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The constructions of the new high-intensity muon beamlines are progressing in facilities around the
world, and new physics searches related to the muons are expected. The facilities can observe the transverse
positron polarization of the polarized μþ decay to test the standard model. The transition of muonium into
antimuonium (Mu-to-Mu transition), which is one of the interesting possibilities in the models beyond the
standard model, can be also tested. An observation of the transition in the near future would have a great
impact since it would indicate that there is an approximate discrete symmetry in the lepton sector. If the
Mu-to-Mu transition operator is generated, a new muon decay operator can exist, and it may interfere with
the standard model muon decay operator to induce the corrections to the transverse positron polarization in
the μþ decay. We examine the possibility that the Mu-to-Mu transition and the correction to the transverse
positron polarization are related, and we show that the two are related in the model of a neutral flavor gauge
boson. We also investigate the models to generate the Mu-to-Mu transition, such as an inert SUð2ÞL
doublet, an SUð2ÞL triplet for the type-II seesaw model, a dilepton gauge boson, and a left-right model. The
nonzero value of the transverse polarization for one of the two directions, PT2

, violates the time-reversal
invariance, and the experimental constraint of the electron electric dipole moment can provide a severe
constraint on PT2

, depending on the model.
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I. INTRODUCTION

The operating high-intensity muon beamlines at Japan
Proton Accelerator Research Complex (J-PARC) are being
upgraded [1], and muon fundamental properties, such as
the anomalous magnetic moment (g − 2) and the electric
dipole moment (EDM), will be accurately examined [2].
The high-intensity muon beamlines are being planned [3].
The facilities can produce muonium (a bound state
of μþe−), and they will examine the muonium-to-
antimuonium (Mu-to-Mu) transition [4,5], which is an
interesting phenomenological possibility with lepton flavor
violation (LFV) [6–9]. Using the beamline, the transverse
positron polarization in the polarized μþ decay [10–13] will
be also measured to find clues about new physics [14].

LFV is one of the keys to new physics in the lepton sector
since it directly indicates that there is a new particle and
interaction beyond the standard model (SM) at the TeV
scale. LFV processes such as μ → eγ and μ → 3e decays
and μ − e conversion in nuclei have not yet been observed,
and nonobservation only gives severe bounds to the model
parameters at present [15–17]. We remark that the absence
of such ΔLe, ΔLμ ¼ �1 processes does not necessarily
mean that there is no new physics at the TeV scale. Even if
these processes are absent, there is still plenty of room left
for new physics in the lepton sector. Unlike the quark
sector, the lepton sector may have a high affinity with
discrete symmetry; e.g., the atmospheric neutrino mixing is
nearly maximal. Although it is surely important to search
for ΔLe, ΔLμ ¼ �1 processes, we need a close examina-
tion of the models beyond the SM so as not to have a
preconception about those processes being dominant in
new physics with LFV. Indeed, if there is an approximate
discrete flavor symmetry, the Mu-to-Mu transition as a
ΔLe, ΔLμ ¼ �2 process can be important in finding new
physics in the lepton sector while the ΔLe, ΔLμ ¼ �1

processes are suppressed. Since the constraints from the
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ΔLe, ΔLμ ¼ �1 processes to obtain the Mu-to-Mu tran-
sition were intensively investigated in Ref. [18], we assume
that the ΔLe, ΔLμ ¼ �1 processes are absent due to a
discrete symmetry for simplicity in this paper.
Let us suppose that the Mu-to-Mu transition rate is just

below the current experimental bound. We take notice of
the existence of a new muon decay operator, if at least one
of the two muons and one of the two electrons are left-
handed in the transition operator. The coupling strength of
the four-fermion operator is less thanOð10−3Þ in the unit of
the Fermi coupling constant of the ðV − AÞ × ðV − AÞ
muon decay in the SM, from the experimental result at
the Paul Scherrer Institute (PSI) [19]. If the new effective
operator for the muon decay is of the type ðS − PÞ×
ðSþ PÞ, the interference of the decay amplitudes can
contribute to the transverse polarization of the e� from
the polarized μ� decay in the primary order of the new
physics. Although the new coupling is bounded by the
result of the Mu-to-Mu transition, near-future experiments
have the potential to observe the contributions from the new
physics in the transverse positron polarization. Actually, the
high-intensity muon beam facility can examine both the
Mu-to-Mu transition and the transverse positron polariza-
tion in the polarized μþ decay.
There are two independent transverse directions, and the

positron polarizations are named PT1
and PT2

. Let ke be the
momentum of the positron, and let Pμ be the polarization
vector (which specifies the degree and the direction of the
polarization) of μþ at rest. The direction of PT2

is defined to
be that of ke × Pμ. A nonzero value of PT2

violates the time-
reversal invariance (namely, CP invariance), and PT2

is
extremely small in the SM. On the other hand, PT1

is
nonzero even in the SM, and its size is ∼me=mμ and
becomes smaller for larger positron energy. Observing the
transverse polarizations serves as a useful test of the
fundamental interaction in the lepton sector.
In this paper, we examine the relation between the Mu-

to-Mu transition and the transverse positron polarization in
the polarized μþ decay. The four-lepton operators (without
right-handed neutrinos) are generated by the tree-level
exchange of the inert SUð2ÞL doublet, SUð2ÞL triplet,
dilepton gauge boson, and neutral flavor gauge boson. We
show that they are related in the case of the neutral flavor
gauge boson, and the model could be tested in a near-future
experiment. The CP phases in the models are severely
bounded by the experimental constraint of the electron
EDM (eEDM). We discuss whether the eEDM can allow a
nonzero PT2

in the models. We also describe the transverse
positron polarization in the left-right model.
This paper is organized as follows: In Sec. II, we review

the formulation of the muon decay and give the formula for
the transverse polarization of the decayed e� in the
polarized μ� decay. In Sec. III, we review the expressions
of the Mu-to-Mu transition. In Sec. IV, we describe the

model of the neutral flavor gauge boson and show the
relation between the Mu-to-Mu transition and the trans-
verse positron polarization in the μþ decay. In Sec. V, we
consider other models which can generate the transverse
positron polarization through the tree-level exchange of
mediators. Section VI is the conclusion. In Appendix A, we
will give expressions of the Fierz transformation of the
muon decay operators for Majorana neutrinos. In
Appendix B, we comment on the physical background
of the model discussed in Sec. IV. In Appendix C, we
describe the constraints on the heavy-light neutrino mixing
to evaluate the transverse positron polarization from the
muon decay operators with right-handed neutrinos.

