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We discuss stiffening of dense matter in two color QCD (QC2D) where hadrons are mesons and diquark
baryons. We study two models which describe a transition of matter from the Bose-Einstein-condensation
regime at low density to the Bardeen-Cooper-Schrieffer regime at high density. The first model is based on
coherent states of diquarks, and the second is the Nambu-Jona-Lasinio model with diquark pairing terms.
We particularly focus on how quark states are occupied as baryon density increases. We find that, due to the
occupied quark levels, the ideal gas picture of diquarks breaks down at density significantly less than the
density where baryon cores overlap. The saturation of quark states at low momenta stiffens equations of
state. We also study the effects of interactions which depend on the quark occupation probability. We argue
that equations of state become very stiff when the bulk part of the quark Fermi sea has the effective
repulsion but the Fermi surface enjoys the attractive correlations. This disparity for different momentum
domains is possible due to the strong channel dependence in gluon exchanges with momentum transfer of
0.2–1 GeV. These concepts can be transferred from QC2D to QCD in any numbers of colors.
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I. INTRODUCTION

The quantum chromodynamics (QCD) with two colors
Nc ¼ 2 (QC2D) has been a useful laboratory to test
theoretical conceptions in dense matter [1–19]. In this
theory, hadrons are mesons and diquark baryons. At low
baryon density, the dilute matter is dominated by diquark
baryons, and it continuously transforms into a matter
dominated by quarks. In the literatures, this continuous
transformation is often referred as the crossover from
Bose-Einstein-condensation (BEC) phase to Bardeen-
Cooper-Schrieffer (BCS) phase [20–22]. For even flavors,
the path-integral of QC2D has the positive measure so that
the lattice Monte Carlo simulations are doable [23–42]. In
this paper, we use QC2D in two flavors (Nf ¼ 2) to discuss
some concepts which have been proposed for QCD to
account for the neutron star (NS) phenomenology.
The quark-hadron continuity realized in QC2D can give

important clues to understand recent findings in NS
observations [43–54]. Recent analyses of NSs, with similar

radii (≃12.4 km) for 2.1 and 1.4 solar mass NSs [52–54],
imply that strong first order phase transitions are disfavored
for a density between nuclear saturation density n0
(∼0.16 fm−3) and the core baryon density realized in
two-solar mass NSs, nB ¼ 4–7n0. For this reason the
quark-hadron continuity (modulo weak first order transi-
tions) can be a useful baseline to describe the QCD
equation of state (EOS) [55], and it is important to
understand how such a continuous transition proceeds
microscopically.
In QCD, early constructions on NS EOS with the

continuity scenario were largely based on phenomenologi-
cal interpolations between hadronic and quark EOS
[56–68]. They found several qualitative trends, such as a
peak in the sound velocity, relatively large strangeness
fraction at nB ≃ 5n0, and the importance of semishort range
correlations. While these trends in QCD remain conjec-
tures, in QC2D one can directly test these concepts on the
lattice. In this paper we use QC2D to discuss how stiffening
of matter takes place in the quark-hadron continuity.
Rapid stiffening of dense matter was discussed by

McLerran and Reddy in a quarkyonic matter model [69].
Quarkyonic matter is basically a quark matter, but with
baryons near the quark Fermi surface [70–80]. In the
presence of the quark Fermi sea, the quark Pauli blocking
effects force baryons to take large momenta, PB ∼ NcΛQCD
with ΛQCD ≃ 0.2–0.3 GeV, because of Nc quarks collec-
tively moving in the same direction. Remarkably, these
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baryons are relativistic at relatively low density, nB ¼
1–4n0 ∼ Λ3

QCD, much smaller than naive baryon gas
estimates, nB ∼ 100n0 ∼ P3

B ∼ ðNcΛQCDÞ3. Including this
feature leads to the peak in sound velocity around
nB ¼ 1–4n0 [69,81–86].
Inspired by the work of McLerran and Reddy, one of

the authors (T. K.) in this paper introduced a microscopic
model of quark-hadron continuity [87]. Although schematic,
the model manifestly keeps track of the evolution of the
occupation probability for quark states. In dilute baryonic
matter, quarks in isolated baryons are superpositions of
momentum states from 0 to ∼ΛQCD, and each momentum
state is occupied with a small probability. Those quark states
at lowmomenta are progressively occupied as baryon density
increases, and at some density those states are fully occupied
with the probability one. We call it quark saturation. It was
found that, with a reasonable size scale for a quark wave
function, the quark saturation happens at density consider-
ably less than the density where baryon cores overlap.
This may be interpreted as a percolation of low momentum
modes, referred as soft deconfinement in Ref. [88]. After
saturating low momenta, the quark Fermi sea approaches a
usual quark matter description. In this description, the peak
of sound velocity is triggered by the quark saturation effect,
while nuclear interactions tend to smooth out the peak
structure. The description contains the above-mentioned
quarkyonic matter model as a special case [87].
While QC2D differs from QCD with three colors in

descriptions of baryons, QC2D can be used to test the quark
saturation effects; the baryonic matter in the dilute regime is
the BEC of diquarks, but such a picture breaks down as the
quark occupation probability increases. Also, lattice QC2D
studies found that diquark baryons have hard core repul-
sions [89]. For these aspects, whether baryons are fermions
or bosons may not be crucial, and both cases should induce
rapid stiffening associated with the quark saturation. We
delineate QC2D from this point of view1 to find out
concepts which are also useful for QCD.
Another important issue is the effects of interactions. In

the context of two solar mass NS, it is important to
understand which interactions can stiffen quark matter
EOS. To get rough insights, it is useful to start with a
simple parametrization of an energy density [60,63]

εðnBÞ ¼ an4=3B þ bnαB; ð1Þ

where the first term is from the relativistic kinetic energy
for quarks, and the second is from interactions. Taking a
derivative to obtain μB, using P ¼ μBnB − ε, and eliminat-
ing the coefficient a, one can write the pressure as

