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Which is the best metric for the space of collider events? Motivated by the success of the energy mover’s
distance in characterizing collider events, we explore the larger space of unbalanced optimal transport
distances, of which the energy mover’s distance is a particular case. Geometric and computational
considerations favor an unbalanced optimal transport distance known as the Hellinger-Kantorovich
distance, which possesses a Riemannian structure that lends itself to efficient linearization. We develop the
particle linearized unbalanced optimal transport framework for collider events based on the linearized
Hellinger-Kantorovich distance and demonstrate its efficacy in boosted jet tagging. This provides a flexible
and computationally efficient optimal transport framework ideally suited for collider physics applications.
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I. INTRODUCTION

The distance between collider events is a promising tool
for analyzing particle physics data. But what is the best way
to define such a distance? Recently, Komiske et al. [1]
pioneered a new approach to the problem using the tools of
optimal transport: The energy mover’s distance (EMD)
treats collider events as angular distributions of energy (or
closely related analogs such as transverse momentum
distributions in the rapidity-azimuth plane at hadron col-
liders) and computes a modified form of the canonical
Earth mover’s distance between these distributions.
Intuitively, this quantifies the “work” required to rearrange
one collider event to look like the other or, in other words,
how to “optimally transport” one collider event into
another. Optimal transport distances are naturally suited
to the space of collider events. They allow for the
comparison of raw event data (that is, events composed
of a finite number of energy measurements at prescribed
locations) without smoothing or binning, and they respect
the underlying notion of distance in the reference frame of

the detector. Furthermore, they are robust to high-frequency
noise, ensuring infrared and collinear safety [1,2].
Application of the EMD to collider events has led to new

bounds on the modification of infrared- and collider-safe
observables by hadronization [1]; jet classification using
interpretable, distance-based machine learning algorithms
[1,3]; visualization of the metric space of jets using CMS
open data [4]; and definition of new shape variables [5,6].
In Ref. [2], the EMD formed the foundation of a unified
approach to collider observables based on the distance
between an event and a manifold on the space of events,
recasting decades of collider physics in the language of
optimal transport. Optimal transport also underlies a
number of recently developed machine learning frame-
works for model discrimination, anomaly detection, and
event generation at the LHC [7–14].
The advantages of applying optimal transport to collider

events are increasingly clear. But which optimal transport
distance is best? The Earth mover’s distance, on which the
EMDwas based, is only one example of a family of balanced
optimal transport distances defined between equally normal-
ized distributions, known as p-Wasserstein distances.
Although the various p-Wasserstein distances are qualita-
tively similar, they differ in key respects. For instance, only
the 2-Wasserstein distance has a Riemannian structure that
admits a computationally efficient linearized approximation
[15,16]. Additional choices arise when comparing events
with unequal total energy.TheEMDis obtainedby extending
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the Earth mover’s distancewith an additional term to account
for differences in total energy or pT among collider events,
but this extension is far from unique. Rather, there are many
possible approaches to the unbalanced optimal transport
problem, one of which enjoys a Riemannian structure akin
to the 2-Wasserstein distance. Of course, the “best” optimal
transport distance for collider events depends on the
relevant criteria. Practical considerations include simplicity,
robustness, and computational speed, while theoretical
considerations (such as the conceptual advantages of a
geometric language for collider physics) favor geometric
interpretability.
In this paper, we develop and demonstrate an optimal

transport framework for collider events that builds on the
EMD with an eye toward these goals. We first situate
the EMD in the space of unbalanced optimal transport
distances, showing that the EMD is an example of the
partial transport distance [17–21]. The dynamic formu-
lation of the partial optimal transport distance, in turn,
suggests a general framework for unbalanced optimal
transport that may be applied to collider events. In
particular, optimizing for both computational speed and
geometric interpretability favors an unbalanced optimal
transport distance known as the Hellinger-Kantorovich
distance [22–26]. Loosely speaking, this distance general-
izes the 2-Wasserstein distance to unbalanced distributions,
preserving a Riemannian structure that lends itself to both
geometric interpretation and computational efficiency via
linearization [26,27].
The latter advantage is particularly salient. Constructing

the geometry of a collider event sample is computationally
expensive, requiring the determination of OðN2

evtÞ optimal
transport distances. However, the computational cost may
be significantly decreased by leveraging optimal transport
distances admitting a Riemannian structure, such as the
2-Wasserstein distance (for balanced distributions) and the
Hellinger-Kantorovich distance (for unbalanced ones). This
allows the calculation of optimal transport distances to be
linearized by projecting onto the tangent plane at a chosen
reference event and computing simpler l2 distances on
this plane.
For the balanced case, the linearized optimal transport

(LOT) approximation [28] to the 2-Wasserstein distance is
competitive with EMD in boosted jet classification at a
fraction of the computational cost [3]. Furthermore, as the
numerical discretization of the reference event is refined,
the linearized metric converges to a true metric on the space
of events (see Corollary 1 in Ref. [3]). In the case where the
reference measure is chosen to be an approximation of the
uniform measure, the LOT embedding is closely related to
comparing power diagrams [2,29,30]. Recent work by
Delalande and Mérigot [31] has quantified the relationship
between the original 2-Wasserstein distance and its lineari-
zation, implying, in particular, that LOT preserves benefits
of infrared and collinear safety [1,2].

For the unbalanced case, the corresponding lineari-
zation of the Hellinger-Kantorovich distance was recently
developed in Ref. [27]. In analogy with LOT, wewill refer to
the linearization of the Hellinger-Kantorovich metric for
discrete measures as particle linearized unbalanced optimal
transport (PLUOT). As with LOT, when the reference
measure is an approximation of the uniform measure, the
PLUOT embedding is closely related to comparing gener-
alized Laguerre diagrams [2,29]. Here, we apply PLUOT to
the classification of boosted W and QCD jets, finding that
simple machine learning algorithms based on PLUOT
perform comparably to the same algorithms based on the
EMD in a fraction of the time. This provides a computa-
tionally efficient linearized optimal transport framework
suitable for comparing collider events with different total
energy or pT.
On one hand, we are optimistic that the computational

advantages of our approach will enable entirely new appli-
cations of optimal transport methods in particle physics. On
the other hand, as we will see, the advantages of applying
the Hellinger-Kantorovich distance to collider events
extend beyond the computational speedup arising from
linearization. The Hellinger-Kantorovich distance and its
linearization depend on a length scale κ which determines
the relative cost of transporting vs creating or destroying
energy. When applied to the classification of boosted W
and QCD jets, simple machine learning algorithms using
PLUOTwith an optimized choice of κ outperform the same
algorithms using the EMD when the jets are drawn from a
sufficiently large pT range. We also find that boosted jet
classification based on the Hellinger-Kantorovich distance
is more robust against pileup contamination than traditional
approaches such as N-subjettiness.
This paper is organized as follows: In Sec. II, we review the

classical Earth mover’s distance and other p-Wasserstein
distances of balanced optimal transport. We then turn to the
energy mover’s distance, showing that it is a special case of
the partial transport distance. We use a dynamic formulation
of the partial transport distance to introduce a more general
family of unbalanced optimal transport distances. Within this
family, we focus on the Hellinger-Kantorovich distance,
reviewing the linearization introduced in Ref. [27] and
introducing the PLUOT framework for collider events. In
Sec. III, we consider the classification of boostedW andQCD
jets, using the PLUOTdistance as input to a number of simple
machine learning algorithms. We study the performance of
these algorithms as a function of the choice of reference
measure, Hellinger-Kantorovich scale parameter, and pT
range, finding performance comparable or superior to the
same algorithms using EMD distances with much lower
computation and storage costs. Finally, in Sec. IV, we study
the effects of pileup onPLUOT-based classification, finding a
surprising level of robustness compared to, e.g., classification
based on N-subjettiness ratios. We conclude in Sec. V,
reserving tables of numerical results for the Appendix.
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II. UNBALANCED OPTIMAL TRANSPORT