II. TRANSVERSE POLARIZATION OF THE
DECAYED e� IN THE μ� DECAY

In this section, we review the formalism for the trans-
verse polarizations of the decayed e� in the polarized μ�
decay [10,11,13]. We follow the convention given in the
review by the Particle Data Group [20]. In general, we can
write the four-fermion interaction for the μ → eνμν̄e decay
in the Lagrangian [21] as

−Lμ→eνμν̄e ¼
4GFffiffiffi

2
p

X
γ¼S;V;T

X
ϵ;m¼R;L

gγϵmðēϵΓγνeÞðν̄μΓγμmÞþH:c:;

ð2:1Þ

where GF is the Fermi constant, ΓS ¼ 1, ΓV ¼ γμ, and

ΓT ¼ σμν=
ffiffiffi
2

p
. For simplicity, we refer to the operators

using the dimensionless couplings as gγϵm. Since the two
operators of gTLL and gTRR are identically zero, there are ten
independent couplings. The standard model corresponds to
gVLL ¼ 1, with the other couplings being zero. We note that
the flavor violating “wrong” muon decay μ → eνeν̄μ can
interfere with the μ → eνμν̄e decay if the neutrinos are
Majorana fermions. We list the Fierz transformation of the
operators for the Majorana neutrinos in Appendix A.
When we neglect the radiative correction, the differential

decay rate of μ� is given by

d2Γ
dxd cos θ

¼ Ḡ2
F

4π3
mμW4

eμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x20

q
fFISðxÞ

� Pμ cos θFASðxÞgf1þ ζ̂ · Peðx; θÞg ð2:2Þ

for the emitted e� with its spin parallel to the arbitrary
direction ζ̂. Here Pμ is the magnitude of the μ� polarization
vector Pμ and θ is the angle between Pμ and the e�

momentum ke. Defining the maximal e� energy as

Weμ ¼
m2

μ þm2
e

2mμ
; ð2:3Þ

FUKUYAMA, MIMURA, and UESAKA PHYS. REV. D 105, 075024 (2022)

075024-2



we use the dimensionless variables

x ¼ Ee

Weμ
; x0 ¼

me

Weμ
ð2:4Þ

instead of the energy Ee and the rest energy E0 ¼ me. The
allowed value of x is between x0 and 1. We note that ḠF in
Eq. (2.2) includes the new physics effect Ḡ2

F ¼ G2
FA=16.

See below for the parameter A=16 ≃ 1. The muon decay
constant determined by the muon lifetime is ḠF. As we will
note in Sec. III, the quadratic corrections from the new
muon decay couplings are bounded from the precision data
relating to the universality of the weak couplings.
The polarization vector Pe of e� is defined using the

differential decay rate in Eq. (2.2), and the transverse
components of Pe are defined as

PT1
≡ x̂1 · Pe; PT1

≡ x̂2 · Pe; ð2:5Þ

where the following three unit vectors are defined using the
two specific directions ke and Pμ:

x̂3 ¼
ke
jkej

; x̂2 ¼
ke × Pμ

jke × Pμj
; x̂1 ¼ x̂2 × x̂3: ð2:6Þ

The transverse components can be written as

PT1
ðx; θÞ ¼ Pμ sin θFT1

ðxÞ
FISðxÞ � Pμ cos θFASðxÞ

; ð2:7Þ

PT2
ðx; θÞ ¼ Pμ sin θFT2

ðxÞ
FISðxÞ � Pμ cos θFASðxÞ

; ð2:8Þ

where the functions FIS, FAS, FT1
, and FT2

depend on the
coefficients gγϵm. Instead of using the coefficients directly, it
is practical to define the muon decay parameters for the
spectrum and the transverse polarization [10,22–24]. For
example, the function FT2

is written as

FT2
ðxÞ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x20

q �
3
α0

A
ð1−xÞþ2

β0

A

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x20

q �
; ð2:9Þ

where

α0 ¼ 8Im½gVLRðgS�RL þ 6gT�RLÞ − gVRLðgS�LR þ 6gT�LRÞ�; ð2:10Þ

β0 ¼ 4Im½gVRRgS�LL − gVLLg
S�
RR�: ð2:11Þ

It is important to note that the nonzero value of PT2

indicates the CP violation in the interaction. See
Refs. [11,13,20] for the definition of the other CP con-
serving parameters (a; a0; b; b0; c; c0; α; β, or their recombi-
nation ρ; δ; η; η0; ξ; ξ0; ξ00; A) and the functions FIS, FAS, and
FT1

. Here we write about the case when there are only the
following relevant operators:

−Lμ→eνμν̄e ¼
4GFffiffiffi

2
p ½gVLLðēγαPLνeÞðν̄μγαPLμÞ

þ gSRRðēPLνeÞðν̄μPRμÞ
þ gVRRðēγαPRνeÞðν̄μðxÞγαPRμÞ
þ gSLLðēPRνeÞðν̄μPLμÞ� þ H:c: ð2:12Þ

We obtain

a ¼ a0 ¼ α ¼ α0 ¼ c ¼ c0 ¼ 0; ð2:13Þ

b ¼ 4ðjgVLLj2 þ jgVRRj2Þ þ jgSRRj2 þ jgSLLj2; ð2:14Þ

b0 ¼ −4ðjgVLLj2 − jgVRRj2Þ þ jgSRRj2 − jgSLLj2; ð2:15Þ

β ¼ 4Re½−gVRRgS�LL − gVLLg
S�
RR�; ð2:16Þ

β0 ¼ 4Im½gVRRgS�LL − gVLLg
S�
RR�; ð2:17Þ

and the parameters for the muon decay spectrum (at the tree
level) are given by

ρ ¼ δ ¼ 3

4
; η ¼ η0 ¼ 0; ξ00 ¼ 1; ð2:18Þ

ξ ¼ ξ0 ¼ −
4b0

A
; ð2:19Þ

A≡ aþ 4bþ 6c ¼ 4b: ð2:20Þ

We obtain the following functions for the spectrum and the
transverse polarization of the emitted e�:

FISðxÞ ¼
1

6
ð−2x2 þ 3x − x20Þ −

2β

A
ð1 − xÞx0; ð2:21Þ

FASðxÞ ¼
ξ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x20

q �
2x − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x20

q �
; ð2:22Þ

FT1
ðxÞ ¼ −

1

6
ð1 − xÞx0 þ

2β

3A
ðx − x20Þ; ð2:23Þ

FT2
ðxÞ ¼ 2β0

3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x20Þðx2 − x20Þ

q
: ð2:24Þ

As can be seen in Eq. (2.16), the gSRR operator can
directly interfere with the gVLL operator in the SM, and thus
it can provide the primary contribution from the new
physics beyond the SM. The other contributions are all
quadratic (including all the other operators). Since x0 in FIS

is small ðx0 ¼ 9.67 × 10−3Þ due to me ≪ mμ, it is impor-
tant to observe PT1

and PT2
to extract the primary effect in

the muon decay. An analysis of the current experimental
results at PSI shows that [12,13,25]
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β

A
¼ ð1.1� 3.5ðstatisticalÞ � 0.5ðsystematicÞÞ × 10−3;

ð2:25Þ

β0

A
¼ ð−1.3� 3.5ðstatisticalÞ � 0.6ðsystematicÞÞ × 10−3

ð2:26Þ

if gSRR is the only source of the new physics. The
experimental accuracy has not yet reached the size of
the SM contribution in PT1

. Although the current exper-
imental bounds for β, β0 are still loose, we expect the
hundred-times-intense new muon beamlines in the world to
develop the observation of the transverse positron polari-
zation for β=A; β0=A ∼ 10−3. The sensitivity of the order of
10−3 of those values in the near-future experiment at J-
PARC is also expected from the simulation in Ref. [14].