P ¼ ε

3
þ b

�
α −

4

3

�
nαB: ð2Þ

For α > 4=3, repulsive (b > 0) forces stiffen EOS while
attractive forces soften EOS. This trend is seen in low
density nuclear physics. Meanwhile, a less known pos-
sibility is α < 4=3, for which attractive (b < 0) forces
stiffen EOS. Such attractions with low powers of nB may
happen around the Fermi surface at high density. We argue
that EOS becomes very stiff when the bulk part of the quark
Fermi sea has effective repulsions but the Fermi surface
enjoys the attractive correlations. In QC2D, the latter is
naturally realized as diquark correlations. Taking this
schematic description as our baseline, we examine the
effects of interactions using two models. The first is a
model based on coherent states of diquarks, and the second
is the Nambu-Jona-Lasinio (NJL) model with diquark
pairing terms.
This paper is organized as follows. In Sec. II we discuss

quarks in baryonic matter and the concept of the occupation
probabilities. In Sec. III we compare ideal fermionic and
bosonic baryon gases. In Sec. IV we discuss a model of
coherent states for diquarks. In Sec. V we study the NJL
model. Section VI is devoted to a summary.

II. QUARKS IN BARYONIC MATTER

In this section, we discuss quarks in a dense matter for a
general number of colors. We consider the occupation
probability, fq ¼ fqcs , of a quark state for a given set of
color (c), flavor (q), spin (s) in baryonic matter. We
postulate the form [87] (

R
p ≡

R
d3p=ð2πÞ3),

fqðk; nBÞ ¼
X
I

Z
KB

BIðKB; nBÞQIq
in ðk;KBÞ: ð3Þ

Here BIðKB; nBÞ is the number of baryons in a quantum
state with a momentum KB and a baryon spin-flavor
ðS; Sz; FÞ, e.g., Δþþ

S¼Sz¼3=2. The function QIq
in is a single

quark momentum distribution with a color-spin-flavor
species q ¼ qcs ¼ ðuR↑; uR↓; uG↑ ; � � �Þ, specifying the host
baryon with a quantum number “I”. Since fq is the
probability, it must obey the constraint

0 ≤ fqðk; nBÞ ≤ 1; ð4Þ

which in turn constrains the form of B [87]. For the
normalization of QIq

in , we set the spatial probability after
momentum integration to be 1. Then

Z
k
QIq

in ðk;KBÞ ¼ hIjNqcs jIi ¼
1

Nc
hIjNqs jIi; ð5Þ

where Nqcs is the number operator for a state qcs , and
Nqs ¼

P
c Nqcs which counts the number of states with a

1We note that Ref. [90] also discussed the peak in sound
velocity by focusing on the interplay between chiral and diquark
condensates. Meanwhile, our scenario is not sensitive to the
presence of chiral condensates.
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given spin-flavor (qs).
2 The total quark number is

computed as

nq ¼
X
qcs

Z
k
fqðk; nBÞ

¼
X
I

Z
KB

BIðKB; nBÞ
X
qcs

hIjNqcs jIi

¼
X
I

Z
KB

BIðKB; nBÞ
X
qs

hIjNqs jIi; ð7Þ

where
P

qs
¼ P

qcs
=Nc. We note3

X
qs

hIjNqs jIi ¼ Nc; ð9Þ

with which Eq. (7) leads to

nq
Nc

¼
X
I

Z
KB

BIðKB; nBÞ ¼
X
I

nIB ¼ nB; ð10Þ

as it should.
As the baryon momentum is given by the sum of

quark momenta, QIq
in must satisfy the constraint4

KB ¼ Nc

Z
k
kQIq

in ðk;KBÞ: ð11Þ

where we assumed that QIq
in is the same for all colors and

simply multiplied a factor Nc. We further assume that the
variance of quark momenta is characterized as

Z
k

�
k −

KB

Nc

�
2

QIq
in ðk;KBÞ ∼ Λ2

QCD; ð12Þ

for any KB. The scale ΛQCD is about the inverse of a baryon
size. This constraint is satisfied by taking the following
form,

QIq
in ðk;KBÞ ¼ QIq

in

�
k −

KB

Nc
; 0

�
: ð13Þ

If jKBj ≪ NcΛQCD, the term with KB can be treated as a
small correction of ∼1=Nc.

III. IDEAL BARYON GAS

In this section, we compare fermionic and bosonic
baryon gases. The purpose here is to examine to what
extent the concepts of QC2D can be applied for QCD.

A. Fermionic baryon gas

We first consider baryons as fermions. Let us discuss
the dilute limit, nB ≪ Λ3

QCD, of baryonic matter where
baryons are supposed to form an ideal gas. For baryons as
fermions, we assumed that the number of spin-flavor states
is gB ¼ P

I 1, and they are all degenerated. Then

BIðkB; nBÞ ¼ θðKF
B − jKBjÞ; ð14Þ

with

nB ¼
X
I

ðKF
BÞ3

6π2
≡ gB

ðKF
BÞ3

6π2
; ð15Þ

where KF
B is the Fermi momentum of baryons defined

through nB. To compute fq, the discussions can be

simplified by applying the 1=Nc expansion to QIq
in [see

Eq. (13)]

fqðk; nBÞ ¼
X
I

Z
KB

BIðKB; nBÞðQIq
in ðk; 0Þ þ � � �Þ

≃
nB
gB

X
I

QIq
in ðk; 0Þ; ð16Þ

where � � � are 1=Nc corrections. At leading order of 1=Nc,
the function fq has the k dependence as QIq

in , but its
magnitude grows linearly with nB. Recalling the constraint
fq ≤ 1, the ideal gas picture must be violated for some large
nB. At leading order of 1=Nc, the saturation of the k ¼ 0
mode in a state qs takes place when

