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We examine how subleading results in the operator and loop expansion for σðGG → hÞ in the Standard
Model effective field theory (SMEFT) inform theoretical error estimates when studying this production
channel in global SMEFT studies. We also discuss the relationship between geometric SMEFT results and
the κ formalism.
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I. INTRODUCTION

The Standard Model (SM) is an incomplete description
of observed phenomena in nature. It must be extended to
account for neutrino masses. This fact implies that new
physics will couple to the SM. In addition, the hierarchy
problem also argues for an extended sector of new physics
at higher energy scales (Λ), if the origin of neutrino masses
is associated with such scales. As the exact origin of
neutrino masses and the solution of the hierarchy problem
are unknown, and certainly experimentally unverified, it is
useful to think of the SM as an effective field theory (EFT)
for data analysis with characteristic energies around the
electroweak scale: v̄T ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hH†Hi
p

.
The Standard Model effective field theory (SMEFT) is

based on the low-energy assumptions that physics beyond
the SM is present at scales Λ > v̄T , and that there are no
light hidden states in the spectrum with couplings to the
SM. A SUð2ÞL scalar doublet (H) with hypercharge
yh ¼ 1=2 is assumed to be present in the EFT. A power
counting expansion in the ratio of scales q2=Λ2 < 1,
follows with q2 a kinematic invariant associated with
experimental measurements in the domain of validity of
the EFT. These low-energy assumptions define a theory—
the SMEFT—with the Lagrangian

LSMEFT ¼ LSM þ Lð5Þ þ Lð6Þ þ Lð7Þ þ…;

LðdÞ ¼
X
i

CðdÞ
i

Λd−4 Q
ðdÞ
i for d > 4: ð1Þ

The operators QðdÞ
i are labeled with a mass dimension d

superscript and multiply unknownWilson coefficientsCðdÞ
i ,

which predict patterns of corrections to the SM. TheWilson

coefficients CðdÞ
i take on specific values as a result of the

q2=Λ2 < 1 Taylor-expanded effects of physics beyond the
SM. As the nature of physics beyond the SM is unknown,
we treat the Wilson coefficients and the unknown Λ as free
parameters to fit anc constrain from the experimental data.
This effectively treats the SMEFT as its own bottom-up-
effective field theory. For compact dimensionless notation

we define C̃ðdÞ
i ≡ CðdÞ

i v̄d−4T =Λd−4. The SM Lagrangian
notation and conventions are consistent with Refs. [1–6].
The sum over i, after nonredundant operators are removed
with field redefinitions of the SM fields, runs over the
operators in a particular operator basis. We use the Warsaw
basis [1,2] for Lð6Þ in this paper.
When projecting constraints from global SMEFT fits

onto the Wilson coefficients,1 one might expect to always
use a theoretical prediction of the highest order in the
operator and the loop expansion. However, as one goes to
higher order in the SMEFT expansions, the number of
unknown parameters continually increases in a particular
measurement, increasing the resulting fit spaces. This issue
is not substantially ameliorated when combining multiple
measurements, as each measurement has this challenge of
theoretical interpretation. It is necessary to truncate the
expressions to draw meaningful conclusions. The power
counting of an EFT has a central role as it organizes the
infinite number of parameters that enter the predictions into
sets that are appropriate to retain when an approximate
theoretical precision (chosen to be better than the current
experimental precision) is used to interface with the data.
For global SMEFT studies, the most straightforward choicePublished by the American Physical Society under the terms of
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is to retain all linear Lð6Þ interference terms with the SM
amplitudes.
However, for σðGG → hÞ, this choice faces challenges.

Because the SM amplitude itself is loop level, parts of the
SMEFT calculation that interfere with the SM—such as the
piece linear in ðLð6Þ)—are suppressed compared to quad-
ratic terms [ðLð6ÞÞ2]. The quadratic term is accompanied by
a factor of ðv̄T=ΛÞ2 relative to the interference piece, but for
low Λ this may not be enough to compensate for the loop
factor difference. This interplay of loop factors and v̄T=Λ
can be further exacerbated if one assumes hierarchical
Wilson coefficients, due to “tree-loop” matching scenarios,
as has been shown to arise in many UV matching scenarios
[14–16] and, more generally, follows from the conditions of
naive (d ≤ 4) renormalizability being imposed on all UV
physics at higher scales [17]. Specifically, if the relevant
dimension-six coefficients are small as the result of UV
matching, while the dimension-eight coefficients are order
one, both the Lð6Þ and ðLð6ÞÞ2 contributions to σðGG → hÞ
may be subdominant to ðLð8ÞÞ terms. This argument applies
to all SM loop processes; however, we will focus on
σðGG → hÞ given the prominent role it plays in SMEFT
global fits. An analysis of Γðh → γγÞ is given in
Appendix B.
In this paper, we explore how choices about where the

SMEFT calculation is truncated when interpreting exper-
imental results and what is assumed about the hierarchy
among Wilson coefficients affect the theoretical error on
σðGG → hÞ. There is no unique answer to defining an error
estimate for neglected higher-order terms in a perturbative
expansion, and a reasonable error estimate is never an
assertion of precise and exact knowledge of all higher-
order terms.2 Here we restrict ourselves to a well-
defined procedure for defining such an error, maximally
informed by the actual higher-order results, when such
results are available in the literature. For σðGG → hÞ,
the result including both Lð6Þ effects to one-loop order
[Oð1=16π2Λ2Þ] and the complete set of Lð8Þ effects
[Oð1=Λ4Þ] was recently developed in Ref. [18].

