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Relativistic first-order spin hydrodynamics
via the Chapman-Enskog expansion
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In this paper, we present a detailed derivation of relativistic first-order spin hydrodynamics using the
Chapman-Enskog method to linearize the nonlocal collision term for massive fermions proposed in
Weickgenannt et al. [Phys. Rev. D 104, 016022 (2021)], which well describes spin-orbit coupling in the
collision process and is relevant for the research on local spin polarization. Based on this collisional term,
we provide a formal discussion about first-order spin hydrodynamics and determine the motion equations
of fluid variables and nonequilibrium corrections to the energy-momentum and spin tensors. The results
indicate that the motion equations show no differences compared to spinless first-order hydrodynamics and
the energy-momentum tensor receives no corrections from spin as far as first-order theory is concerned,
which calls for the construction of second-order theory of fluids naturally incorporating the effect of

spin-orbit coupling.
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I. INTRODUCTION

Recent developments in the experiments of relativistic
noncentral heavy-ion collisions have seen great progress in
measuring the spin-related observables of A hyperons, the
results of which show the phenomena of spin polarization
[1,2]. This originates from the conversion of orbital angular
momentum carried by the media, quark-gluon plasma
(QGP), into spin angular momentum via the well-known
mechanism of orbit-spin coupling. Many theoretical
researches on the global polarization of A hyperons have
been carried out and provide a good description of
experimental data. See related works in [3-11].
Afterward, the STAR Collaboration published measure-
ments of differential spin polarization, i.e. the dependance
of A polarization on the azimuthal angle and transverse
momentum [12,13]. However, theoretical calculation fol-
lowing previous models cannot explain the experimental
data satisfyingly and even predicts the opposite depend-
ance, which is usually called “spin sign problem” [14,15].
Resolving this problem calls for new theoretical frame-
works. Among all the candidates, spin hydrodynamics is a
promising one which extends ordinary fluid models by
including the spin degree of freedom. On the other hand,
these direct experimental measurements of quantum effects
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in relativistic heavy-ion collisions provide the opportunity
to study the evolution of spinful fluids.

There are many efforts following this direction to try to get
insight into the spin sign prolem. “Ideal” spin hydrody-
namics was proposed in the context of the QGP [16] and for
massive spin-1/2 fermions [17]. See also relevant discus-
sions in [18,19]. Recently, first-order spin hydrodynamics
including nonequilibrium corrections has also been put into
efforts [20-22] based on general arguments. The related
research work on first-order spin hydrodynamics can be also
found in [23] using the method of relaxation time approxi-
mation. Though with great progress in investigating spinful
fluids, it is noted that the ultimate goal for us is to construct a
causal and numerically stable theory of spin hydrodynamics,
which allows the numerical implementation and simulation
of the evolution of the fluid system, and eventually provides
us with quantitative explanations of the spin-related exper-
imental phenomena. To that end, the hydrodynamic equa-
tions and relevant transport coefficients must be obtained in
a first-principle fashion, which equivalently means that the
macroscopic evolution of spinful fluids is dictated by
the microscopic theory of spin transport. Therefore it is
necessary to derive the quantum transport equations with
proper collision terms, which lays the basis for the con-
struction of a causal and numerically stable theory of spin
hydrodynamics. The related developments in spin transport
can be found in [24-28].

In this paper, we try to derive relativistic first-order spin
hydrodynamics from microscopic theory, which is based on
the framework of the Chapman-Enskog expansion. To
make it, the transport equation along with the nonlocal
collision term proposed in [24] is adopted as the starting
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point of our derivation. This paper is organized as follows.
In Sec. I we present a brief review of the relativistic
transport equation with the nonlocal collision term. After
that, the local equilibrium distribution is discussed and the
conditions for global equilibrium are determined in Sec. I11.
In Sec. IV, we derive the motion equations of all hydro-
dynamic variables. In Sec. V we adopt the Chapman-
Enskog expansion to derive first-order spin hydrodynamics
and provide the detailed form of the deviation function
from local equilibrium distribution function up to first order
in gradients. The corrections to various tensors we are
concerned about are calculated in Sec. VI. Discussions and
outlook are given in Sec. VII. Natural units kz=c=h=1
are used. The metric tensor here is given by ¢" =
diag(1,—-1,-1,—1), while A*" = ¢" — w*u" is the projec-
tion tensor orthogonal to the four-vector fluid velocity u*.

In addition, we employ the symmetric/antisymmetric
shorthand notations:

X) = (Xw + X% /2, (1)

Xl = (xm — x) /2, (2)
H AU N v

X = (A"Aﬁ ;L Aaly A 3Aaﬂ> X%, (3)

Specially, we decompose the derivative 0 according to

OF = u'D + V¥, D =ud,, Vi =A"0,.  (4)

And the following notations for the derivatives of u* are
often used:

otV = V<ﬂu”>’

0=V, u. (5)

II. NONLOCAL TRANSPORT EQUATIONS
AND EXTENDED PHASE SPACE

We start with a quantum transport equation with a
nonlocal collision term for massive fermions which is
presented in [24]. The evolution of the system is governed
by the proposed on-shell Boltzmann equation incorporating
the variable s as a classical description of spin degrees of
freedom,

8(p* —m?)p - Of (x, p,s) = 8(p> —m*)C[f],  (6)

with the nonlocal collision term given by

C[f]E/drldrzdr/w[ﬂx‘f‘A17P17sl)f(x+A2,P2,S2)
—f(x+A,p.s)f(x+A"p's')]
—|—/szdSl(p)sz(x+Al,p,sl)f(x—i—Az,pz,sz),