nid satB jLO ¼
�
1

gB

X
I

QIq
in ð0; 0Þ

�
−1
: ð17Þ

From the normalization condition, QIq
in ð0; 0Þ ∼ Λ−3

QCD,
nid satB ∼ Λ3

QCD. Beyond this critical density, the quark
Fermi sea with the occupation probability ≃1 develops.
For simplicity, we estimate the energy density within the

quasiparticle picture,

2For example, at Nc ¼ 3, a state jΔþþ
sz¼3=2i ¼ juR↑ ; uG↑ ; uB↑i has

the matrix element,

hΔþþ
sz¼3=2jNuR↑

jΔþþ
sz¼3=2i ¼ 1 ¼

hΔþþ
sz¼3=2jNu↑ jΔþþ

sz¼3=2i
3

; ð6Þ

and
R
k Q

Δþþ
sz¼3=2u

R
↑

in ðk;KBÞ ¼ 1 for whatever KB.
3For example, for a proton state jpi ∼ juudi in QCD,

hpj
X
qs

Nqs jpi ¼ hpjðNu↑ þ Nu↓ þ Nd↑ þ Nd↓Þjpi ¼ 3: ð8Þ
4As we integrate out ðNc − 1Þ-quarks in a baryon to get a

single quark distribution Qin, the relation, KB ¼ k1 þ � � � þ kNc
,

is casted onto a constraint on the average momenta, KB ¼ Nchki.

PEAKS OF SOUND VELOCITY IN TWO COLOR DENSE QCD: … PHYS. REV. D 105, 076001 (2022)

076001-3



εðnBÞ ¼
X
qcs

Z
k
EqðkÞfqðk; nBÞ; ð18Þ

where Eq is the single quark energy for states with q ¼ qcs .
In a dilute limit, the leading order of 1=Nc is

εLOdiluteðnBÞ ¼
nB
gB

X
I

X
qcs

Z
k
Eqcs ðkÞQIqcs

in ðk; 0Þ

¼ nB
gB

X
I

MI
B ¼ nBMB; ð19Þ

where in the last step we used the degeneracyMI
B ¼ MB for

all I. For this energy density the pressure is vanishing

PLO
dilute ¼ n2B

∂ðεLOdilute=nBÞ
∂nB ¼ 0: ð20Þ

The pressure in a dilute limit is vanishing when a constant
energy per particle is insensitive to changes in nB.
This trend of the constant energy per particle must change

when the quark saturation effects set in, because the saturated
levels require quarks to be added at higher momenta at larger
nB. The energy per particle begins to grow just after the
saturation, and the pressure increases rapidly. Especially, if
we naively extrapolate an ideal gas expression to the quark
saturation point, the nB dependence of ε=nB changes dis-
continuously at the saturation. This leads to an unphysical
jump in pressure [87]. In more realistic treatments, at low
density ε=nB increasesmore graduallymainly due to baryon-
baryon interactions, smearing the unphysical jump.
Throughout this section we have assumed that QIq

in for
quarks in a baryon does not change. In principle, quark
states in a baryon should be also affected when the low
energy levels are partially filled. This is also expected from
meson exchanges between baryons that can be interpreted
as quark hopping [88]. We see this sort of modification in
the following sections.

B. Bosonic baryon gas

In an ideal gas of elementary bosons, the ground state is
the BEC made of bosons at zero momenta. For an ideal or
noninteracting gas of composite bosons, we suppose that
the BEC description is valid in a dilute regime. Here, we
consider only single bosonic baryon in two flavor theories,
namely a bosonic baryon made of a color-, flavor-,
spin-singlet ud diquarks.5 In the BEC the baryon state
distribution should be

BidealðKB; nBÞ ¼ nBð2πÞ3δðKBÞ; ð22Þ

which satisfies nB ¼ R
KB

BidealðKB; nBÞ. The probability to
find, e.g., the state uR↑ state in such a baryon is proportional
to 1=2Nf where the factor 2Nf is from the spin and flavor
Nf ¼ 2. Substituting Eqs. (22) to (3), we can show

fidealq ðk; nBÞ≡ nBQ
q
inðk; 0Þ: ð23Þ

which is similar to Eq. (16). The condition on a probability,
fq ≤ 1, is applied as before, so the saturation must take
place at some density. For an ideal gas

nid satB ¼ Qq
inð0; 0Þ−1 ∼ 2NfΛ3

QCD: ð24Þ

The EOS is soft (P ¼ 0) before reaching the saturation, and
then gets stiffened. This mechanism is the same as in a
fermionic baryon gas.

IV. A MODEL OF COHERENT STATES

From this section we begin to take into account inter-
actions. For diquark baryons in QC2D, relatively simple
descriptions of fq from nuclear to quark matter regime are
possible by referring to theories for the BEC-BCS cross-
over [20–22]. In this section, we assume the presence
of a hamiltonian which drives the formation of diquark
bound states in vacuum. We do not write the Hamiltonian
explicitly, but assume that the resulting ground state can be
described by the coherent states with which the creation
and annihilation operators of (composite) bosons have the
nonzero expectation values, hd†i; hdi ≠ 0. With these
expectation values, the BEC in this section differs from
the BEC of noninteracting bosons; the latter is the eigen-
state of the number operator d†d leading to the zero
expectation values of boson operators (e.g., hdi ¼ 0).
Hence, intrinsically the BEC in this section is made of
interacting bosons. For the stability of uniform Bose gas in
dilute regime (no clustering), the boson-boson interactions
should be repulsive here. The pressure is nonzero from the
dilute regime.