II. σðGG → hÞ TO Oð1=Λ4Þ; Oð1=16π2Λ2Þ
It is appropriate to organizeLSMEFT as specific composite

operator kinematics, with scalar dressings that do not
introduce newkinematics, to identify the full set ofOð1=Λ4Þ
corrections. This is the geoSMEFT approach developed in
Refs. [6,19–21] where scalar-field-dependent field-space
connections Gi multiply composite operator forms fi as

LSMEFT ¼
X
i

GiðI; A;ϕ…Þfi: ð2Þ

Powers ofDμH are included in fi, I andA represent possible
SUð2ÞL and SUð3Þ group structures, and ϕ1;2;3;4 are
components of theHiggsH field. The kinematic dependence
is factorized into the fi and the rescalings by Gi. The
geoSMEFT is defined to all orders in the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH†Hi=Λ

p
expansion for low n-point functions (n ≤ 3), which is
sufficient for the case of interest here.3 In addition, as the
loop expansion and the operator expansion are not inde-
pendent at subleading order in the SMEFT [18], it is
necessary to formulate Oð1=16π2Λ2Þ corrections in the
SMEFT in a manner consistent with the geoSMEFT
organization higher-order Oð1=Λ4Þ physics. This is best
accomplished in the background field method approach to
gauge fixing in the SMEFT [19,22–24].
The general Higgs-gluon field space metric is defined

as [6]

LSMEFT ⊃ −
1

4
κðϕÞGA ;μνGA ;μν; ð3Þ

with A running over f1…8g and

κðϕÞ ¼
�
1 − 4

X∞
n¼0

Cð6þ2nÞ
HG

�
ϕ2

2

�
nþ1

�
: ð4Þ

For the gluon field strength and coupling, the transforma-
tions to canonically normalized fields at all 1=Λn orders are
given by

GA;ν ¼ ffiffiffi
κ

p
GA ;ν; ð5Þ

ḡ3 ¼ g3
ffiffiffi
κ

p
: ð6Þ

We return to the nature of these field redefinitions below.
Wewrite the amplitude perturbation to the process as [18]

AGGh ¼ AGGh
SM þ hGGjhi0Oðv̄2T=Λ2Þ þ hGGjhi1Oðv̄2T=Λ2Þ

þ hGGjhi0Oðv̄4T=Λ4Þ þ � � � ; ð7Þ

where each of the expressions for AGGh
SM , hGGjhi0Oðv̄2T=Λ2Þ,hGGjhi1Oðv̄2T=Λ2Þ, and hGGjhi0Oðv̄4T=Λ4Þ are now known in a

consistent set of perturbations in the loop (indicated with a
superscript number) and operator expansion (indicated with a
subscript). The SM result itself AGGh

SM also has a perturbative
expansion, and is often determined in an operator expansion
with a heavy top limit taken. Here we use the SM result as
reported in Ref. [18], which is not the highest-order SM result

2Such theoretical error estimates are still meaningful. Includ-
ing such theoretical errors, when they can be estimated, is a
standard practice in EFT studies for decades.

3The geoSMEFT formulation currently offers the only theo-
retical framework to calculate consistently to Oð1=Λ4Þ. As the
loop and operator expansion are not independent (see Ref. [18]),
this means that these results are consistently formulated to orders
Oð1=16π2Λ2Þ and Oð1=Λ4Þ in the geoSMEFT, marking it as a
unique theoretical framework enabling such results (at this time).
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known, but it is sufficient for our error estimate purposes. The
important structure of the series expansions is the appearance
of new parameters perturbing the SM in the series expansion,
and the appearance of perturbative loop correction factors
∝ 1=16π2 and the operator expansion corrections∝ v̄2T=Λ2 at
higher orders in the double series expansion.
The operator expansion of the field space connection

introduces sensitivity to one new Lð8Þ operator at sublead-
ing order:Qð8Þ

HG. In addition, several cross terms of the form
Lð6Þ × Lð6Þ, including an important contribution from

ðCð6Þ
HGÞ2, are present in the expansion of

ffiffiffi
κ

p
. Similarly,

the SMEFT loop expansion introduces corrections to the

Wilson coefficient already present at leading order (Cð6Þ
HG)

and also introduces the new parameters (Cð6Þ
H□

, Cð6Þ
HD, C

ð6Þ
Hu,

Cð6Þ
uG), whose operator definitions are

Qð6Þ
H□

¼ ðH†HÞ□ðH†HÞ;
Qð6Þ

HD ¼ ðH†DμHÞ�ðH†DμHÞ;
Qð6Þ

Hu ¼ ðH†iD
↔

μHÞðūrγμurÞ;
Qð6Þ

uG ¼ ðq̄3σμνTAu3ÞH̃GA
μν; ð8Þ

where r, s run over 1,2,3 for the up (u), charm (c), and
top (t) quark flavor labels, and H̃j ¼ ϵjkH†;k. For the
remaining notational conventions, consult Refs. [1–6].
Dependence on

δGð6Þ
F ¼ 1ffiffiffi

2
p

�
C̃ð3Þ

Hl
ee

þ C̃ð3Þ
Hl
μμ

−
1

2
ðC̃0

ll
μeeμ

þ C̃0
ll

eμμe
Þ
�

ð9Þ

is also present due to a redefinition of the input parameter
vacuum expectation value, introducing a further depend-
ence on the coefficients of