III. MU-TO-Mu TRANSITION

The effective Mu-to-Mu transition operators in the
Lagrangian are given as [26]

−LMu-Mu ¼
4GFffiffiffi

2
p ½g1ðμ̄γαPLeÞðμ̄γαPLeÞ

þ g2ðμ̄γαPReÞðμ̄γαPReÞ
þ g3ðμ̄γαPLeÞðμ̄γαPReÞ þ g4ðμ̄PLeÞðμ̄PLeÞ
þ g5ðμ̄PReÞðμ̄PReÞ� þ H:c: ð3:1Þ

There are four states ðF;mÞ ¼ ð0; 0Þ, (1,0), and ð1;�1Þ in
the 1S orbital of Mu. The transition amplitudes for the
ðF;mÞ states are

M0;0 ¼ −
8ðmredαemÞ3ffiffiffi

2
p

π

�
g1 þ g2 −

3

2
g3 −

1

4
g4 −

1

4
g5

�
GF;

ð3:2Þ

M1;m ¼ −
8ðmredαemÞ3ffiffiffi

2
p

π

�
g1 þ g2 þ

1

2
g3 −

1

4
g4 −

1

4
g5

�
GF;

ð3:3Þ

where mred ¼ memμ=ðme þmμÞ ≃me is the reduced mass
between the muon and the electron and αem is the fine
structure constant.
The external magnetic field mixes the (0,0) and (1,0)

states, and the amplitudes in the magnetic flux density B are
given as [27,28]

MB
0;0 ¼

1

2

�
M0;0 −M1;0 þ

M0;0 þM1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
; ð3:4Þ

MB
1;0 ¼

1

2

�
−M0;0 þM1;0 þ

M0;0 þM1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
; ð3:5Þ

where X ¼ 6.31 × B=T. On the other hand, the magnetic
field splits the ð1;�1Þ states, and the oscillations of the
ð1;�1Þ states are dropped in the magnetic field for
B≳ 0.01 T.
The time-integrated transition probability at the PSI

experiment is given as

P ¼ 2τ2ðjc0;0j2jMB
0;0j2 þ jc1;0j2jMB

1;0j2Þ; ð3:6Þ

where jcF;mj2 gives the population of the Mu states and τ is
the Mu lifetime. The result from the PSI experiment at the
magnetic flux density B ¼ 0.1 T is [19]

P < 8.3 × 10−11: ð3:7Þ

If g3 ¼ 0, we obtain

P¼ 64m6
redα

6τ2G2
F

π2

����g1 þ g2 −
1

4
g4 −

1

4
g5

����
2 jc0;0j2 þ jc1;0j2

1þX2
:

ð3:8Þ

The PSI experimental result is decoded as

����g1 þ g2 −
1

4
g4 −

1

4
g5

���� < 3.0 × 10−3: ð3:9Þ

If g3 ≠ 0 and the others are 0, we find that

jg3j < 2.1 × 10−3: ð3:10Þ

We use the population of Mu states jc0;0j2 ¼ 0.32,
jc1;0j2 ¼ 0.18.
The Mu-to-Mu transition operators are generated at the

tree level using the following mediators [18]:
(1) Neutral flavor gauge boson (→ g1; g2; g3).
(2) Neutral scalar in an inert SUð2ÞL doublet

(→ g3; g4; g5).
(3) Doubly charged scalar in the SUð2ÞL;R triplet

(→ g1; g2).
(4) Dilepton gauge boson in an SUð3Þl ×Uð1ÞX exten-

sion of electroweak symmetry (→ g3).
If the Mu-to-Mu transition is generated, new muon decay
operators are also induced, especially for the g1 and g3
terms. For the g2, g4, and g5 terms, new muon decays are
induced if the right-handed neutrinos are lighter than muon.
Through the mixings of the left- and right-handed neu-
trinos, muons can also decay to active neutrinos plus an
electron.
We note that the four-fermion operators induced by the

mediators can modify the decay constant ḠF in Eq. (2.2),
and therefore the universality of the decay constants can
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constrain the masses of the mediators and their flavor-
dependent couplings. However, the Mu-to-Mu transition (if
induced) can provide stronger experimental constraints on
the couplings than the electroweak precision and high
energy Bhabha scattering. Corrections to the muon decay
operators to induce the transverse positron polarization in
the μþ decay for our target are about 10−3, and they can be a
deeper probe than the current experiments. Therefore, we
do not describe the current experimental constraints from
the electroweak precision in this paper. See Refs. [29–33]
for the experimental constraints. We also note that the
contributions to muon and electron g − 2 are too small to
explain their anomalies as a consequence of the 10−3 size of
the induced coupling in our context.
In Sec. IV, we consider the model of the neutral flavor

gauge boson, and we show that the Mu-to-Mu transition
and the correction to PT1

in the polarized μþ decay are
related. In Sec. V, we study the other models.

IV. NEUTRAL FLAVOR GAUGE BOSON

The interactions to the neutral gauge boson X to generate
the Mu-to-Mu transition are written as

L ¼ gXðl̄μγαle þ l̄eγαlμÞXα

þ agXðe−iφμRγαeR þ eiφeRγαμRÞXα; ð4:1Þ

where le and lμ are the left-handed lepton doublets,

le ¼
�
νeL

eL

�
; lμ ¼

�
νμL

μL

�
; ð4:2Þ

and a is a Uð1Þ0 charge for the right-handed charged
leptons. In Appendix B, we give the construction of this
model. Here we mention only that the interactions have a
discrete lepton flavor symmetry, and they do not induce the
ΔLe, ΔLμ ¼ �1 processes, such as μ → eγ, μ → 3e. See
Ref. [18] for the bound of the ΔLe, ΔLμ ¼ �1 processes in
the case where the discrete symmetry is not exact. There
can be a physical phase parameter φ in the coupling in
general. The phase in the left-handed lepton couplings can
be rotated away without loss of generality.
The Mu-to-Mu transition operators can be generated by

the exchange of the neutral gauge boson, and we obtain

g1 ¼
g2X

4
ffiffiffi
2

p
M2

XGF

; g2 ¼ a2e−2iφ
g2X

4
ffiffiffi
2

p
M2

XGF

;

g3 ¼ 2ae−iφ
g2X

4
ffiffiffi
2

p
M2

XGF

; ð4:3Þ

where MX is the mass of the neutral gauge boson.
The interaction can also generate the following eEDM

via a loop diagram with the muon mass insertion in the
internal line:

de
e
¼mμ

2ag2X sinφ
64π2M2

X
G

�
m2

μ

M2
X

�
¼mμGFImg�3

8
ffiffiffi
2

p
π2

G

�
m2

μ

M2
X

�
; ð4:4Þ

where G is a loop function,

GðxÞ ¼ 4 − 3x − x3 þ 6x ln x
ð1 − xÞ3 : ð4:5Þ

The experimental bound of the eEDM is [34]

jdej < 1.1 × 10−29 e cm: ð4:6Þ

One needs jφj≲ 10−5 if we consider the jg3j ∼ 2 × 10−3

region which is near the current bound from the Mu-to-Mu
transition experiment in Eq. (3.10). Therefore, we suppose
that there is no CP phase in the interaction (φ ¼ 0).
The exchange of the neutral gauge boson can also induce

the muon decay operators. Using the Fierz transformation

ðνμLγνeLÞðeRγμRÞ ¼ −2ðeRνeÞðνμμRÞ; ð4:7Þ

we find that

gSRR ¼ −2g3: ð4:8Þ

Similarly, the exchange can induce the correction of gVLL,

ΔgVLL ¼ g1: ð4:9Þ

If the neutrinos are Majorana fermions, we also find that

gVRR ¼ −g3; gSLL ¼ 2g1: ð4:10Þ

From the definitions of the muon decay parameters β in
Eq. (2.16), we obtain

β ¼ 4ðþ2g1g3 þ 2g3ð1þ g1ÞÞ ≃ 8g3: ð4:11Þ

The model parameters are constrained by the time-
integrated transition probability (with B ¼ 0.1 T) given
in Eq. (3.6). Since there are no ΔLe, ΔLμ ¼ �1 processes
in the model in Eq. (4.1) and the Mu-to-Mu transition gives
the strongest constraints, the experimental constraints for
the model parameters gX, MX, and a are governed by the
bound of the transition probability in Eq. (3.7). We assume
that the neutral gauge boson is heavier than the muon. In
the future, Belle II (the ILC) can directly search for the
boson with MX ≲ 10 GeV (Oð100Þ GeV) if its integrated
luminosity accumulates enough. The transition probability
is proportional to

jc0;0j2j − 1.68g3 þ g1 þ g2j2 þ jc1;0j2j0.68g3 þ g1 þ g2j2:
ð4:12Þ
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Notice that g1 and g2 are positive, and that g3 can be either
positive and negative. One can find that the magnitude of g3
allowed by the transition experiment depends on the sign of
g3. Indeed, the larger magnitude is allowed for g3 > 0. In
Fig. 1, we show a plot of β=A as a function of a assuming
that the transition probability is the upper bound from the
PSI experiment.
In Fig. 2, we plot the PT1

given in Eq. (2.7). We choose
β=A ¼ 0.0012 and β=A ¼ −0.0007, which are allowed by
the experimental result of the Mu-to-Mu transition. The
electron mass can induce PT1

in the SM case, β=A ¼ 0.
Around the maximal energy of the positron, PT1

tends to
zero. As can be found in Eq. (2.23), PT1

changes its sign for
β > 0 for larger energy. We note that the differential decay
width given in Eq. (2.2) is larger for the larger positron
energy, and near-future experiments may observe the
change of the sign.

V. OTHER MODELS

As examined in Sec. IV, the flavor neutral gauge boson
can generate both the Mu-to-Mu transition and the trans-
verse positron polarization PT1

in the muon decay, and the
two are related. In this section, we study other models to
generate the new muon decay operators and see if the
transverse polarizations are related to the Mu-to-Mu
transition.
We first enumerate the interactions to generate the

following new muon decay operators at the tree level:

ðaÞ heeeRleΦþ hμμμRlμΦþ H:c: ð5:1Þ

ðbÞ heμeRlμΦþ hμeμRleΦþ H:c: ð5:2Þ

ðcÞ κeelc
eleΔL þ κμμl̄c

μlμΔL þ H:c: ð5:3Þ

ðdÞ κeμðl̄c
elμΔL þ l̄c

μleΔLÞ þ H:c: ð5:4Þ

ðeÞ fðl̄c
elμSþ − l̄c

μleSþÞ þ H:c: ð5:5Þ

ðfÞ g3lððeRÞcγαleYα þ ðμRÞcγαlμYαÞ þ H:c: ð5:6Þ

ðgÞ g3lððeRÞcγαlμYα þ ðμRÞcγαleYαÞ þ H:c: ð5:7Þ

ðhÞ gXðl̄eγαlμXα þ aeRγαμRXαÞ þ H:c: ð5:8Þ

Here Φ is an SUð2ÞL inert doublet which does not have a
vacuum expectation value (VEV), ΔL is an SUð2ÞL triplet
whose VEV can generate the type-II neutrino masses [35–
38], and Sþ is an SUð2ÞL singlet with the hypercharge
Y ¼ 1. The couplings to ΔL and Sþ are written in terms of
the components as

lc
albΔL ¼ ðνaLÞcνbLΔL −

1ffiffiffi
2

p ððνaLÞcebL þ ðeaLÞcνbLÞΔþ
L

þ ðeaLÞcebLΔþþ
L ; ð5:9Þ

l̄c
albSþ ¼ ððνaLÞcebL − ðeaLÞcνbLÞSþ: ð5:10Þ

The vector field Yα ¼ ðYþþ
α ; Yþ

α Þ denotes a multiplet of the
dilepton gauge boson in a model with gauge extension, and
Xα is a flavor neutral gauge boson, which we studied in
Sec. IV. The coexistence of cases (a) and (b) suffers from
the LFV decay constraints if the couplings are sizable. The
same is true for the coexistence of cases (c) and (d), and that
of cases (f) and (g). A discrete flavor symmetry can forbid
their coexistence. For example, we assign the discrete
charges ci to the lepton fields and the SM Higgs H as

le; eR∶c1; lμ; μR∶c2; lτ; τR∶c3; H∶0;

ð5:11Þ

FIG. 1. Muon decay parameter β=A plotted as a function of the
model parameter a assuming that the probability of the Mu-to-
Mu transition is at the current experimental bound. The transition
experiment allows a larger magnitude of β=A for positive values
than for negative values.

FIG. 2. PT1
ðθ ¼ π=2Þ plotted as a function of the reduced

positron energy x ¼ Ee=Weμ for various β=A. The SM case
corresponds to β=A ¼ 0.
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and the ci’s are all different. If the charge of Φ is 0, case
(a) is obtained. If we assign the discrete charge n toΦ under
Z2n symmetry and c1 − c2 ≡ n, we obtain case (b). In fact,
Φ and H should not mix in case (b) to suppress the LFV,
which can be also controlled by the discrete symmetry. For
case (e), it also suffers from the LFV if Sþ also couples to τ.
These are all the lepton bilinear couplings (without right-
handed neutrinos) that cause muon decays at the tree level.
The muon decay operators from the couplings with the
right-handed neutrinos are suppressed by the heavy-light
neutrino mixings, which will be studied in the context of
the left-right model later.
In Table I, we list the muon decay operators which can be

induced by the interactions in cases (a)–(h). If the induced
muon decay process is μ → eνeνμ, which does not interfere
with μ → eνeνμ, the Fierz-transformed operator given in
Appendix A is shown by assuming that the neutrinos are
Majorana. One can see that gSRR can be induced in cases (a),
(g), and (h), and PT1

can be modified from the SM since
β=A can be ∼10−3. Owing to the constraint of the eEDM,
only case (a) can generate β0=A ∼ 10−3, and PT2

can be
observed in the near-future experiments. Only case (h) can
relate the transverse polarization and the Mu-to-Mu tran-
sition discussed in Sec. IV.