A. Occupation probability

In a dilute regime of interacting bosons, the BEC state
can be described as a coherent state (N , C: constants to be
fixed later)

jΦi≡N exp½Cb†0�j0i: ð25Þ

We keep this form to the BCS regime. Here b†KB
is a

creation operator of bosons with KB, made of quark
creation operators ðaqcsk Þ† as (Nc ¼ Nf ¼ 2)

5The quantum number can be expressed as

jBi ¼ ϵcc0ϵqq0ϵss0
jqcs; q0c0s0 iffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcNf

p : ð21Þ

The normalization factor is included in Qq
in.
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b†KB
¼ ϵqq0ϵcc0ffiffiffiffiffiffiffiffiffiffiffi

NcNf
p

Z
k
ϕkða

qc↑
kþKB=2

Þ†ðaq
0c0
↓

−kþKB=2
Þ†: ð26Þ

The function ϕk is a wave function for a relative momentum
between two quarks, normalized as

R
k jϕkj2 ¼ 1. The form

of ϕk may be density dependent in principle, but we use the
same ϕk during the BEC-BCS crossover. (In this section we
neglect hole and antiparticle contributions for simplicity.)
Since the boson operator b†0 is made of fermions, we can

rewrite the coherent state as (Φk ≡ Cϕk)

jΦi ¼ N
Y
k

exp

�
Φk

ϵqq0ϵcc0

2
ðaq

c
↑

k Þ†ðaq
0c0
↓

−k Þ†
�
j0i

¼ N
Y
k

X4
n¼0

1

n!
ðΦkA

†
kÞnj0i ð27Þ

where

A†
k ¼

ϵqq0ϵcc0

2
ðaq

c
↑

k Þ†ðaq
0c0
↓

−k Þ†: ð28Þ

In the product of A†
k, the products of the same fermionic

creation operators automatically drop off. For given
ðk ↑;−k↓Þ levels, we have superposition of an empty
state j0; 0i, a diquark state (e.g., juR↑; dG↓ i), a tetraquark

state (e.g., juR↑uG↑ ; dR↓dG↓ i), a hexaquark state, (e.g.,

juR↑uG↑dR↑; uG↓dR↓dG↓ i) and an octaquark state, juR↑uG↑dR↑dG↑ ;
uR↓u

G
↓d

R
↓d

G
↓ i. In the octaquark state all color-flavor-spin are

filled for a given k; states are saturated and no more states
are available. For our coherent states, all of these states
have finite probabilities; the ground state changes from the
BEC to BCS regime smoothly with changes in the weight
factor Φk.
In a dilute matter, jΦkj ≪ 1 for all levels and the diquark

states are dominant. In a dense matter, there are both dense
and dilute levels in momentum space. At low k, the
octaquark states or filled quark Fermi sea are dominant
with jΦkj ≫ 1. But levels at sufficiently high k have the
small weight factors, jΦkj ≪ 1, leading to a smeared Fermi
surface as in the BCS state.
Let us confirm the above-mentioned behaviors. The

normalization condition is

1 ¼ hΦjΦi ¼ jN j2
Y
k

X4
n¼0

AnjΦkj2n
ðn!Þ2 ; ð29Þ

with the expectation values for each k,

An ≡ h0jAn
kðA†

kÞnj0i: ð30Þ

The list is

A0 ¼ A1 ¼ 1; A2 ¼
3

2
; A3 ¼ A4 ¼

9

4
: ð31Þ

Thus, the normalization constant N is determined for a
given set of Φk at various k. The other constant C is fixed
by the condition (nq ¼ 2nB)

nq ¼
X
qcs

Z
k
hΦjnqcsk jΦi ¼

X
qcs

Z
k
fqðk; nBÞ; ð32Þ

where nq
c
s

k ¼ ðaqcsk Þ†aqcsk . Explicit calculations lead to

fqðk; nBÞ ¼ jN j2
X4
n¼1

BnjΦkj2n
ðn!Þ2

Y
l≠k

X4
m¼0

AmjΦlj2m
ðm!Þ2

¼
X4
n¼1

BnjΦkj2n
ðn!Þ2

�X4
m¼0

AmjΦkj2m
ðm!Þ2 ; ð33Þ

with the expectation values for each k,

Bn ≡ h0jAn
kn

qcs
k ðA†

kÞnj0i: ð34Þ

The list is

B1 ¼
1

4
; B2 ¼

3

4
; B3 ¼

27

16
; B4 ¼

9

4
: ð35Þ

The constant C is determined for a given set of the bound
state wave functions ϕk at various k.
In a dilute matter, jΦkj2 ≪ 1 for all k, and we have

nq ¼ 2nB ≃
X
qcs

Z
k
B1jΦkj2 ¼ 2jCj2; ð36Þ

where we have used
R
k jϕkj2 ¼ 1. Now we found jCj2 ≃ nB

with which

fqðk; nBÞ ≃
jϕkj2
4

nB: ðdilute matterÞ ð37Þ

The occupation probability is proportional to nB. The factor
1=4 ¼ 1=2Nf reflects the probability to find specific spin-
flavor quantum numbers (e.g., uR↑) from a spin- and flavor-
singlet baryon.
Meanwhile, in a dense matter, there are low momentum

modes with jΦkj2 ≫ 1 and high momentum modes with
jΦkj2 ≪ 1. For low momentummodes, the expression of fq
is dominated with the jΦkj8-terms. Here all color-flavor-
spin quanta are saturated. Including up to 1=jΦkj2 correc-
tion, one finds (reminder: Φk ¼ Cϕk)
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fqðk; nBÞ ≃ 1 −
4

jΦkj2
: ð38Þ

Thus fq approaches 1 from below, as it should.
Finally, we derive the expression for the amplitudes of

diquark operators. It is given by

dk ≡ hΦjAkjΦi ¼ jN j2
Y
k

Φk

X4
n¼1

AnjΦkj2ðn−1Þ
n!ðn − 1Þ!