Qð3Þ
Hl
pr

¼ ðH†iD
↔I

μHÞðl̄pτIγμlrÞ;
Q0

ll
prrp

¼ ðl̄pγμlrÞðl̄rγμlpÞ: ð10Þ

The explicit expression defined/developed in Ref. [18] is

σα̂SMEFTðGG → hÞ
σ
α̂;1=m2

t
SM ðGG → hÞ

≃ 1þ 519C̃ð6Þ
HG þ 504C̃ð6Þ

HG

�
C̃ð6Þ
H□

−
1

4
C̃ð6Þ
HD

�
þ 8.15 × 104ðC̃ð6Þ

HGÞ2 þ 504C̃ð8Þ
HG

þ 1.58

�
C̃ð6Þ
H□

−
1

4
C̃ð6Þ
HD

�
þ 362C̃ð6Þ

HG − 1.59C̃ð6Þ
uH − 12.6ReC̃ð6Þ

uG − 1.12δGð6Þ
F − 7.70ReC̃ð6Þ

uG log

�
m̂2

h

Λ2

�

− 0.19ReC̃ð6Þ
dG log

�
m̂2

h

Λ2

�
− 0.09ReC̃ð6Þ

dG þ 3.54C̃ð6Þ
dH: ð11Þ

The expression is reported in the α̂ew input parameter
scheme, but input parameter scheme dependence is neg-
ligible in this expression. In this expression, we have
omitted contributions from Yukawa couplings other than
yt as they are numerically negligible.4 The leading depend-

ence on C̃ð6Þ
HG has a numerical coefficient of 519; this

coefficient is a few percent different than the coefficient of

C̃ð8Þ
HG as in AGGh

SM we have expanded in the heavy top limit
and retained a higher-order term in the former.
To explore the effect of retaining higher-order terms in the

interpretation of a projectedmeasurement ofσðGG → hÞ from
the production and decay of the Higgs with theory errors, we
consider three cases. In each case, the full expression in
Eq. (11) is broken up into a piece used to project experimental
constraints, and the remainder, which represents neglected
higher-order terms. The three cases are as follows:

(i) Interpret experimental data using the linear Lð6Þ
interference term only, which in this case is just the

Cð6Þ
HG contribution. We include both the tree-level and

one-loop corrections ∝ Cð6Þ
HG.

(ii) Interpret experimental data keeping the Cð6Þ
HG inter-

ference term plus the ðCð6Þ
HGÞ2 “squared” piece.

(iii) In addition to the pieces in ii), retain the Cð8Þ
HG

contribution.
While case (i) is the standard, the validity and features of

cases (ii) and (iii) warrants more study before jumping into
numerics.

III. QUADRATIC FITS IN LOOP PROCESSES AND
TREE-LEVEL PROCESSES IN THE SM

Retaining terms in the SMEFT prediction for the
practical purpose of making the theoretical precision
greater than the experimental precision in an observable
would naively argue for retaining the ðCð6Þ

HGÞ2 term in
4We also ignore all CP-odd operators due to strong, low-

energy constraints; see Refs. [25,26].
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Eq. (11) unless Cð6Þ
HG ≪ 1, due to (for example) a loop

suppression in matching.
On the other hand, retaining only a subset of terms at an

order in a power-counting expansion is formally ill defined
in EFT, as a field redefinition on a SM field F

F → F0½1þOð1=ΛnÞ� ð12Þ

can change the set of parameters retained (or remove the
parameters entirely), resulting in ambiguous predictions.
This point was recently stressed in Ref. [27].
For example, a field redefinition involving Cð6Þ

HG is
allowed (and even required on the gluon field to take
the theory to the canonical form) in Eq. (5) at Oð1=Λ4Þ.
This field redefinition on AGGh

SM cancels order by order
against the simultaneous redefinition of the gauge coupling
at all orders [see Eq. (5)]. Applied to QHG, the redefinition

GA
μν → GA

μνð1þOðCð6Þ
HGv

4
T=Λ4ÞÞ ð13Þ

does not cancel and generates OððCð6Þ
HGÞ2=Λ4Þ effects that

are ambiguous until the theory is fully defined atOð1=Λ4Þ.
However, when determining the cross section, the ambigu-

ous OððCð6Þ
HGÞ2=Λ4Þ terms enter via interference with the

(loop-suppressed) SM amplitude AGGh
SM and are therefore

numerically suppressed (regardless of how one chooses
the Wilson coefficients) compared to the quadratic (self-
square) contribution, ðQHGÞ2. In this sense, quadratic fits to
loop-suppressed processes in the SM, although formally
inconsistent in the treatment of the power counting, are
only sensitive to a small numerical error in some cases. This
is the case when considering the Higgs-gluon field space

connection, and constraints on Qð6Þ
HG retaining quadratic

terms are of increased interest as a result.
This reasoning only applies toQð6Þ

HG, ðQð6Þ
HGÞ2 when study-

ing constraints on σðGG → hÞ and fails—in the sense that
relative numerical errors are subsequentlyOð1Þ—for all other
Wilson coefficient dependence in Eq. (11). In particular, it

fails for dependence on the Wilson coefficient of Qð8Þ
HG.

IV. κ RESCALINGS AND geoSMEFT

It is interesting to consider the possibility of projecting
experimental constraints onto the entire Higgs-Gluon field
space connection κ [defined in Eq. (3)], and the relation of
such a procedure to the so called “κ formalism” developed
in Refs. [28–32].5
In the “κ formalism,” the coefficient of the three point

g-g-h coupling is treated as a parameter that experiments fit
to. We can map the geoSMEFT expression (3) into this
form by expanding to linear order in ϕ,

κgeoSMEFT¼
�
δκ

δh

�
hκi¼−4

C̃ð6Þ
HG

v̄T
−4

C̃ð8Þ
HG

v̄T
þ8

ðC̃ð6Þ
HGÞ2
v̄T

: ð14Þ

One may expect that κgeoSMEFT is less sensitive to Wilson
coefficient hierarchies, such as the tree/loop scenario,

where Cð8Þ
HG ∼ 16π2Cð6Þ

HG=g
2, since all effects are lumped

into a single coefficient. However, when inspecting the
cross section ratio [Eq. (11)], κgeoSMEFT is not manifest.
Treating the g-g-h vertex as a single object misses subtleties
(such as which terms interfere with the SM and which do
not) that the operator expansion catches.
Extracting the components of Eq. (11) that have the

largest numerical factors and fewest powers of the C̃i, we
find some middle ground: a quantity that involves only a
few Wilson coefficients, yet is derived at the cross section
level and so captures information about interference with
the SM,