A. Inert Higgs doublet Φ
Interaction (a) can directly induce gSRR via Φþ exchange,

gSRR ∝ heeh�μμ: ð5:12Þ

The EDMs for electrons and muons are obtained with aΦ0-
loop diagram, and

da ∝ maImh2aaðfðma;M2
ReÞ − fðma;M2

ImÞÞða ¼ e; μÞ;
ð5:13Þ

where MRe and MIm are the masses of the real and
imaginary parts of Φ0 and f is a loop function. One can
find that gSRR can be complex without contradicting EDMs
for electrons and muons if h2ee is real or MRe ¼ MIm. The
magnitude of the muon EDM (μEDM) for PT2

∼Oð10−3Þ
in the case of imaginary hμμ andMRe ≠ MIm is estimated to
be Oð10−24Þ e cm, which is far below the current exper-
imental bound [39,40]. The absence of a ðΦH̃ÞðΦH̃Þ term
(H is a Higgs doublet which acquires a VEV) can make
MRe ¼ MIm, though discrete symmetries cannot realize it
in nonsupersymmetric models. We note that the size of the
ðΦH̃ÞðΦH̃Þ term is related with the radiative neutrino mass
with the inert doublet [41]. In any event, gSRR can be
complex, and therefore both PT1

and PT2
could be observed

in a near-future experiment in this case. The Mu-to-Mu
transition is not induced.
In case (b), the operator which is induced by the charge

scalar Φþ exchange is

ðeRνμÞðνeμRÞ; ð5:14Þ

which is not gSRR. If the neutrinos are Majorana, the induced
operator can become gVRR (instead of gSRR). We find that the
relation of the Mu-to-Mu transition is

gVRR ≃ −g�3 ∝ heμh�μe: ð5:15Þ

The eEDM is

TABLE I. List of which muon decay operators are induced from the respective interactions and mediators given in
Eqs. (5.1)–(5.8). We assume that the neutrinos are Majorana to make it interfere with the SM decay operator if the
induced operator is for μ → νμνee (see Appendix A). In the fourth column, we put “Im” if the phase of the
coefficient is allowed. The ♯mark is attached if the phase is constrained from the existence of the ðΦH̃Þ2 term in the
scalar potential (see explanations in the text). If the eEDM constrains the phase, we put “Re (∵ eEDM).” In the fifth
column, we put the transition operators if they are induced.

Interaction(s) Mediator Operator Phase Mu-to-Mu

(a) Φþ gSRR Im
(b) Φþ gVRR Im (♯) g3
(c) Δþ

L gSLL Im g1
(d) or (e) Δþ

L or Sþ gVLL Im
ðaÞ þ ðcÞ Φþ–Δþ

L gSLR;RL Im g1
ðbÞ þ ½ðdÞ or ðeÞ� Φþ–ðΔþ

L or SþÞ gS;TLR;RL
Im g3

ðbÞ þ ðdÞ Φ0–Δ0
L gS;TLR;RL

Im g3
ðbÞ þ ðdÞ Φ0�–Δ0

L gVLR;RL Im g3
(f) Yþ gVRR Im g3
(g) Yþ gSRR Re (∵ eEDM)
(h) X gS;VRR , g

S;V
LL

Re (∵ eEDM) g1,g2,g3
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de ∝ mμImðhμeheμÞðfðmμ;M2
ReÞ − fðmμ;M2

ImÞÞ: ð5:16Þ

The coupling of the ðΦH̃ÞðΦH̃Þ term and only one of hμe
and heμ can be made real by the redefinition of the lepton
fields andΦ. Therefore, to bring ImgVRR ≠ 0 into agreement
with the eEDM,MRe ¼ MIm is needed in this case. We note
that the eEDM diagram hits the muon mass at the internal
line, while the electron mass is hit for the μEDM, and the
μEDM thus becomes much smaller than the eEDM.
If we take into account the light-heavy neutrino mixings,

gSRR can be induced even in case (b). The current neutrino
state can be written using the mass eigenstates as

νa ¼ Uaiνi þ XaINI: ð5:17Þ

See Appendix C for the neutrino mixing matrix. We find
that

fβ; β0g ∼ fReg3; Img3g
X
i;j

UeiU�
μiU

�
ejUμj: ð5:18Þ

We suppose that NI’s are heavier than muon. Using the
unitarity relation, we find that

X
i

UeiU�
μi ¼ −

X
I

XeIX�
μI: ð5:19Þ

This magnitude is constrained by the μ → eγ decay
process, and the transverse positron polarizations are
minuscule in case (b).

B. Type-II seesaw

Interactions (c) and (d) are available for type-II seesaw
neutrino masses when the SUð2ÞL triplet ΔL acquires
a VEV.
In case (c), the gSLL muon decay operator is generated

using a Δþ
L exchange if the neutrinos are Majorana. The

Mu-to-Mu transition operator (g1) is also generated by a
Δþþ

L exchange:

gSLL ¼ 2g�1: ð5:20Þ

In case (d), the gVLL contribution of the muon decay is
generated, while it does not induce the Mu-to-Mu tran-
sition. The type-II seesaw interactions do not generate the
EDMs, and thus the induced coefficients can be imaginary.

C. Type-II seesaw + inert doublet Φ
The β, β0 parameters for the transverse polarizations in

Eqs. (2.16) and (2.17) are not generated from the type-II
seesaw terms alone. If we add the inert doublet Φ and there
are multiple contributions ðbÞ þ ðcÞ, β, β0 can be generated
and they relate to the Mu-to-Mu transitions as follows:

fβ; β0g ¼ fRe; Imgð8g�1g3Þ: ð5:21Þ

These magnitudes are less than Oð10−5Þ from the PSI
bound of the Mu-to-Mu transition.
The scalar trilinear term ΦHΔL is allowed, and it can

induce a Φ − ΔL mixing since the SM Higgs doublet H
acquire a VEV. gS;V;TLR;RL operators can then be generated (see
Table I). Among them, gVLR;RL can be generated by the
neutral scalar exchange with ðΦH̃ÞðΦH̃Þ insertion in the
interaction with ðbÞ þ ðdÞ. The generated operators are

gS;TLR ∝ κ�eμh�μe; gS;TRL ∝ κeμheμ;

gVLR ∝ κeμh�μe; gVRL ∝ κ�eμheμ: ð5:22Þ

We note that the coupling ofΦHΔL can be made real by the
phase redefinition of ΔL. We obtain the CP violating
parameter α0 in Eq. (2.10) for PT2

as

α0 ∝ jκeμj2ImðhμeheμÞ: ð5:23Þ

As explained, the existence of the ðΦH̃ÞðΦH̃Þ term can
conflict with the eEDM, and hμe and heμ should be real. As
a consequence, the muon decay parameter α0 is severely
constrained by the eEDM in this model.