¼ Φk

X4
n¼1

AnjΦkj2ðn−1Þ
n!ðn − 1Þ!

�X4
m¼0

AmjΦkj2m
ðm!Þ2 : ð39Þ

Here dk is a dimensionless quantity. Diquark condensates
are obtained after integrating dk over the phase space,

R
k.

Now, we try to gain the analytic insights. For dilute
levels (jΦkj2 ≪ 1),

dk ≃Φk: ð40Þ

In particular, if all levels are dilute, we may further use
jCj2 ≃ nB [Eq. (36)] to get dk ≃

ffiffiffiffiffiffi
nB

p
ϕk. On the other hand,

for dense levels (jΦkj2 ≫ 1),

dk ≃ 4
Φk

jΦkj2
≃Φk½1 − fqðk; nBÞ�: ð41Þ

In the last step we used Eq. (38). Thus, the diquark
amplitudes are small for occupied levels.

B. A model of Gaussian wave functions

We now take a specific spatial wave function for
composite bosons, and use them together with the formulas
in Sec. IVA. We postulate the form

jΦkj2 ¼ jCϕkj2 ¼ jCj2
�
2

ffiffiffi
π

p
Λ

�
3

e−k
2=Λ2

; ð42Þ

where Λ characterizes the size of diquarks. Taking the
Fourier transform of ϕk and then squaring it, we obtain the
probability of two quarks to have a relative distance jrj,

jϕrj2 ¼ const × e−Λ
2r2 ; ð43Þ

from which one can calculate the average distance of two
quarks in a baryon as

hr2i ¼ 3Λ−2

R
dx x2e−x

2

R
dx e−x

2 ¼ 3

2Λ2
: ð44Þ

Thus, the average distance from the center is

R≡
ffiffiffiffiffiffiffiffi
hr2i

p
2

≃ 0.612 fm ×

�
0.197 GeV

Λ

�
: ð45Þ

This defines our baryon core radius in this paper. We
estimate the density where baryon cores overlap as

noverlapB ≡ 1

4πR3=3
≃ 1.04 fm−3

�
Λ

0.197 GeV

�
3

: ð46Þ

For Λ ≃ 0.2 GeV, we find noverlapB ≃ 6.5n0. It is also
convenient to evaluate the density for the quark saturation
at k ¼ 0. Our measure is [see Eqs. (24) or (37) for
fqðk ¼ 0; nBÞ]

nid satB ¼ 2Nf

�
Λ

2
ffiffiffi
π

p
�

3

≃ 0.09 fm−3
�

Λ
0.197 GeV

�
3

: ð47Þ

For Λ ≃ 0.2 GeV, we find nid satB ≃ 0.56n0. This density is
much smaller than that for baryons to overlap.
Now, we first examine to what extent the ideal Bose gas

expressions in Sec. III B are valid. We recall that, in the
ideal gas limit, the parameter jCj2 equals to nB [see
Eq. (36)]. This equality is violated when the composite
natures of baryons become important. Shown in Fig. 1 is
the jCj2 vs nB, each normalized by n0 ¼ 0.16 fm−3. The
relations are naturally sensitive to Λ or the baryon size. The
limit Λ → ∞ corresponds to the point particle limit, and
jCj2 ¼ nB. This simple relation does not hold for a smaller
Λ; boson-boson interactions6 as well as the composite
nature of bosons make nB less than jCj2. Remarkably, these
effects are substantial at density much smaller than noverlapB

FIG. 1. jCj2 vs nB, each normalized by n0 ¼ 0.16 fm−3. The
value of jCj2 corresponds to nB in the ideal Bose gas limit in
which the composite nature is neglected or Λ is taken to be
infinity.

6The effects of interactions are implicitly included by saying
that the ground state is given by a coherent state with nonzero
diquark amplitudes.
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and nid satB . For instance, for Λ ¼ 0.2 GeV, the deviation
from the ideal gas limit is significant around nB ≃ 0.5n0.
The coherent state is substantially different from the ideal
Bose gas limit already at rather low density.
Next, we examine the occupation probability of quark

states, see Fig. 2 for theΛ ¼ 0.2 GeV case. One can readily
see that ∼50% of the k ¼ 0 states are occupied at
nB ¼ 0.5n0, and ∼100% at nB ¼ 4n0. At nB ¼ 0.5n0,
one can see the Gaussian shape, but at higher density
the shape is deformed. The growth rate of the occupation
probability becomes smaller for low momentum states,
and then states with higher momenta grow more substan-
tially instead. To see this trend more clearly, we examine
the ratio

fqðkÞ=fidealq ðkÞ; ð48Þ

where fidealq is estimated by the expression of Eq. (37).
The result is shown in Fig. 3. If we neglect the composite
nature of baryons, the ratio remains 1 for all momenta. As
density increases, the low momentum part of the ratio drops
as the quark Pauli blocking effect tempers the growth in fq,
and instead the higher momentum part in fq is increased
more than in fidealq , leaving substantial enhancement in the
ratio fq=fidealq at high momenta. At nB ≃ 0.5n0, the occu-
pation probability is considerably modified from the ideal
gas limit.
Finally we examine a diquark amplitude dk which is

dimensionless (Fig. 4). From Eqs. (40) and (41), its size is
determined by the product of Φk and 1 − fq. For a large k,
Φk becomes small but 1 − fq ≃ 1. For a small k,Φk is large
but 1 − fq can be small at large nB. Hence, dk should take
the maximum near the Fermi surface, as clearly seen
in Fig. 4.