(7)

with the measure defined as dI” = d*ps(p* — m?)dS(p)
and the newly introduced measure dS(p) will be
further discussed hereafter. Here the transition rates WV is
shown by

1
— s(4 E
W=5( )(P+P/—P1 _p2)§ — hsr(p’s)

<D

§' 81,850,717
x(p,p"sr,”[tIp1, p2i sy, 52)
X (p1. pasri,ralt’|p.plss.s) (8)

hs’r’ (p/’ s/)hslr] (p] 8 )hs2r2 (pZ’SZ)

with

1
hir(p,§) = 6y + 5 s (P)r’s - yu,(p). )

where the y matrices, spinor u,(p), and spin indices r, s
above all correspond to the spinor description for fermions
as often used, and the matrix element of 7 is the conven-
tional scattering amplitude defined in quantum field theory.
To proceed, we briefly review the transport equation with
the collision term. The crucial point for the nontrivial
extension of the collision term is reflected in the Enskog-
type shift A manifesting the nonlocality of collisions with
its definition given by

AH = — =
2m(p -1+ m)

P p 1S, (10)
where # is the timelike unit vector which is (1,0) in the
frame where p* is measured. To note, such an appealing
structure of the transport equation originates from the
nontrivial tensor structure of particle fields, or equivalently
the nontrivial dynamics introduced by spin angular
momentum compared to related discussions about scalar
field in [29]. A conclusion can be drawn that this shift well
captures the properties of spin-orbit coupling in nonlocal
collisions, which is highly relevant for solving the spin sign
problem of local polarization of A. Here we only focus on
the first term Eq. (7) which describes momentum- and spin-
exchange interactions, while the second term corresponds
to spin exchange without momentum exchange [30]. When
neglecting spin, h,, — J,, and the collision term recovers
the widely used local form of two-body scattering.

It is now time to fix our focus on the classical description
of spin. Spin here is treated as an additional variable in
phase space [19,25,31-34], which is immediately con-
nected to the first-principle quantum description to a
“classical” description of spin. Moreover, the authors of
[24] make good use of this concept to combine the full
dynamics of the Wigner function into one scalar equation
and gives a natural interpretation for the conservation laws
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and the collisional invariants. Then the covariant integra-
tion measure for spin is presented as

/dS(p) = \/3Z;/d4s5(s-s+3)5(p-s), (11)

And the following properties are helpful for our later
calculation:

[ asto) = (12)

/dS(p)s” =0, (12b)

HeV — — v— Pt c

/dS(p)s 2<g” = ) (12c)

/dS(p)s”s”s” =0, (12d)
/ dS(p)= 2 = = > (g p + ¢

+ g ptp’ = [u < ). (12¢)

Therefore the tensors particle current, energy-momentum
tensor, and spin tensor we are concerned about can be
written as

Nt = /dTp”f(x,p,S), (13)
Thw = /de"p”f(x,p,S), (14)

gg_/drp ( zg'”——pb‘a”)f(x’w)’ (15)

where we have chosen the psudogauge proposed by
Hilgevoord and Wouthuysen (HW) [35,36]. When including
nonlocal collisions, Ty, has an antisymmetric component
belonging to the order of O(9?) [25], which is neglected in
our constructing first-order theory. In the following sections,
when nothing confusing occurs, the subscript HW will be
omitted.

III. EQUILIBRIUM

In this section, we will show that the collision term
Eq. (7) is consistent with the standard form of spin-
dependent local equilibrium distribution function [16,37],

1 Q, Yad
fleq(x’p7s) (2”) 5 ﬂ pr+—F 4 ’ (16)

where Q,, represents spin potential, while p* = “T”,ffz
L% =—Lewabp s; with the temperature T, and the

chemical potential y introduced for conserved particle
number (only elastic scatterings are considered). The
exponent in Eq. (16) is exactly the linear combination
of all conserved quantities, and &, B, and Q" are the
correspondent Lagrangian multipliers maximizing the total
entropy of the system. To prove this, the substitution of
Eq. (16) into Eq. (7) leads to

Clfieg) = - ﬁ / drdT dT,Wexp(2E — B - (p + p'))

. {‘8,,5(&; + AL — A — A)
+ 0,p, (A py + AL pl — A p* — Al p™)

~ 30t 3 3, (17)
where the local equilibrium distribution is taylor expanded
to first order in Q assuming small spin potential (if the
system in discussion is close to the state of global
equilibrium, Q is about the order of the gradient of the
p field). Assuming total angular momentum J* =
2AkpY 4+ %Zé‘” is conserved in collisions, we can conclude
that it is the global equilibrium distribution function that
makes the collision term vanish contrary to traditional
definition for local equilibrium when including spin. In that
case, the conditions for vanishing Eq. (17) are

by =0,
Q,, = —0,p, = const. (18)

& = const,

As is shown clearly in Eq. (18), the spin potential Q,, is
fixed to thermal vorticity 1 (8,6, — 9,6,), and p* can be
further decomposed into a translation (a*) and a rigid
rotation (Q*x,) in global equilibrium,

=a' + Q"x,, a’ = const, (19)

which are consistent with the previous conclusions drawn
in [16,37].

