
theoretical works. Similar to the results in [17] and [23],
we now formulate this equation of motion on the basis of
the collisionless case. It is clear that our definitions for both
energy-momentum tensor and spin tensor receive no
corrections from collisional effects now. As a supplement,
we note that lack of nonlocality in the collision operator of
relaxation time approximation [23] leads to conservation
of spin angular momentum and symmetry of energy-
momentum tensor. In fact, collisions do contribute to
DΩμν via the antisymmetric part of Tμν. Because nonlocal
collisions are explicitly included in Eq. (7), the antisym-
metric part of the energy-momentum tensor arises in the
order ofOð∂2Þ as a result of collisional effects [25], but this
is irrelevant to present first-order construction, which also
means that the mechanism of spin-orbit coupling does not
come into play in first-order spin hydrodynamics. In this
section, we derive the motion equation for Ω via only

∂λSð0Þλ;μν ¼ 2Tð0Þ½νμ� ¼ 0: ð39Þ

Then substitution of Eq. (31) into the above equation
leads to

DΩμν ¼ R½ν
π λσ

λμ� þ Rμν
Π θ þ ð∇αξÞR½μν�

n α þ Rα
Σ1∇½μΩν�

α

þ R½μν�α
Σ2 ∇λΩαλ; ð40Þ

where the coefficients are put in Appendix B and similar
results can be also found in [23] with only differences in the
factor of ξ. Here we discard the terms of Oð∂2Þ and keep
only Oð∂ΩÞ and OðΩ∂Þ. Although Ω is deemed asOð∂Þ as
far as its magnitude of order is concerned, its status is
enhanced to a basic hydrodynamic variable thus we retain
the gradients of Ω and OðΩ∂Þ in first-order theory.

V. CHAPMAN-ENSKOG EXPANSION

Before moving on, we take some time to introduce our
expansion scheme. Although we title this section as
“Chapman-Enskog expansion,” there are actually two
expansion countings in presence: one is authorized
Chapman-Enskog expansion featured with the mean free
path lmfp that is also called Knudsen number expansion

with the expansion parameter Kn ≡ lmfp

Lhydro
(Lhydro is the

characteristic length associated with system nonuniform-
ity), the other one is spin expansion characterized by
new scale Δ (nonlocal shift). In order for the assumption
of molecular chaos to hold, these two scales should
satisfy [24]

Δ≲ lmfp: ð41Þ

In addition, small spin potential expansion is also adopted.
If various expansion schemes all bring in new characteristic
length scales, it may cause confusion when counting order.
For simplicity, we require that these mentioned length
scales are close to each other so that the distinctions need
not be made, which greatly facilitates our investigation.
To proceed, we follow the spirit of Chapman-Enskog

expansion and one can find the related details from any
textbooks on kinetic theory. First, we have

p · uDf þ ϵpν∇νf ¼ C½f�; ð42Þ

and the following expansion is employed:

f ¼ fð0Þ þ ϵfð1Þ þ � � � ð43Þ

Df ¼ ϵðDfÞð1Þ þ � � � ð44Þ

fð1Þ ¼ fð0Þϕ; ð45Þ

where the function ϕ characterizes the deviation of realistic
distribution away from reference local equilibrium distri-
bution. A bookkeeping parameter ϵ is introduced measur-
ing the relative strength of the gradients, which is called
the nonuniformity parameter and is identified as the
well-known Knudsen number.
To solve the linearized Boltzmann equation, we also

need to refer to the solubility conditions, which stem from
the conservation laws of particle number and energy-
momentum and read that 1 and pμ are collisional invariants,Z

dΓpμuμðDfÞð1Þ ¼ −
Z

dΓpμ∇μfð0Þ; ð46Þ
Z

dΓpμpνuνðDfÞð1Þ ¼ −
Z

dΓpμpν∇νfð0Þ: ð47Þ

The above two equations are exactly Eqs. (20) and (21)
of kinetic version regardless of the superscripts labeling
order and will give Eqs. (37) and (38), too. Physically, there
should be another collisional invariant Jμν tightly con-
nected with Eq. (22), and the conditions in Eq. (18) for
global equilibrium rely on the assumption of conserved
total angular momentum [the collision kernel itself
does not conserve Jμν for lack of a delta function like
δð4Þðpþ p0 − p1 − p2Þ]. Recent work about the analysis on
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sound propagation and spin relaxation has phenomeno-
logically incorporated this point [38], but we here hold
the collision term unchanged and choose to calculate the
motion equation for Ω in the hydro sector done in the
previous section.
To proceed, we write ðDfÞð1Þ as