C. A model of single quark energy for EOS

So far we have assumed the presence of a Hamiltonian
which favors the coherent states as ground states at
given density, but have not discussed the energies
explicitly. Here, we assume some form of average
single particle energies and calculate the EOS within a
quasiparticle picture. We postulate the parametrization
(β > 0)

ECQMðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ k2
q

− CA þ CS½fqðkÞ�β; ð49Þ

where Mq is the constituent quark mass, and CA and CS

are two-body semishort range correlations where A
and S stand for color-singlet (antisymmetric) and triplet

FIG. 3. The fqðkÞ=fidealq ðkÞ ratio for various nB. The ratio
measures how the quark Fermi sea differs from naive extrapo-
lation of the ideal gas estimate.

FIG. 2. The occupation probability fqðkÞ as a function of
momentum k. The cases nB=n0 ¼ 0.5, 1.0, 2.0, and 4.0 cases
are shown.

FIG. 4. The (dimensionless) diquark amplitude dk as a function
of momentum k. The cases nB=n0 ¼ 0.5, 1.0, 2.0, and 4.0 cases
are shown.
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(symmetric) channels.7 In a baryon or in a dilute matter, any
two quarks are in the color-antisymmetric combination.
Meanwhile, color-symmetric interactions occur only when
two baryons are close and quarks from different baryons
interact. These pictures are reflected in our parametrization.
In average, a quark has the energy reduction by CA,
while CS is suppressed by factors ½fqðkÞ�β ≪ 1. At a large
density, quarks have more chance to interact with quarks in
a color symmetric channel. For occupied levels with
fqðkÞ ∼ 1, the repulsive energy grows up.
With this single particle energy, the baryon mass is

computed as the sum of average quark energy,

MB ¼ Nc

Z
k
ECQMðkÞjϕkj2

¼ Nc

�Z
k
jϕkj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ k2
q

− CA

�
: ð50Þ

Below we set Mq ¼ 0.3 GeV and Λ ¼ 0.2 GeV. For
CA ¼ 0, the baryon mass is MB ≃ 0.77 GeV with
0.60 GeV from the quark rest masses and 0.17 GeV from
the quark kinetic energy. We examine CA ¼ 0.085, 0.185,
and 0.285 GeV which give MB ¼ 0.6, 0.4, and 0.2 GeV,
respectively.
For computations of EOS, we first set CS ¼ 0. We use

the measures

εid sat ≡MBnid satB ; ð51Þ

to estimate the energy density which the ideal gas picture
would yield at the density of quark saturation. For CA’s to
yield MB ¼ 0.6, 0.4, and 0.2 GeV, the corresponding εid sat

are 0.054,0.036, and 0.018 GeVm−3, respectively. The
corresponding pressure is zero because ε=nB is constant
with respect to changes in nB.
For these sets of parameters, the ε vs P is shown in Fig. 5.

First of all, all these curves suggest that the pressure at
nB ¼ nid satB is not close to the ideal Bose gas limit, P ¼ 0.
Rather, the results of the coherent state smoothly approach
the quark matter behaviors with the slope dP=dε ¼ c2s
close to 1=3. In particular, the speed of sound is already
substantial before reaching nid satB , and no peaks are found
(Fig. 6). We note EOS is stiffer for a larger CA. This is
because (with a given kinetic energy) a quark in attractive
correlations can appear with the smaller energies.
Now, we turn on interactions in the color-symmetric

channels, CS, for CA ¼ 0.285 GeV (MB ¼ 0.2 GeV).
We set CS ¼ CA for simplicity and vary the powers β

[see Eq. (49)]. The interaction part of a quark energy
behaves as

−CA þ CS½fqðkÞ�β ∼ −CAð1 − ½fqðkÞ�βÞ: ð52Þ

For a larger β, the contrast between the filled and empty
levels is sharper. Also, the effect of the repulsion is more
suppressed (½fqðkÞ�β ≪ 1) at low density.
Shown in Fig. 7 is ε vs P, and, in Fig. 8, nB=n0 vs c2s . The

color-symmetric repulsion with β ≥ 1 stiffens the EOS. For
a smaller β, the stiffening takes place at low density. For a
larger β, the repulsion sets in only when fq is very close to
1. The location of stiffening can be most clearly identified

FIG. 5. ε vs P for various CA. We set Λ ¼ 0.2 GeV,
Mq ¼ 0.3 GeV, and CS ¼ 0. The arrows indicate the location
of εid sat ¼ MBnid satB . For Λ ¼ 0.2 GeV, the ideal gas picture
should have the quark saturation at nid satB ≃ 0.56n0.

FIG. 6. The square of sound velocity c2s as a function of nB.
We set Λ ¼ 0.2 GeV, Mq ¼ 0.3 GeV, and CS ¼ 0. The con-
formal value c2s ¼ 1=3 is also shown as a guide.

7A more reasonable modeling should also distinguish spin-
flavor channels. For a scalar diquark as discussed here, both
color-electric and magnetic interactions act as attractions between
two quarks, as in the case for pions in constituent quark models
[91]. In this context, the values of CA should be interpreted as the
sum of these two interactions.
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by peaks in c2s (Fig. 8). Next, we examine why a larger β
leads to a stiffer EOS at high density. For modes with
fqðkÞ ≃ 1, the powers β no longer matter. On the other
hand, the correlations near the Fermi surface are sensitive to
how much the repulsion is suppressed by the factor
½fqðkÞ�β. For CA ≫ CS½fqðkÞ�β, the attractive correlations
dominate over the repulsive one, and the attractive corre-
lations near the Fermi surface stiffens EOS, as advertised
in Eq. (2).