Consider two discrete measures E and E0, which assign
positive masses fEigi∈I and fEjgj∈J to particles at locations
fxigi∈I and fx0jgj∈J, respectively, in a domain Ω ⊆ Rd. For
example, in the collider physics context, such measures
are often used to represent jet events, where the mass
assigned at a point represents the energy measured by the
calorimeters.1 When the measures have the same total mass,P

i Ei ¼
P

j E
0
j, the theory of (balanced) optimal transport

provides a natural notion of distance between the two
measures. For example, if dij ¼ kxi − x0jk represents the
distance between particles in each discrete measure, the
classical Earth mover’s distance is given by

W1ðE; E0Þ ≔ min
γij∈ΓEMD

ðE;E0Þ

X
ij

dijγij;

ΓEMD
ðE;E0Þ ≔

�
γij∶γij ≥ 0;

X
j

γij ¼ Ei;
X
i

γij ¼ E0
j

�
:

This can be interpreted as finding a way to rearrange the
distribution of mass in E to match E0, using the least amount
of effort: γij represents the amount of mass moved from
particle i to particle j, and

P
ij γijdij represents the required

effort. By making a mild modification to the notion of effort,
one may also consider the p-Wasserstein distance between
two discrete measures of equal total energy, for p ≥ 1:

WpðE; E0Þ ≔ min
γij∈ΓðE;E0Þ

�X
ij

γijd
p
ij

�
1=p

: ð1Þ

In recent years, there has been substantial interest in
generalizing the above metric to measures with unequal
total energy, known as the unbalanced optimal transport
problem [18–26,32,33]. We begin by recalling the notion
of partial optimal transport, as already used in collider
physics applications by Komiske et al. [1]. Next, we
describe how partial optimal transport distances relate to
the Hellinger-Kantorovich distance [22–26], which will be
the key tool in the present work. As we will describe, the
Hellinger-Kantorovich distance is unique among related
distances due to the fact that it has a Riemannian structure
[26,27]. This allows us to linearize the metric and vastly
improve its computational performance on classifica-
tion tasks.

A. Partial optimal transport

The first unbalanced optimal transport metric considered
in collider physics was the energy mover’s distance studied

by Komiske et al. [1]. In this case, for fixed R ≥
maxijdij=2, the distance between discrete measures E, E0 is

EMDRðE; E0Þ ¼ min
γij∈ΓEMD

≤ðE;E0Þ

1

R

X
ij

dijγij þ
����X

i

Ei −
X
j

E0
j

����;
where a transport plan γij belongs to the set ΓEMD

≤ðE;E0Þ in case

it satisfies the following four criteria:
(a) γij ≥ 0,
(b)

P
j γij ≤ Ei,

(c)
P

i γij ≤ E0
j, and

(d)
P

ij γij ¼ min ðPi Ei;
P

j E
0
jÞ.

These criteria ensure that (i) the amount of mass moved
between any two particles is always non-negative, (ii) the
maximum amount of mass that can be moved from location
i in E to any location in E0 is Ei, (iii) the maximum amount
of mass that can be moved to location j in E0 from any
location in E is E0

j, and (iv) the total mass that is moved
equals the total mass of whichever event has smaller mass.
If strict inequality holds in (b), we will say Ei −

P
j γij

mass has been destroyed at xi, and if strict inequality holds
in (c), we will say E0

j −
P

i γij mass has been created at x0j.
Note that, when the measures E and E0 have equal total
mass, EMDRðE; E0Þ ¼ 1

RW1ðE; E0Þ.
In fact, the energy mover’s distance is a special case of

the partial transport distance studied by Georgiou et al.
[17], Caffarelli and McCann [18], Figalli [19], and Piccoli
and Rossi [20,21]: For κ > 0, p ≥ 1, define

Tκ
pðE; E0Þ ¼ min

γij∈Γ≤ðE;E0Þ
ðΣijd

p
ijγijÞ1=p

þ κ

2
ðjΣiEi − Σijγijj þ jΣjE0

j − ΣijγijjÞ; ð2Þ

where a transport plan γij belongs to the set Γ≤ðE;E0Þ in case
it satisfies criteria (a)–(c) above. The two main differences
between EMDR and Tκ

p are that, first, the partial transport
distances allow p ≥ 1 and, second, they permit the amount
of mass that is rearranged from E to E0 to differ from the
total mass of whichever event has smaller mass. To see this,
assume without loss of generality that E has smaller total
mass,

P
i Ei ≤

P
j E

0
j. The distance EMDR requires that all

of the mass in E be rearranged: Exactly
P

j E
0
j −

P
i Ei

mass is created in E0, and no mass is destroyed. On the other
hand, Tκ

p allows for
P

ij γij ∈ ð0;minðPi Ei;
P

j E
0
jÞÞ

mass to be rearranged:
P

i Ei −
P

ij γij mass is destroyed
in E, and

P
j E

0
j −

P
ij γij mass is created in E0.

Now we show why, for κ ¼ 2R ≥ maxijdij, EMDR

coincides with (a constant multiple of) Tκ
1. First, note

that the EMD constraint set is a subset of the Piccoli-
Rossi constraint set, ΓEMD

≤ðE;E0Þ ⊆ Γ≤ðE;E0Þ. Furthermore, if

γij ∈ ΓEMD
≤ðE;E 0Þ, then the values of the objective function in

each minimization problem coincide, up to a factor of

1In what follows, we will largely use the lexicon of optimal
transport, emphasizing that energy or pT (rather than jet or
particle masses) will play the role of “mass” in collider physics
applications.
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κ ¼ 2R. Thus, if we can show that κ ¼ 2R ≥ maxijdij
ensures that the optimizer γ�ij of T

κ
1 belongs to the stricter

constraint set ΓEMD
≤ðE;E0Þ, we can conclude that

Tκ
1ðE; E0Þ ¼ T2R

1 ðE; E0Þ ¼ REMDRðE; E0Þ: ð3Þ

Observe that, using properties (b) and (c) of the con-
straint set Γ≤ðE;E0Þ, we may remove the absolute value signs
in the definition of Tκ

1 and express it equivalently as

Tκ
1ðE; E0Þ ¼ min

γij∈Γ≤ðE;E0Þ

X
ij

ðdij − κÞγij þ
κ

2
ðΣiEi þ ΣjE0

jÞ:

ð4Þ

Thus, if κ ≥ maxijdij, the coefficient on γij is always
negative, so the optimal γ�ij for the Tκ

1 distance will be
as large as possible, subject to the constraints (b) and (c). In
particular, the optimal γ�ij will satisfy constraint (d) and
belong to ΓEMD

≤ðE;E0Þ.
The above argument not only establishes the equivalence

between Tκ
1 and EMDR for κ ¼ 2R ≥ maxijdij, but also

sheds light on the role of the parameter κ > 0. From Eq. (2),
we observe that smaller κ makes creation and destruction
cheaper and transport comparatively more expensive. In
fact, using Eq. (4), we can make this quantitative: If γ�ij is
the optimizer, then, for any i, j such that dij > κ, we must
have γ�ij ¼ 0. (If not, we could find a strictly better choice
of γ in Γ≤ðE;E0Þ by setting γij ¼ 0, contradicting that γ�ij was
the optimizer.) In other words, energy will never be
transported over a distance greater than κ.

B. From partial optimal transport to the
Hellinger-Kantorovich distance

One of the key contributions of Piccoli and Rossi’s work
on the partial optimal transport distance Tκ

p is a dynamic
formulation of the distance [21]. This dynamic perspective
is most clear when Tκ

p is stated in full generality, as a
distance on the space of finite Borel measures MðΩÞ: For
μ; μ0 ∈ MðΩÞ, κ > 0, and p ≥ 1,

Tκ
pðμ; μ0Þ ¼ inf

γ∈Γ≤ðμ;μ0Þ

�Z Z
jx − x0jpdγðx; x0Þ

�
1=p

þ κ

2

�����
Z

μ −
ZZ

γ

����þ
����
Z

μ0 −
ZZ

γ

����
�
; ð5Þ

where we say γ ∈ Γ≤ðμ;μ0Þ in case γ ∈ MðΩ ×ΩÞ satisfies
γðB ×ΩÞ ≤ μðBÞ and γðΩ × BÞ ≤ μ0ðBÞ for any Borel set
B. Note that Eq. (5) reduces to Eq. (2) when μ ¼ P

i∈I δxiEi

and μ0 ¼ P
j∈J δx0jE

0
j.