ðDfÞð1Þ ¼ ∂fð0Þ
∂ξ ðDξÞð1Þ þ ∂fð0Þ

∂β ðDβÞð1Þ þ ∂fð0Þ
∂uμ ðDuμÞð1Þ

þ ∂fð0Þ
∂Ωμν ðDΩμνÞð1Þ: ð48Þ

By power counting and setting ϵ one, Eq. (42) reduces to

p · uðDfÞð1Þ þ pν∇νfð0Þ ¼ L½ϕ� þ L½χ1� þ L½χ2�
þ L½χ3� þ L½χ4� þ L½χ5�; ð49Þ

with

L½ϕ�≡ 1

ð2πÞ6
Z

dΓ0dΓ1dΓ2W expð2ξ − β · ðpþ p0ÞÞ

× ðϕðx; p1; s1Þ þ ϕðx; p2; s2Þ
− ϕðx; p; sÞ − ϕðx; p0; s0ÞÞ; ð50Þ

χ1≡−∂μβνΔμpνþ ∂μξΔμ; χ2≡1

4
ΩμνΣ

μν
s ;

χ3≡ 1

4
∂ρΩμνΔρΣμν

s ; χ4≡ 1

4
ΩμνΣ

μν
s ϕð1Þðx;p;sÞ; ð51Þ

χ5 ¼
1

4
ΩρσΣ

ρσ
s ð−∂μβνΔμpν þ ∂μξΔμÞ; ð52Þ

and

ðDfÞð1Þ ¼
�
1þ ΩμνΣ

μν
s

4

�
fð0Þws ðDξÞð1Þ

− p · u
�
1þ ΩμνΣ

μν
s

4

�
fð0Þws ðDβÞð1Þ

− β

�
1þΩμνΣ

μν
s

4

�
fð0ÞwspαðDuαÞð1Þ

þ Σαβ
s

4
fð0Þws ðDΩαβÞð1Þ;

∇αfð0Þ ¼
�
1þ ΩμνΣ

μν
s

4

�
fð0Þws∇αξ

− p · u

�
1þ ΩμνΣ

μν
s

4

�
fð0Þws∇αβ

− β

�
1þΩμνΣ

μν
s

4

�
fð0Þwspβ∇αuβ

þ Σβγ
s

4
fð0Þws∇αΩβγ; ð53Þ

where ϕ ¼ ϕð1Þ þ ϕð2Þ according to order separation and
we have neglected cross terms in both L½χ4� and L½χ5�, for
example, the terms Σμν

s1 ϕ
ð1Þðx; p2; s2Þ and Σμν

s2 ϕ
ð1Þðx; p1; s1Þ

are all neglected. This approximation can be understood by
arguing that the derivative expansion Δ · ∂ and spin
potential expansion are both implemented on the same
distribution function and this principle is also applied to
choose the combination of ΩμνΣ

μν
s and ϕð1Þ in L½χ4�. With

this constraint, two collision terms in discussion are all cast
into a uniform form like L½ϕ� just as shown at present,
which will greatly simplify our follow-up calculations (one
can surely include discarded cross terms for completeness,
but that will introduce more new tensor structures). In the

order of O(1), fð0Þws must be substituted into C½f� and C½f�
vanishes.
When moving to higher order of Oð∂Þ and Oð∂ΩÞ, we

obtain

ðDξÞð1Þ − p · uðDβÞð1Þ − βpαðDuαÞð1Þ þ∇αξ − p · u∇αβ

− βpβ∇αuβ ¼
L½χ1� þ L½χ2� þ L½ϕð1Þ�

fð0Þws

; ð54Þ

ΩμνΣ
μν
s ½ðDξÞð1Þ − p · uðDβÞð1Þ − βpαðDuαÞð1Þ þ∇αξ

− p · u∇αβ − βpβ∇αuβ�
þ pαΣβγ

s ∇αΩβγ þ Σαβ
s ðDΩαβÞð1Þ

¼ 4ðL½χ3� þ L½χ4� þ L½χ5� þ L½ϕð2Þ�Þ
fð0Þws

; ð55Þ

where the deviation function ϕ balancing above two
equations is left undetermined and ðDFÞð1Þ in the kinetic
sector corresponds to the motion equation DF in the
hydrodynamic sector (F represents ξ, β, u, or Ω). For
solving Eq. (54), the first-order deviation function ϕ can be
conveniently chosen as

