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We exploit a recent nonperturbative determination of the momentum broadening kernel Cðb⊥Þ in impact
parameter space [G. D. Moore, S. Schlichting, N. Schlusser, and I. Soudi, J. High Energy Phys. 10 (2021)
059], to determine the momentum space broadening kernel Cðq⊥Þ in high-temperature QCD plasmas. We
show how to use the nonperturbatively determined kernel Cðq⊥Þ to compute the medium-induced splitting
rates in a QCD plasma of finite size. We compare the resulting in-medium splitting rates to the results
obtained with leading-order and next-to-leading-order perturbative determinations of Cðq⊥Þ, as well as
with various approximations of the splitting employed in the literature. Generally, we find that the
differences in the splitting rates due to the momentum broadening kernel are larger than the errors
associated with approximations of the splitting rate.
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I. INTRODUCTION

One of the clearest signals for the formation of a quark
gluon plasma (QGP) in heavy ion collisions is the sup-
pression of the yields of highly energetic particles. When
highly energetic partons or jets traverse the medium, they
interact with the constituents of the QGP leading to a loss of
energy, commonly referred to as jet quenching [1]. While
for highly energetic partons only a small fraction of the
energy is lost due to elastic interactions with the medium,
the interactions of hard partons with the medium constitu-
ents also induce additional “medium-induced” radiation
[2–4], which provides the dominant energy loss mechanism
for highly energetic particles. Studies of medium-induced
radiation in QCD plasmas date back to the early determi-
nations of the Landau-Pomeranchuk-Migdal effect [5,6] in
QCD [4,7–9], and include determinations of the radiation
rate in QCD plasmas of infinite [10] and finite spatial extent
[11,12]. Beyond the development of different theoretical
formalisms to determine the in-medium splitting rates
[2–4,7–9,12–19], there have also been ongoing efforts to
construct suitable approximations of the medium-induced
splitting rates in various different limits [14,15,20–24].
In all the different formalisms to obtain splitting rates, the

interaction of hard partons with the medium are described
using the rate of transverse momentum broadening

Cðq⊥Þ≡ ð2πÞ2 dΓ
d2q⊥

; ð1Þ

which defines the rate to exchange transversemomentum q⊥
with the QCD medium. While perturbative broadening
kernels have been used to successfully predict observables
(see e.g., [25,26] for recent reviews) it is known that due to
the infrared (IR) problem, the perturbative expansion breaks
down in the IR regime even at small coupling [27].
Nevertheless, effective field theories coupled with lattice
calculations can be used to evade the IR problem [28].
Specifically, for the momentum broadening kernel Cðq⊥Þ,
one can define the zero-subtracted Fourier transform

Cðb⊥Þ≡
Z

d2q⊥
ð2πÞ2 ð1 − eiq⊥·b⊥ÞCðq⊥Þ: ð2Þ

which can be defined nonperturbatively in terms of certain
lightlikeWilson loops [29]. For temperatures well above the
critical temperature Tc these lightlike Wilson loops can be
recast in the dimensionally reduced long-distance effective
theory for QCD, three-dimensional (3D) electrostatic QCD
(EQCD) [30]. In an earlier study [31] we showed how the
short distance behavior of the broadening kernelCEQCDðb⊥Þ
determined from nonperturbative lattice simulations of
EQCD [32–35] can be matched to obtain a nonperturbative
determination of CQCDðb⊥Þ in QCD at all scales. In this
study the broadening kernel was computed in impact
parameter ðb⊥Þ space, which is favorable for the calculation
of medium-induced radiation in an infinite medium [36].
However, in order to extend the framework to a QCD
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medium of finite size, it is highly favorable to work in
momentum ðq⊥Þ space [11].
The central objective of this paper is to employ the

nonperturbative determination of CQCDðb⊥Þ in [31] to
determine the medium-induced radiation rates in the
physically relevant situation of a finite medium. First,
we Fourier transform the nonperturbative kernel to momen-
tum space in Sec. II. Subsequently in Sec. III, we
recapitulate the formalism of [11] to obtain the splitting
rates in a finite medium and introduce the opacity expan-
sion [15,37] together with an expansion around the multiple
soft scattering limit [21–23] and a resummed opacity
expansion method [24]. Numerical results for the splitting
rates are presented in Sec. IV, where we compare our
calculations with the results obtained using leading-order
(LO) and next-to-leading-order (NLO) perturbative deter-
minations of the broadening kernels, and investigate the
quality of various approximations. We conclude with a
summary of our important findings in Sec. V.

II. NONPERTURBATIVE BROADENING KERNEL

Building on earlier works that established the procedure
[32–34], nonperturbative contributions to the momentum
broadening kernel were extracted from an EQCD lattice
calculation in [38]. However, since EQCD is an IR effective
theory of QCD, the EQCD broadening kernel from [38] is
only valid in the IR regime. In [31] we demonstrated how
one can perform a matching to the QCD broadening kernel
in the UV regime to obtain a broadening kernel valid over
the entire range of momenta/impact parameters [31]. By
following the arguments [31,39], the nonperturbative
broadening kernel is determined as

CQCDðb⊥Þ ≈ ðCpert
QCDðb⊥Þ − Cpert

subtrðb⊥ÞÞ þ Clatt
EQCDðb⊥Þ; ð3Þ

where Cpert
QCDðb⊥Þ is the UV limit ðq⊥ ≫ mDÞ of the QCD

kernel, which is known analytically in momentum space
[30,40]1

Cpert
QCDðq⊥Þ ¼

g4CR

q4⊥

Z
d3p
ð2πÞ3

p−pz

p
½2CAnBðpÞð1þ nBðp0ÞÞ

þ 4NfTfnFðpÞð1− nFðp0ÞÞ�; ð4Þ

where p0 ¼ pþ q2⊥þ2q⊥·p
2ðp−pzÞ , the equilibrium distributions

are given in terms of the Bose-Einstein distribution
nBðpÞ ¼ 1

ep=T−1, and the Fermi-Dirac distribution
nFðpÞ ¼ 1

ep=Tþ1
. Throughout this manuscript, we will take

three quark flavors Nf ¼ 3 and the color algebra constants
are CA ¼ 3 and Tf ¼ 1

2
. The subtraction term Cpert

subtrðq⊥Þ is
given by [39]

Cpert
subtrðq⊥Þ ¼

CRg2Tm2
D

q4⊥
−
CRCAg4T2

16q3⊥
; ð5Þ

where, as discussed in detail in [31], the first term cancels
against the (unphysical) IR limit of Cpert

QCDðq⊥Þ, while the
second term cancels out the (unphysical) UV behavior of
the EQCD kernel.

A. Broadening kernel in impact parameter space

Before we proceed to Fourier transform the resulting
kernel to momentum space, we briefly recall the limiting
behaviors of the kernel in impact parameter space. At long
distances the Wilson loop follows an area-law behavior
[41] with asymptotic corrections which are important for
smoothening the transition to the numerical data values

CQCDðb⊥Þ
g2T

⟶
b⊥≫1=g2T

Aþ σEQCD
g4T2

g2Tb⊥

þ g2CR

π

�
m2

D

4g2T2

�
1

6
−

1

π2

�
þ CA

8π2

�
logðg2Tb⊥Þ:

ð6Þ

Here σEQCD is the string tension of EQCD [42] and A is a
constant fitted to the EQCD lattice data [31].
Conversely, at short distances, the broadening kernel

follows a similar behavior to the leading-order QCD
behavior

CQCDðb⊥Þ
g2T

⟶
b⊥≪1=mD 1

4

q̂0
g6T3

ðg2Tb⊥Þ2

−
CRN
8π

ðgTb⊥Þ2 logðg2Tb⊥Þ; ð7Þ

where N ¼ ζð3Þ
ζð2Þ ð1þ Nf

4
Þ and we provide the numerically

extracted value of q̂0 in Table I which is reproduced from
[31] for the sake of completeness of the presentation.