V. THE NJL MODEL

In this section, we discuss stiffening of matter in the two
color and two flavor NJL model [92]. The model can

describe the chiral symmetry breaking/restoration, diquark
condensations, the strucutral changes in hadrons, and
so on [5,7–11]. Although the model does not include
confining effects, baryons appear as composite particles
whose masses in a dilute limit equal to the pion mass. Thus,
we expect that the stiffening mechanism in the previous
sections has some validity. We further elucidate various
dynamical effects.
We consider light doublet fields q ¼ ðu; dÞT . Our model

Lagrangian is

LNJL ¼ q̄ði∂ −mþ μγ0Þqþ L4; ð53Þ

where m ¼ mu ¼ md is the current quark masses, and L4

describes the chiral and diquark correlations among ðu; dÞ
quarks,

L4 ¼ G½ðq̄τaqÞ2 þ ðq̄iγ5τaqÞ2�
þH½jq̄iγ5τ2σ2qCj2 þ jq̄τ2σ2qCj2�: ð54Þ

This part of the Lagrangian is symmetric under UðNfÞL ⊗
UðNfÞR ⊗ SUðNcÞ transformations. To check the sym-
metry for the last diquark terms, it is convenient to rewrite

jq̄iγ5τ2σ2qCj2 þ jq̄τ2σ2qCj2
¼ 2jq̄Lτ2σ2qCLj2 þ 2jq̄Rτ2σ2qCRj2: ð55Þ

In the last expression, each term is singlet in the UðNfÞL ⊗
UðNfÞR ⊗ SUðNcÞ group. Note that the ðqqÞLðq̄ q̄ÞR type
cross terms are canceled so that the Lagrangian is Uð1ÞA
symmetric. In this work we neglect the determinant
interaction which breaks the Uð1ÞA symmetry [8,92].

A. Mean field thermodynamics

In the mean field approximation,

LMF
4 ¼ 4Gσfðq̄qÞf−2Gσ2f

−Hd†ðq̄Cγ5τ2σ2qÞþHdðq̄γ5τ2σ2qCÞ−Hjdj2; ð56Þ

where the mean fields are given by

σf ¼ hðq̄qÞfi; d ¼ hq̄Cγ5τ2σ2qi: ð57Þ

The effective mass and diquark gap are given by

Mf ¼ mf − 4Gσf; Δ ¼ −2Hd: ð58Þ

Below we assume M ¼ Mu ¼ Md. Using the Nambu-
Gor’kov bases, Ψ ¼ ðq; qcÞ=

ffiffiffi
2

p
, the mean-field

Lagrangian can be written as

LMF ¼ Ψ̄ð−iSÞΨ − 2Gσ2f −Hjdj2; ð59Þ

FIG. 7. ε vs P for various CA. We set Λ ¼ 0.2 GeV,
Mq ¼ 0.3 GeV, and CS ¼ 0. For Λ ¼ 0.2 GeV, the ideal gas
picture should have the quark saturation at ε ≃ 0.018 GeV fm−3

(nid satB ¼ 0.56n0).

FIG. 8. The square of sound velocity c2s as a function of nB. We
set Λ ¼ 0.2 GeV, Mq ¼ 0.3 GeV, and CS ¼ CA. The conformal
value c2s ¼ 1=3 is also shown as a guide.
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where S is the Nambu-Gor’kov propagator,

−iS−1 ¼
�
i∂ − M̂ þ μγ0 Δγ5τ2σ2
−Δ�γ5τ2σ2 i∂ − M̂ − μγ0

�
; ð60Þ

The mean field thermodynamic potential is (T: temper-
ature, μ: quark chemical potential)

ΩMF ¼ NcNf

X
ξ¼p;a

Z
k
½−ϵξk − 2T ln ð1þ e−ϵ

ξ
k=TÞ�

þ 2Gσ2f þHjdj2: ð61Þ

with the quasiparticle energies

ϵξk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk − ηξμÞ2 þ jΔj2

q
; ð62Þ

where we introduced ηp ¼ þ1 and ηa ¼ −1 and Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. As measures of occupation probability, it is

common to use the functions

juξðkÞj2 ¼
1

2

�
1þ Ek − ηξμ

ϵξk

�
;

jvξðkÞj2 ¼
1

2

�
1 −

Ek − ηξμ

ϵξk

�
; ð63Þ

which satisfy

juξðkÞj2 þ jvξðkÞj2 ¼ 1; uξðkÞvξðkÞ ¼
Δ

2ϵξðkÞ
: ð64Þ

The baryon number density nMF
B ¼ nMF

q =Nc with nMF
q ¼

−∂ΩMF=∂μ is

nMF
q ¼ 2Nf

Z
k
ðfMF

p ðkÞ − fMF
a ðkÞÞ; ð65Þ

where fMF
p;a is the quark and antiquark occupation proba-

bilities,

fMF
ξ ðkÞ≡ jvξðkÞj2ð1 − 2nξkÞ þ nξk; ð66Þ

with the Ferm-Dirac distribution function

nξk ¼
1

1þ eϵ
ξ
k=T

: ð67Þ

In the zero temperature limit, nξk → 0.

B. Numerical analyses

We now numerically examine the mean field EOS.
We use the following set of parameters:

Λ ¼ 1.0 GeV; GΛ2 ¼ 2.8; mq ¼ 5 MeV; ð68Þ

which yield the vacuum pion mass mπ ≃ 0.17 GeV and the
vacuum constituent quark massM ≃ 0.31 GeV. We restrict
ourselves to the T ¼ 0 case. We first present the bulk results
for EOS and then analyze the microscopic aspects.
Shown in Fig. 9 are the Dirac mass (M), diquark gap (Δ),

and normalized baryon number density (nB=n0) where
n0 ¼ 0.16 fm−3 for H ¼ G (bold lines) and H ¼ 0 (thin
lines). The onset of baryon density is sensitive to the
parameter H. For H ¼ G, the baryon density is brought by
the diquark baryon with the mass mπ , and the correspond-
ing quark chemical potential is μq ¼ μB=2 ¼ mπ=2. For
H ¼ 0, there are no composite baryons, and the baryon
density becomes nonzero at μq ¼ M.
Shown in Fig. 10 is ε vs P, which measures the stiffness