ϕð1Þðx; p; sÞ ¼ ϕð1Þ
1 ðx; p; sÞ þ ϕð1Þ

0 ðx; pÞ; ð56Þ

ϕð1Þ
1 ðx; p; sÞ ¼ ∂μβνΔμpν − ∂μξΔμ −

1

4
ΩμνΣ

μν
s ; ð57Þ

ϕð1Þ
0 ðx; pÞ ¼ 1

nσðTÞ ðAðτ; zÞθ þ βBðτ; zÞphαi∇αξ

þ β2Cðτ; zÞphαpβiσαβÞ; ð58Þ

where we have invoked that ϕð1Þ
1 ðx; p; sÞ cancels the other

two collision kernels in Eq. (54), ϕð1Þ
0 ðx; pÞ characterizes

the solution to the spinless linearized Boltzmann equation
with the same notations as used in [30], which follows from
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ðDξÞð1Þ − p · uðDβÞð1Þ − βpαðDuαÞð1Þ þ∇αξ − p · u∇αβ

− βpβ∇αuβ ¼
L½ϕð1Þ

0 �
fð0Þws

; ð59Þ

σðTÞ is an arbitrary constant with the dimension of cross
sections, and τ≡ βu · p. Noticing that Eq. (59) has been
extensively solved for these dimensionless functions
Aðτ; zÞ, Bðτ; zÞ, and Cðτ; zÞ via different methods with

various interactions, we here see ϕð1Þ
0 as a known function.

One may keenly observe that L½ϕð1Þ
0 � is distinct from the

linearized collision kernel L½ϕ� exhibited in [30] on
account of various transition rates. This can be understood
by rethinking that spin must be integrated out (averaged)
for lack of spin information in left hand side (LHS) of
Eq. (59), which indicates that we are dealing with spin-
less hydro after averaging spin in both sides. Therefore,R
dSðpÞL½ϕð1Þ

0 � recovers a familiar form of L½ϕ�. Together
with the motion equations we obtained in the preceding
section, we conclude that the sector of spinless hydro-
dynamics is successfully recovered and dose not vary for
including spin, which is reasonable considering its univer-
sality as a low-energy effective theory.
By substituting Eq. (56) into L½χ4� one finds that part of

L½χ4� cancels L½χ5� [the terms of OðΩ2Þ are omitted],

ΩμνΣ
μν
s ½ðDξÞð1Þ − p · uðDβÞð1Þ − βpαðDuαÞð1Þ
þ∇αξ − p · u∇αβ − βpβ∇αuβ�
þ pαΣβγ

s ∇αΩβγ þ Σαβ
s ðDΩαβÞð1Þ

¼ 4f−1ð0Þws

�
L½χ3� þ L

�
1

4
ΩμνΣ

μν
s ϕð1Þ

0 ðx; pÞ
�
þ L½ϕð2Þ�

�
:

ð60Þ

Similarly, ϕð2Þ can be parametrized as

ϕð2Þðx; p; sÞ ¼ ϕð2Þ
1 ðx; p; sÞ þ ϕð2Þ

0 ðx; p; sÞ; ð61Þ

ϕð2Þ
1 ðx;p;sÞ¼−

1

4
∂ρΩμνΔρΣμν

s −
1

4
ΩμνΣ

μν
s ϕð1Þ

0 ðx;pÞ; ð62Þ

to counteract the other two collision terms in Eq. (61). After
cancellation of three linearized collision terms, Eq. (60)
turns into