D. Dilepton gauge boson

In the dilepton gauge model [42–47] whose gauge
symmetry is SUð3Þc × SUð3Þl ×Uð1ÞX, the leptons are
unified in one multiplet, 3� representation of SUð3Þl,
La ¼ ðla;−νa; lcaÞ. The gauge interaction (in two-
component spinor notation) of the dilepton gauge boson is
given as

L ¼ g3lðνaσμlcaYþ
μ − laσμlcaYþþ

μ Þ þ H:c: ð5:24Þ

The Higgs boson to generate the charged-lepton masses are
3� and 6 under SUð3Þl. Remember that the couplingmatrices
with 3� and 6 are antisymmetric and symmetric, respectively,
under the generation index a. If the Yukawa couplings with
the 3� Higgs boson are absent, the mass matrix is symmetric
and the gauge interaction of the mass eigenstates is given by
case (f). By adopting a discrete flavor symmetry, e.g., L1∶1,
L2∶2, L3∶0, 3�∶0, and 6∶0 under Z3, the allowed Yukawa
couplings can be

L1L23� − L2L13� þ L1L26þ L2L16þ L3L36: ð5:25Þ

In this case, the gauge interaction is given by case (g) because
the multiplets are La ¼ ðe;−νe; μcÞ, ðμ;−νμ; ecÞ, and
ðτ;−ντ; τcÞ. To make me ≪ mμ, one needs a fine-tuning.
In case (f), the Mu-to-Mu transition operator g3 is

generated by the Yþþ exchange. The gVRR muon decay
operator can be generated by the Yþ exchange,
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gVRR ¼ −g�3; ð5:26Þ

assuming that the neutrinos are Majorana.
In case (g), the gSRR muon decay operator is generated by

the Yþ exchange. Therefore, the modification of PT1
from

the SM can be sizable enough to detect in the muon decay
experiments. In general, the couplings with Yþ are complex
in the basis where the charged-lepton masses are real.
However, the complex couplings can induce the eEDM via
the Yþþ-loop diagram. Owing to the eEDM bound, the
phase of gSRR has to be minuscule, and PT2

will not be
observed in near-future experiments.

E. Left-right model

The involvement of the right-handed neutrinos also
provides muon decay operators which can interfere with
the SM decay amplitude. Although their contributions are
small due to the heavy-light neutrino mixings, as we
mentioned, we describe the contributions to gSRR in the
left-right model, SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge
theory as a pedagogical guide.
We introduce an SUð2ÞR triplet ΔR and consider the

following interaction:

lc
eRleRΔR þ ¯lc

μRlμRΔR þ H:c:; ð5:27Þ

where lR is an SUð2ÞR doublet, e.g., leR ¼ ðNeR; eRÞT .
The VEVof the SUð2ÞR triplet breaks SUð2ÞR ×Uð1ÞB−L
down to Uð1ÞY , and also generates the Majorana masses of
the right-handed neutrinos. The Δþþ

R exchange generates
the g2 operator of the Mu-to-Mu transition. The Δþ

R
exchange generates

ðeRðNc
eÞLÞððNc

μÞLμRÞ: ð5:28Þ

We use the notation of the neutrino mixing matrix given in
Appendix C, and the current neutrino state can be written
using the mass eigenstates as

ðNc
αÞL ¼ Vαiνi þ YαINI: ð5:29Þ

We obtain

fβ; β0g ¼ fRe; Img
�
−8g�2

X
i;j

UeiV�
eiU

�
μjVμj

�
: ð5:30Þ

We remark that the magnitude of UeiV�
ei is directly con-

strained by the neutrinoless double beta decay (0ν2β). The
unitarity and the decay universality restrict UμiV�

μi ¼
−XμIY�

μI (see Appendix C). The induced size of jβð0Þj is
estimated to be less than Oð10−7Þ.
The tree-level WR gauge boson exchange can generate

the gSRR operator if the neutrinos are Majorana [48]. Using

ðeRγNeRÞðNμRγμRÞ ¼ 2ðeRðNc
μÞLÞððNc

eÞLμRÞ; ð5:31Þ

we obtain the muon decay parameter from the WR
exchange as

fβ;β0g ¼ fRe; Img
�
−8

g2R
g2L

M2
WL

M2
WR

X
i;j

UeiV�
μiU

�
μjVej

�
;

ð5:32Þ

which is also minuscule due to the WR mass bound from
the LHC [49–52] and 0ν2β. For a native estimation of the
quantity jPi;j UeiV�

μiU
�
μjVejj (see Appendix C), we deter-

mine that jβð0Þj is less than Oð10−8Þ. Even for a more
conservative estimation of the quantity, jβð0Þj is less
than Oð10−6Þ.

VI. CONCLUSION

The new leptonic interactions with a discrete flavor
symmetry can induce the Mu-to-Mu transition and the
transverse polarization of e� in the polarized μ� decay,
which can be of a size that will be observable at the
facilities with high-intensity muon beamlines. We have
studied whether the transition rate and the transverse
polarization can be related.
There will be three candidates of mediators to induce the

testable muon decay parameter β for the transverse positron
polarization in the near future:
(a) Neutral flavor gauge boson.
(b) Inert doublet.
(c) Dilepton gauge boson.
Among these candidates, in the model of the neutral flavor
gauge boson, the Mu-to-Mu transition and the β parameter
(the correction of the transverse positron polarization PT1

)
are indeed related. A larger contribution is allowed by the
Mu-to-Mu transition experiment for the positive value of β
than for the negative value (PT1

changes its sign depending
on the positron energy for positive β). The other direction
of the transverse polarization, PT2

, is constrained by the
nonobservation of the eEDM.
In the model with an inert scalar doublet (which does not

acquire a VEV), either the Mu-to-Mu transition or the
correction to the transverse positron polarization can be
observed. The nonzero value of PT2

does not conflict with
the eEDM in this model. In the dilepton gauge boson, either
the Mu-to-Mu transition or the correction to the transverse
positron polarization can be observed. The nonobservation
of the eEDM restricts PT2

. Although the observable size of
the Mu-to-Mu transition can be induced in the model with
SUð2ÞL and SUð2ÞR triplet scalars, the correction to the
transverse polarization is smaller than the three above.
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APPENDIX A: FIERZ TRANSFORMATIONS OF
THE MUON DECAY OPERATORS FOR