σα̂SMEFTðGG → hÞ
σ
α̂;1=m2

t
SM ðGG → hÞ

≃ 1þ 881Σk þ � � �

Σκ ¼ ½C̃ð6Þ
HG þ 0.57C̃ð8Þ

HG þ 93ðC̃ð6Þ
HGÞ2�: ð15Þ

The coefficient 881 is the sum of the tree0level C̃ð6Þ
HG term

plus the retained loop correction for this operator; the

relative 0.57 in front of C̃ð8Þ
HG comes about because terms of

Oðv̄4T=16π2Λ4Þ were not included in Ref. [18]. Had these
terms been included, the factor 0.57 → ∼1.
The combination Σk is present for other phenomena

involving a single Higgs. For example, the significant

numerical dependence on C̃ð6Þ
HG in the Higgs width in the

SMEFT [33] can be rescaled out using the results in [18] as

ΓSMEFT
h;full

ΓSM
h

≃ 1þ 50.6C̃ð6Þ
HG þ � � �

≃ 1þ 88Σκ − 6.7C̃ð6Þ
HG þ � � � : ð16Þ

The total Higgs width has a very significant dependence on

ðC̃ð6Þ
HGÞ2 in the SMEFT via Σκ. The subtraction of an explicit

dependence on C̃ð6Þ
HG is due to the difference in the one-loop

correction in σðGG → hÞ vs Γðh → GGÞ at one loop, as
specified in Ref. [18].
To break the parameter degeneracy built into Σκ exper-

imentally one needs to consider a process with more than
one Higgs field exchange at tree level in a Feynman
diagram, or further loop corrections breaking degeneracies.

For example, the parameter degeneracy of C̃ð6Þ
HG in

σðGG → hÞ and Γðh → GGÞ is already weakly broken by
a one-loop correction, as shown in Eq. (16).
In general, the geoSMEFT approach is closely related to

the κ formalism where rescalings of SM processes occur
with common kinematic dependence in the SM and an

5The coincidence in common κ notion should not be over
interpreted.
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effective field theory extension. It has been argued that the
specific implementation of this idea in Ref. [32] is directly
mappable to the HEFT (Higgs Effective Field Theory)
formalism in Refs. [34,35]. The geoSMEFTalso provides a
rescaling generalization of the SM which allows a field
theory interpretation of the κ formalism in Ref. [32], and
that can also be extended to non-SM kinematics in a well-
defined way. The resummation of higher orders in v̄2T=Λ2 in
the geometric dressings of the composite operator forms
also breaks the relationships between SMEFT corrections
enforced by linearly realized SUð2ÞL symmetry, as in the
HEFT. However, in the geoSMEFT case the expansion
back to a linear-realization SMEFT is direct and follows
from Taylor expanding the geoSMEFT field space
connections.

V. NUMERICAL STUDY

To more quantitatively understand the impact of includ-
ing higher-order terms in the interpretation of experimental
σðGG → hÞ data, we turn to numerics. Specifically, we
study how the uncertainty—encapsulated by the remainder
terms for the cases identified earlier—varies among the
cases and as we change assumptions about the sizes of
Wilson coefficients. We consider two different Wilson
coefficient schemes: a) all Wilson coefficients set to the
same value, and b) an ordering of the Wilson coefficients
according to a tree-loop matching scheme. Defining the
uncertainty in this fashion is consistent with the arguments
in Refs. [18,20,36] and, in particular, Ref. [27].
Our first step is to focus our study on coefficients and Λ

scales that are not already experimentally excluded. We do
this by equating the retained piece of the SMEFT calcu-
lation in each case to the current experimental uncertainty

on μggh, e.g., for case (i) we solve 881C̃ð6Þ
HG ¼ δμggh. To

extract a rough minimum Λmin scale from this, we plug in a

value for Cð6Þ
HG according to a chosen Wilson coefficient

sampling scheme. We take the Wilson coefficient constraint
from a fit to μggh, using the constraint μggh ¼ 1.04� 0.09
[37,38]. We use 0.09 as a rough error band to define
relevant perturbations that are not experimentally disfa-
vored when considering error estimates.6

Next, we numerically evaluate the uncertainty for the
three cases as a function of Λ > Λmin. To avoid accidental
cancellations, we assign values to the Wilson coefficients at
each step by drawing them from Gaussian distributions
centered at zero and with widths set by the Wilson
coefficient scheme. Repeating this 10 000 times at each
Λ step, we take the 1σ width of the resulting Gaussian
distribution as the theory error. This theory error is driven
primarily by Λ and is, by design, restricted to scales that are
still viable for a given coefficient choice. Switching to a flat
distribution for sampling the Wilson coefficients leads to
identical results. This is to be expected: evaluating the
uncertainty in this way amounts to sampling the linear sum
of multiple parameters, so the central limit theory dictates
that the resulting error distribution will be Gaussian
regardless of how the individual terms are sampled.
The resulting theory error is shown in Fig. 1. For the tree/

loop Wilson coefficient matching scheme we use values of
1.0=0.01. For the matching scheme with all coefficients
taken equal, we try two cases, all coefficients 0.01 and all
1.0. TheΛmin values for the cases are different,

7 but plotting
the curves vs Λ=Λmin hides shifts in Λmin and allows all
curves to be shown in one plot. The solid (all coefficients
0.01) and dotted (all coefficients 1.0) lines are nearly
identical, as overall changes in the coefficients can be
compensated—up to the terms containing logðΛ2Þ—by
rescaling Λmin.
When all coefficients are chosen equal, the error esti-

mates in all of the cases are nearly identical. When
coefficients are chosen with the tree/loop hierarchy, the
error in case (iii) is roughly 2 times smaller than that in
cases (i) and ii). This difference is due to Cð8Þ