ΩμνΣ
μν
s ½ðDξÞð1Þ − p · uðDβÞð1Þ − βpαðDuαÞð1Þ

þ∇αξ − p · u∇αβ − βpβ∇αuβ�

þ pαΣβγ
s ∇αΩβγ þ Σαβ

s ðDΩαβÞð1Þ ¼
4L½ϕð2Þ

0 �
fð0Þws

: ð63Þ

Considering the resemblance in Eqs. (59) and (63), solving
Eq. (63) can be done in a similar manner to that employed
to solve Eq. (59) in [30]. To solve Eq. (63), we substitute all
temporal derivatives obtained in the previous section and
expand ∇αΩβγ like

∇αΩβγ ¼ ∇½αΩβ�γ þ∇hαΩβiγ þ
1

3
Δαβ∇λΩλγ

þ uλuðα∇βÞΩλγ; ð64Þ

then the second-order deviation function ϕð2Þ
0 can be

parametrized according to the left-hand side of Eq. (63),

ϕð2Þ
0 ¼ 1

nσðTÞ ½ðA1ðτ; zÞΣs;ρσΩρσ þ A2ðτ; zÞΣs;ρσuαu½ρΩσ�
αÞθ

þ ðβB1ðτ; zÞΣs;ρσΩρσpα þ B2ðτ; zÞΣs;ρσu½ρΩ
σ�
α þ B3ðτ; zÞΣs;ρσuκg½ραΩσ�

κÞ∇αξ

þ ðβ2C1ðτ; zÞΣs;ρσΩρσphαpβi þ C2ðτ; zÞΣs;ρσΩ½ρ
βg

σ�
α þ C3ðτ; zÞΣs;ρσu½ρg

σ�
αuκΩκβÞσαβ

þ ðF1ðτ; zÞΣμν
s uα þ βF2ðτ; zÞpμΣν

s;αÞ∇½μΩν�α þ ðG1ðτ; zÞΣs;ρσu½ρgσ�γ þ βG2ðτ; zÞΔαβpαΣβγ
s Þ∇λΩλγ

þ βHðτ; zÞpμΣρσ
s ∇hμΩρiσ þ βJðτ; zÞpαΣρσ

s uλuðα∇ρÞΩλσ�; ð65Þ

where Ai; Bi; Ci; Fi; Gi; H; J (i ¼ 1, 2, or 3) are dimen-
sionless functions to be determined by solving correspond-
ing integral equations.
Considering all the thermodynamic forces relevant,

including the gradients of spin potential we explicitly
write above, are independent, this highly involved equation
can be solved by equating the coefficients of each of the

thermodynamic forces separately, thus the solution to
Eq. (63) is equivalent to solving the set of equations.
However, even corresponding to one unique thermodynamic
force, different terms are also independent, whichmeans that
the procedure of separate equations can be enlarged to every
term shown in Eq. (65). For instance, the integral equations
for the terms related to σαβ are expressed as
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β2Σρσ
s Ωρσphαpβi ¼ 4Cϕ

fws

�
ϕ ¼ β2

nσðTÞΣ
ρσ
s ΩρσphαpβiC1ðτ; zÞ

�
; ð66Þ

4I31
ðm2I10 − 2I31Þ

Σs;ρσΩ½ρ
βg

σ�
α ¼ 4Cϕ

fws

�
ϕ ¼ 1

nσðTÞΣs;ρσΩ½ρ
βg

σ�
αC2ðτ; zÞ

�
; ð67Þ

4ðI30 − I31ÞI31Σs;ρσu½ρg
σ�
αuκΩκβ

ðm2I10 − 2I31Þ½m2I10 − ðI30 þ I31Þ�
¼ 4Cϕ

fws

�
ϕ ¼ 1

nσðTÞΣs;ρσu½ρg
σ�
αuκΩκβC3ðτ; zÞ

�
; ð68Þ

where we have prescribed that the notation F½ϕ�fϕ ¼ Ag
represents that ϕ is taken to be A in functional F. Other
equations follow from repetitive practice and are not
shown here.
Before ending this section, there are some comments. In

the process of seeking a solution to Eq. (59), we point out
that only by averaging spin can normal hydrodynamic
equations be recovered for spin dependence mismatching
in both sides.Whenwe try to find the solution to Eq. (63), we
also encounter the same problem of spin mismatching
because the LHS of Eq. (63) has only one s while the
RHS has two spin sources ϕðx; p; sÞ andW. Following the
spirit of a recent related review work [39], the equality
relation Eq. (63) should be loosely understood as equiv-
alence after spin integration

R
dSðpÞs, which equivalently

suggests that spin-related observables are defined in thisway
with classical interpretation for spin. Last but not least, those
equations to be solved reduces to momentum dependent
only after spin integration, therefore, well-developed meth-
ods for solving or approximately solving a linearized
transport equation can be sufficiently employed.