Piccoli and Rossi [21,24] show that Tκ has the following
equivalent dynamic formulation:

Tκ
pðμ;μ0Þ ¼ inf

ρ;v;ψ∈Cðμ;μ0Þ
ðAκ

p½ρ; v;ψ �Þ1=p;

Aκ
p½ρ; v;ψ � ¼

Z
1

0

Z
Ω
ðjvðx; tÞjpþðκ=2Þjψðx; tÞjÞρðx; tÞdxdt;

Cðμ;μ0Þ ¼ fρ∈Cð½0;1�;MðΩÞÞ;v∈L2ðdρtdtÞ;
ψ ∈L1ðdρtdtÞ∶∂tρþ∇ · ðρvÞ ¼ ψρ;ρð·;0Þ
¼ μ;ρð·;1Þ ¼ μ0g:

In other words, one can find the Tκ
p distance from μ to μ0 by

considering all curves ρ connecting μ to μ0 with velocity v
and reaction rate ψ and finding the curve with least
action Aκ

p½ρ; v;ψ �.
This dynamic perspective reveals a general framework

for unbalanced optimal transport problems, in terms of
minimizing different notions of action. In particular, as
observed in Ref. [24], for any κ > 0, p ≥ 1, and q ≥ 1, one
may consider

Aκ
p;q½ρ; v;ψ � ¼

Z
1

0

Z
Ω
ðjvðx; tÞjp

þ ðκ=2Þqjψðx; tÞjqÞρðx; tÞdxdt:

As before, large values of κ > 0 penalize creation and
destruction. In particular, sending κ → þ∞ (see Theorem
7.24 in Ref. [23]),

lim
κ→þ∞

inf
ρ;v;ψ∈Cðμ;μ0Þ

ðAκ
p;q½ρ; v;ψ �Þ1=p

¼
�
Wpðμ; μ0Þ if

R
μ ¼ R

μ0;

þ∞ otherwise:

While minimizing the action Aκ
p;q½ρ; v;ψ � with q ¼ 1

yields the partial transport distance Tκ
p described in the

previous section, minimizing it for p ¼ q ¼ 2 yields the
Hellinger-Kantorovich distance

HKκðμ; μ0Þ ¼ inf
ρ;v;ψ∈Cðμ;μ0Þ

ðAκ
2;2½ρ; v;ψ �Þ1=2: ð6Þ

This case is distinguished among all p, q ≥ 1, since it is
the only choice that directly gives rise to an infinite-
dimensional Riemannian manifold [24,26]. Furthermore,
not only does the Hellinger-Kantorovich metric have a
well-defined limit as κ → þ∞ whenever μ and μ0 have
equal mass, limκ→þ∞HKκðμ; μ0Þ ¼ W2ðμ; μ0Þ, the κ → 0
limit is also well defined for arbitrary μ; μ0:

lim
κ→0

1

κ
HKκðμ; μ0Þ ¼

�Z ����
ffiffiffiffiffiffi
dμ
dx

r
−

ffiffiffiffiffiffiffi
dμ0

dx

r ����
2

dx

�1=2

; ð7Þ

which is known as the Hellinger distance [22–24].
Like the original definition of the partial optimal trans-

port distances Tκ
p, it can also be expressed in terms of a
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static minimization problem, which for simplicity, we state
in the case of fully discrete measures E, E0:

HKκðE; E0Þ ¼ min
γij≥0

X
ij

ðlκðdijÞγij þ κ2KLðG; EÞ

þ κ2KLðG0; E0ÞÞ1=2; ð8Þ

where G and G0 are auxiliary discrete measures, with G
assigning mass Gi ¼

P
j γij to location xi and G0 assigning

mass G0
j ¼

P
i γij to xj, and

lκðsÞ ¼
�
−2κ2 logðcos2ðs=κÞÞ if s < π

2
κ;

þ∞; otherwise;

KLðG; EÞ ¼
X
i

Eif

�
Gi

Ei

�
; fðsÞ ¼ s logðsÞ − sþ 1:

ð9Þ

The equivalence between Eqs. (6) and (8) is a signi-
ficant mathematical result, due to Liero, Mielke, and
Savaré, based on a surprising connection with cone
geometry [22,23].
The optimizer γij of Eq. (8) represents how much mass is

transported from xi in G to x0j in G
0; that is, γij is the optimal

transport plan from G to G0. In general, Gi ≠ Ei and
G0

j ≠ E0
j, and the energy that is not transported can be

thought of as having been created or destroyed. In
particular,

(i) if Gi > Ei, we say energy was created at xi;
(ii) if Gi < Ei, we say energy was destroyed at xi;
(iii) if Gj > E0

j, we say energy was destroyed at xj;
(iv) if Gj < E0

j, we say energy was created at xj.
[Note that the first and third options did not arise for the Tκ

p

distance, due to requirements (b) and (c) for the set of
transport plans Γ≤ðE;E0Þ.] While until now we have always
assumed that our discrete measures have strictly positive
energy at every location, Ei; E0

j > 0, observe that it is
possible for Gi or G0

j to be zero.
The first term in the minimization problem in Eq. (8)

penalizes transporting energy over long distances. As with
Tκ
p, small values of κ penalize transport: Energy will never

be transported over distance greater than κπ
2
. The second two

terms penalize the difference between G and E and between
G0 and E0, in terms of the Kullback-Liebler divergence.
A major difference between the Hellinger-Kantorovich

metric and the 2-Wasserstein metric considered in
the authors’ previous work [3] is that the Hellinger-
Kantorovich metric allows for the comparison of events
with unequal total energy. However, even when the total
energy of events E and E0 coincide, HKκðE; E0Þ is, in
general, not equal to W2ðE; E0Þ. This can be seen, for
example, from Eqs. (8) and (9): Mass will never be
transported more than distance κπ

2
. Interestingly, the

converse is also true: If mass is not transported from xi
to x0j, that is, if γij ¼ 0, then we must have dij ¼ kxi −
xjk ≥ κπ

2
(see Lemma 3.13 in Ref. [27]).

As already observed in the collider physics context for
the special case κ ¼ þ∞, p ¼ q ¼ 1 [1], Chizat et al.
identified that minimizing the action Aκ

p;q has a dual
characterization in terms of the following maximization
problem:

inf
ρ;v;ψ∈Cðμ;μ0Þ

Aκ
p;q½ρ; v;ψ � ¼ sup

φ∈HJκp;q

Z
Ω
φðx;1Þdμ0ðxÞ

−
Z
Ω
φðx;0ÞdμðxÞ;

HJκp;q ¼
�
φ∈C1ð½0;1�×ΩÞ∶

∂tφþ j∇φjp0

p0 þ ðκ=2Þ−q0 jφj
q0

q0
≤ 0

�
;

where p0 ¼ p
p−1 and q0 ¼ q

q−1 [24]; this has been rigorously
justified in the cases p ¼ q ¼ 2 [23] and p ¼ q ¼ 1 [21].
In the above equations, we use the following convention
if either p ¼ 1 or q ¼ 1: As p → 1 or q → 1, the second
and third terms in the sum would diverge to þ∞ unless
j∇φj ≤ 1 or jφj ≤ κ=2, in which case each term would
converge to zero. Consequently, if either p ¼ 1 or q ¼ 1,
we drop the respective term from the inequality and add the
constraint j∇φj ≤ 1 or jφj ≤ κ=2. Furthermore, if we first
send κ → þ∞, to reduce to the p-Wasserstein, since q0 ≥ 1,
the second term in the inequality constraint will vanish. In
this way, for the case κ ¼ þ∞, p ¼ q ¼ 1 considered by
Komiske et al. [1], we see that we may replace HJþ∞

1;1 by
fϕðx; tÞ∶ϕðx; tÞ ¼ ΦðxÞ ∈ C1ðRdÞ; supxj∇ΦðxÞj ≤ 1g, the
space of 1-Lipschitz functions. Indeed, it is the compara-
tively simple formulation of the dual problem in the case
p ¼ q ¼ 1 for all κ > 0 that makes such metrics popular in
practice. However, we choose to work with p ¼ q ¼ 2, due
to its superior geometric properties, which allow us to
linearize the metric, vastly improving computational effi-
ciency of our method, while preserving key features of the
optimal transport distance.