B. Broadening kernel in momentum space

We now proceed to perform the Fourier transform of the
nonperturbative broadening kernel [31] back to momentum
space. In principle, the inverse Fourier transform is stan-
dard and should be straightforward to compute. However,
due to the spareness of the data points, the divergent
behavior of the kernel at a large impact parameter, and the
highly oscillatory nature of the integrals involved, perform-
ing the numerical integral is actually rather challenging. To
avoid these difficulties, we found that it is best to Fourier
transform the coordinate space derivative dCðb⊥Þ

db⊥ of the
momentum broadening kernel. Using Eq. (2), one can write

dCðb⊥Þ
db⊥

¼
Z

d2q⊥
ð2πÞ2 e

−iq⊥·b⊥
�
iq⊥ · b⊥

b⊥
Cðq⊥Þ

�
: ð8Þ1See Eq. (18) for the full leading-order QCD kernel, without

the limit ðq⊥ ≫ mDÞ.
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Exploiting the fact that Cðq⊥Þ does not depend on the
direction b⊥=jb⊥j then leads to the following Hankel
transform:

dCðb⊥Þ
db⊥

¼
Z

∞

0

dq⊥
ð2πÞ q⊥J1ðb⊥q⊥Þ½q⊥Cðq⊥Þ�; ð9Þ

where J1ðxÞ is the Bessel function of the first kind of order
1. By use of the inverse Hankel transform, one then obtains
the broadening kernel in momentum space as

Cðq⊥Þ ¼
2π

q⊥

Z
∞

0

db⊥b⊥J1ðb⊥q⊥Þ
dCðb⊥Þ
db⊥

: ð10Þ

While the integral in Eq. (10) is still highly oscillatory, it
can be computed numerically as long as the integrand is
sufficiently well behaved at the integration boundaries. In
order to ensure numerical convergence, we therefore
subtract the leading asymptotic behavior at large distances

dCIRðb⊥Þ
db⊥

¼ σEQCD ð11Þ

and only perform a numerical Hankel transform of the
remainder

d
db⊥

ΔCQCDðb⊥Þ ¼
dCQCDðb⊥Þ

db⊥
−
dCIR

QCDðb⊥Þ
db⊥

; ð12Þ

which by construction vanishes for large impact parame-
ters. By numerically performing the Hankel transform

ΔCQCDðq⊥Þ ¼
2π

q⊥

Z
∞

0

db⊥b⊥J1ðb⊥q⊥Þ
d

db⊥
ΔCQCDðb⊥Þ;

ð13Þ

and supplying it with the analytic result for the Hankel
transform of CIRðb⊥Þ, given by (cf. Appendix A)

CIR
QCDðq⊥Þ ¼

2π

q3⊥
σEQCD; ð14Þ

we obtain the full momentum broadening kernel as

CQCDðq⊥Þ ¼ ΔCQCDðq⊥Þ þ CIR
QCDðq⊥Þ: ð15Þ

We note that, due to the fact that the Bessel function is
highly oscillatory for large momenta q⊥, sufficient care
should be taken in performing the integral, and we describe
the procedure we employ in Appendix A.
Next, in order to construct the momentum broadening

kernel Cðq⊥Þ at all scales we proceed to transform the
limiting behaviors of the kernel, which can be used to
extrapolate the results beyond the tabulated range of q⊥
values. In the deep infrared regime, the momentum

broadening kernel is determined by the string tension such
that

CQCDðq⊥Þ⟶
q⊥≪g2T

2π
σEQCD
q3⊥

: ð16Þ

In the UV limit the momentum broadening kernel follows
the same behavior as the perturbative QCD kernel in
Eq. (4), and one obtains [40]

CQCDðq⊥Þ⟶
q⊥≫mD CRg4T3N

q4⊥
: ð17Þ

C. Perturbative kernel in EQCD

Before we present results for the nonperturbative deter-
mination of Cðq⊥Þ, we briefly recall the results of pertur-
bative calculations, following [31,39], which we will use
as a reference for comparison. At LO Oðg4Þ, the QCD
collisional broadening kernel can be expressed in momen-
tum space [40] as

CLO
QCDðq⊥Þ ¼

g4CR

q2⊥ðq2⊥ þm2
DÞ

Z
d3p
ð2πÞ3

p − pz

p

× ½2CAnBðpÞð1þ nBðp0ÞÞ
þ 4NfTfnFðpÞð1 − nFðp0ÞÞ�; ð18Þ

with p0 ¼ pþ q2⊥þ2q⊥·p
2ðp−pzÞ and displays the following asymp-

totic behaviors:

CLO
QCDðq⊥Þ¼g2TCR

8>><
>>:

m2
D−g

2T2CA
q⊥
16T

q2⊥ðq2⊥þm2
DÞ

; q⊥≪gT;

g2T2

q4⊥
ζð3Þ
ζð2Þ

�
1þNf

4

�
; q⊥≫gT:

ð19Þ

Next-to-leading-order corrections are of order g5 and
arise from infrared corrections that are suppressed by an
additional factor of mD ∼ g, which can be calculated in
EQCD [30]. Similar to the treatment of the nonperturbative
kernel, the NLO broadening kernel is computed using
perturbative results for the soft contributions from EQCD
and supplying the hard contribution by a matching [30].
Specifically,

CNLO
QCDðq⊥Þ ¼ CLO

EQCDðq⊥Þ þ CNLO
EQCDðq⊥Þ þ Cpert

QCDðq⊥Þ
− Cpert

subtrðq⊥Þ; ð20Þ

where the leading- and next-to-leading-order contributions
from soft modes are given by [30,40,43]

CLO
EQCDðq⊥Þ ¼ CRg2T

m2
D

q2⊥ðq2⊥ þm2
DÞ

; ð21Þ
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CNLO
EQCDðq⊥Þ

g4T2CRCA
¼ 7

32q3⊥
þ
−mD − 2

q2⊥−m2
D

q⊥ tan−1ðq⊥mD
Þ

4πðq2⊥ þm2
DÞ2

þ
mD − q2⊥þ4m2

D
2q⊥ tan−1ð q⊥

2mD
Þ

8πq4⊥
−

tan−1ðq⊥mD
Þ

2πq⊥ðq2⊥ þm2
DÞ

þ
tan−1ð q⊥

2mD
Þ

2πq3⊥

þ mD

4πðq2⊥ þm2
DÞ

�
3

q2⊥ þ 4m2
D
−

2

ðq2⊥ þm2
DÞ

−
1

q2⊥

�
; ð22Þ

and if not stated otherwise, we employ the leading-order
perturbative expressions for mD [see Eq. (27)] when
evaluating the LO and NLO kernels.

D. Numerical results

We display the perturbative and nonperturbative (NP)
determinations of the momentum broadening kernels
CQCDðb⊥Þ in impact parameter and CQCDðq⊥Þ in momen-
tum space in Fig. 1, where the LO and NLO perturbative
kernels are computed for T ¼ 500 MeV (see Table I
for the coupling g employed). The top panel presents the
kernel CQCDðb⊥Þ in impact parameter space, where bands
represent the uncertainty in the spline definition as dis-
cussed in [31]. We use the same color coding when
presenting the broadening kernel CQCDðq⊥Þ in momentum
space in the bottom panel of Fig. 1, where the bands
represent the transformation of the different splines in the
band from the top panel. We also show the limiting
behaviors in the infrared in Eq. (16) and ultraviolet in
Eq. (17), as well as the LO and NLO kernels in Eqs. (18)
and (20). Strikingly, when expressing TCQCDðq⊥Þ=CR as a
function of q⊥=gT in momentum space, or Cðb⊥Þ=g2TCR
as a function of gTb⊥ in impact parameter space, both
datasets at T ¼ 250 and 500 MeV display very similar
behavior. We find that, as expected from Eq. (16), the
broadening kernel in the IR follows a ∼1=q3⊥ and, respec-
tively, ∼b⊥. While this feature is missing at LO, the infrared
behavior of the NP kernel is qualitatively similar to the
NLO kernel; however, on a quantitative level the slopes
differ by an order one prefactor due to the difference
in the string tension σEQCD. Interestingly, for intermediate
values of q⊥=ðgTÞ, the momentum broadening kernel
determined from EQCD lattice data falls below the LO
and NLO results. In the UV limit, all kernels display the
same ∼1=q4⊥ and, respectively, ∼b2⊥ logðb⊥Þ behavior,
associated with the contribution from hard scatterings
in Eq. (4).