IV. MOTION EQUATIONS OF
HYDRODYNAMIC VARIABLES

In this section, we derive the motion equations of all
relevant hydrodynamic variables. As is known to all of us,
hydrodynamics is based on macroscopic conservation laws,

9,N* =0, (20)
9,T" =0, (21)
0,84 = 2T (22)
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where aside from charge and energy-momentum we con-
sider also total angular momentum conservation when it
comes to spin hydro. We remind the readers that the
conserved current N* is a trivial particle number current
for we take only two body scatterings into account in the
sector of kinetics.

To make the above equations less abstract, we identify
the definitions of the parameters pu(x),T(x),u"(x), i.e.
n(x), e(x), u*(x) first. We assume that the particle number
density and energy density are completely determined by
the local equilibrium distribution function (), which, with
the identification of fluid velocity, amounts to the Landau
matching conditions:

n—/de”u (x, p,s) /de”u

/dF(p”u 22 fO(x. p.s).
(24)

(x, p,s),  (23)

e_/de”u )2 f(x, p,s)

and we adopt Landau velocity T*u, = eu”. Here f(©)
represents the one-particle distribution in local equilibrium
and this expansion is based on small spin potential €2,

f(o) = <1 Q Z )fws, (25)

1
fg)s) :Wexp[f—ﬂ'l’]v (26)

where f ‘(f,)g) denotes the spinless distribution function in
local equilibrium.
The densities n and e together with the static pressure P

1
== [drauppOtps) @)

are analytically evaluated using the formulas in

Appendix A,

T3
n = exp(&)ny(T) = exp(§) WZZKz(Z)’

4
e = exp(&)eg(T) = exp(¢) 2T—7[212(3Kz(1) + 2K (2)),

P = exp(&)no(T)T, (28)

with z=2
Noting that in local equilibrium, we have

O — /drpﬂf(()) = nut, (29)

T — /drpﬂpvf(o) = eulu’ — PAM, (30)

1 1
(0)2pr _ Al 2y _ = lugrl | £(0)
N /de <22s 2 P 9 >f
T)+ Pyo(T
_exp(§) (nO(T)u‘Qﬂ”+ <£eo( ) + Po( )+2nO(T)>uzu5u[ﬂQu]5

4
2 ey(T) + Py(T)
2 T

- e);,;(f) (eutulo¥ g —

exp(¢)
o 2m?
Combining Egs. (20), (21), (29), and (30) with the
enthalpy 7 = e + P, we find that
u,0,T" = (e + P)0 +u-0e = 0, (32)
A, 0,T" = (e + P)Duy — 0,P + u,(u-0P) =0, (33)

and

Dn = —n#, (34)

Z2

T

(AUl Q 4 1A ASQY, 4 o AR ))
(Iyouu’ult + I, u’lA/’L")(?”]ﬂp)

(PAMOME + I3 (APl + A ur)3M1B,). (31)

De = —(e + P)0, (35)
1
Du” = EV,,,P. (36)

And Egs. (34) and (35) can be further transformed into the
lowest order evolution equations for # and &,

1
Dp =+~ (=Ion0 + 1,h0), (37)

20
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1
Dé ( I;One + 120]’19) (38)
Dy

where the definitions of thermodynamic integrals /,, and
D, are put in Appendix A. One of the fascinating features
of spin hydrodynamic theory is that it can describe the
relaxation of spins; therefore, it is important to make out
the motion equation of spin potential, namely, DQ**. On
the other hand, D has to be substituted by known
functions and their gradients in order to seek solutions to
the linearized Boltzmann equation in the next section. The
motion equation for Q has been formulated by some
theoretical works. Similar to the results in [17] and [23],
we now formulate this equation of motion on the basis of
the collisionless case. It is clear that our definitions for both
energy-momentum tensor and spin tensor receive no
corrections from collisional effects now. As a supplement,
we note that lack of nonlocality in the collision operator of
relaxation time approximation [23] leads to conservation
of spin angular momentum and symmetry of energy-
momentum tensor. In fact, collisions do contribute to
D via the antisymmetric part of 7. Because nonlocal
collisions are explicitly included in Eq. (7), the antisym-
metric part of the energy-momentum tensor arises in the
order of O(9?) as a result of collisional effects [25], but this
is irrelevant to present first-order construction, which also
means that the mechanism of spin-orbit coupling does not
come into play in first-order spin hydrodynamics. In this
section, we derive the motion equation for Q via only

als(O)l,ﬂl/ — 2T(0)[’4‘] =0. (39)

Then substitution of Eq. (31) into the above equation
leads to

YoM+ RO + (VRERM,
+ R%; avﬂgab (40)

DO = + Rg, V4,

where the coefficients are put in Appendix B and similar
results can be also found in [23] with only differences in the
factor of & Here we discard the terms of O(9?) and keep
only O(0Q2) and O(Q0). Although Q is deemed as O(0) as
far as its magnitude of order is concerned, its status is
enhanced to a basic hydrodynamic variable thus we retain
the gradients of Q and O(Q0) in first-order theory.

V. CHAPMAN-ENSKOG EXPANSION

Before moving on, we take some time to introduce our
expansion scheme. Although we title this section as
“Chapman-Enskog expansion,” there are actually two
expansion countings in presence: one is authorized
Chapman-Enskog expansion featured with the mean free
path [, that is also called Knudsen number expansion

Lty
Liydro
characteristic length associated with system nonuniform-
ity), the other one is spin expansion characterized by
new scale A (nonlocal shift). In order for the assumption
of molecular chaos to hold, these two scales should
satisfy [24]

with the expansion parameter K, = (Lhydro 18 the

A S lngp- (41)

In addition, small spin potential expansion is also adopted.
If various expansion schemes all bring in new characteristic
length scales, it may cause confusion when counting order.
For simplicity, we require that these mentioned length
scales are close to each other so that the distinctions need
not be made, which greatly facilitates our investigation.