C. Linearized Hellinger-Kantorovich metric

We now describe the linearization of the Hellinger-
Kantorovich metric, as introduced in Ref. [27], that we
use in the present work. We begin by explaining how to
construct an embedding of events E into Euclidean space
Rdn ×Rn, using the optimal transport plan γij in the
Hellinger-Kantorovich metric; see Eq. (8). We will then
describe how computing the distance between the embed-
dings provides a linearization of the Hellinger-Kantorovich
distance.
Let R denote a discrete reference measure, consisting of

particles at locations fxigi∈I with positive masses fRigi∈I .
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For any discrete measure E0, let γij denote an optimizer of
Eq. (8), which represents an optimal transport plan from the
auxiliary measures G to G0. (Note that there may be more
than one optimizer.) In general, the transport plan γij may
send mass from xi in G to many different locations in G0. In
order to linearize the Hellinger-Kantorovich metric, we first
consider the average of these locations, weighted by how
much mass is sent to each place and normalized by the
amount of mass starting at xi in G:

zi ¼
� 1

Gi

P
j γijx

0
j if Gi > 0;

xi if Gi ¼ 0:
ð10Þ

Next, we consider the average amount that mass starting
at location xi needs to be rescaled, via creation or
destruction, in order for R to become E0: For each x0j,
consider the ratio E0

j=G
0
j, between the amount of mass that

must end up at location x0j and the amount of mass
transported by γij to x0j. If E

0
j=G

0
j > 1, mass needs to be

created at xj, and if E0
j=G

0
j < 1, mass needs to be destroyed

at xj. Note that this quantity is well defined only for
G0

j ¼
P

i γij > 0. In fact, this is a necessary assumption for
the Hellinger-Kantorovich metric to be linearized in a
manner that admits a Euclidean embedding (see p. 18
in Ref. [27]). Recall from the previous section that a
sufficient condition for γij > 0 is dij ¼ kxi − x0jk < κπ

2
.

Consequently, in what follows, we will suppose that κ is
sufficiently large so that, for each x0j, there exists xi so that

kxi − x0jk <
κπ

2
: ð11Þ

This will ensure G0
j > 0 for all j.

With this assumption in hand, we now consider, for each
fixed xi, the weighted average of this ratio, representing
how much mass needs to be created or destroyed at xj, with
respect to how much mass γij transports to each x0j,
normalized by the amount of mass Gi originally starting
at xi:

ui ¼
(

1
Gi

P
j

�
E0
j

G0
j

	
γij if Gi > 0;

0 if Gi ¼ 0:
ð12Þ

While the coordinate zi, defined in Eq. (10), represents the
average location that mass starting at xi is transported to in
E0, the coordinate ui represents the average amount of
creation or destruction that will happen to mass that started
at xi, after it is transported.
With these quantities in hand, we may now state the

formula for the linearized Hellinger-Kantorovich metric. In
analogy with the linearized 2-Wasserstein metric, which is
known as LOT [3,28], we will refer to the linearization of
the Hellinger-Kantorovich metric for discrete measures as

PLUOT, emphasizing that it is a discrete particle approxi-
mation of the continuum linearization of the Hellinger-
Kantorovich metric studied in previous work by the first
two authors [27]:

PLUOTκðE0; Ẽ0Þ

¼
�X

i

Rikvi − ṽik2 þ
κ2

4
Rijαi − α̃ij2

�
1=2

;

vi ¼ κsgnðzi − xiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uiGi=Ri

p
sinðkzi − xik=κÞ;

αi ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uiGi=Ri

p
cosðkzi − xik=κÞ − 1Þ: ð13Þ

Note that this approximation depends on the choice of the
optimal transport plans γij, γ̃ij via their dependence on xi,
zi, x̃i, z̃i; see Eqs. (10) and (12).
As in the definition of HKκ, the unusual expressions for

vi and αi in PLUOT derive from the surprising connection
to cone geometry [22–24]. In particular, when comparing
the locations and masses of particles ðxi; EiÞ, the cone
structure is used to identify all points with mass zero as the
same point. For example, in one spatial dimension [and
under assumption (11)], ðxi; EiÞ corresponds to the point
ðEi cosðxi=κÞ; Ei sinðxi=κÞÞ in the plane.
To see the connection with Eq. (13), consider the original

location and mass of the ith particle, ðxi; RiÞ, along with
the average location to which its mass is sent and the
average mass at that location after creation or destruction,
ðzi; uiGiÞ. The constant speed geodesic in the cone metric
between these two points represents how the location xi is
optimally transported to zi, while simultaneously mass is
created and destroyed to convert Ri into uiGi [23]. (In one
spatial dimension, this is just the line connecting the two
points in the plane.) The coordinate vi represents the
velocity of the spatial trajectory at time zero, while Riαi
represents the rate of change of the mass at time zero. From
this perspective, PLUOT measures the difference between
two events E0 and Ẽ0 in terms of how a reference event R
deforms into E0 and Ẽ0, by comparing the velocities by
which particles in the reference event move and the rates at
which their masses change.
In analogy with LOT for balanced optimal transport, a

key benefit of the PLUOT approximation of the Hellinger-
Kantorovich metric is that it provides a natural embedding

E0 ↦ ðvi; αiÞi∈I ∈ Rdn ×Rn; ð14Þ

where d is the dimension of the underlying domain Ω in
which particles are located and n is the number of particles
in the discrete reference measure, n ¼ jIj. This vector may
be interpreted geometrically as an approximation of the
tangent vector from R to E with respect to the Hellinger-
Kantorovich geometry, an interpretation that may be
made precise when R is a finite Borel measure that is
absolutely continuous with respect to Lebesgue measure
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(see Definition 4.5 in Ref. [27]). In this way, it is natural to
compare two discrete measures E0 and Ẽ0 by computing the
distance between the vectors ðvi; αiÞ and ðṽi; α̃iÞ as ele-
ments of the tangent space at R, as in Eq. (13) above.
The above Euclidean embedding [Eq. (14)] is useful

from the perspective of classification algorithms for
two reasons. First, while computing the embedding E0 ↦
ðvi; αiÞ for each event E0 in a sample requires OðNevtÞ
computations of the Hellinger-Kantorovich metric in
Eq. (8), computing the linearized distance between all
pairs of events E0 and Ẽ0 using PLUOT requires only
OðN2

evtÞ computations of the weighted Euclidean metric;
see Eq. (13). Given that computing a weighted Euclidean
metric is several orders of magnitude faster than computing
the Hellinger-Kantorovich metric, our approach using
PLUOT offers a substantial computational advantage com-
pared to computing the exact Hellinger-Kantorovich dis-
tance between all pairs of events.
The second reason that the Euclidean embedding in

PLUOT is useful in classification tasks is that it allows us to
apply a wider range of classification algorithms directly to
the vectors ðvi; αiÞ and ðṽi; α̃iÞ representing the discrete
measures ðE0; Ẽ0Þ, including classification algorithms that
require a Euclidean structure. In particular, we are often
able to delegate the computation of the entire pairwise
distance matrix to efficient downstreammethods, leading to
a large storage advantage over other methods.
In our analysis of the linearized Hellinger-Kantorovich

metric as a tool to classify jets, we will investigate the
effects of creation and destruction in the Hellinger-
Kantorovich metric separately from the fact that it
allows for the comparison of events with unequal
total energy. We do this by separately analyzing the
classification performance of the linearization of
PLUOTκðE; E0Þ with the classification performance of
PLUOTκðE=Pi Ei; E0=

P
j E

0
jÞ, where E=ðPi EiÞ denotes

the normalized measure, in which the mass Ei of each
particle in E is replaced by Ei=ð

P
i EiÞ. The Hellinger-

Kantorovich metric exhibits a simple scaling under this
transformation (see Theorem 3.3 in Ref. [34]): Denoting
m ¼ P

i Ei,

ðE0
jÞnorm ¼ m−1=2E0

j; γnormij ¼ m−1=2γij;