HG, a tree-level
term as classified by Ref. [16], that is part of the uncertainty
in cases (i) and (ii) but not in case iii). The size and stability
of the uncertainty curve for case (iii) under the two Wilson
coefficient matching schemes makes the case for projecting
experimental fit results onto Σκ. An alternative theory error

analysis, fixing Cð6Þ
HG and sampling the higher-order terms

using the method of Ref. [20], is shown in Appendix A.
As Σκ is not the complete Oð1=Λ4Þ result, the obvious

worry is that artifacts or ambiguities may be present. The
analysis of Sec. III shows that field redefinition ambiguities
can be present, but they are small. A second concern is that
the combination of parameters retained introduces intrinsic
basis choice dependence. For example, it has been shown in
Refs. [20,36] that dependence on λv̄2T purely due to
operator basis choice in matching a UV model onto the
SMEFT cancels in observables, but could persist in
inconsistent calculations to Oð1=Λ4Þ. To check whether

6Note that significant cancellations can occur between terms in
Eq. (11), lowering a naive compatibility scale, and this translates
into cases where the theory error on the experimental projection
of results onto Cð6Þ

HG, etc. is significantly higher. This is also
qualitatively indicated with the blowing up of the theory error
curve in Fig. 1. Such cancellations, leading to flat directions, are
broken by considering top measurements [39] and in a global
study are expected to be less relevant than the generic case
considered here with a naive compatibility scale and no signifi-
cant cancellations. Such potential cancellations, with a corre-
sponding large theory error when canceling terms are neglected,
are also illustrated by the variations in Figs. 2–4.

7Explicitly, for all coefficients equal to 0.01, Λmin ¼ 2.43,
2.44, 2.45 TeV for cases i), ii), and iii), respectively, while for all
coefficients equal to 1.0, Λmin ¼ 24.3, 24.5, 24.5 TeV and
Λmin ¼ 2.43, 2.44, 2.90 TeV for the tree/loop (1.0=0.01) scheme.
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or not this combination of terms introduces such an
intrinsic basis dependence, we study a matching example.

VI. MATCHING EXAMPLE

Consider integrating out σ, which couples to the SM as

Lσ ¼
1

2
ð∂μσÞ2−

1

2
m2

σσ
2þag23σG

A
μνGA;μν

Ω
þΩbH†Hσ: ð17Þ

This is an example of a nonminimally coupled model, as
discussed in Ref. [17]. Rewriting the Lagrangian as

L ¼ LSM −
1

2
σð∂2 þm2

σÞσ þ σB; ð18Þ

B ¼ ag23G
A
μνGA;μν

Ω
þ ΩdH†H ð19Þ

and using the results from Refs. [36,40] yields

L ¼ LSM þ 1

2m2
σ
B2 þ 1

2m4
σ
B∂2BþOðm−6

σ Þ: ð20Þ

It is necessary for the condition b ≪ Ω=mσ to be imposed
for the expansion in 1=mσ to be convergent. The low-
energy effects of this matching is to redefine the SM λ, v̄T ,
and mh as

v̄2T → ðv0Þ2 þ b2Ω2v̄2T
2λm2

σ
; ð21Þ

λ → λ0 −
b2Ω2

2m2
σ
; ð22Þ

m2
h ¼ 2λv̄2T ð23Þ

→ 2λ0ðv0Þ2
�
1 −

b4Ω4

4ðλ0Þ2m4
σ

�
: ð24Þ

The remaining contributions come from expanding out
B∂2B. The effects include a contribution to the gluon
self-interactions,

1

2m4
σ

a2g4s
Ω2

½GA
μνGA;μν�∂2½GA

μνGA;μν�; ð25Þ

and the contribution to CH□ is

Ω2

2m4
σ
b2QH□: ð26Þ

A more interesting interaction comes from the cross term,

abg2s
2m4

σ
½GA

μνGA;μν∂2ðH†HÞ þ ∂2ðGA
μνGA;μνÞðH†HÞ�:

One can integrate by parts to arrange this contribution into
the form

abg2s
2m4

σ
½2GA

μνGA;μν∂2ðH†HÞ�: ð27Þ

Expanding out,

∂2ðH†HÞ → 2ðDμH†ÞðDμHÞ þ ðD2H†ÞH þH†ðD2HÞ:
The first term does not contribute to σðgg → hÞ, while the
remaining terms are equation-of-motion reducible to the
combination of terms

2ðλv̄2TðH†HÞ − 2λðH†HÞ2 þ Yukawa termsÞ: ð28Þ

FIG. 1. Uncertainty on σðgg → hÞ from higher-order terms as a
function of the new physics scale Λ relative to the minimum scale
compatible with current experimental gg → h data. We have
broken the full σðgg → hÞSMEFT calculation of Ref. [18] into a
calculation piece used to determine the compatibility scale and a
higher-order-terms piece in three different ways. (i) First, we
retain only the Oð1=Λ2Þ interference term. (ii) Second, we
include the interference term and pieces proportional to

ðCð6Þ
HGÞ2 in the retained result in the calculation to determine

the compatibility scale. (iii) This is the same as in ii), but the Cð8Þ
HG

term is also included, which corresponds to Σκ . For a given set of
retained terms, we determine the minimum scale by equating it
with the current experimental uncertainty on σðGG → hÞ. The
curves shown are then generated by incrementing Λ above Λmin
and numerically evaluating the numerical error by plugging in
coefficients according to a scheme and evaluating the neglected
terms. The dashed lines correspond to the tree/loop scheme with
values 1.0=0.01, the solid lines correspond to picking all
coefficients equal to 0.01, and the dotted lines correspond to
picking all coefficients equal to 1.0. Case (i) is shown in red, case
(ii) in green, and case (iii) in blue. For the tree/loop scheme, the
retained partitions (i) and (ii) are nearly identical, while all three
cases are nearly identical when all coefficients are chosen equal
(same color scheme for the cases).
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Combining these with the Oðm−2
σ Þ term, we have