To proceed, we follow the spirit of Chapman-Enskog
expansion and one can find the related details from any
textbooks on kinetic theory. First, we have

p-uDf +ep*V, f = C[f], (42)

and the following expansion is employed:

F=fO4ef®4... (43)
Df =e(Df)V + - (44)
=10, (45)

where the function ¢ characterizes the deviation of realistic
distribution away from reference local equilibrium distri-
bution. A bookkeeping parameter ¢ is introduced measur-
ing the relative strength of the gradients, which is called
the nonuniformity parameter and is identified as the
well-known Knudsen number.

To solve the linearized Boltzmann equation, we also
need to refer to the solubility conditions, which stem from
the conservation laws of particle number and energy-
momentum and read that 1 and p* are collisional invariants,

/ drpu, (DF) / AP, f (46)

/ drp* phu, (DF)) = - / dCp UV, £, (47)

The above two equations are exactly Egs. (20) and (21)
of kinetic version regardless of the superscripts labeling
order and will give Egs. (37) and (38), too. Physically, there
should be another collisional invariant J** tightly con-
nected with Eq. (22), and the conditions in Eq. (18) for
global equilibrium rely on the assumption of conserved
total angular momentum [the collision kernel itself
does not conserve J# for lack of a delta function like

8@ (p + p' = p1 — p»)]. Recent work about the analysis on
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sound propagation and spin relaxation has phenomeno-
logically incorporated this point [38], but we here hold
the collision term unchanged and choose to calculate the
motion equation for Q in the hydro sector done in the
previous section.

To proceed, we write (Df)!) as

o1 o1 o1
() == (De) " + f'um> L (D))
(0)
+ gf;y (D)D), (48)

By power counting and setting ¢ one, Eq. (42) reduces to

u(Df)W + p*V,fO = L[] + L] + L[x2]
+ Llys] + Llxa] + Lixs], (49)
with
Lg] = dUyWexp(2E=p-(p+p'))

X (p(x, p1.81) + @(x, pa,5,)
= ¢(x, p.s) — ¢(x, p'.s")), (50)

XY= Q Z/w

IIE_ ﬂﬁDAﬂpD+0 éAﬂv 4 Ur=s >

Lo, 500 (e ps).  (51)

ag N =

P

1
X5 Q/m ZPO' (

-3 OB P + 0,50, (52)

00 = (1+25) g0

JZN L0)
-p u(1+ o >fws(Dﬁ)“>
yny
—ﬂ(l + = >f€?3pa(Du”)“)
P
Q,
Vaf(o)z( — s)fws b
Q,
_pu<1+ >fW9 (lﬂ
Q

_ﬂ<1

zﬁ}’
+ %f&?s)vagﬁyv (53)

»>
+ ”—s> fExE)s)P/}vauﬂ

where ¢ = ¢V + ¢ according to order separation and
we have neglected cross terms in both L[y,] and L[ys], for
example, the terms 5” (V) (x, p,s,) and Zhr ) (x, py, ;)
are all neglected. This approximation can be understood by
arguing that the derivative expansion A-J and spin
potential expansion are both implemented on the same
distribution function and this principle is also applied to
choose the combination of Q,, %" and ¢V in L[y,]. With
this constraint, two collision terms in discussion are all cast
into a uniform form like L[¢] just as shown at present,
which will greatly simplify our follow-up calculations (one
can surely include discarded cross terms for completeness,
but that will introduce more new tensor structures). In the

order of O(1), £\ must be substituted into C [f] and C[f]
vanishes.

When moving to higher order of O(J) and O(0Q), we
obtain

(DE) = p-u(DP)V = pp,(Du®)V) + V,& - p - uV,p
L L Lip"M)
_ﬂpﬂvauﬂ _ bfl] + ?f(?]l + [¢ ] , (54)

Q= [(DE)Y = p - u(Dp)M
—p-uVof— PpsV o]
+ psliv,Q,, + =P (DQ,,)
4(L[xs) + Llya] + Lys] + L[p™))

- 7O ’ (53)

- ﬁpa(Dua)<1) + vaf

where the deviation function ¢ balancing above two
equations is left undetermined and (DF)(") in the kinetic
sector corresponds to the motion equation DF in the
hydrodynamic sector (F represents &, f, u, or Q). For
solving Eq. (54), the first-order deviation function ¢ can be
conveniently chosen as

dD(x, p.s) = ¢V (x, p.s) + 9 (x, p), (356)

1
OB, AFpY — D, EAF ——Q, S (57)

1
W (. p.s) = 7%

(A(7,2)0 + pB(7,2) p'V &

+P2C(2.2) P pPoyg). (58)

where we have invoked that qﬁgl)(x, p,s) cancels the other

two collision kernels in Eq. (54), d)él)(x, p) characterizes
the solution to the spinless linearized Boltzmann equation
with the same notations as used in [30], which follows from
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(D1 = - u(DP)Y = ppo (D) + V.= p iV,
(1
- oy =00 (59

o(T) is an arbitrary constant with the dimension of cross
sections, and 7 = pu - p. Noticing that Eq. (59) has been
extensively solved for these dimensionless functions
A(z,z), B(z,z), and C(z,z) via different methods with

various interactions, we here see ¢0 as a known function.