III. MEDIUM-INDUCED SPLITTING RATES

Equipped with the broadening kernel Cðq⊥Þ in momen-
tum space, we now proceed to compute the rate of medium-
induced radiation. The starting point of the rate calculation
is the formal expression [8,9,11,44]

dPa
bc

dz
¼ g2Pa

bcðzÞ
4πP2z2ð1 − zÞ2 Re

Z
∞

0

dt1

Z
∞

t1

dt
Z
p;q

q:p

× ½Gðt; q; t1; pÞ − ðvacÞ�; ð23Þ

FIG. 1. (top) Nonperturbative elastic broadening kernel
CQCDðb⊥Þ in impact parameter space. Data points for two different
temperatures, T ¼ 250 and 500 MeV, are shown alongside the
interpolating splines. We also compare to the short-distance limit
in Eq. (7) and the long-distance limit in Eq. (6) (from [31]).
(bottom) Elastic broadening kernelCQCDðq⊥Þ inmomentum space
for T ¼ 250 and 500 MeV. Blue and purple bands represent
uncertainties of the spline interpolation for 250MeVand 500MeV,
respectively. We also compare the kernel to LO Eq. (18) and NLO
Eq. (20) determinations at T ¼ 500 MeV, as well as to the UV
limit in Eq. (17) and the IR limit in Eq. (16).
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which describe the total probability of (nearly) collinear in-
medium splitting of the particle a with momentum P into
particles b and c with momentum zP and ð1 − zÞP,
respectively. The propagator Gðt; q; t1; pÞ satisfies the
evolution equation

ð∂t þ iδEðqÞ þ Γ3ðtÞÞGðt; q; t1; pÞ ¼ 0; ð24Þ

with initial condition

Gðt1; q; t1; pÞ ¼
1

4P2z2ð1 − zÞ2 ð2πÞ
2δð2Þðp − qÞ: ð25Þ

The energy is given by

δEðpÞ≡ p2

2Pzð1 − zÞ þ
m2

z

2zP
þ m2

1−z
2ð1 − zÞP −

m2
1

2P
; ð26Þ

where mi are the medium-induced masses of the particles
carrying momentum fraction i. Throughout this analysis we
will use the leading-order perturbative expressions

m2
∞;g ¼

m2
D

2
¼ g2T2

�
Nc

6
þ Nf

12

�
; ð27Þ

m2
∞;q ¼ g2T2

ðN2
c − 1Þ
8N2

c
; ð28Þ

with Nc ¼ 3 and Nf ¼ 3. The collisional broadening of the
propagator can be expressed as the following collision
integral:

Γ3ðtÞ∘Gðt;p;Þ¼ 1

CR

Z
q
CQCDðt;qÞfC1½Gðt;p;Þ−Gðt;p−q;Þ�

þCz½Gðt;p;Þ−Gðt;pþzq;Þ�
þC1−z½Gðt;p;Þ−Gðt;pþð1−zÞq;Þ�g; ð29Þ

where the color factors are defined as

C1 ¼
CR
z þ CR

1−z − CR
1

2
; Cz ¼

CR
1 þ CR

1−z − CR
z

2
; ð30Þ

C1−z ¼
CR
1 þ CR

z − CR
1−z

2
; ð31Þ

and CR
z is the Casimir of the particle with momentum

fraction z, i.e., CR ¼ CA ¼ Nc for gluons and CR ¼ CF ¼
ðN2

c−1Þ
2Nc

for quarks. By following [11], one can use an
integration by part to rewrite the following integral:

Z
∞

t1

dtGðt; q; t1; pÞ ¼
Z

∞

t1

dt

�
d
dt

�
e−iδEðqÞt

−iδEðqÞ
��

× eþiδEðqÞtGðt; q; t1; pÞ; ð32Þ

such that upon use of the evolution equation for the
propagator in Eq. (24), the expression simplifies toZ

∞

t1

dtGðt;q;t1;pÞ¼
1

−iδEðqÞ½Gð∞;q;t1;pÞ−Gðt1;q;t1;pÞ�

þ
Z

∞

t1

dt
i

δEðqÞΓ3ðtÞ∘Gðt;q;t1;pÞ:
ð33Þ

Now, as argued by [11], the terms in the second line of
Eq. (33) do not contribute to the rate, as the first vanishes in
the limit t → ∞ due to rapid oscillations, while the second
term merely corresponds to the initial condition in Eq. (25)
and thus cancels against the vacuum subtraction in Eq. (23).
By inserting Eq. (33) into Eq. (23), rearranging the order of
integrations and performing a time derivative with respect
to t, the rate of medium-induced radiation can be compactly
expressed in the form [11]

dΓa
bc

dz
ðP; z; tÞ ¼ g2Pa

bcðzÞ
4πP2z2ð1 − zÞ2

× Re
Z

t

0

dt1

Z
p;q

iq:p
δEðqÞΓ3ðtÞ ∘Gðt; q; t1; pÞ:

ð34Þ

A. Expressing the rate using wave function

By introducing the wave function

ψ⃗ðp; t; t1Þ ¼
Z
q

iq
δEðqÞΓ3ðtÞ ∘Gðt; q; t1; pÞ; ð35Þ

we may further compactify the expression for the rate as
follows:

dΓa
bc

dz
ðP; z; tÞ ¼ g2Pa

bcðzÞ
4πP2z2ð1 − zÞ2 Re

Z
t

0

dt1

Z
p
p · ψ⃗ðp; t; t1Þ:

ð36Þ

TABLE I. Strong coupling constant g and various constants that
determine the limiting behavior of the nonperturbative momen-
tum broadening kernel [cf. Eqs. (6), (7), (65)]. Numerical values
are reproduced from [31,35].

Cðb⊥Þ
g2

���Nf¼3

250 MeV

Cðb⊥Þ
g2

���Nf¼3

500 MeV

g2 3.725027 2.763516
q̂0=g6T3 0.1465(78) 0.185(10)
A −0.6717 −0.4885
ξ 0.1780 0.1702
σEQCD=g4T2 0.2836(10) 0.2867(10)
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Exploiting the linearity of the evolution equation (24), one
finds that the evolution equation for the wave function with
respect to t1 is given by

½∂t1 − iδEðpÞ − Γ3ðt1Þ ∘ �ψ⃗ðp; t; t1Þ ¼ 0; ð37Þ

which needs to be solved backward in time t1 for
t > t1 > 0, with the initial condition

ψ⃗ðp; t; t1Þ ¼
Z
q

iq
δEðqÞΓ3 ∘ ð2πÞ2δ2ðp − qÞ; ð38Þ

¼ Γ3ðtÞ ∘ ip
δEðpÞ : ð39Þ

While the above rearrangements can always be performed,
wewill in the following consider the radiative emission rates
in a static QCD plasma, where Γ3ðtÞ ¼ Γ3 and ψ⃗ðp; t; t1Þ ¼
ψ⃗ðp;ΔtÞ only depend on separation Δt ¼ t − t1.
We proceed to factor out the physical scales by defining

the dimensionless variables

Δt̃ ¼ m2
D

2Pzð1 − zÞΔt; q̃ ¼ q
mD

; p̃ ¼ p
mD

; ð40Þ

where m2
D=2Pzð1 − zÞ is the inverse formation time of a

splitting with small momentum transfer ∼mD and the
energy becomes

δẼðp̃Þ ¼ 2Pzð1 − zÞ
m2

D
δEðpÞ; ð41Þ

¼ p̃2 þ ð1 − zÞ m
2
z

m2
D
þ z

m2
1−z

m2
D

− zð1 − zÞ m
2
1

m2
D
: ð42Þ

By factoring out the parametric dependencies of the

broadening kernel as C̃ðq̃Þ ¼ m2
D

CRg2T
CðqÞ, one finds

Γ3 ¼ g2TΓ̃3: ð43Þ

Now, expressing the wave function as

ψ⃗ðp;ΔtÞ ¼ g2T
2Pzð1 − zÞ

mD

⃗ψ̃ðp̃;Δt̃Þ: ð44Þ

the initial conditions can then be compactly expressed in
terms of the dimensionless variables as

⃗ψ̃ðp̃;Δt̃ ¼ 0Þ ¼ Γ̃3ðtÞ ∘ ip̃

δẼðp̃Þ : ð45Þ

The evolution equation for the dimensionless wave func-
tion takes the form

½∂Δt̃ þ δẼðp̃Þ þ λΓ̃3ðtÞ ∘ � ⃗ψ̃ðp̃;Δt̃Þ ¼ 0; ð46Þ

where λ ¼ g2T 2Pzð1−zÞ
m2

D
counts the number of small angle

scatterings per formation time of a splitting with small
momentum transfer ∼mD and the splitting rate becomes

dΓa
bc

dz
ðP;z; t̃Þ¼g4TPa

bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
p̃ · ⃗̃ψðp̃;Δt̃Þ: ð47Þ

Still following earlier works [11], the numerical determi-
nation of the rate can be further simplified by exploiting the
isotropy of the wave function in isotropic plasmas and
introducing the transformation to the interaction picture.
Defining