Gnorm
i ¼ m−1=2Gi; ðG0

jÞnorm ¼ m−1=2G0
j;

znormi ¼ zi; unormi ¼ m−1=2ui;

vnormi ¼ m−1=2vi; αnormi ¼ m−1=2αi þ 2ðm−1=2 − 1Þ:
ð15Þ

III. JET CLASSIFICATION WITH UNBALANCED
OPTIMAL TRANSPORT

We now demonstrate the practical relevance of linear-
ized, unbalanced optimal transport to collider physics by

applying the PLUOT framework to the task of boosted jet
tagging. Discrimination between boosted jets stemming
from the decay of heavy particles and QCD backgrounds
composed of quark and gluon jets is a key component of
many analyses at the LHC. Here, we focus exclusively on
distinguishing boosted W boson jets from QCD back-
grounds for ready comparison to previous studies applying
optimal transport techniques to boosted jet tagging [1,3],
though the same analysis can be easily extended to other
pairwise tagging tasks.
Compared to previous transport-only methods [3],

unbalanced optimal transport now allows for the creation
and destruction of energy in comparing distributions. For
the Hellinger-Kantorovich distance, the relative importance
of mass creation and destruction over mass transportation is
controlled by the intrinsic length scale parameter κ, as
explained in Sec. II and more extensively in Ref. [27].
Insofar as collider physics applications typically feature
one or more additional length scales (such as the jet
clustering radius R), a key question is how HK-based
classification depends on the value of κ relative to other
length scales. To this end, we consider values of κ ranging
over several orders of magnitude, i.e., κ ∈ ½0.01; 100�.
To develop intuition for the behavior of the linearized

Hellinger-Kantorovich as a function of κ, in Fig. 1 we show
the optimal transport (OT) plans corresponding to either the
W2 or HKκ metrics for various values of κ; see Eqs. (1) and
(8). With an eye toward linearization, the OT plans are
calculated between sample jets and uniform reference
measures. In the first row, OT plans are constructed
between an artificial jet composed of a single particle
and a reference measure consisting of an 8 × 8 grid of
particles. In the second row, OT plans are constructed
between a simulated boosted W jet and a 15 × 15-particle
uniform measure.
For the single-particle artificial jet, both the mass trans-

portation and mass creation and destruction are symmetric
with respect to the origin. Less and less mass is created or
destroyed as κ is increased, and the HK distance approaches
the value of the W2 distance; see the first three columns in
Fig. 1. On the other hand, a small κ essentially reduces the
HK distance to the Hellinger distance, which corresponds
to the ordinary Euclidean difference between rescaled
images, where no mass is being transported; see Eq. (7).
The regime of intermediate κ is perhaps most interesting, as
contributions from both mass transportation and creation
and destruction are important.
To study the performance of the linearized Hellinger-

Kantorovich distance in boosted jet classification, we
consider simulated data consisting of 200 000 boosted
W jets and QCD jets, generated as in Ref. [3]. Proton-
proton collision events at

ffiffiffi
s

p ¼ 14 TeV are simulated in
MADGRAPH 2.9.2 [35] with W bosons being pair produced,
gluons generated via qq̄ → Z → νν̄g, and quarks via
qg → Z → νν̄q. The particles are then hadronized and
decayed in PYTHIA 8.302 [36], where default tuning and
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showering parameters are used. Afterward, we cluster the
events into jets using FastJet 3.3.4 [37] with an anti-kT
algorithm (jet radius R ¼ 1) where at most two jets are
kept with jyj ≤ 1.7 and jϕj ≤ π

2
. Before calculating their

linearized W2 or HK embedding, we boost and rotate the
jets to center the jet 4-momentum and vertically align the
principal component of the constituent pT flow in the y − ϕ
plane using the EnergyFlow package [1,4,38–40]. The pre-
processing procedure removes artificial differences in the
energy flows of the jets.
Once the Euclidean embedding for each jet is acquired

via PLUOT [see Eq. (14)], we employ simple machine
learning algorithms such as k-nearest neighbors (kNN) and
support vector machine (SVM) to classify the jets; see
Sec. IV in Ref. [3] for a detailed discussion of the models.
Given that our main interest here is the optimal transport
distance itself, we limit ourselves mostly to kNN and do
not consider other potentially more powerful machine
learning models or deep neural networks, though their
use can be easily implemented and incorporated into the
present framework.
We consider classification of boosted jets in datasets

consisting of either 10 000 or 200 000 W and QCD jets.
For datasets with 10 000 jets, we use 5000 jets to train
kNN and SVM, 2500 for validation in order to pick the
best model hyperparameter(s), and the remaining 2500 jets
as the test dataset to obtain the model performance. We
try k ∈ ½10; 100� with an increment of 10 for kNN and

C; γ ∈ ½10−2; 105� for SVM where only powers of 10 are
considered. These ranges are chosen by experience so as to
ensure the coverage of the optimal value of the hyper-
parameter(s) but as little of anything else as possible. When
dealing with the full 200 000 dataset, we use 150 000 jets to
train the models and 50 000 to evaluate the performance,
where the model hyperparameter(s) are already picked by
smaller runs with the 10 000 datasets.
We compare the tagging performance of kNN based on

PLUOT to that of N-subjettiness τN , a popular jet sub-
structure observable designed to capture the prongedness of
a jet [41,42]. Since W jets typically have two prongs and
QCD jets are more diffuse and single pronged, the
N-subjettiness ratio τ21 ¼ τ2=τ1 is particularly well suited
to the task at hand. Here τN is determined using the
Nsubjettiness plug-in package in FastJet [41,42].
Another benchmark for gauging the performance of

PLUOT is the pairwise EMD distance matrix [1] coupled
with the same machine learning models. We test the EMD
both on normalized jets, where the jets are first rescaled to
have pT ¼ 1, as well as on unnormalized jets. The ability to
compare both normalized and unnormalized jets is imple-
mented by a built-in function in the EnergyFlow package
[1,4,38–40], with the parameters R; β ¼ 1 and the nor-
malization parameter norm set, respectively, to true or false.
In a similar manner, the PLUOT framework also pre-

sents us with two options to calculate the Euclidean
embedding. One way is to compute the unbalanced OT

FIG. 1. Optimal transport plans from uniform reference measures to jets. In the top row, the reference measure (blue) consists of 8 × 8
particles and is transported to an artificial jet (green), composed of a single particle at the origin. In the second row, the uniform reference
measure (blue) consists of 15 × 15 particles and is transported to a simulatedW jet (red). The columns correspond to different choices of
OT metric:W2 and HKκ with κ ¼ 100, 10, 1, 0.1 (from left to right). The size of the filled dots indicates the amount of pT at that point.
The darkness of the lines indicates how much pT is moved from one particle to another. For HKκ, the thickness of the circles around the
points represents how much pT is destroyed for that particular particle. Also shown at the bottom of the plots are the total OT distances
between the jets, which are similar for κ ¼ þ∞; 100, 10, the transport regime.
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distances directly between jets with different total pT , as in
Eq. (8). Alternatively, we can again normalize the jets so
that each has pT ¼ 1 and then compute the unbalanced
HKκ distance between the normalized jets. We emphasize
that, even when two jets have equal total pT , as in the case
of balanced OT, the HK distance still allows for local mass
to be created and destroyed. In fact, the normalized and
unnormalized approaches are related by simple scaling
transformations; see Eq. (15). For this reason, in practice
we begin by computing the Euclidean embedding of
normalized jets and then invert Eq. (15) to recover the
embedding of the unnormalized jets. Hereafter, we abbre-
viate the distances calculated on normalized jets with a
subscript of N and those obtained for unnormalized jets
with subscript unN.
Previous studies of jet classification based on OT have

been relatively insensitive to differences in total pT
among different jets in the sample, typically considering
events drawn from narrow (50 GeV) pT bins. Indeed, in
Ref. [3], it was observed that classification based on
balanced optimal transport distances between normalized
jets drawn from a 50 GeV pT bin modestly outperformed
unbalanced optimal transport distances using the EMD.
To better assess the effects of unbalanced samples, we
explore events drawn from a broader range of total pT ,
extending from [500, 550] GeV in our previous study [3]
to [500, 1500] GeV. This is achieved by stacking 20
datasets, each containing 10 000 jets with a pT bin of
50 GeV, i.e., pT ∈ ½500; 550� GeV for the first dataset,
pT ∈ ½550; 600� GeV for the second, and so forth. In this
way, in addition to the 20 datasets each with 50 GeV pT
bin width, we have a combined dataset of 200 000 jets
in which the total jet pT is approximately uniformly
distributed between 500 and 1500 GeV. We examine the
PLUOT framework on the classification of jets with
widely different total pT in Sec. III A.
When working with linearized OT, a reference measure