One may keenly observe that L[(,bo >] is distinct from the
linearized collision kernel L[] exhibited in [30] on
account of various transition rates. This can be understood
by rethinking that spin must be integrated out (averaged)
for lack of spin information in left hand side (LHS) of
Eq. (59), which indicates that we are dealing with spin-
less hydro after averaging spin in both sides. Therefore,

Jas(p qﬁo } recovers a familiar form of L[¢]. Together
with the motion equations we obtained in the preceding
section, we conclude that the sector of spinless hydro-
dynamics is successfully recovered and dose not vary for
including spin, which is reasonable considering its univer-
sality as a low-energy effective theory.

By substituting Eq. (56) into L[y, one finds that part of
L[y4] cancels L[ys] [the terms of O(Q?) are omitted],
Q. [(DE)

—p - u(Dp)V) = pp,(Du*)M)

Similarly, ¢*) can be parametrized as

¢ (x.p.s) = ¢ (x.p.s) + ¢ (x.p.s). (61)
P (x.p.s)=— 8PQWA Z’“’—ZQ e (x ). (62)

to counteract the other two collision terms in Eq. (61). After
cancellation of three linearized collision terms, Eq. (60)
turns into

Q2 [(DE)W = p - u(DP)Y - pp,(Du)V)
+ va‘s —pP- uvaﬂ - ﬁp/}vau/}]

+ paZ€yv(IQ/}y + Z?ﬁ(DQa/)’)(l) =

Considering the resemblance in Egs. (59) and (63), solving
Eq. (63) can be done in a similar manner to that employed
to solve Eq. (59) in [30]. To solve Eq. (63), we substitute all
temporal derivatives obtained in the previous section and
expand V,Q; like

1

—p- — s
+ Vaéﬁ p-uVaf fpﬂva” ] Vol = VieQpy, + VieQyp)y +3 805V,
ay Py ) (1)
+p Zs V(zg/jy + Zs (Dgaﬁ) +u u((zvﬁ)giy’ (64)
- 1 Y
= 4fwi(0) (Lbﬂ] + L [4 Wz" ¢0 (x, p)] + L[¢(2)]).
60 then the second-order deviation function ¢(()2) can be
(60) parametrized according to the left-hand side of Eq. (63),
|
1
2 o a o
¢(<) ) = F(T) [(A] (T’ Z)z‘s,pﬂgﬂ + A2(17 Z)zs,pnu u[/’Q ]a)e

+ (/BBI (Tv Z)zs po‘Qp Pa + BZ(Tv Z)zs,pnub)gall + B3 (T, Z)Zs,paquV)aQG]K)vaf

+ (B2Ci(7.2) %, pe ¥ p

PaPp) + C2 (77 Z)Zs paQU)

39k + C3(2.2)Z, pottl ¢ bt Q) 0

+ ( (T Z)Z’wua + ﬂFZ(T Z)pﬂzs a)v[yQ *+ (Gl (T’ Z)Zs./mu[pgo—]y + ﬂGZ(T: Z)Aaﬂpaz{v)’y)vlgﬂy

+ pH(7.2) pZ°V (, Q) + I (7, 2) p*E°u?

where A;,B;,C;,F;,G;,H,J (i=1, 2, or 3) are dimen-
sionless functions to be determined by solving correspond-
ing integral equations.

Considering all the thermodynamic forces relevant,
including the gradients of spin potential we explicitly
write above, are independent, this highly involved equation
can be solved by equating the coefficients of each of the

s U u(a

V) Qo (65)

|
thermodynamic forces separately, thus the solution to
Eq. (63) is equivalent to solving the set of equations.
However, even corresponding to one unique thermodynamic
force, different terms are also independent, which means that
the procedure of separate equations can be enlarged to every
term shown in Eq. (65). For instance, the integral equations
for the terms related to 6% are expressed as
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[} 4C ﬁz No
PPEQ,plph) = 7 ¢{¢ = o) °Q,,pph C (., Z)}, (66)
4[31 o‘] 4C¢ ] 5]
g 30) oo 0 = N = gy e el o
— p o K
(”12110 - 2131)[’”2110 - (130 =+ 131)] Sws no(T) e X

where we have prescribed that the notation F[¢]{¢p = A}
represents that ¢ is taken to be A in functional F. Other
equations follow from repetitive practice and are not
shown here.

Before ending this section, there are some comments. In
the process of seeking a solution to Eq. (59), we point out
that only by averaging spin can normal hydrodynamic
equations be recovered for spin dependence mismatching
in both sides. When we try to find the solution to Eq. (63), we
also encounter the same problem of spin mismatching
because the LHS of Eq. (63) has only one s while the
RHS has two spin sources ¢(x, p,s) and W. Following the
spirit of a recent related review work [39], the equality
relation Eq. (63) should be loosely understood as equiv-
alence after spin integration [ dS(p)s, which equivalently
suggests that spin-related observables are defined in this way
with classical interpretation for spin. Last but not least, those
equations to be solved reduces to momentum dependent
only after spin integration, therefore, well-developed meth-
ods for solving or approximately solving a linearized
transport equation can be sufficiently employed.