L ⊃
�
abg23
m2

σ
þ 2abg23λv

2

m4
σ

�
Qð6Þ

HG −
4adg23λ
m4

σ
Qð8Þ

HG: ð29Þ

Via the expression for Σκ, this leads to a λ dependence in the
cross section,

σα̂SMEFTðGG → hÞ
σ
α̂;1=m2

t
SM ðGG → hÞ

∝ −1.7 × 103
abλv̄4T
m4

σ
; ð30Þ

when we incorporate the common one-loop QCD correc-

tion to Qð8Þ
HG to have a common tree-level dependence. This

arrangement of derivative terms is consistent with the
geoSMEFT conventions. However, unlike the examples
in Refs. [20,36], this λ dependence does not signal intrinsic
basis dependence in fitting to Σκ due to an inconsistent
treatment of the theory atOð1=Λ4Þ. One can also rearrange
the derivative terms as

abg2s
2m4

σ
½2∂2GA

μνGA;μνðH†HÞ� ð31Þ

and the same λ dependence remains and results from the dot
product in the momenta of the gluons generating p2

h.
Similarly, one can arrange the derivative terms through
mapping Eq. (27) to the total derivative,

abg2s
2m4

σ
∂2½GA

μνGA;μνðH†HÞ�; ð32Þ

and 2½∂μðGA
μνGA;μνÞ∂μðH†HÞ�. This latter term again gen-

erates the same λ dependence through the momentum dot
product for the three-point function, with a basis choice that
is an alternate to the conventions in the geoSMEFT, but still
projects onto the physical three-point amplitude in a
consistent fashion. This indicates that experimental con-
straints on Σκ do not introduce intrinsic basic dependence
due to the λ dependence present in this matching example.
We are not aware of any evidence that there is intrinsic basis
dependence in this approach, but we caution that this
matching example is not a comprehensive proof excluding
the possibility of basis dependence being introduced.

VII. CONCLUSIONS

In this paper we have explored the theory uncertainty on
σðGG → hÞ from higher-order terms in the SMEFT frame-
work, and how that uncertainty is affected by which pieces
of the SMEFT calculation are retained when fitting
experimental data. This study was made possible by the
calculation of σðGG → hÞ in Ref. [18], the first analysis to
include both complete Oð1=Λ4Þ effects and one-loop
corrections to Oð1=Λ2Þ terms. We explored three ways

of splitting the full Oð1=Λ4Þ, Oð1=16π2Λ2Þ result into a
subset used for fitting experimental data, and a remainder
that defines the uncertainty: (i) fitting experimental data
with the linear Lð6Þ piece only [in which case the uncer-

tainty is all of Eq. (11) except the terms linear in Cð6Þ
HG],

(ii) fitting with the linear and quadratic Lð6Þ pieces, and
(iii) fits including select Lð8Þ terms. Defined in this fashion,
the theory error is controlled primarily by the dimensionful
scale Λ and can be combined in quadrature with the
experimental uncertainty.
Cases (ii) and (iii) are unconventional as they contain

only a subset of higher-order results; however, they capture
physics that case (i) cannot, such as a relative suppression
in interference terms relative to ðLð6ÞÞ2 terms originating
from the fact that gg → h is a one-loop process in the SM.

IncorporatingCð8Þ
HG terms into the fit, forming a combination

with Cð6Þ
HG and ðCð6Þ

HGÞ2 that we defined as Σk, further
stabilizes the theory uncertainty when assuming a tree/
loop hierarchy of Wilson coefficients. We found that the
field redefinition ambiguities in cases (ii) and (iii) are small,
suppressed by interference with the SM amplitude, and the
type of basis dependence ∝ λ, the Higgs quartic, observed
in Refs. [20,36] does not appear to arise.
When extracting numerical results, we explored two

different Wilson coefficient sampling schemes: all coef-
ficients the same, and alternatively a tree/loop hierarchy.
While obviously not exhaustive, these two schemes span a
wide class of UV scenarios; for other setups, one could
repeat the steps here starting with the result in Ref. [18].
Finally,wewish to stress that the loop nature ofσðGG → hÞ

in the SM plays a crucial role in the validity of including
partialOð1=Λ4Þ results when comparing with experiment, as
it suppresses field redefinition ambiguities on the quadratic
term (independent of the Wilson coefficient matching
scheme). We strongly stress that our conclusions do not
generally apply to the casewhere a tree-level SMamplitude is
present to interfere with SMEFT perturbations. When retain-
ing partial Oð1=Λ4Þ terms in a projection of experimental
results in such a case, numerical ambiguities can be Oð1Þ.
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APPENDIX A: THEORY ERROR NUMERICAL
ESTIMATES

An alternative approach to illustrating the effect of
higher-order terms leading to theory error estimates is to
set Cð6Þ

HG to a fixed value, and then illustrate the resulting
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change in the induced deviation in σðGG → hÞ when the
higher-order coefficients are varied over assumed
distributions.
These results are shown in Figs. 2–4. In each of the

figures, the black and red lines indicate the contribution to
Eq. (11) from the linear and quadratic Cð6Þ

HG terms, respec-
tively. The green band shows the range of values when the
Oð1=Λ4Þ terms are included, and the blue band shows the
range once Oð1=Λ4Þ and “loop,” Oð1=16π2Λ2Þ terms are
included. The range of values corresponds to 2σ values,
derived from sampling the coefficients in the higher-order
[Oð1=Λ4Þ or Oð1=16π2Λ2Þ] terms 10 000 times from
Gaussian distributions and extracting the standard deviation
of the collection. The differences between the figures are
the assumptions made on the Wilson coefficients; in Fig. 2,

we set Cð6Þ
HG ¼ 0.01 and sample the higher-order terms

according to a Gaussian with zero mean and width 0.01, in

Fig. 3 we use 1.0 for the value of Cð6Þ
HG and the width of the

sampling Gaussians, and in Fig. 4 we use a tree/loop

scheme, setting Cð6Þ
HG ¼ 0.01 and using 1.0=0.01 for the

width of the Gaussians for operators that fall into the tree/
loop category. The horizontal axes of the three figures have
been chosen such that the (absolute value of the) deviation
in σðGG → hÞ is less than 0.5.