ψ̃ Iðp̃;Δt̃Þ ¼ eiδẼðp̃ÞΔt̃p̃ · ⃗ψ̃ðjp̃j;Δt̃Þ; ð48Þ

⃗ψ̃ðjp̃j;Δt̃Þ ¼ e−iδẼðp̃ÞΔt̃
p̃
p̃2

ψ̃ Iðp̃;Δt̃Þ; ð49Þ

one finds that ψ̃ Iðp̃;Δt̃Þ follows the evolution equation

�
∂Δt̃þλeiδẼðp̃ÞΔt̃p̃ · Γ̃3∘e−iδẼðp̃ÞΔt̃ p̃p̃2

�
ψ̃ Iðp̃;Δt̃Þ¼0; ð50Þ

with the initial condition

ψ̃ Iðp̃;Δt̃ ¼ 0Þ ¼ p̃ · Γ̃3 ∘ ip̃

δẼðp̃Þ ; ð51Þ

and the splitting rate can be compactly expressed as

dΓa
bc

dz
¼g4TPa

bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
e−iδẼðp̃ÞΔt̃ψ̃ Iðp̃;Δt̃Þ; ð52Þ

which is the form of the equation that we use for our
numerical determination of the medium-induced splitting
rate for fixed values of P and z.
We use a logarithmic grid to discretize the momentum p̃

and employ a standard numerical integration from the GNU
scientific library [45] to obtain the initial wave function
ψ̃ Iðp̃;Δt̃ ¼ 0Þ from Eq. (51) at each point. Subsequently,
the discretized wave functions ψ̃ Iðp̃;Δt̃Þ are evolved using
an Euler scheme, where we use a spline interpolation to
interpolate the discrete wave function when numerically
integrating the collision integral in Eq. (50). Eventually, the
two-dimensionally tabulated values of the wave function
ψ̃ Iðp̃;Δt̃Þ are made continuous using a two-dimensional
spline and integrated numerically with the CUBA library
[46] to obtain the rate in Eq. (52). We note that for the next-
to-leading perturbative, as well as for the nonperturbative
momentum broadening kernel, the 1=q3⊥ IR behavior can
lead to instabilities when evolving the coupled set of
evolution equations. However, this problem can be resolved
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by separating the soft and hard contributions to momentum
broadening, and treating the soft contributions in an
expansion of the momentum transfer q⊥ to perform the
integrations analytically, as discussed in detail in
Appendix B.
Even though the numerical solution for the rate can be

obtained at all scales for a highly energetic parton, one can
get away with using approximations in certain regimes
which simplifies the calculation drastically. Numerous
approximations have been developed in the literature
[4,8,12,21–23], and during the following sections we will
review the latest developments together with some tradi-
tional approximations, which we will compare to the full
rate in Fig. 4.

B. Opacity expansion

Simplifications to the rate occur when the medium is
short and the hard particle does not frequently interact with
the medium. In this regime, the rate can be computed
perturbatively in an expansion in the number of interactions
N with the medium. This expansion is also known as the
Gyulassy, Levai, and Vitev (GLV) approximation2 [15,47].
It is easier to compute the expansion in the interaction
picture introduced earlier; the wave function for the first
order (N ¼ 1) is directly the initial condition defined in
Eq. (51) as we already take one scattering in the definition
of the wave function

ψ̃ ð1Þ
I ðp̃Þ ¼ p̃ · Γ̃3 ∘ ip̃

δẼðp̃Þ : ð53Þ

By inserting the wave function into the definition of the
rate in Eq. (52), one obtains

dΓa
bc

dz

����
N¼1

ðP;z; t̃Þ

¼g4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
e−iδẼðp̃ÞΔt̃p̃ · Γ̃3∘ ip̃

δẼðp̃Þ: ð54Þ

The time integration can be done analytically, and one finds
[15,47]

dΓa
bc

dz

����
N¼1

ðP; z; t̃Þ

¼ g4TPa
bcðzÞ
π

Z
p̃

1 − cos ðδẼðp̃Þt̃Þ
δẼðp̃Þ p̃ · Γ̃3 ∘ ip̃

δẼðp̃Þ : ð55Þ

C. Resummed opacity expansion

Besides the straight opacity expansion, the authors of
[24] developed a resummation that tries to capture addi-
tional rescatterings with the medium. During this section
we will present this procedure, starting with the second
order (N ¼ 2) correction to the wave function which obeys
the following evolution equation:

∂Δt̃ψ̃
ð2Þ
I ðp̃; sÞ ¼ −λeiδẼðp̃Þsp̃ · Γ̃3 ∘ e−iδẼðp̃Þs p̃

p̃2
ψ̃ ð1Þ
I ðp̃Þ; ð56Þ

with initial condition ψ̃ ð2Þ
I ðp̃;Δt̃ ¼ 0Þ ¼ 0. Integrating with

respect to time, one finds

ψ̃ ð2Þ
I ðp̃;Δt̃Þ ¼ −λ

Z
Δt̃

0

dseiδẼðp̃Þsp̃ · Γ̃3 ∘ e−iδẼðp̃Þs p̃
p̃2

ψ̃ ð1Þ
I ðp̃Þ:

ð57Þ

Explicitly, the correction is given by

ψ̃ ð2Þ
I ðp̃;Δt̃Þ ¼ −λ

Z
Δt̃

0

dseiδẼðp̃Þsp̃ ·
Z
q̃

�
C1C̃ðq̃Þ þ

Cz

z2
C̃

�
q̃
z

�
þ C1−z

ð1 − zÞ2 C̃
�

q̃
1 − z

��

×

�
e−iδẼðp̃Þs

p̃
p̃2

ψ̃ ð1Þ
I ðp̃Þ − e−iδẼðp̃−q̃Þs

p̃ − q̃
jp̃ − q̃j2 ψ̃

ð1Þ
I ðp̃ − q̃Þ

�
; ð58Þ

where we have utilized a change of variable in the q̃ integral
to combine the different terms in the collision integral in
Eq. (29). Now following [24] and considering the difference

ψ̃ ð1Þ
I ðp̃Þ − eiðδẼðp̃Þ−δẼðp̃−q̃ÞÞs

p̃2 − p̃ · q̃
jp̃ − q̃j2 ψ̃ ð1Þ

I ðp̃ − q̃Þ; ð59Þ

one concludes that for a small momentum transfer (q̃ ≪ 1),
the two terms cancel each other, while for a larger momen-
tum transfer (q̃ ≫ 1) the phase factor oscillates rapidly and
the second term does not contribute significantly to the

2We note here that in contrast to the traditional GLV approxi-
mation we will not neglect thermal masses, and we will not take
the soft gluon approximation.
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integral. By introducing a cutoff scale μ2 and dropping the
second term in Eq. (59), one can then approximately keep
track of the contributions Σ̃ðμ2Þ ¼ R

q̃2>μ2 C̃ðq̃Þ with a large
momentum transfer, yielding

ψ̃ ð2Þ
I ðp̃;Δt̃Þ ¼ −λ

Z
Δt̃

0

dsψ̃ ð1Þ
I ðp̃ÞΣ̃3ðμ2; zÞ; ð60Þ

where Σ̃3ðμ2; zÞ ¼ ½C1Σ̃ðμ2Þ þ CzΣ̃ðμ2=z2Þ þ C1−zΣ̃ðμ2=
ð1 − zÞ2Þ�. Inserting Eqs. (51) and (57) into (52), the
expansion of the splitting rate is now given by

dΓa
bc

dz

����
N¼X

ðP;z;t̃Þ¼ g4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
e−iδẼðp̃ÞΔt̃ψ̃ ð1Þ

I ðp̃Þ

þg4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z

Δt̃

0

ds

×
Z
p̃
e−iδẼðp̃ÞΔt̃ψ̃ ð1Þ

I ðp̃Þð−λΣ̃3ðμ2;zÞÞþ���:

ð61Þ

After performing the time integral (ds), one finds

dΓa
bc

dz

����
N¼X

ðP;z;t̃Þ¼ g4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
e−iδẼðp̃ÞΔt̃ψ̃ ð1Þ

I ðp̃Þ

þg4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃
Z
p̃
e−iδẼðp̃ÞΔt̃ψ̃ ð1Þ

I

×ðp̃Þð−λΣ̃3ðμ2;zÞΔt̃Þþ���: ð62Þ

One notices that subsequent terms with additional time
integrations will exponentiate, yielding the final result

dΓa
bc

dz

����
N¼X

ðP;z; t̃Þ ¼ g4TPa
bcðzÞ
π

Re
Z

t̃

0

dΔt̃

×
Z
p̃
e−ðiδẼðp̃ÞþλΣ̃3ðp̃2;zÞÞΔt̃ψ̃ ð1Þ

I ðp̃Þ; ð63Þ

where following [24], we employed μ2 ¼ p̃2 for the cutoff
scale.