MAJORANA NEUTRINOS

The following identical equations hold for the four-
component fermions ψ and χ:

ψχ ¼ χcψc; ψγμχ ¼ −χcγμψc; ψσμνχ ¼ −χcσμνψc;

ðA1Þ

where ψc ¼ CψT and C is a charge conjugation matrix.
Using these, one finds for Majorana neutrinos ν ¼ νc

ðeRνaLÞðνbLμRÞ ¼ −
1

2
ðeRγμRÞðνbLγνaLÞ

¼ 1

2
ðeRγμRÞðνaRγνbRÞ

¼ 1

2
ðeRγνbRÞðνaRγμRÞ: ðA2Þ

Similarly,

ðeLνaRÞðνbRμLÞ ¼
1

2
ðeLγνbLÞðνaLγμLÞ: ðA3Þ

Here we omit the obvious Lorentz indices of γμ for their
contraction. For example, although ðeRνμLÞðνeLμRÞ does
not interfere with the usual μ → eνeνμ decay amplitude for
Dirac neutrinos, it can be made an operator to interfere with
it for Majorana neutrinos using the above equation.
One can also obtain, for ν ¼ νc,

ðeLγνaLÞðνbRγμRÞ ¼ ðeLγνbLÞðνaRγμRÞ; ðA4Þ

ðeLνaRÞðνbLμRÞ

¼ −
1

2
ðeLνbRÞðνaLμRÞ þ

1

8
ðeLσνbRÞðνaLσμRÞ; ðA5Þ

ðeLσνaRÞðνbLσμRÞ

¼ 6ðeLνbRÞðνaLμRÞ þ
1

2
ðeLσνbRÞðνaLσμRÞ; ðA6Þ

and the same holds for the exchange of L ↔ R.

APPENDIX B: THE MODEL WITH THE
NEUTRAL FLAVOR GAUGE BOSON

We describe the construction of the model with the
neutral flavor gauge boson discussed in Sec. IV.

Table II shows extra Uð1Þ charge assignments
of the lepton fields. The extra Uð1Þ symmetries do not
cause gauge anomalies: ½SUð3Þc�2Uð1Þn, ½SUð2ÞL�2Uð1Þn,
½Uð1ÞY �2Uð1Þn, ½Uð1Þn�2Uð1ÞY , ½Uð1Þn�3, ½Uð1Þ1�2Uð1Þ2,
½Uð1Þ2�2Uð1Þ1, and ½gravity�2Uð1Þn (n ¼ 1; 2).
The l3 and e3R fields are identified to the third

generation, and the Yukawa interaction to generate the
mass of the tau lepton can be directly written. The Yukawa
interaction to generate the electron and muon masses can be
obtained by introducing the vectorlike fermions L and E as
in the usual flavor models:

−LY ¼ y1ϕ�
1LRl1 þ y2ϕ1LRl2 þ y01ϕ

�
2e1REL

þ y02ϕ2e2REL þ yĒLH þMLL̄LþMEĒE: ðB1Þ

By integrating out the vectorlike fermions, one obtains

−LY ¼ ðYlÞijeiRliH ðB2Þ

and

Yl ¼ −
y

MLME

�
y1y01ϕ

�
1ϕ

�
2 y1y02ϕ

�
1ϕ2

y2y01ϕ1ϕ
�
2 y2y02ϕ1ϕ2

�
: ðB3Þ

We note that the electron is massless (at the tree level) if only
one set of vectorlike fermions is introduced, as given in
Eq. (B1). Introducing one more set of vectorlike fermions,
one obtains a tree-level electronmass, thoughwedonotwrite
it explicitly to avoid complicating the expression.
We suppose that the Uð1Þ1 ×Uð1Þ2 symmetry is broken

down to Uð1Þ0 by a VEV of a scalar ϕ whose charges are
given in Table II. By redefining the normalization of the
Uð1Þ0 charge, we find that the Uð1Þ0 charge for the right-
handed charged lepton is

a ¼ a2 þ a1
a2 − a1

: ðB4Þ

We note that Uð1Þ2 (Uð1Þ1) is broken if a1 ¼ 0 (a2 ¼ 0),
and one obtains a ¼ 1 (a ¼ −1) trivially, which returns us
to the special charge assignments given in Ref. [53]. We

TABLE II. Uð1Þ1 ×Uð1Þ2 charge assignments of the left-
handed lepton doublets li, the right-handed charged leptons
eiR, and the SM singlet scalar fields ϕ, ϕ1, and ϕ2. The scalar
field ϕ breaks Uð1Þ1 ×Uð1Þ2 down toUð1Þ0. The scalar fields ϕ1

and ϕ2 break the remaining Uð1Þ0 symmetry and can generate the
Yukawa interaction of the first and second generations of the
charged leptons. TheUð1Þ charges of the quark fields are all zero.
Fields l1 l2 l3 e1R e2R e3R ϕ ϕ1 ϕ2

Uð1Þ1 charge þ1 −1 0 þ1 −1 0 a1 1 1
Uð1Þ2 charge þ1 −1 0 −1 þ1 0 a2 1 −1
Uð1Þ0 charge þ1 −1 0 a −a 0 0 1 a
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assume that the VEVof ϕ is much larger than the VEVs of
ϕ1 and ϕ2 which break Uð1Þ0, and we ignore the con-
tribution from the exchange of the heavier extra gauge
boson in Sec. IV.
If the Lagrangian in Eq. (B1) has an exchange symmetry

under l1 ↔ l2, e1R ↔ e2R, (namely, y1 ¼ y2, y01 ¼ y02;
their phases can be different in more general exchange
symmetry), the fields li and eiR can be written in terms the
mass eigenstates le, lμ, eR, and μR as

l1 ¼
le þ eiφLlμffiffiffi

2
p ; l2 ¼

le − eiφLlμffiffiffi
2

p ;

e1R ¼ eR þ eiφRμRffiffiffi
2

p ; e2R ¼ eR − eiφRμRffiffiffi
2

p : ðB5Þ

We remark that the Yukawa couplings can have phases in
general and there can be phases in the linear combinations
in Eq. (B5) in the basis where the electron and muon mass
is real. The gauge interaction is calculated as

L ¼ gXðl̄1γαl1 − l̄2γαl2ÞXα

þ agXðe1Rγαe1R − e2Rγαe2RÞXα

¼ gXðe−iφLlμγαle þ eiφLleγαlμÞXα

þ agXðe−iφRμRγαeR þ eiφReRγαμRÞXα: ðB6Þ

Using a phase redefinition, lμ → e−iφLlμ and μR →
e−iφLμR, which does not change the phase of the muon
mass, we obtain Eq. (4.1) with one physical phase
φ¼φR−φL.