VI. NONEQUILIBRIUM CORRECTIONS
TO N, T*, AND S+

In the previous section, the formal solution to deviation
function ¢ is determined, which is composed of four parts
given in Egs. (57), (58), (62), and (65). From its expression,
the corrections from nonlocal effects are included, which
are marked by A¥. As a reminder, the distribution function
f(x, p,s) appears inside the definitions of tensors such as
Eqgs. (13), (14), and (15) instead of f(x + A, p,s). Thus
when it comes to nonequilibrium corrections to N¥, TH,
and $*#*, the A dependence has to be removed by hand. So
in this section ¢ = @|au_g-

Here and now the corrections to 7% and N* can be
pursued with the formal solution of ¢ presented in Sec. V,

|

|
N+ = /drpﬂf@)(l +¢) =nu + V¢, (69)

T"”Z/df‘p"p”f(‘”(l +)

= eu'u’ — PA" + 7 4 TIAM, (70)
where the dissipative quantities V¥, 7, and II can all be
obtained by projection to N* and 7. One can observe that
these expressions show no difference from the ordinary
first-order viscous fluids owing to Eq. (12b), which means
no corrections up to O(9€2) and O(Q0).

It is well known that first-order viscous hydrodynamics
is characterized by linear laws between dissipative quan-
tities and thermodynamic forces. These can be achieved
following the practice in textbooks; we write with no
detailed derivation

7" = 2not”, (71)
I = o, (72)
VH = kVHE, (73)

where 7, {, k correspond to shear viscosity, bulk viscosity,
and diffusion coefficient respectively. Solving the integral
functions for A;, By, C; and obtaining all the transport
coefficients can be formulated in a systematic way [30].
In the end of this section, we evaluate the corrections to
spin tensor 6S*#*. The full spin tensor can be split into
Sl,;w —_ S(O)/l.mz + 53%./41/’ (74)
and the second part originates from the nonequilibrium
deviation ¢

1 v 1 Vpo
SSHm =5/de12’; exp[ — - plp@ (x, p.s) +§/de‘2§’ °Q,, explé — B+ plgpV(x, p.s)

1
= 5/ dUp*=t” exp[é — B - p] <¢(()2)(x,17,s)

1 AV 1
v [ droeer, exple - 5 plol) (x.p.s).

[
- ZZg Qpa(ﬁ(()l)(xv p))

(75)
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where Eq. (12d) has been utilized in the second equality and the second term in Eq. (15) contributes only O(5?) thus is
discarded. To make the expression concise, an auxiliary tensor X”° is introduced,

1

Xr? = ——[(Ay (7, 2) Q7 + Ay (7, 2)u ul Q71 ,,)0

no(T)

+ (BB (7. 2)¥" p, + By (1. 2)ul Q7 + B (v, 2)u g 7, ) V¢

+ (B2C) (1. 2)Q° plappy + Co(1,2)Q 46 % + Cs (2, 2)ul it Q)0

+ Fy (7. 2)u,VPQ7 + BF, (7, 2) p, VHQA? + G, (7, 2)ul g7 VAQ,, + PGy (7. 2) A% p, V, Q%

+ PH(7.2) p VU + BT (7. 2) pouyu' VI QM) (76)

such that ¢(()2) =3{’X,,. Then Eq. (75) can be cast into

1
SSMHY = 5/ dUp* S 3% explé — B - plX .  (77)
By using Eq. (12e), we obtain

1
65 = — / PP * ¢ P> + ¢ p D
+ g php° —[u < v))explE - p- p]Xp,,. (78)

Because integral Eq. (63) is not worked out with
transition rate unspecified, 5S*** is expressed as a formal
solution to be further determined given specific interaction
without losing generality. Qualitatively, one can see clearly
that various thermodynamic forces are responsible for the
corrections of spin tensor. Though with rather different
tensor structures, involved thermodynamic forces resulting
in fluctuation of spin tensor are the same as that in [23],
which can be divided into two groups: one is the group
consisting of 8, V&, and 6%, and all members in this group
appear in ordinary hydrodynamics. However, their contri-
butions are all proportional to €, which reveals that these
thermodynamic forces can only affect spin evolution via
coupling to spin potential somehow. The other is the group
of gradients of spin potential, which is not astonishing as Q
itself is a Lagranian multiplier for total angular momentum.
In the research on spin hydrodynamics, Q is always
conjugated to spin density and thought to control the
evolution of spin.

VII. SUMMARY AND OUTLOOK

In this paper, we present a detailed derivation for
relativistic first-order spin hydrodynamics using the
Chapman-Enskog method to linearize the nonlocal colli-
sion term for massive fermions proposed in [24]. This
collision term derived from Wigner formalism can provide
a natural description of spin-orbit coupling in the collision
process and thus is relevant for the research on local spin
polarization. With the interaction between fermions
unspecified, we give a formal discussion about the motion

equations and nonequilibrium corrections to the tensors we
are concerned about. Besides the motion equations for
basic variables y(x), T(x), and «*(x), the motion equation
for the newly introduced variable spin potential ** is also
determined. We find that the motion equations show no
differences compared to spinless first-order hydrodynam-
ics; meanwhile, the energy-momentum tensor receives no
corrections from spin and retains the symmetric form as
far as first-order theory is concerned. Such results indicate
that we need to go over first order to derive spin hydro-
dynamics, otherwise the effect of the spin-orbit coupling
would not play the role because the antisymmetry of the
energy-momentum tensor arises from nonlocal effects in
the order of O(9?). It might help that to construct Burnett
equations by keeping the expansion to the second order in
gradients when T enters power counting naturally.
However, there are no signs that the acausal problem
would be overcome by the new terms introduced by spin.
Actually, we obtain the same equations in the spinless
sector and therefore are also plagued by acausality. So it
makes sense that we should turn to the moment method for
constructing the second-order theory, which successfully
fixes the acausal problem and provides numerically stable
hydrodynamic equations. We comment that the deviation
function we obtain can be well used to hint the trial function
or proper parametrized form for the moment method. The
construction of the second-order theory based on our
present work and subsequent evaluation of relevant trans-
port coefficients will be performed in the future. There is
also one thing that needs to be handled with caution.
Generally speaking, most of the interactions we met in
quantum field theory are transferred by gauge bosons,
which means the gauge link must be plugged into the
definition of the Wigner function to complete the derivation
of the collision term.
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APPENDIX A: THERMODYNAMIC INTEGRAL