of EOS. As guidelines, we also show EOS with ε ¼ 3P and
ε ¼ P for which c2s ¼ 1=3 and 1, respectively. For H ¼ G,
the pressure is substantial at relatively small ε. This is in
sharp contrast with the H ¼ 0 case where the pressure
develops very slowly with increasing ε. With diquark
attractions, quarks can appear with small energies at a
given pressure, as discussed in Sec. IV C.
The rapid stiffening can be characterized by the behavior

of the sound velocity, nB=n0 vs c2s , as shown in Fig. 11. The
sound velocity for H ¼ G exceeds the conformal limit at
relatively low density, nB=n0 ≃ 1.2, reaches the maximum
at nB=n0 ∼ 4, and gradually decreases. In contrast, for H ¼
0 the sound velocity very slowly grows with density and
approach the conformal value c2s ¼ 1=3 from below.
As we have seen in our model of coherent states, the

states with high momenta are occupied substantially even
before the saturation of low momentum states is completed.
The behavior of fMF

p ðkÞ is shown in Fig. 12. For example,

FIG. 9. The Dirac mass (M), diquark gap (Δ), and normalized
baryon number density nB=n0 with n0 ¼ 0.16 fm−3. The thin
lines are the results for H ¼ 0 with which Δ ¼ 0.
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from nB=n0 ¼ 0.5 to 1.0, the occupation probability of the
k ¼ 0 state already does not scale as ∼nB. With increasing
nB, the states at high momenta are occupied more rapidly
than in the ideal gas case, and accordingly ε=nB and hence
P grow.
Finally we take a look at the occupation probability for

antiparticle states (Fig. 13). In the NJL model, the gap Δ is
common for particle and antiparticle states. As a conse-
quence the impacts of Δ on antiparticle states are not small.
The occupation probability initially increases as Δ does,
but at nB=n0 ≃ 3 the antiparticle suppression by large μ
eventually dominates over the effects from Δ.

VI. SUMMARY

We have discussed stiffening of matter in QC2D within
the coherent state model and NJL model. In both models
diquark baryons appear as composite particles. A dense
matter of composite objects observes quarks as their
constituents, and is subject to the quark saturation effects
that stiffen EOS. Here, we summarize our findings, their
implications for QCD, and future works.

(i) The quark saturation effects affect diquark baryons
at density significantly lower than the overlapping
density of baryon cores. For diquarks with the radii
∼0.6 fm, the saturation effects are substantial al-
ready at nB ∼ 0.5–1n0. In three color QCD, this
density range is regarded as the territory of conven-
tional nuclear physics where the matter properties
depend on intricate balance among various nuclear
forces. It is interesting to ask whether using quark
descriptions simplifies some part of the nuclear
matter descriptions at nB ∼ n0.

(ii) In the coherent state model, a baryonic matter
quickly gets stiffened and approaches the quark
matter regime at low density. With this small
disparity between baryonic and quark matter re-
gimes, the quark saturation effects alone lead to only

FIG. 12. The occupation probability of particle states, fMF
p ðkÞ,

for various nB=n0.

FIG. 11. The nB=n0 vs c2s for H=G ¼ 1.0 and 0.0.

FIG. 13. The occupation probability of antiparticle states,
fMF
a ðkÞ, for various nB=n0.FIG. 10. The ε vs P for H=G ¼ 1.0 and 0.0. The results for

ε ¼ 3P and P are also shown as guide lines.
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a rather mild peak in the sound velocity. The peak
becomes more prominent when baryonic matter
stays soft before the quark saturation effects set in
(Fig. 14). In QCD, nuclear matter at nB ≃ n0 is soft,
and in this quantitative aspect the three color case
somewhat differs from baryonic matter in QC2D.

(iii) In a dilute regime, attractive correlations inside a
baryon, which reduces the baryon mass, stiffens
EOS. This is simply because the energy density
tends to be smaller for a smaller baryon mass. In
terms of the parameterized EOS in Eq. (1) of Sec. I,
here we are considering the case with b < 0 and
α ¼ 1. The same feature was also found in the three
color case [87].

(iv) In a dense regime, attractive correlations near the
Fermi surface stiffens EOS. This has been discussed
in models for QCD [60–64], and we also reassure its
impact in QC2D.

(v) The best combination to stiffen EOS is to have
attractive correlations near the Fermi surface but
repulsive correlations in the bulk part of the Fermi
sea, as demonstrated in this work and also in the
three color studies [87]. This surface-bulk disparity
on the sign of interactions may be explained by
perturbative gluon exchanges; they lead to the color
electric interactions, which overall reduces the en-
ergy of color-singlet states, and magnetic inter-
actions, which reduces the energy for color- and
spin-singlet states [91]. In a dilute regime, a matter is
dominated by states in attractive correlations, but in
a denser regime repulsive channels are also unavoid-
able. This channel dependence leads to the above-
mentioned disparity.

We believe that many aspects discussed in this paper,
except the quantative details of baryonic matter, are
common for QC2D and QCD. This work is largely based
on effective models and focus on the transition regime.
Meanwhile, it is also interesting to study the high density
regime where weak coupling methods may be appli-
cable [93–102]. There QC2D and QCD may be similar

and it may be possible to derive a constraint on QCD EOS
from the high density side.
Finally, we close this paper by mentioning a significant

advantage to use a single framework from baryonic to
quark matter regimes. While implicit, our descriptions did
not allow the liberty to add a bag constant by hand. In a
single model, there are no questions about the normaliza-
tions of EOS for baryonic and quark matter, or no subtleties
about the subtraction of the vacuum or Dirac sea contri-
butions [103]. In QC2D, a single model description was
possible as baryons are just two particles. The same
program should be carried out for QCD by handling three
particle correlations from nuclear to quark matter regime.
Attempts toward this goal are in progress.
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