should be chosen in advance against which the OT distance
of simulated jets are computed. Loosely speaking, the
reference measure is the point on the manifold of events
that defines the tangent plane for linearized OT. Our default
is a uniform jet with a total pT ¼ 750 GeV and 15 × 15 ¼
225 constituent particles, whose pT is distributed uniformly
on the y − ϕ rectangle ½−1.7; 1.7� × ½−π=2; π=2�. Such a
reference measure has about the same number of particles
as in a typical W or QCD jet in our sample of simulated
events. Other uniform references considered in this study
have 4 × 4 ¼ 16, 8 × 8 ¼ 64, 30 × 30 ¼ 900, and 60 ×
60 ¼ 3600 constituent particles. The interparticle spacing l
of these reference measures differs widely, ranging from
roughly 0.05 to 0.85. This defines yet another length scale
in addition to the HK scale parameter κ, the jet clustering
radius R, and the characteristic angular separation of the
partonic decay products of a boosted particle of mass m,
∝ m=pT . We study the effect of the reference spacing l on

the tagging performance in Sec. III B and summarize the
interplay of the various scales in Sec. III C.

A. pT range

In this subsection, we study the performance of classi-
fication based on unbalanced optimal transport as a function
of the pT range of the simulated events, comparing the
tagging performance of W vs QCD jets whose total pT ∈
½500; 550� or [500, 1500] GeV. The three OT distances
examined are (i) the EMD distance on normalized jets
(EMDN) and unnormalized jets (EMDunN); (ii) the balanced
W2 distance on normalized jets; and (iii) theHKκ distance on
both normalized and unnormalized jets (denoted as HKN or
HKunN , respectively). The N-subjettiness ratio τ21 is also
computed for each jet where classification using τ21 serves as
a benchmark.
For the HKκ distance, we consider the κ valuesþ∞, 100,

10, 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.07, 0.05, 0.03, and 0.01, with
κ ¼ þ∞ denoting the W2 distance. Here, the reference
measure is taken to be a uniform jet with a total pT ¼
750 GeV and 15 × 15 ¼ 225 particles. Since it is impos-
sible to calculate and store the entire distance matrix for
200 000 jets using the EMD approach with reasonable
computational resources, we compute EMD distances on
only the 10 000 datasets, whereas the linear W2 and HKκ

embedding can be calculated efficiently for the full 200 000
datasets.
Figure 2 shows the tagging performance in terms of the

area under the curve (AUC) score, a number in [0, 1] where
1 indicates a perfect classifier and 0.5 corresponds to
random guessing. A more detailed table including the true
positive rate (TPR), the false positive rate (FPR), and the
optimal hyperparameters is presented in Appendix, where
results from other tasks in Sec. III B are also included. A
discussion of the general trends of the tagging performance
not specific to the present task is deferred to Sec. III C.
As can be seen, for jets drawn from a 50-GeV-wide pT

bin (column 1), classification performance on either nor-
malized or unnormalized jets is almost indistinguishable for
linearized HKκ distances with small κ values (κ ≤ 1). The
EMD approach also produces similar AUC scores regard-
less of whether or not the jets are normalized, with
kNN slightly preferring the normalized approach and
SVM favoring the unnormalized version. The percentage
differences in the AUC are within 1.5%, consistent with
statistical fluctuations. Such behavior is to be expected,
since normalization should not make a big difference when
the total pT difference among jets is small. Additionally, the
tagging performance of the LOT approximation, including
W2 and HKκ (with the exception of HKκ

unN for large κ)
approaches the same (or better, in the case of SVM) level of
accuracy of the EMD method, with far less computational
expense.
The effect of normalization becomes significant

when the pT bin width is broadened. For jets with
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pT ∈ ½500; 1500� GeV (10 000 for column 2 and 200 000
for column 3), the HK distance with κ in its optimal range
calculated directly on the unnormalized jets (dashed blue
lines) gives superior performance to the normalized jets
(solid blue lines), whether we use kNN or SVM as the
coupled model. The increase in AUC reaches about 5% at
its peak when κ ∼ 0.2. There the AUC from the HK
distance, whether normalized or not, is noticeably higher
than when using the EMD distance.
Interestingly, such performance gain is not observed in

the EMD approach. Here, it makes no notable difference
whether we use EMDN (solid gray line) or EMDunN
(dashed gray line). This implies that, though the difference
in total jet pT has potential discriminating power, not all
approaches to unbalanced optimal transport take advantage
of it. A simple difference term like jpTðjet 1Þ − pTðjet 2Þj,
as included in the original EMD formulation, does not lead
to improved discrimination for samples drawn from a larger
pT range. In contrast, unbalanced HKκ, especially HKunN,
appears to take better advantage of this information by
allowing local mass to be created and destroyed in addition
to being transported.
Note that, while the original formulation of the EMD in

the particle physics literature considered a fixed scale
parameter R ¼ κ

2
≥ maxijdij=2 coinciding with the jet

clustering radius, one could perform a similar analysis by
using the more general partial transport distance, investigat-
ing how different choices of R ¼ κ

2
lead to different amounts

of creation and destruction and, potentially, improved AUC
in certain regimes. However, due to the fact that such
metrics lack a Riemannian structure amenable to lineariza-
tion, the analysis of finding the optimal parameter R ¼ 2κ
would be extremely computationally intensive.

B. Reference measures

In the PLUOT framework, we are, in principle, free to
pick any reasonable measure as our reference jet. Ideally,
the choice of a reference measure should not exert too large
an impact on the calculated linear W2 and HK embedding
and the downstream tagging performance. Since the refer-
ence measure is associated with its own scale, the inter-
particle spacing l, it is natural to consider the interplay
between l and the HK scale parameter κ in determining
what constitutes a reasonable measure in practice.
To this end, we examine five uniform reference jets

consisting of 4 × 4, 8 × 8, 15 × 15 (the default), 30 × 30,
and 60 × 60 particles, respectively, denoted as uniref4,
uniref8, uniref15, uniref30, and uniref60. In Fig. 3, we
show the distribution of the Euclidean norms of the LOT

FIG. 2. AUC scores for classifying W vs QCD jets using kNN and SVM models coupled to linear W2 and HKκ embedding with
κ ∈ ½0.01;þ∞�. Jet pT ranges from 500 to 550 (1500) GeV in the first (second, third) column. The datasets for column 1 and column 2
(column 3) have 10 000 (200 000) jets. Solid (dashed) blue lines show the results calculated on normalized (unnormalized) jets;
horizontal gray solid (dashed) lines use the EMD metrics on normalized (unnormalized) jets; and gray dash-dotted lines give the
performance using τ21 as the discriminator.
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coordinates of 10 000 jets (pT ∈ ½500; 550� GeV) with
HKκ using uniref15, uniref30, and uniref60.2 As κ is
decreased from large values κ ∼ 100, the distribution of
the norms using the HKκ distance becomes more and more
similar for different reference measures. The closest agree-
ment occurs for κ ∼ 0.1, which we will see later is the κ
value that gives the optimal tagging performance. As κ is
decreased below κ ∼ 0.1 and we enter a scaled Euclidean
image difference regime, the discrepancy of the norms
using different reference measures becomes noticeable. We
will see that this instability with respect to the chosen
reference measure translates to deterioration of the tagging
performance for small κ values.
Figure 4 shows the tagging performance on 10 000 jets

with total pT ∈ ½500; 550� (first row) and [500, 1500] GeV
(second row) using EMDN , EMDunN; HKN , HKunN; and
the N-subjettiness ratio τ21. Tagging performance is plotted
in terms of AUC as a function of κ for the HK distances.
Apart from similar behaviors already discussed in
Sec. III A, we observe here that the peak tagging perfor-
mance is roughly the same for all reference measures
except uniref4, which does not attain tagging performance
comparable to any EMD distance for any value of κ.
Although uniref8 yields tagging performance comparable
to EMDunN for jets with total pT ∈ ½500; 550� GeV, it does
not reach the tagging performance of EMDN . In contrast,
the tagging performance of PLUOT using uniref15, uni-
ref30, and uniref60 meets or exceeds the tagging perfor-
mance of the EMD distances for optimized values of κ. This
suggests that the classification performance of the linear
W2 and HK distance is rather robust to the choice of the
reference for uniref15 and finer measures. Considering that
the finest reference measure under consideration (uniref60)
incurs a relatively high computational cost without signifi-
cant improvement in tagging performance, in what follows
we largely favor the default 15 × 15 reference jet, reserving
some comparisons with uniref30 for the Appendix.