D. Harmonic oscillator expansion

When the typical energy evolved in the radiation is much
larger than the medium temperature [Pzð1 − zÞ ≫ T], the
formation time is large so that multiple soft scatterings have
to be resummed. By treating the multiple soft scatterings in
diffusion approximation, the evolution equation for Green’s
function can be recast into the form of a harmonic oscillator
type equation which can be solved analytically [48]. Rather
than using this approximation only, we will make use of
recent calculations which go beyond this simple harmonic
oscillator limit by treating the hard scatterings as a
perturbative correction on top of the resummed infinitely

many soft scatterings [21–23]. Here, we will only compute
the first correction, i.e., a single hard scattering in addition
to many soft scatterings.
Starting with the short-distance behavior defined in

Eq. (7), one can introduce a scale Q2 to evaluate the
logarithm and separate it as follows:

C̄ðb⊥Þ ¼
1

CR
Cðb⊥Þ ð64Þ

¼ g4T3

16π
Nb2⊥ ln

�
4Q2

ξm2
D

�
þ g4T3

16π
Nb2⊥ ln

�
1

Q2b2⊥

�
; ð65Þ

where ξ ¼ 4 g4T2

m2
D
e
−4π q̂0

CRg
4T3N ≃ 0.1702 for T ¼ 500 MeV as

denoted in Table I. Based on this separation, the Harmonic
oscillator (HO) kernel is now defined as the first part of
Eq. (65), i.e.,

C̄HOðb⊥Þ ¼
g4T3

16π
N b2⊥ ln

�
4Q2

ξm2
D

�
; ð66Þ

which is used to calculate Green’s function subject to
multiple soft scatterings, while the remainder is treated
perturbatively. Instead of using only the short-distance

limit, i.e., C̄pertðb⊥Þ ¼ g4T3

16π N b2⊥ lnð 1
Q2b2⊥

Þ, it is better to

define the correction to the kernel as the difference

C̄pertðb⊥Þ ¼ C̄ðb⊥Þ − C̄HOðb⊥Þ; ð67Þ

where we use the full definition of C̄ðb⊥Þ, i.e., the
numerical spline. The radiation spectrum will also be
separate to the sum of the HO and the first correction

dINLO

dz
ðP; z; tÞ ¼ dIHO

dz
ðP; z; tÞ þ dIð1Þ

dz
ðP; z; tÞ; ð68Þ

where the correction is computed using a first order opacity
expansion with the kernel Cpertðb⊥Þ around the harmonic
oscillator solution. Following [21–23,49], the scale Q2 is
the typical momentum of the radiated quanta defined self-
consistently by using

Q2ðP; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pzð1 − zÞq̂effðQ2Þ

q
; ð69Þ

q̂effðQ2Þ ¼ g4T3

4π
N ½C1 þ Czz2 þ C1−zð1 − zÞ2� ln

�
4Q2

ξm2
D

�
;

ð70Þ

where q̂effðQ2Þ is the coefficient of the three-body
interaction term Γ3, obtained by plugging CHOðb⊥Þ
into Eq. (29).
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1. Leading order

Using CHOðb⊥Þ the rate equations can be solved ana-
lytically [4,7,9], and historically the result was obtained in
terms of the spectrum

dIHO

dz
ðP; z; tÞ ¼ g2Pa

bcðzÞ
4π2

ln j cosΩtj; ð71Þ

where we define the frequency

Ω ¼ 1 − i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂effðQ2Þ
Pzð1 − zÞ

s
: ð72Þ

By applying a time derivative [11], one obtains the leading-
order harmonic oscillator rate

dΓHO

dz
ðP; z; tÞ ¼ −

g2Pa
bcðzÞ
4π2

ReΩ tan Ωt: ð73Þ

2. Next-to-leading order

While the leading-order HO term can be seen as a
resummation of multiple soft scatterings with the medium,
the next-to-leading-order correction introduces the effect of
one “hard” scattering with the medium.3 One obtains the

correction by making use of the separation in Eq. (68),
which translates to a separation of the propagators

Gðt; b⊥; t1; pÞ ¼ GHOðt; b⊥; t1; yÞ þ Gð1Þðt; b⊥; t1; yÞ: ð74Þ

By inserting the full propagator into the evolution Eq. (24),
and using the fact that the propagator GHOðt; q; t1; pÞ is a
solution to the equation

�
i∂t þ

∂2
b⊥

2Pzð1 − zÞ þMeff þ iΓHO
3 ðb⊥Þ

�
GHOðb⊥; t; y; t1Þ

¼ iδðt − t1Þδð2Þðb⊥ − yÞ; ð75Þ

one finds the evolution equation of the next-to-leading-
order propagator Gð1Þðt; b⊥; t1; yÞ,
�
i∂t þ

∂2
b⊥

2Pzð1 − zÞ þMeff þ iΓHO
3 ðb⊥Þ

�
Gð1Þðb⊥; t; y; t1Þ

¼ −iΓpert
3 ðb⊥ÞGHOðb⊥; t; y; t1Þ; ð76Þ

where one neglects next-to-next-to-leading-order terms
∝ Γpert

3 ðb⊥ÞGð1Þðb⊥; t; y; t1Þ. Strikingly, the evolution equa-
tion can be solved analytically to obtain the spectrum [21–23]

dIð1Þ

dz
ðP; z; tÞ ¼ g2Pa

bcðzÞ
4π2

Re
Z

t

0

ds
Z

∞

0

2du
u

½C1C̄pertðuÞ þ CzC̄pertðzuÞ þ C1−zC̄pertðð1 − zÞuÞ�ek2ðsÞu2 ; ð77Þ

¼ g2Pa
bcðzÞ
4π2

Re
Z

t

0

ds
Z

2du
u

C̄pertðuÞ½C1ek
2ðsÞu2 þ Cze

k2ðsÞ
z2

u2 þ C1−ze
k2ðsÞ
ð1−zÞ2u

2

�; ð78Þ

where we define

k2ðsÞ ¼ iPzð1 − zÞΩ
2

½cotΩs − tanΩðt − sÞ�: ð79Þ

When presenting numerical results for the NLO harmonic
oscillator approximation, we compute the integrated spec-
trum in Eq. (68) and subsequently perform a numerical
derivative with respect to t to obtain the rate shown in
Fig. 4.

IV. NUMERICAL RESULTS

We now turn to the discussion of numerical results for
the in-medium radiation rate. We numerically obtain the

rate for the different (LO, NLO, NP) broadening kernels
Cðq⊥Þ as described in detail in Appendix B; the software to
calculate the rates including the tabulation of the broad-
ening kernel is publicly available on GitHub [50]. We will
illustrate our results at the example of the radiation of a
gluon by a parent quark of energy P ¼ 300T in an
equilibrium medium with constant temperature T ¼
500 MeV below, and refer to Appendix C for additional
results regarding the energy (P) and temperature (T)
dependence. We present our results for the rate dΓ=dz in
Fig. 2 as a function of time t for three different momentum
fractions z ¼ 0.05, 0.25, 0.5 and in Fig. 3 as a function of
momentum fraction z for four different times
t ¼ 0.15; 0.4; 1; 4 fm=c. Different curves in each panel
of Figs. 2 and 3 show the rates obtained using the NP
determined Cðq⊥Þ, along with the results for the LO and
NLO perturbative collision kernel (cf. Sec. II). Insets at the
bottom of each graphic display the ratio to the LO results,

3Note that in the original papers [21–23], the NLO harmonic
oscillator approximation has been named “improved opacity
expansion,” since it involves an expansion in the number of
hard scatterings while keeping infinitely many soft scatterings.
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FIG. 2. Splitting rate for the medium-induced emission of a
gluon from a parent quark with energy P ¼ 300T in an
equilibrium plasma with temperature T ¼ 500 MeV as a function
of the evolution time t. Each panel represents a different gluon
momentum fraction z ¼ 0.05, 0.25, 0.5 from top to bottom.
Different curves in each panel show the results for the different
LO, NLO, and NP momentum broadening kernels in Fig. 1.
Dashed lines correspond to the (AMY) splitting rates [51] in an
infinite medium [31]. The lower panel of each plot displays the
ratio to the LO results.