VI. NONEQUILIBRIUM CORRECTIONS
TO Nμ, Tμν, AND Sλ;μν

In the previous section, the formal solution to deviation
function ϕ is determined, which is composed of four parts
given in Eqs. (57), (58), (62), and (65). From its expression,
the corrections from nonlocal effects are included, which
are marked by Δμ. As a reminder, the distribution function
fðx; p; sÞ appears inside the definitions of tensors such as
Eqs. (13), (14), and (15) instead of fðxþ Δ; p; sÞ. Thus
when it comes to nonequilibrium corrections to Nμ, Tμν,
and Sλ;μν, the Δ dependence has to be removed by hand. So
in this section ϕ ¼ ϕjΔμ¼0.
Here and now the corrections to Tμν and Nμ can be

pursued with the formal solution of ϕ presented in Sec. V,

Nμ ¼
Z

dΓpμfð0Þð1þ ϕÞ ¼ nuμ þ Vμ; ð69Þ

Tμν ¼
Z

dΓpμpνfð0Þð1þ ϕÞ

¼ euμuν − PΔμν þ πμν þ ΠΔμν; ð70Þ

where the dissipative quantities Vμ, πμν, and Π can all be
obtained by projection to Nμ and Tμν. One can observe that
these expressions show no difference from the ordinary
first-order viscous fluids owing to Eq. (12b), which means
no corrections up to Oð∂ΩÞ and OðΩ∂Þ.
It is well known that first-order viscous hydrodynamics

is characterized by linear laws between dissipative quan-
tities and thermodynamic forces. These can be achieved
following the practice in textbooks; we write with no
detailed derivation

πμν ¼ 2ησμν; ð71Þ

Π ¼ ζθ; ð72Þ

Vμ ¼ κ∇μξ; ð73Þ

where η, ζ, κ correspond to shear viscosity, bulk viscosity,
and diffusion coefficient respectively. Solving the integral
functions for A1, B1, C1 and obtaining all the transport
coefficients can be formulated in a systematic way [30].
In the end of this section, we evaluate the corrections to

spin tensor δSλ;μν. The full spin tensor can be split into

Sλ;μν ¼ Sð0Þλ;μν þ δSλ;μν; ð74Þ

and the second part originates from the nonequilibrium
deviation ϕ

δSλ;μν ¼ 1

2

Z
dΓpλΣμν

s exp½ξ − β · p�ϕð2Þðx; p; sÞ þ 1

8

Z
dΓpλΣμν

s Σρσ
s Ωρσ exp½ξ − β · p�ϕð1Þðx; p; sÞ

¼ 1

2

Z
dΓpλΣμν

s exp½ξ − β · p�
�
ϕð2Þ
0 ðx; p; sÞ − 1

4
Σρσ
s Ωρσϕ

ð1Þ
0 ðx; pÞ

�

þ 1

8

Z
dΓpλΣμν

s Σρσ
s Ωρσ exp½ξ − β · p�ϕð1Þ

0 ðx; p; sÞ; ð75Þ
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where Eq. (12d) has been utilized in the second equality and the second term in Eq. (15) contributes only Oð∂2Þ thus is
discarded. To make the expression concise, an auxiliary tensor Xρσ is introduced,

Xρσ ¼ 1

nσðTÞ ½ðA1ðτ; zÞΩρσ þ A2ðτ; zÞuαu½ρΩσ�
αÞθ

þ ðβB1ðτ; zÞΩρσpα þ B2ðτ; zÞu½ρΩσ�
α þ B3ðτ; zÞuκg½ραΩσ�

κÞ∇αξ

þ ðβ2C1ðτ; zÞΩρσphαpβi þ C2ðτ; zÞΩ½ρ
βg

σ�
α þ C3ðτ; zÞu½ρgσ�αuκΩκβÞσαβ

þ F1ðτ; zÞuα∇½ρΩσ�α þ βF2ðτ; zÞpμ∇½μΩρ�σ þ G1ðτ; zÞu½ρgσ�γ∇λΩλγ þ βG2ðτ; zÞΔαρpα∇λΩλσ