Table I lists the κ value that produces the best AUC score
for each task using HKN and HKunN metrics. Ignoring
uniref4, the optimal value κbest lies between 0.2 and 0.5 for
all others, regardless of the interparticle spacing l. No
obvious relationship is observed between l and κbest.

C. Discussion

The tagging performance of the HK-based metrics in
Figs. 2 and 4 exhibits three distinct regimes as a function of
κ. In the regime where mass creation or destruction
dominates (κ ≲ 0.1), the AUC scores for both HKN and
HKunN are comparable and decrease with decreasing κ.
From Eq. (9), we know that no mass is allowed to be moved
a distance more than π

2
κ. When κ becomes so small such

that π
2
κ < l (where l is the interparticle spacing of the

reference jet), mass transportation is largely forbidden
when computing the distance between a jet and the
reference measure. Furthermore, in this regime the
assumption that, for each particle x0j in the jet, there exists
a particle xi in the reference measure so that kxi − x0jk < κπ

2

is often violated, causing the linearization to break down;
see Sec. II C. While this breakdown could be avoided in a
continuum formulation of the linearization [27], one would
still have to contend with the fact that, as κ → 0, the
rescaled Hellinger-Kantorovich metric converges to the
Hellinger metric, in which all information on the spatial
distribution of the jets is discarded and their distance is
based purely on the difference between their energies at
each location; see Eq. (7). We observe this breakdown at
the level of the AUCs in Fig. 3, considering the value
κ ¼ 0.01. At the other end, at large κ, the tagging
performance using HKN stabilizes for κ ≳ 1, whereas the
AUC score deteriorates significantly using HKunN . As κ
grows sufficiently large, it becomes increasingly expensive
to create or destroy mass. Once we enter this transport-only
regime, κ no longer plays any role for HKN. On the other
hand, whenever the total energies of the events are unequal,
HKunN diverges to þ∞ as κ → þ∞.
In between these two extremes, 0.1≲ κ ≲ 1, the tagging

performance of both HKN and HKunN is optimized,
matching or exceeding the EMD approach. In this regime

FIG. 3. Distribution of the LOT norm, i.e., the distance from each jet’s LOT coordinate to the origin, for the HK distance with κ ¼ 100,
1, 0.5, 0.1, 0.05, 0.01. The uniform reference measures used include uniref15 with 15 × 15 particles, uniref30, and uniref60. The y
coordinate of the rightmost plot follows the scale on the right, while the other plots follow the scale on the left.

2As we will see, the uniref4 and uniref8 reference measures are
too coarse to capture the relevant structure of the jets for any
value of κ, and the distribution of Euclidean norms for these
measures are correspondingly omitted from Fig. 3.
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both mass transportation and creation or destruction are
relevant. We have not observed any strong correlations
between the optimal value κbest, reference spacing l, the jet
clustering radius R, and the typical angular separation of
boosted partonic decay products ∝ m=pT , and no definite
conclusion can be drawn at this stage regarding the
dependence of κbest on various jet length scales. We leave
this question to future studies.
A major advantage of the PLUOT framework over EMD

is that PLUOT significantly speeds up computation and
requires much less storage space. On average, only about
an hour is needed to calculate the LOT distance for 10 000
jets on a laptop, with further speedup in the HKκ embed-
ding for smaller κ values. In contrast, computing EMD for
10 000 jets takes approximately 15 h for jets drawn from a

50-GeV-wide pT bin and 30–40 h for jets drawn from a
1-TeV-wide pT bin.
To make matters worse, the EMD outputs a huge

distance matrix, which for large datasets is impossible to
store on a local computer or even on a moderate cluster. The
matrix is then directly fed into downstream machine
learning (ML) models, and, since there are fewer models
that can directly handle the distance matrix rather than the
coordinate of each jet, the EMD approach also limits the
practical choices of ML models. Of course, the model
training step is now more time efficient than PLUOT, since
it now needs only to read in the pairwise distance from the
matrix instead of computing the Euclidean distance on the
fly. But the difference in time is not significant: For kNN,
EMD takes seconds while PLUOT takes minutes; and for
SVM, EMD needs minutes whereas PLUOT requires about
3 h. This gain in the latter ML step is not big enough to
offset the huge time gap in OT computation.

IV. PILEUP ROBUSTNESS OF OPTIMAL
TRANSPORT-BASED CLASSIFICATION

Pileup contamination reduces the efficacy of many
commonly used jet physics observables [43–45] such as
jet mass and dijet mass, where in Ref. [46] the impact of
different levels of pileup on dijet mass is studied. This, in
turn, motivates the invention of various pileup mitigation
techniques [47–52]. Pileup mitigation has recently been
recast in the language of optimal transport [2], but the
robustness of OT-based approaches to jet classification has
yet to be studied. Here, we carry out a preliminary study of
the effects of pileup on W and QCD jet classification.
Again, we use the same W and QCD dataset with pT ∈

½500; 550� GeV and jet radius R ¼ 1 as described in

FIG. 4. AUC scores for classifying 10 000 W vs QCD jets using different reference measures, with uniref4, uniref8, uniref15,
uniref30, and uniref60 (from left to right). The machine learning model used here is kNN. Jet pT is in between 500 and 550 (1500) GeV
in the first (second) row. Solid (dashed) blue lines show the results calculated on normalized (unnormalized) jets for W2 and HK
distance; horizontal gray solid (dashed) lines use the EMD metrics on normalized (unnormalized) jets; and gray dash-dotted lines give
the tagging performance of τ21.

TABLE I. Optimal κ values and their corresponding AUC
scores for kNN classification of W vs QCD jets using different
reference measures.

Jet pT (GeV) [500, 550] [500, 1500]

Reference HKN HKunN HKN HKunN

uniref4 κbest 10 1 10 1
(4 × 4) AUC 0.835 0.832 0.786 0.807
uniref8 κbest 0.3 0.3 0.5 0.4

AUC 0.852 0.849 0.813 0.847
uniref15 κbest 0.3 0.3 0.2 0.2

AUC 0.859 0.854 0.821 0.863
uniref30 κbest 0.5 0.2 0.2 0.2

AUC 0.860 0.859 0.826 0.862
uniref60 κbest 0.2 0.4 0.3 0.3

AUC 0.862 0.858 0.828 0.863
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Sec. III. Background contamination is generated in PYTHIA
where the actual number of pileup events per bunch
crossing follows a Poisson distribution around hNPUi.
We consider three different pileup benchmarks with
hNPUi ¼ 20, 80, 140. These pileup templates are then
added to each event and FastJet is used to group the pileup-
contaminated events into jets. We then follow the same
procedure as before, applying the PLUOT framework to the
pileup-contaminated jets.
Here, three reference measures are included: the default

15 × 15 uniform reference; the 30 × 30 uniform reference;
and a “pileup” reference jet picked from one of the pileup
templates for each value of hNPUi. For example, when
examining jets contaminated by pileup with hNPUi ¼ 80,
the reference measure is taken to be another Poisson
distribution with hNPUi ¼ 80. The motivation behind the
choice of uniref30 is that, since the number of particles in
the reference is close to that of the jets contaminated by
pileup with hNPUi ¼ 80, 140, uniref30 should better
capture the true underlying differences between W vs
QCD jets not obscured by the superficial pileup addition.
Again, the N-subjettiness ratio τ21 serves as a bench-

mark, where τ21 is computed on the datasets both with and
without pileup. The one without pileup is generated by
pruning the contaminated datasets, accomplished in FastJet

by a pruner that reclusters the jets with a Cambridge-
Aachen algorithm and removes constituent particles that
are soft or at large angles with other particles [53,54].
Figure 5 displays the resulting AUC vs κ curves, where we
use kNNþ linear W2 and HK distances with κ ¼ þ∞, 10,
1, 0.5, 0.2, 0.1, and 0.05 on both normalized and unnor-
malized jets.
It is clear from the figure that, comparing to τ21

(horizontal lines), the tagging performance of PLUOT

behaves rather well and does not decay significantly as
pileup increases. Especially for high pileup scenarios, the
AUC scores of kNNþW2 and HK distances on unpruned
jet samples using any of the three references are far better
than the corresponding AUCs of kNNþ τ21, where, for
hNPUi ¼ 140, τ21 on pruned jets behaves much worse than
that on unpruned jets, corroborating the observation in
Ref. [55] that N-subjettiness on groomed jets is less
discriminant than being computed on ungroomed jets.
More studies need to be performed in order to examine
in detail the influence of background contamination such as
pileup on OT-based metrics, but its potential advantage
over traditional methods is already clear.