FIG. 3. Splitting rate for themedium-induced emission of a gluon
from a parent quark with energy P ¼ 300T in an equilibrium
medium with temperature T ¼ 500 MeV as a function of the
momentum fraction of the radiated gluon z. Different panels show
the ratedΓ=dz at fixed times t ¼ 0.4; 1; 4 fm=c from top to bottom.
Different curves in each panel show the results for the different LO,
NLO, and NP momentum broadening kernels in Fig. 1. Dashed
lines ðt ¼ ∞Þ correspond to the (AMY) splitting rates [51] in an
infinitemedium [31]. The lower panel of each plot shows the ratio to
the splitting rate for the LO momentum broadening kernel.
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which are frequently employed in phenomenological stud-
ies of jet quenching.
With regards to time dependence in Fig. 2, one finds that

the splitting rates exhibit a linear behavior at early times
and quickly saturate at later times where the splitting rate
converges to the rate for an infinite medium. We indicate
the infinite medium [Arnold-Moore-Yaffe (AMY)] rate by
a gray dashed line, which can be determined entirely in
impact parameter space (cf. [31]), and thus provides an
important validation of the numerical procedure. When
comparing the results obtained for the different collision
kernels, we observe that the nonperturbative result starts
lower than the LO rates before it settles above the LO and
below the NLO. We believe that this behavior can be
attributed to the fact that at early times, radiative emissions
occur primarily due to a single hard scattering for which the
nonperturbative kernel Cðq⊥ ≫ mDÞ falls below the LO
kernel. Conversely, at later times radiative emissions also
occur due to multiple soft scatterings q⊥ ∼mD for which
the nonperturbative Cðq⊥ ≲mDÞ behaves more similar to
NLO perturbative kernel.
Similar effects can be observed when considering the z

dependence of the rate in Fig. 3, while keeping in mind that

the formation time of the radiation behaves as tf ∼
2Pzð1−zÞ

q2⊥
where q2⊥ is the transverse momentum acquired due to
potentially multiple scatterings over the course of the
formation time. While at early times, the nonperturbatively
determined rate dΓ=dz is suppressed compared to the LO
rate for all momentum fractions z, it starts to rise above the
LO results as the rates for soft (z ≪ 1) and hard (z ∼ 1)
branchings approach the infinite medium limit t ≫ tf.
Nevertheless, since for quasidemocratic ðz ∼ 1=2Þ split-
tings the formation time tf remains large, finite size effects
still lead to a significant suppression of the rate of
quasidemocratic ðz ∼ 1=2Þ splittings compared to the
infinite medium rates (t ¼ ∞).
Notably, we find that in both Figs. 2 and 3 the result for

the nonperturbative kernel does not depart from a band of
�50% around LO, while the NLO result can become over
2× larger than the LO result.
We also computed the various approximations to the

splitting rates discussed in Sec. III. In Figs. 4 and 5, we
compare the full in-medium rates to the first order opacity
expansion (N ¼ 1), the resummed opacity expansion
(N ¼ X), and the next-to-leading-order expansion around
the HO (NLO-HO) approximation. We emphasize that in
all cases we employ the same nonperturbative broadening
kernel CQCDðq⊥Þ at T ¼ 500 MeV, such that any
differences are solely due to underlying approximations
in the calculation of the rate. Different panels in Fig. 4 show
the results for dΓ=dz as a function of time for three gluon
momentum fractions z ¼ 0.05, 0.25, 0.5; the bottom insets
in each panel represent the ratio of the respective approxi-
mation to the full in-medium splitting rate. We observe that,

FIG. 4. Splitting rate for themedium-induced emission of a gluon
from a parent quark with energy P ¼ 300T as a function of the
evolution time t. Each panel represents a different gluonmomentum
fraction z ¼ 0.05, 0.25, 0.5 from top to bottom. We compare
different approximations of the in-medium splitting rate, namely the
opacity expansion atN ¼ 1 Eq. (55), the resummed opacity rate of
Eq. (63) (N ¼ X), and the NLO expansion around the harmonic
oscillator Eq. (68) (NLO-HO) to the full result (T ¼ 500 MeV).
Note that all results are obtained with the nonperturbative collision
kernel. The lower panel of each plot displays the ratio to the full rate.
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as expected, the early time linear behavior is captured by
the opacity expansion since the parton does not have
sufficient time to reinteract with the medium. However,
soon after the leading-order (N ¼ 1) opacity expansion
starts to overestimate the rate, while the resummed (N ¼ X)
opacity expansion is able to reproduce the rate rather well
even at late times, especially for soft splittings
[zð1 − zÞ ≪ 0.25]. Similarly, the NLO expansion around
the HO also performs fairly well at all times, especially if
one considers quasidemocratic splittings (z ∼ 1=2).
With regards to the z dependence shown in Fig. 5,

we find that, as pointed out above, the N ¼ X opacity
dependence works particularly well at small/large
momentum fractions z, while the NLO expansion around
the HO is typically most accurate for quasidemocratic
splittings (z ∼ 1=2). Nevertheless, the overall z depend-
ence in Fig. 5 is rather well reproduced by both
approaches, and the deviations from the full rate behave
fairly uniformly as a function of z as can be inferred from
the ratios in the insets. Evidently, the leading-order
opacity expansion is only applicable for times much
smaller than the formation time, and fails rather badly
on large timescales.
Beyond the cases shown in Figs. 4, 5, 2, and 3 we have

also investigated the behavior for different momenta P of
the emitter, as detailed in Appendix C. Generally, we find
that the opacity expansion works well at early times t ≪ tf,

where tf ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zð1−zÞP

q̂

q
is the typical formation time for the

emission due to multiple soft scatterings. Since in this
regime, multiple soft scatterings with q⊥ ≲mD cannot
generate sufficient transverse momentum, the radiative
emission is primarily due to a single (rare) hard scattering
with q⊥ ≫ mD. As for q⊥ ≫ mD the nonperturbative
broadening kernel behaves similarly to the LO perturbative
kernel, and the rates obtained in this regime are also similar.
When t ≫ tf, radiative emissions occur primarily due to
multiple soft scatterings over the course of one formation
time, except for the Bethe-Heitler regime at very low
energies 2Pzð1 − zÞ≲ T, where the formation time
becomes shorter than the mean-free path between soft
scatterings, such that a single soft q⊥ ≲mD scattering is
responsible for the emission, and the rates determined for
the nonperturbative broadening kernel behave similarly to
the NLO perturbative kernel, which exhibits a similar IR
behavior. While the Bethe-Heitler regime can again be
described in terms of an opacity expansion, emissions
with 2Pzð1 − zÞ≲ T and t ≫ tf are due to multiple
scatterings and suffer from Landau-Pomeranchuk-Migdal
(LPM) suppression [5,6]. We find that in this regime,
the rates determined for the nonperturbative broadening
kernel typically lie between the LO and NLO perturbative
determinations, and are best described by the NLO-HO
approximation, which accounts for the effects of multiple
soft scatterings along with a single hard scattering.

FIG. 5. Splitting rate for the medium-induced emission of a gluon
from a parent quark with energy P ¼ 300T as a function of the
momentum fraction of the radiated gluon z. Different panels show the
rate dΓ=dz at fixed times t ¼ 0.4; 1; 4 fm=c. We compare different
approximations of the in-medium splitting rate, namely the opacity
expansion at N ¼ 1 Eq. (55), the resummed opacity rate of Eq. (63)
(N ¼ X), and the NLO expansion around the harmonic oscillator
Eq. (68) (NLO-HO) to the full result (T ¼ 500 MeV). Note that all
results are obtained with the nonperturbative collision kernel. The
lower panel of each plot shows the ratio to the full splitting rate.
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By comparing the effect of various approximations in
Figs. 4 and 5, with the impact of the different LO, NLO,
and NP collision kernels in Figs. 2 and 3, we generally find
that the different approximations to the splitting rates
perform rather well within their respective range of validity,
whereas the choice of the broadening kernel Cðq⊥Þ is
clearly more impactful for the calculation of the in-medium
splitting rates.