þ βHðτ; zÞpμ∇hμΩρiσ þ βJðτ; zÞpαuλuðα∇ρÞΩλσ�; ð76Þ

such that ϕð2Þ
0 ¼ Σρσ

s Xρσ. Then Eq. (75) can be cast into

δSλ;μν ¼ 1

2

Z
dΓpλΣμν

s Σρσ
s exp½ξ − β · p�Xρσ: ð77Þ

By using Eq. (12e), we obtain

δSλ;μν ¼ 1

m2

Z
dPpλðgμρgνσp2 þ gμσpνpρ

þ gνρpμpσ − ½μ ↔ ν�Þ exp½ξ − β · p�Xρσ: ð78Þ

Because integral Eq. (63) is not worked out with
transition rate unspecified, δSλ;μν is expressed as a formal
solution to be further determined given specific interaction
without losing generality. Qualitatively, one can see clearly
that various thermodynamic forces are responsible for the
corrections of spin tensor. Though with rather different
tensor structures, involved thermodynamic forces resulting
in fluctuation of spin tensor are the same as that in [23],
which can be divided into two groups: one is the group
consisting of θ,∇αξ, and σαβ, and all members in this group
appear in ordinary hydrodynamics. However, their contri-
butions are all proportional to Ω, which reveals that these
thermodynamic forces can only affect spin evolution via
coupling to spin potential somehow. The other is the group
of gradients of spin potential, which is not astonishing as Ω
itself is a Lagranian multiplier for total angular momentum.
In the research on spin hydrodynamics, Ω is always
conjugated to spin density and thought to control the
evolution of spin.

VII. SUMMARY AND OUTLOOK

In this paper, we present a detailed derivation for
relativistic first-order spin hydrodynamics using the
Chapman-Enskog method to linearize the nonlocal colli-
sion term for massive fermions proposed in [24]. This
collision term derived from Wigner formalism can provide
a natural description of spin-orbit coupling in the collision
process and thus is relevant for the research on local spin
polarization. With the interaction between fermions
unspecified, we give a formal discussion about the motion

equations and nonequilibrium corrections to the tensors we
are concerned about. Besides the motion equations for
basic variables μðxÞ, TðxÞ, and uμðxÞ, the motion equation
for the newly introduced variable spin potential Ωμν is also
determined. We find that the motion equations show no
differences compared to spinless first-order hydrodynam-
ics; meanwhile, the energy-momentum tensor receives no
corrections from spin and retains the symmetric form as
far as first-order theory is concerned. Such results indicate
that we need to go over first order to derive spin hydro-
dynamics, otherwise the effect of the spin-orbit coupling
would not play the role because the antisymmetry of the
energy-momentum tensor arises from nonlocal effects in
the order of Oð∂2Þ. It might help that to construct Burnett
equations by keeping the expansion to the second order in
gradients when T ½μν� enters power counting naturally.
However, there are no signs that the acausal problem
would be overcome by the new terms introduced by spin.
Actually, we obtain the same equations in the spinless
sector and therefore are also plagued by acausality. So it
makes sense that we should turn to the moment method for
constructing the second-order theory, which successfully
fixes the acausal problem and provides numerically stable
hydrodynamic equations. We comment that the deviation
function we obtain can be well used to hint the trial function
or proper parametrized form for the moment method. The
construction of the second-order theory based on our
present work and subsequent evaluation of relevant trans-
port coefficients will be performed in the future. There is
also one thing that needs to be handled with caution.
Generally speaking, most of the interactions we met in
quantum field theory are transferred by gauge bosons,
which means the gauge link must be plugged into the
definition of the Wigner function to complete the derivation
of the collision term.
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APPENDIX A: THERMODYNAMIC INTEGRAL

Thermodynamic integrals we met in this paper are
given by

InqðβÞ≡ 2

ð2qþ 1Þ!!
Z

dP
ð2πÞ3 ðu · pÞn−2qðΔαβpαpβÞqe−β·p;