FIG. 3. Deviation in σðGG → hÞ relative to the SM with

Cð6Þ
HG ¼ 1.0, and all other coefficients sampled according to Gaus-

sian distributions with zero mean and width 1.0. The deviation is
plotted as a function of Λ. The black (red) lines correspond to the

linear (quadratic) Cð6Þ
HG terms, the green band is the 2σ band that

results from 10 000 samples of the Oð1=Λ4Þ corrections, and the
blue band is the 2σ band from 10 000 samples of the sum of the
Oð1=Λ4Þ and loop-level, Oð1=16π2Λ2) terms.

FIG. 2. Deviation in σðGG → hÞ relative to the SM with

Cð6Þ
HG ¼ 0.01, and all other coefficients sampled according to

Gaussian distributions with zero mean and width 0.01. The
deviation is plotted as a function of Λ. The black (red) lines

correspond to the linear (quadratic) Cð6Þ
HG terms, the green band is

the 2σ band that results from 10 000 samples of the Oð1=Λ4Þ
corrections, and the blue band is the 2σ band from 10 000 samples
of the sum of the Oð1=Λ4Þ and loop-level, Oð1=16π2Λ2) terms.

FIG. 4. Deviation in σðGG → hÞ relative to the SM with

Cð6Þ
HG ¼ 0.01, and all other coefficients sampled according to

Gaussian distributions with zero mean and width of either 1.0
or 0.01 depending on whether the corresponding operator is
generated at tree or loop level following the classification in
Refs. [14–16]. The deviation is plotted as a function of Λ, and the
color scheme for the lines and bands is the same as in Figs. 2 and 3.
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APPENDIX B: ADDITIONAL THEORY ERROR ESTIMATES

Here we apply the numerical error analysis technique from Sec. V to Γðh → γγÞ; Γðh → γγÞ is also a loop-level process in
the SM and therefore subject to similar questions as σðGG → hÞ regarding which SMEFT contributions to keep when
projecting experimental results and the impact of higher-order terms. The full SMEFT expression to Oðv2T=16π2Λ2Þ,
Oðv4T=Λ4Þ was derived in Ref. [18]:

Γm̂W
SMEFT

Γm̂W
SM

≃ 1 − 788fm̂W
1 ðB1Þ

þ 3942ðfm̂W
1 Þ2 − 351ðC̃ð6Þ

HW − C̃ð6Þ
HBÞfm̂W

3 þ 2228δGð6Þ
F fm̂W

1 þ 979C̃ð6Þ
HDðC̃ð6Þ

HB þ 0.80C̃ð6Þ
HW − 1.02C̃ð6Þ

HWBÞ

− 788

��
C̃ð6Þ
H□

−
C̃ð6Þ
HD

4

�
fm̂W
1 þ fm̂W

2

�
þ 2283C̃ð6Þ

HWBðC̃ð6Þ
HB þ 0.66C̃ð6Þ

HW − 0.88C̃ð6Þ
HWBÞ − 1224ðfm̂W

1 Þ2 − 117C̃ð6Þ
HB − 23C̃ð6Þ

HW

þ
�
51þ 2 log

�
m̂2

h

Λ2

��
C̃ð6Þ
HWB þ

�
−0.55þ 3.6 log

�
m̂2

h

Λ2

��
C̃ð6Þ
W þ

�
27 − 28 log

�
m̂2

h

Λ2

��
ReC̃ð6Þ

uB
33

þ
�
14 − 15 log

�
m̂2

h

Λ2

��
ReC̃ð6Þ

uW
33

þ 0.56ReC̃ð6Þ
uH
33

− 0.31ReC̃ð6Þ
dH
33

þ 2C̃ð6Þ
H□

−
C̃ð6Þ
HD

2
þ 2.0C̃ð6Þ

HD − 7.5C̃ð6Þ
HWB − 3

ffiffiffi
2

p
δGð6Þ

F ðB2Þ

in the m̂W scheme, and

Γα̂ew
SMEFT

Γα̂ew
SM

≃ 1 − 758fα̂ew1 þ 3792ðfα̂ew1 Þ2 − 350ðC̃ð6Þ
HW − C̃ð6Þ

HBÞ2 − 1159ðfα̂ew1 Þ2 − 61C̃ð6Þ
HWBðC̃ð6Þ

HB þ 7.2C̃ð6Þ
HW − 9.2C̃ð6Þ

HWBÞ

− 13.5C̃ð6Þ
HDðC̃ð6Þ

HB þ 16C̃ð6Þ
HW − 15C̃ð6Þ

HWBÞ þ 1383δGð6Þ
F ðC̃ð6Þ

HB − 0.13C̃ð6Þ
HW − 0.15C̃ð6Þ

HWBÞ

− 758

��
C̃ð6Þ
H□

−
C̃ð6Þ
HD

4

�
fα̂ew1 þ fα̂ew2

�
− 218C̃ð6Þ

HB þ 22C̃ð6Þ
HW þ

�
−17þ 2.0 log

�
m̂2

h

Λ2

��
C̃ð6Þ
HWB

þ
�
−0.60þ 3.6 log

�
m̂2

h

Λ2

��
C̃ð6Þ
W þ

�
26 − 27 log

�
m̂2

h

Λ2

��
ReC̃ð6Þ

uB
33

þ
�
14 − 15 log

�
m̂2

h

Λ2

��
ReC̃ð6Þ

uW
33

þ 0.56ReC̃ð6Þ
uH
33

− 0.31ReC̃ð6Þ
dH
33

þ 2C̃ð6Þ
H□

−
C̃ð6Þ
HD

2
−

ffiffiffi
2

p
δGð6Þ

F ðB3Þ

in the α̂ew scheme. Here, Cð6þ2nÞ
HB , Cð6þ2nÞ

HW , Cð8Þ
HW;2, C

ð6þ2nÞ
HWB , Cð6Þ

uH, C
ð6Þ
uB , and Cð6Þ

W are the Wilson coefficients of the following
operators:

Qð6þ2nÞ
HB ¼ ðH†HÞð1þnÞBμνBμν;

Qð6þ2nÞ
HW ¼ ðH†HÞð1þnÞWμν

a Wa
μν;

Qð8Þ
HW;2 ¼ ðH†σaHÞðH†σbHÞWμν

a Wb
μν;

Qð6þ2nÞ
HWB ¼ ðH†σaHÞðH†HÞðnÞWa

μνBμν;

Qð6Þ
uH ¼ ðH†HÞðq̄rurH̃Þ;

Qð6Þ
uB ¼ ðq̄rσμνurÞH̃Bμν;

Qð6Þ
W ¼ ϵIJKWI;ν

μ WJ;ρ
ν WK;μ

ρ : ðB4Þ
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fm̂W
i ≅ fα̂ewi are linear combinations of Wilson coefficients:

fm̂W
1 ¼ ½C̃ð6Þ

HB þ 0.29C̃ð6Þ
HW − 0.54C̃ð6Þ

HWB�; ðB5Þ

fm̂W
2 ¼ ½C̃ð8Þ

HB þ 0.29ðC̃ð8Þ
HW þ C̃ð8Þ

HW;2Þ − 0.54C̃ð8Þ
HWB�; ðB6Þ

fm̂W
3 ¼ ½C̃ð6Þ

HW − C̃ð6Þ
HB − 0.66C̃ð6Þ

HWB�: ðB7Þ

Following the analysis of σðGG → hÞ, we break up the
full result for Γðh → γγÞ into three cases:

(i) Retain only the dimension-six interference piece,
∝ f1, when comparing with experiment. The loop
corrections forΓðh → γγÞ are not∝ f1 [41], so in this
case we only keep the tree-level interference term.

(ii) Retain the interference piece plus ðf1Þ2 terms, the
square of the dimension-six piece from (i).

(iii) Retain the f1, ðf1Þ2, and f2 terms.
In each case, we associate the remainder of Eqs. (B2)–(B3)
with the impact from higher-order terms and explore its
numerical impact using the same two Wilson coefficient
matching schemes used in the main text.

We next determine the minimum scale Λmin by equating
the retained part of Γðh → γγÞ to the current uncertainty
on gg → h → γγ, δμgg→h→γγ ¼ 0.14 [37] and setting
Wilson coefficients according to the matching scheme.
Then, for Λ > Λmin, we evaluate the higher-order piece 10
000 times, evaluating the higher-order terms at each step
using values drawn from Gaussian distributions with the
width set by the matching scheme. The standard deviation
from the collection of higher-order term values is
shown below in Figs. 5 and 6 as a function of Λ=Λmin
for the various Wilson coefficient sampling cases, match-
ing patterns, and electroweak input schemes.8

As was the case in σðGG → hÞ, case (iii) is the most
robust under the different Wilson coefficient schemes
studied here. As was the case for σðGG → hÞ, the difference
between the curves with all Wilson coefficients equal to 1
and all coefficients equal to 0.01 (when plotted vs Λ=Λmin)
can be traced to the logðΛ2Þ terms in Γðh → γγÞ.
Additionally, comparing Figs. 5 and 6, one can see that
there is some dependence on the electroweak input scheme.
[We have checked that in the case of the U(1) matching
model, the retention of a partial set of higher-order order
terms used here does not indicate intrinsic basis depend-
ence due to λ dependence.]

FIG. 5. Uncertainty on Γðh → γγÞ from higher-order terms in
the m̂W scheme. The different colored lines correspond to
different ways of breaking up the SMEFT calculation into a
piece that is compared to experiment and a higher-order correc-
tion. The red lines correspond to projecting the data onto Wilson
coefficients using the dimension-six interference term (f1) only,
the green lines correspond to including the f1 and ðf1Þ2 pieces,
and the blue line corresponds to including f1, ðf1Þ2, and f2. The
solid lines correspond to a coefficient matching scheme where all
coefficients are 0.01, the dotted lines correspond to all coef-
ficients equal to 1, and the dashed lines correspond to the tree/
loop scheme with values 1.0=0.01.

FIG. 6. Uncertainty on Γðh → γγÞ from higher-order terms in
the α̂ew scheme. The color and dashing scheme is the same as in
Fig. 5.

8Explicitly, the Λmin values for Γm̂W ðh → γγÞ are Λmin ¼
1.6 TeV for all cases when the Wilson coefficients are all
0.01, Λmin ¼ 16 TeV for all cases when the Wilson coefficients
are all 1.0, and Λmin ¼ 1.6; 1.6; 2.5 TeV for cases i), ii), and iii),
respectively, in the tree/loop 1.0=0.01 scheme. The Λmin values
for Γα̂ewðh → γγÞ are essentially the same.
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