V. CONCLUSION

Building on the determination of the collisional broad-
ening kernel CQCDðb⊥Þ in [31], we performed a Fourier
transform of CQCDðb⊥Þ to determine the nonperturbative
broadening kernel CQCDðq⊥Þ in momentum space in order
to compute radiative emissions rates in a QCD medium of
finite extent.
We presented results for the in-medium splitting rates

obtained with the nonperturbative collision kernel and
compared them to the results obtained with leading and
next-to-leading-order perturbative collision kernels, as well
as with different approximations of the in-medium splitting
rates, which are commonly employed in the literature.
While approximations to the splitting rate calculation are
quite effective in reproducing the rate within their respec-
tive range of validity, differences between the LO kernel,
which is usually used in phenomenological studies of jet
quenching, and the nonperturbative kernel can easily be on
the order of 30%. We conclude that, while for sophisticated
numerical simulations one can reconstruct the full rate to
obtain precise results, for (semi)analytical calculations a
combination of the resummed opacity and NLO-HO rates
is likely sufficient, as theoretical improvements mostly rely
on the precise knowledge of the collisional broadening
kernel.
With regards to the phenomenological applications of

our work, we note that the collisional broadening kernel
and in-medium splitting rates obtained in this paper can be
incorporated into a study of jet quenching either using a
kinetic approach [52–54] or with Monte Carlo simulations
[55–58]. Similarly, one could also utilize the same broad-
ening kernel to include nonperturbative contributions to the
elastic scatterings. We finally note that a recent study using
the same EQCD setting obtained nonperturbative contri-
butions to the thermal masses [38] and it would be
interesting to investigate their impact on the rate calculation
specifically and jet quenching in general.
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APPENDIX A: HANKEL TRANSFORMATION

Below we provide details of the procedure followed to
obtain the Hankel transform of the momentum broadening
kernel.

1. Numerical implementation of the Hankel
transformation

To perform the numerical integration in Eq. (13), we split
the integral using the zeros fxig of the Bessel function
[J1ðxiÞ ¼ 0] as follows:

ΔCNPðq⊥Þ ¼
2π

q⊥

X∞
i¼0

Z
xiþ1=q⊥

xi=q⊥
db⊥b⊥J1ðb⊥q⊥Þ

×
d

db⊥
ΔCNPðb⊥Þ: ðA1Þ

Let us define the series

An ¼
Z

xiþ1=q⊥

xi=q⊥
db⊥b⊥J1ðb⊥q⊥Þ

d
db⊥

ΔCNPðb⊥Þ: ðA2Þ

The Hankel transform is then given by the sum
A ¼ P∞

n¼0 An; however, this sum is slowly convergent.
The convergence can be accelerated using a method known
as Shanks transformation [59], where one defines the series

A ¼ lim
n→∞

SðAnÞ ðA3Þ

¼ lim
n→∞

Anþ1 −
ðAnþ1 − AnÞ2

ðAnþ1 − AnÞ − ðAn − An−1Þ
: ðA4Þ

The result is then obtained by truncating the sum when we
obtain convergence up to a small tolerance threshold, i.e.,
when j SðAnþ1Þ

SðAnÞ − 1j ≤ 10−8.

2. Transformation of the short-distance behavior

At short distances the broadening kernel follows a
similar behavior to the LO kernel, which is the short-
distance limit of

Cðb⊥Þ ¼
CRg4T3N
8πm2

D
½γe þ logðmDb⊥=2Þ þ K0ðmDb⊥Þ�:

ðA5Þ

In momentum space this broadening kernel is given by [60]
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Cðq⊥Þ ¼
CRg4T3N

m2
D

m2
D

q2⊥ðq2⊥ þm2
DÞ

: ðA6Þ

Since we are only interested in the leading UV behavior,
provided by the b2 logðbÞ term, the nonperturbative broad-
ening kernel will follow the same behavior as the LO kernel

CUVðq⊥Þ ¼
CRg4T3N

8π

8π

q4⊥
: ðA7Þ

3. Transformation of the long-distance behavior

We proceed to transform the long-distance behavior
given in Eq. (6). Let us first consider the Hankel trans-
formation of the linear function

Cðb⊥Þ ¼ Aþ Bb⊥: ðA8Þ

The constant term leads to a delta function δð2Þðq⊥Þ in
momentum space which can be discarded, and the linear
term will lead to

Cðq⊥Þ ¼ B
2π

q3⊥
: ðA9Þ

Note that in order to verify this identity, it is actually easier
to compute the following inverse transform:

Z
d2q⊥
ð2πÞ2

2π

q3⊥
ð1 − eiq⊥·b⊥Þ

¼ 1

2π

Z
∞

−∞
dx

Z
∞

−∞
dy

1

ðx2 þ y2Þ3=2 ð1 − eixb⊥Þ;

¼ 1

2π

Z
∞

−∞
dx

2

x2
ð1 − cos xb⊥Þ ¼ b⊥: ðA10Þ

APPENDIX B: NUMERICAL IMPLEMENTATION

Below we provide some additional details on the
numerical calculation of the splitting rate for finite media
following the approach of [11]. We employ a forward Euler
scheme, to evolve the wave function from Δt̃ ¼ 0 to Δt̃ ¼ t̃
according to the differential equation (50) and use our
results to perform the integral in Eq. (52).

1. Separating the soft scale

When solving the evolution equation using the NLO and
nonperturbative broadening kernels, we find that the 1=q3

behavior at small momentum leads to numerical instabil-
ities. In order to stabilize this evolution, we will consider
the soft interactions in the collision integral separately.
Starting with Eq. (29), we rewrite the collision integral
using the interaction picture and combine the different
momentum integrals using variable change to find

Γ̃3 ∘ ψ̃ðp̃Þ ¼ eiδẼðp̃ÞΔt̃p̃ ·
Z
q̃

�
C1C̃ðq̃Þ þ

Cz

z2
C̃

�
q̃
z

�

þ C1−z

ð1 − zÞ2 C̃
�

q̃
1 − z

���
e−iδẼðp̃ÞΔt̃

p̃
p̃2

ψ̃ Iðp̃Þ

− e−iδẼðjp̃−q̃jÞΔt̃
p̃ − q̃
jp̃ − q̃j2 ψ̃ Iðjp̃ − q̃jÞ

�
; ðB1Þ

By introducing an intermediate cutoff μ in the momentum
exchange q̃, the collision integral is separated into hard and
soft interactions

FIG. 6. Validation of the separation into soft and hard compo-
nents in the calculation for a quark with momentum P ¼ 300T
radiating a gluon with momentum fraction z ¼ 0.1. (top) Com-
parison of the imaginary part of the initial collision integral using
the LO perturbative broadening kernel. Different curves sepa-
rately show the hard and soft contributions to the collision
integral for μ ¼ 0.2; the sum is compared to the full leading-order
collision integral without separating the soft scales. (bottom)
Evolution of the in-medium splitting rate with varying cutoff
μ ¼ 0.05, 0.1, 0.2. The in-medium splitting rate using the LO
perturbative broadening kernel do not show any significant
dependence on the choice of the cutoff scale.
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C½ψ̃ I� ¼ Chard½ψ̃ I� þ Csoft½ψ̃ I�: ðB2Þ

The soft interaction can be treated in a diffusion approxi-
mation using an expansion in momentum exchange q̃. We
specifically expand the following term from Eq. (50) of the
collision integral:

p̃2 − p̃ · q̃
jp̃ − q̃j2 ψ̃ Iðjp̃ − q̃jÞ ¼ ψ̃ Iðp̃Þ þ

q̃
p̃
cos θ½ψ̃ Iðp̃Þ − p̃ψ̃ 0

Iðp̃Þ�

þ q2

2p̃2
½2 cos 2θψ̃ Iðp̃Þ

þ p̃ð1 − 3 cos2 θÞψ̃ 0
Iðp̃Þ

þ p̃2 cos θ2ψ̃ 00
I ðp̃Þ�; ðB3Þ

where θ is the angle between p̃ and q̃. Plugging the
expansion into the collision integral and performing the
angular integral, we find