V. CONCLUSION

The energy mover’s distance [1] illustrates the many
advantages to be gained by equipping the space of collider
events with a metric, from unifying the panoply of collider
observables to enabling the use of interpretable distance-
based machine learning algorithms. These successes invite
further exploration of the larger space of optimal transport
distances with an eye toward collider physics. In this paper,
we have generalized the EMD by situating it within a
multiparameter family of unbalanced optimal transport
metrics. Among the other metrics in this family, the
Hellinger-Kantorovich distance stands out as particularly
suited to collider applications insofar as it (uniquely)
preserves a Riemannian structure. The resulting manifold
of collider events inherits various satisfying properties,
including a well-defined tangent space at each point on the
manifold. This enables the computationally efficient lin-
earization of unbalanced optimal transport distances [27] in
close analogy with linearized optimal transport in the
balanced case [3,28].

FIG. 5. AUC scores for using kNN to classify 10 000 W vs QCD jets with different amounts of pileup where the average numbers of
pileup particles in each event are hNPUi ¼ 20 (red), 80 (blue), and 140 (green). From left to right, the reference measures used are the
15 × 15 uniform reference, the 30 × 30 uniform reference, and a jet drawn from the pileup template corresponding to each NPU. As
usual, solid (dashed) lines show the AUC scores using the linear HK and W2 distances on normalized (unnormalized) jets, and solid
horizontal lines give the tagging performance of τ21 on unpruned jets, whereas the dash-dotted lines are the results using τ21 on pruned
jets (denoted by τpr21 ).
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Motivated by these advantages, we developed the par-
ticle linearized unbalanced optimal transport framework
for computing linearized Hellinger-Kantorovich distances.
To illustrate the efficacy of PLUOT for collider physics,
we used it as input to simple distance-based machine
learning algorithms for boosted W and QCD jet classi-
fication and studied the performance as a function of
various scale parameters. For optimized parameter choices,
we found that PLUOT matched or exceeded the same
algorithms using EMD distances in a fraction of the
computing time. Although the effects of pileup on optimal
transport distances have yet to be extensively studied, we
found that boosted jet classification based on PLUOT also
exhibited an encouraging degree of robustness against
pileup contamination compared to the N-subjettiness shape
observable.
There are numerous avenues for further exploration.

Within the PLUOT framework itself, there is considerable
room to explore the interplay between the Hellinger-
Kantorovich length scale parameter, the jet clustering
radius, and the scale(s) associated with the choice of
reference measure. We have focused on boosted jet
classification as an initial application to collider physics,
but PLUOT should be generally well suited to the
same array of applications as the energy mover’s distance.
More broadly, linearization is but one of the many potential
advantages of applying the Hellinger-Kantorovich distance
to collider physics. The Riemannian event manifold
obtained with the Hellinger-Kantorovich distance is likely

to have interesting properties and may reveal further hidden
structure in the space of collider events.
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APPENDIX: RESULT TABLES

Here, we include two tables with numerical results for
the classification tasks mentioned in Secs. III and IV. Both
tables consist of AUC scores for W vs QCD jet classi-
fication using the kNN model. In Table II, the dataset has
default jet radius R ¼ 1, and the reference measures used
are 15 × 15 uniform measure (uniref15) and 30 × 30 uni-
form measure (uniref30). Jet pT ranges are [500, 550] GeV

TABLE II. AUC scores for kNN classification of W vs QCD jets.

pT

Ref jet κ Normalization [500, 550] GeV, 10 000 jets [500, 1500] GeV, 10 000 jets [500, 1500] GeV, 200 000 jets

uniref15 þ∞ N 0.838 0.791 0.817
100 N 0.836 0.789 0.817

unN 0.786 0.632 0.790
10 N 0.837 0.790 0.817

unN 0.821 0.774 0.827
1 N 0.844 0.803 0.825

unN 0.842 0.823 0.861
0.5 N 0.850 0.812 0.836

unN 0.850 0.843 0.874
0.2 N 0.856 0.821 0.842

unN 0.853 0.863 0.879
0.1 N 0.825 0.767 0.791

unN 0.825 0.799 0.827
0.05 N 0.779 0.642 0.683

unN 0.773 0.669 0.708
0.01 N 0.685 0.641 0.669

unN 0.683 0.624 0.644

(Table continued)
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TABLE II. (Continued)

pT

Ref jet κ Normalization [500, 550] GeV, 10 000 jets [500, 1500] GeV, 10 000 jets [500, 1500] GeV, 200 000 jets

uniref30 þ∞ N 0.838 0.786 0.815
100 N 0.836 0.789 0.815

unN 0.785 0.633 0.791
10 N 0.839 0.789 0.815

unN 0.821 0.776 0.827
1 N 0.846 0.801 0.827

unN 0.847 0.822 0.860
0.5 N 0.860 0.813 0.839

unN 0.856 0.844 0.874
0.2 N 0.857 0.826 0.842

unN 0.859 0.862 0.880
0.1 N 0.851 0.806 0.827

unN 0.849 0.837 0.861
0.05 N 0.823 0.775 0.802

unN 0.830 0.797 0.825
0.01 N 0.549 0.577 0.566

unN 0.552 0.492 0.567
EMD N 0.859 0.812 � � �

unN 0.846 0.802

τ21 0.810 0.766 0.765

TABLE III. AUC scores for kNN classification of W vs QCD jets with different levels of pileup.

Ref jet κ Normalization hNPUi ¼ 20 hNPUi ¼ 80 hNPUi ¼ 140

uniref15 þ∞ N 0.801 0.768 0.754
10 N 0.802 0.770 0.750

unN 0.777 0.752 0.736
1 N 0.820 0.790 0.767

unN 0.818 0.794 0.767
0.5 N 0.821 0.796 0.773

unN 0.831 0.796 0.774
0.2 N 0.830 0.787 0.766

unN 0.829 0.787 0.767
0.1 N 0.812 0.775 0.739

unN 0.812 0.779 0.743
0.05 N 0.740 0.714 0.686

unN 0.739 0.714 0.682

uniref30 þ∞ N 0.799 0.772 0.757
10 N 0.799 0.775 0.759

unN 0.775 0.756 0.743
1 N 0.819 0.786 0.765

unN 0.819 0.792 0.761
0.5 N 0.824 0.794 0.770

unN 0.819 0.795 0.768
0.2 N 0.835 0.796 0.766

unN 0.830 0.798 0.765
0.1 N 0.832 0.798 0.752

unN 0.832 0.800 0.757
0.05 N 0.808 0.771 0.730

unN 0.813 0.769 0.727

(Table continued)
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with 10 000 jets, [500, 1500] GeV with 10 000 jets, and
[500, 1500] GeV with 200 000 jets. Also included are
tagging results using EMD metrics and τ21.
In Table III, the pileup contaminated dataset has the

default jet radius R ¼ 1, and their pT range is [500,

550] GeV, with pileup levels being hNPUi ¼ 20, 80,
140. The reference measures used are uniref15, uniref30,
and a jet drawn from the pileup template corresponding to
each NPU. The tagging results using τ21 on jets both with
and without pruning are included as well.
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