APPENDIX C: HEAVY-LIGHT NEUTRINO
MIXINGS

To evaluate the muon decay operators which contain
right-handed neutrinos, we need to know the size of the
heavy-light neutrino mixings. Here we list information
about it.
Before we study the constraints on the mixings, we

define the neutrino mixing matrix. We work on the basis
where the charged-lepton mass matrix is diagonal. The
neutrino mass term is given as

−Lm ¼ 1

2
ð ðνcÞR NR ÞM

�
νL

ðNcÞL

�
þ H:c:; ðC1Þ

where ν and N are current-basis left- and right-handed
neutrinos, and the 6 × 6 neutrino mass matrix M is
written as

M ¼
�

0 mD

mT
D MN

�
: ðC2Þ

The mass eigenstates ν0 and N0 are given as

�
νL

ðNcÞL

�
¼ U

�
ν0L
N0

L

�
ðC3Þ

and

UTMU ¼ diagðMIÞ ¼ diagðmi;MIÞ: ðC4Þ

We choose phases in U so that the MI ’s are real. We use
index i for the light neutrino mass eigenstates, index I for
the “heavy” neutrino mass eigenstates, and index I for both
states. For the generation index in the current basis, we use
a, b. For convenience, we define

U ¼
�
U X

V Y

�
: ðC5Þ

Namely,

νaL ¼ Uaiν
0
iL þ XaIN0

IL; ðC6Þ

Nc
aL ¼ Vaiν

0
iL þ YaIN0

IL: ðC7Þ

In the following, the mass eigenstates νi and NI are defined
as Majorana fermions, namely, νi ≡ ν0iL þ ðν0iLÞc and
NI ≡ N0

IL þ ðN0
ILÞc.

Our concern is the constraints of the size of Vai, i.e., the
mass eigenstate of the active neutrino in the current basis of
the right-handed neutrino Nc

aL. Because of the unitarity of
the mixing matrix U, we obtain

UaiV�
bi þ XaIY�

bI ¼ 0: ðC8Þ

Therefore, let us first enumerate the constraints on
XaI [54,55].
(1) The mixings are bounded by electroweak precision

data

X
I

jXeIj2;
X
I

jXμIj2 ≲ 0.003 ðC9Þ

individually. This obeys the unitarity
P

i jUaij2 ¼
1 −

P
I jXaIj2 and the universality of the four-fer-

mion decays. If the new muon decay operators are
added, the bound can be modified, but the contri-
bution to the muon decay parameters from the new
operators will then be dominant. If NI is lighter than
the Z boson, the new decay modes constrain the
mixing more severely depending on their channels.

(2) The product of jXeIXμIj is bounded by the μ → eγ
decay process as follows:

����
X
I

X�
μIXeIF

�
M2

I

M2
W

�����≲ 4 × 10−5; ðC10Þ
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where

FðxÞ ¼ xð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ
ð1 − xÞ4 : ðC11Þ

(3) For one generation (2 × 2 neutrino mass matrix), the
light neutrinomass in type-I seesaw ismν ¼ m2

D=MN ,
and the mixing is ðXαIÞ2 ¼ m2

D=M
2
N ¼ mν=MN .

Therefore, the Mu-to-Mu transition is minuscule.
For a three-generation case, there are degrees of
freedom to enlarge the mixings, XeI and XμI , while
keeping the tree-level active neutrino masses
minuscule.

(4) If the light-heavy neutrino mixing is enlarged, a
sizable active neutrino mass can be generated by the
Z boson loop diagram [56],

ðMνÞ1-loopab ≃
α2

4πcos2θW

X
I

XaIXbI
M3

I

M2
I −M2

Z
ln
M2

Z

M2
I
:

ðC12Þ

The loop-induced neutrino mass can be canceled if
the heavy neutrino masses are degenerate (M1 ¼
−M2, Xa1 ¼ Xa2). If the heavy neutrino masses are
not degenerate and one wants to avoid unnatural
cancellation between the tree-level and one-loop
neutrino masses, we need XaI ≲Oð10−5Þ for
MI ∼ 1 TeV. Therefore, we usually suppose that
there is a mass degeneracy in the heavy neutrino
sector to obtain a size of the mixing XaI .

(5) The neutrinoless double beta decay (0ν2β) process
via the heavy neutrinos X2

eI=MI, which can be
canceled for the degenerate heavy neutrino masses.
If it is not canceled, the current half life gives the
bound

jXeIj2 ≲ 10−5 ×
MI

1 TeV
: ðC13Þ

Next, let us see the direct constraints on Vai [57,58]. In
the left-right model, the 0ν2β process can be induced via
WL −WR mixing and the WR coupling to the right-handed
electron, and UeiV�

ei is bounded as

jUeiV�
eij≲Oð10−4Þ × gL

gR

10−5

ξLR
; ðC14Þ

where ξLR is a WL −WR mixing and gL and gR are the WL
and WR coupling constants.
One often considers the so-called inverse seesaw by

adding singlet fermions NS. The 9 × 9 mass matrix for
N ¼ ðνL; ðNcÞL; NSÞT is

M ¼

0
B@

0 mD 0

mT
D μN MS

0 MT
S μS

1
CA: ðC15Þ

We denote the 9 × 9 unitary matrix to diagonalize the mass
matrix M as

U ¼

0
B@

U X

V Y

W Z

1
CA; ðC16Þ

where U, V, W are 3 × 3 matrices and X, Y, Z are 3 × 6
matrices. The light neutrino mass matrix is

Mlight
ν ≃mDðMT

SÞ−1μSM−1
S mT

D ðC17Þ

for the small Majorana mass μS. In the left-right model, the
Dirac mass mD is the naively similar size of the charged-
lepton masses, which is not good for obtaining sub-eV
neutrino masses in the TeV-scale model. In the inverse
seesaw, the minuscule neutrino masses can be explained by
the smallness of μS. The size of X is naivelymD=MS, which
can be sizable. However, the size of V is minuscule,
∼mDμS=M2

S ≃Mν=mD, while W can be as large as X.
Therefore, the inverse seesaw is not suitable if one wants a
sizable Vai mixing in the left-right model.
If one wants a sizable Vai mixing avoiding unnatural

cancellation of the tree-level and one-loop active neutrino
mass, one needs a special structure of the6 × 6 neutrinomass
matrix in Eq. (C2) (or a more complicated setup) with the
mass degeneracy in the 3 × 3 Majorana neutrino mass
matrix, although describing this in detail is beyond the
purpose of this Appendix. The structure restricts the
estimation of the quantity J ¼ P

i;j UeiV�
μiU

�
μjVej ¼P

I;J XeIY�
μIX

�
μJYeJ, which affects the discussion in

Sec. V E. If the sizable mixings are Xa1 ¼ Xa2 for
M1 ¼ −M2, the μ → eγ process bounds Xe1X�

μ1 in
Eq. (C10), and therefore the magnitude of the quantity J
is restricted to less than Oð10−5Þ. Even if one can somehow
evade the μ → eγ constraint and also make jPUμiV�

eij ≪
jPUeiV�

eij avoid the 0ν2β constraint in Eq. (C14), the
bound in Eq. (C9) will restrict jJj to less than Oð10−3Þ.
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