Thermodynamic integrals we met in this paper are
given by

2 dpP
2q + 1)!!/ (27)°

Ly (B) = (- p)"=24(Agsp”pP)ie P,

(A1)

and noting that K, (z) denotes the modified Bessel func-
tions of the second kind defined as

K,(z) = Aw dx cosh(nx)e=zcoshx, (A2)

many thermodynamic integrals /,, can be worked out
analytically in the form of K,. Especially, we note that
Lio=ny(T), Iy=eo(T), Iy=—Po(T), I30=T(3ho(T) +

When handling the thermodynamic integrals with vari-
ous indices, the following recurrence relations are very
useful to avoid repetitive calculations

1
In.q :B[(n_zq)ln—l,q_In—l.q—l]’ (AS)

Dln,q = _InJr],qDﬁ’ (A6)

where Eq. (A6) follows directly from Eq. (A4).

APPENDIX B: CALCULATION OF DQ*

When dealing with the motion equation of spin potential,
we have met a lengthy expression. Here we present the
different coefficients appearing in Eq. (40):

2 : _
Z Po(T)), and 131 :—ho(T)T with ho(T)ZEO(T>+P0(T) [ — _Ol _ ol
We also define another thermodynamic integral which is Rey = ~Q¥Rn = uu QR (B1)
obtained via the following expression: .
Rﬁ = RHIQW-/ + Rmu“u[“Q”]a, (B2)
D,y (&, B) = exp(&) (i 1.4(B)n1.4(B) = 1ng(B)),  (A3)
Riblw]a = _Rnlu[ﬂgyla - Rn2gblauKQU]Kv (BS)
where D,, acts as a Jaccobi determinant in variable
transformation. In transforming Dn, De into D& and Dp, 21y
Eq. (A3) is utilized combined with R¢, = —u” - , (B4)
4 (A3) * (m*I,o = 21I5;)
alnq(ﬂ)
op ~ Tnrtal) (A9 RES =~ R, (B5)
which follows from integrating Eq. (A1) by parts. with
Ry=—5—""—,
" (m? Lo —215)
_ 4(I30 = 131) 13
RJ[Z - 2 2 s
(m*Lg—213))[m* 11— (I30 +131)]
RH] __ 12 <120h_130n110—Iloh_[20n120—|— 0= 22120,’1—13071131 2(110]1;120”)141_101321)’ (B6)
(I1o —Wlm) Dy Dy m Dy m=Dyq 3m
2 Iloh—lzon 1201’1—1307[ 11
Ryp = Tog—14)——(I30—13)— | 30— =1
m 2l — 205, [ Do (140 = 141) Do (130 = I31) 30 =341
Iyg—1 Igh —1 Tioh—1 Iyoh —1
2( 30 31) « (mz 20 3077 I —m? 10 20”120 +m2110 120 3071 (130 +13])
m-lyy — I3 — I3 Dy Dy Dy
Iioh — Iyyn 5
+ 2 (L + Iyy) + Bl =213 )| (B7)
2 I 1 I 20139 =1
Ry = (131_ Nolyy ) 5 (31_ Nolgg ) g30 31) ’ (BS)
(m°I,o = 213) Iy — 1y m*Io — (I3 + I3;) Ly =1y ) (m°yg —213;)
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R = : (131— rolai )
omiho— (g +13n) \ T Iy =1y ) (mPlg—215)"

2(I3) = I31) 15

2(I30 — I31)

(B9)

21
L (B10)

R, = + .
C (mPLg = 213)[mP g — (Ig + 131)]  (m*1g —215:)

[1] L. Adamczyk ef al. (STAR Collaboration), Nature (London)
548, 62 (2017).
[2] E. Alpatov (STAR Collaboration), J. Phys. Conf. Ser. 1690,
012120 (2020).
[3] D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99,
014905 (2019).
[4] 1. Karpenko and F. Becattini, Eur. Phys. J. C 77,213 (2017).
[5] L. Csernai, J. Kapusta, and T. Welle, Phys. Rev. C 99,
021901 (2019).
[6] H.Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96,
054908 (2017).
[7]1 A. Bzdak, Phys. Rev. D 96, 056011 (2017).
[8] S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019).
[9] Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017).
[10] Y. B. Ivanov, V.D. Toneev, and A. A. Soldatov, Phys. At.
Nucl. 83, 179 (2020).

[11] Y. Xie, D. Wang, and L. P. Csernai, Phys. Rev. C 95, 031901
(2017).

[12] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 123,
132301 (2019).

[13] J. Adam er al. (STAR Collaboration), Phys. Rev. C 98,
014910 (2018).

[14] F. Becattini and 1. Karpenko, Phys. Rev. Lett. 120, 012302
(2018).

[15] X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, Phys. Rev. C 98,
024905 (2018).

[16] W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza,
Phys. Rev. C 97, 041901 (2018).

[17] H.-H. Peng, J.-J. Zhang, X.-L. Sheng, and Q. Wang, Chin.
Phys. Lett. 38, 116701 (2021).