Csoft½ψ̃ I� ¼ ψ̃ Iðp̃ÞðIð0Þ1 ðp̃;Δt̃Þ − I2ðp̃;Δt̃Þ − Ið3Þ1 ðp̃;Δt̃ÞÞ
þ p

2
ψ̃ I

0ðp̃Þð2I2ðp̃;Δt̃Þ − Ið3Þ2 ðp̃;Δt̃ÞÞ

−
p2

2
ψ̃ I

00ðp̃ÞI3ðp̃;Δt̃Þ; ðB4Þ

where Ii are the following integral moments:

Ið0Þ1 ðp̃;Δt̃Þ ¼ 1

2π

Z
μ

0

dq̃Cðq̃; zÞ½1 − e−iΔt̃q̃
2

J 0ð2Δt̃ p̃ q̃Þ�;

ðB5Þ

Ið3Þ1 ðp̃;Δt̃Þ ¼ −1
2π

Z
μ

0

dq̃Cðq̃; zÞ q̃
2

p̃2
e−iΔt̃q̃

2

J 2ð2Δt̃ p̃ q̃Þ;

ðB6Þ

I2ðp̃;Δt̃Þ ¼
1

2π

Z
μ

0

dq̃Cðq̃; zÞ q̃
p
ie−iΔt̃q̃

2

J 1ð2Δt̃ p̃ q̃Þ;

ðB7Þ

Ið3Þ2 ðp̃;Δt̃Þ ¼ 1

2π

Z
μ

0

dq̃Cðq̃; zÞ q̃
2

p̃2
e−iΔt̃q̃

2
h 3

2Δt̃ p̃ q̃

×J 1ð2Δt̃ p̃ q̃Þ − 2J 0ð2Δt̃ p̃ q̃Þ
i
; ðB8Þ

I3ðp̃;Δt̃Þ ¼
1

2π

Z
μ

0

dq̃Cðq̃; zÞ q̃
2

p̃2
e−iΔt̃q̃

2

�
1

2Δt̃ p̃ q̃

× J 1ð2Δt̃ p̃ q̃Þ − J 2ð2Δt̃ p̃ q̃Þ
�
; ðB9Þ

where J iðxÞ are the Bessel functions of the first kind and

FIG. 7. Dependence of the in-medium splitting rate on the soft
cutoff μ ¼ 0.05, 0.1, 0.2 for a quark with momentum P ¼ 300T
radiating a gluon with momentum fraction z. Upper panels show
the spectrum as a functions of z at t ¼ 1 fm=c (top) and t ¼
4 fm=c (center). The bottom panel shows the time evolution of
the rate for z ¼ 0.1. All results are obtained for the nonperturba-
tive broadening kernel.
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Cðq̃; zÞ ¼ q̃

�
C1C̃ðq̃Þ þ

Cz

z2
C̃

�
q̃
z

�
þ C1−z

ð1 − zÞ2 C̃
�

q̃
1 − z

��
:

ðB10Þ

We perform the integrals in Eqs. (B5)–(B9) numerically
and tabulate them for a fixed time step Δt̃. Combining the
soft component with the hard component then makes up the
full collision integral in Eq. (50), which can be used to
evolve the wave function. While the hard component is
easily evolved using an Euler explicit scheme, we employ
an implicit scheme for the soft component to deal with
instabilities.
We have explicitly validated the procedure at the hand of

the LO kernel, for which the rate can be evaluated with and
without introducing the cutoff scale μ. In the top panel of
Fig. 6, we show how hard and soft contributions combine to
yield the full collision integral in Eq. (50). Note that to
produce this figure we used a rather large value of μ ¼ 0.2
to render the soft contributions visible on the plot. The
bottom panel of Fig. 6 shows exemplary results for the
effect of the choice of the cutoff scale μ ¼ 0.05, 0.1, 0.2 for
the time evolution of the in-medium splitting computed
using the LO kernel. Excellent agreement of the curves
shows that for the LO kernel there is almost no dependence
on the cutoff scale μ.
Next we investigate the sensitivity to the cutoff scale μ

for the NP broadening kernel. We present in Fig. 7 the
dependence on the cutoff of the in-medium splitting rate
computed using the nonperturbative broadening kernel. We
observe how for sufficiently small cutoff scales μ ≪ 1 the
change of the cutoff scale has almost no effect on the
resulting in-medium splitting rates. Only for larger values
of the cutoff scale μ ¼ 0.2 one starts to notice deviations
around the time when the medium-induced emission begins
to saturate. We note for completeness that the results shown
in Sec. IV are obtained for a value μ ¼ 0.05.

APPENDIX C: SOME ADDITIONAL RESULTS
ON THE TEMPERATURE (T) AND
MOMENTUM (P) DEPENDENCE

Generally the in-medium splitting rate depends on the
temperature T of the plasma, the momentum P of the
emitter, the momentum fraction z of the splitting, and
the time t of evolution inside the QGP medium. Below we
collect some additional results on the temperature (T) and
momentum (P) dependence of the in-medium splitting rates
that corroborate our conclusions of the main text.
With regards to the temperature dependence, we present

in Fig. 8 our results for the splitting rate of a quark with
momentum P ¼ 300T radiating a gluon with momentum
fraction z ¼ 0.05, 0.25, 0.5, 0.75, for the two different
temperatures T ¼ 250 and 500 MeV for which the non-
perturbative broadening kernel has been determined. By
expressing the rate Γ in units of g4T as a function of the

scaled evolution time t̃ ¼ m2
D

2Pzð1−zÞ t introduced in Eq. (40),

one finds that the result for the two different temperatures in
Fig. 8 are in very good agreement with each other,
indicating that the dominant temperature dependence can
be accounted for by this simple scaling.
With regards to the momentum dependence, we explore

different possibilities in Figs. 9 and 10 by considering the
splitting of a hard quark with different momenta
P ¼ 30; 100; 1000T4 from left to right into a quark
and a gluon with momentum fraction z at two fixed times
t ¼ 1 fm=c and t ¼ 4 fm=c, respectively. In the top panels

FIG. 8. Evolution of the splitting rate for the medium-induced
emission of a gluon from a parent quark with energy P ¼ 300T in
an equilibrium plasma with temperatures T ¼ 250 and 500 MeV

as a function of the scaled evolution time t̃ ¼ m2
D

2Pzð1−zÞ t. Each
panel represents a different gluon momentum fraction z ¼ 0.05,
0.25, 0.5, 0.75 from top to bottom.

4We note that for lower energies P ¼ 30; 100T, we employed a
smaller cutoff μ ¼ 0.005 to ensure numerical stability.
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we display the comparison between the splitting rates
obtained using the LO and NLO perturbative broadening
kernels as well as the nonperturbative broadening kernel
similar to Fig. 3, while the bottom panels show comparison
between the different approximations to the splitting rate
calculation as shown in Fig. 4. We find that for low typical
momentum 2Pzð1 − zÞ ∼ T the splitting rate obtained
using the nonperturbative kernel displays a similar behavior
to the one obtained using the NLO broadening kernel,
which can be expected as the rate of soft splittings is
dominated by small momentum transfer where NLO and
NP kernels display similar behavior. Conversely, for high

typical momentum 2Pzð1 − zÞ ≫ T, which are more sen-
sitive to large transverse momentum transfer, the non-
perturbative splitting rate is closer to the LO order result, as
the LO and NP kernels are in better agreement with each
other for high q⊥. We can again confirm our conclusion
from the main text, that for a broad range of momenta P,
splitting fraction z, and times t, the uncertainties in the
elastic broadening kernel typically translate into larger
uncertainties in the splitting rate as opposed to the different
approximations to the splitting rate, which can reproduce
the in-medium splitting rate rather well within their
respective range of validity.

FIG. 9. Splitting rate for the medium-induced emission of a gluon from a parent quark as a function of the momentum fraction of the
radiated gluon z. Different panels show the rate dΓ=dz at fixed times t ¼ 1 fm=c for different values of the parent quark energy
P ¼ 30; 100; 1000T from left to right. We compare the rates obtained by using different broadening kernels in the top row and by
employing different approximations to the rate calculation in the bottom row. Dashed lines correspond to the (AMY) splitting rates [51]
in an infinite medium [31].
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