ðA1Þ

and noting that KnðzÞ denotes the modified Bessel func-
tions of the second kind defined as

KnðzÞ≡
Z

∞

0

dx coshðnxÞe−z cosh x; ðA2Þ

many thermodynamic integrals Inq can be worked out
analytically in the form of Kn. Especially, we note that
I10¼n0ðTÞ, I20¼e0ðTÞ, I21¼−P0ðTÞ, I30¼Tð3h0ðTÞ þ
z2P0ðTÞÞ, and I31¼−h0ðTÞT with h0ðTÞ≡e0ðTÞþP0ðTÞ.
We also define another thermodynamic integral which is

obtained via the following expression:

Dnqðξ; βÞ≡ expðξÞðInþ1;qðβÞIn−1;qðβÞ − I2nqðβÞÞ; ðA3Þ

where Dnq acts as a Jaccobi determinant in variable
transformation. In transforming Dn, De into Dξ and Dβ,
Eq. (A3) is utilized combined with

∂InqðβÞ
∂β ¼ −Inþ1;qðβÞ; ðA4Þ

which follows from integrating Eq. (A1) by parts.

When handling the thermodynamic integrals with vari-
ous indices, the following recurrence relations are very
useful to avoid repetitive calculations

In;q ¼
1

β
½ðn − 2qÞIn−1;q − In−1;q−1�; ðA5Þ

DIn;q ¼ −Inþ1;qDβ; ðA6Þ

where Eq. (A6) follows directly from Eq. (A4).

APPENDIX B: CALCULATION OF DΩμν

When dealing with the motion equation of spin potential,
we have met a lengthy expression. Here we present the
different coefficients appearing in Eq. (40):

R½μ
π λ ¼ −Ω½μ

λRπ1 − u½μuαΩαλRπ2; ðB1Þ

Rμν
Π ¼ RΠ1Ωμν þ RΠ2uαu½μΩν�

α; ðB2Þ

R½μν�
n α ¼ −Rn1u½μΩν�

α − Rn2g½μαuκΩν�
κ; ðB3Þ

Rα
Σ1 ¼ −uα

2I31
ðm2I10 − 2I31Þ

; ðB4Þ

R½μν�α
Σ2 ¼ −u½μgν�αRω; ðB5Þ

with

Rπ1 ¼
4I31

ðm2I10−2I31Þ
;

Rπ2 ¼
4ðI30− I31ÞI31

ðm2I10−2I31Þ½m2I10− ðI30þ I31Þ�
;

RΠ1 ¼−
1

ðI10− 2
m2 I31Þ

�
I20h− I30n

D20

I10−
I10h− I20n

D20

I20þ I10−
2

m2

I20h− I30n
D20

I31þ
2ðI10h− I20nÞI41

m2D20

−
10I31
3m2

�
; ðB6Þ

RΠ2 ¼
2

m2I10 − 2I31

�
I10h − I20n

D20

ðI40 − I41Þ −
I20h − I30n

D20

ðI30 − I31Þ −
�
I30 −

11

3
I31

�

þ ðI30 − I31Þ
m2I10 − I30 − I31

×

�
m2

I20h − I30n
D20

I10 −m2
I10h − I20n

D20

I20 þm2I10 −
I20h − I30n

D20

ðI30 þ I31Þ

þ I10h − I20n
D20

ðI40 þ I41Þ þ βI41 −
5

3
I31

��
; ðB7Þ

Rn1 ¼
2

ðm2I10 − 2I31Þ
�
I31 −

n0I41
I20 − I21

�
þ 1

m2I10 − ðI30 þ I31Þ
�
I31 −

n0I41
I20 − I21

�
2ðI30 − I31Þ

ðm2I10 − 2I31Þ
; ðB8Þ
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Rn2 ¼
1

m2I10 − ðI30 þ I31Þ
�
I31 −

n0I41
I20 − I21

�
2ðI30 − I31Þ

ðm2I10 − 2I31Þ
; ðB9Þ

Rω ¼ 2ðI30 − I31ÞI31
ðm2I10 − 2I31Þ½m2I10 − ðI30 þ I31Þ�

þ 2I31
ðm2I10 − 2I31Þ

: ðB10Þ
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