[18] F. Becattini and L. Tinti, Ann. Phys. (Amsterdam) 325, 1566
(2010).

[19] W. Florkowski, A. Kumar, and R. Ryblewski, Prog. Part.
Nucl. Phys. 108, 103709 (2019).

[20] K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H.
Taya, Phys. Lett. B 795, 100 (2019).

[21] K. Fukushima and S. Pu, Phys. Lett. B 817, 136346 (2021).

[22] J. Hu, Phys. Rev. D 103, 116015 (2021).

[23] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R.
Ryblewski, Phys. Rev. D 103, 014030 (2021).

[24] N. Weickgenannt, E. Speranza, X.-1. Sheng, Q. Wang, and
D. H. Rischke, Phys. Rev. D 104, 016022 (2021).

[25] N. Weickgenannt, E. Speranza, X.-1. Sheng, Q. Wang, and
D. H. Rischke, Phys. Rev. Lett. 127, 052301 (2021).

[26] D.-L. Yang, K. Hattori, and Y. Hidaka, J. High Energy Phys.
07 (2020) 070.

[27] Z. Wang, X. Guo, and P. Zhuang, Eur. Phys. J. C 81, 799
(2021).

[28] X.-L. Sheng, N. Weickgenannt, E. Speranza, D. H. Rischke,
and Q. Wang, Phys. Rev. D 104, 016029 (2021).

[29] J. Hu, arXiv:2110.12339.

[30] S.R. De Groot, W. A. Van Leeuwen, and C. G. Van Weert,
Relativistic Kinetic Theory. Principles and Applications
(North-Holland, Amsterdam, 1980).

[31] J. Zamanian, M. Marklund, and G. Brodin, New J. Phys. 12,
043019 (2010).

[32] R. Ekman, F. A. Asenjo, and J. Zamanian, Phys. Rev. E 96,
023207 (2017).

[33] R. Ekman, H. Al-Naseri, J. Zamanian, and G. Brodin, Phys.
Rev. E 100, 023201 (2019).

[34] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R.
Ryblewski, Phys. Lett. B 814, 136096 (2021).

[35] J. Hilgevoord and S. Wouthuysen, Nucl. Phys. 40, 1 (1963).

[36] J. Hilgevoord and E. De Kerf, Physica 31, 1002 (1965).

[37] E. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Ann.
Phys. (Amsterdam) 338, 32 (2013).

[38] J. Hu, arXiv:2202.07373.

[39] Y. Hidaka, S. Pu, Q. Wang, and D.-L. Yang, arXiv:2201.07644.

076009-11


https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1088/1742-6596/1690/1/012120
https://doi.org/10.1088/1742-6596/1690/1/012120
https://doi.org/10.1103/PhysRevC.99.014905
https://doi.org/10.1103/PhysRevC.99.014905
https://doi.org/10.1140/epjc/s10052-017-4765-1
https://doi.org/10.1103/PhysRevC.99.021901
https://doi.org/10.1103/PhysRevC.99.021901
https://doi.org/10.1103/PhysRevC.96.054908
https://doi.org/10.1103/PhysRevC.96.054908
https://doi.org/10.1103/PhysRevD.96.056011
https://doi.org/10.1016/j.physletb.2018.09.066
https://doi.org/10.1103/PhysRevC.96.024906
https://doi.org/10.1134/S1063778820020131
https://doi.org/10.1134/S1063778820020131
https://doi.org/10.1103/PhysRevC.95.031901
https://doi.org/10.1103/PhysRevC.95.031901
https://doi.org/10.1103/PhysRevLett.123.132301
https://doi.org/10.1103/PhysRevLett.123.132301
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1103/PhysRevC.98.024905
https://doi.org/10.1103/PhysRevC.98.024905
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1088/0256-307X/38/11/116701
https://doi.org/10.1088/0256-307X/38/11/116701
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1016/j.ppnp.2019.07.001
https://doi.org/10.1016/j.ppnp.2019.07.001
https://doi.org/10.1016/j.physletb.2019.05.040
https://doi.org/10.1016/j.physletb.2021.136346
https://doi.org/10.1103/PhysRevD.103.116015
https://doi.org/10.1103/PhysRevD.103.014030
https://doi.org/10.1103/PhysRevD.104.016022
https://doi.org/10.1103/PhysRevLett.127.052301
https://doi.org/10.1007/JHEP07(2020)070
https://doi.org/10.1007/JHEP07(2020)070
https://doi.org/10.1140/epjc/s10052-021-09586-8
https://doi.org/10.1140/epjc/s10052-021-09586-8
https://doi.org/10.1103/PhysRevD.104.016029
https://arXiv.org/abs/2110.12339
https://doi.org/10.1088/1367-2630/12/4/043019
https://doi.org/10.1088/1367-2630/12/4/043019
https://doi.org/10.1103/PhysRevE.96.023207
https://doi.org/10.1103/PhysRevE.96.023207
https://doi.org/10.1103/PhysRevE.100.023201
https://doi.org/10.1103/PhysRevE.100.023201
https://doi.org/10.1016/j.physletb.2021.136096
https://doi.org/10.1016/0029-5582(63)90246-3
https://doi.org/10.1016/0031-8914(65)90141-2
https://doi.org/10.1016/j.aop.2013.07.004
https://doi.org/10.1016/j.aop.2013.07.004
https://arXiv.org/abs/2202.07373
https://arXiv.org/abs/2201.07644

