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Yukawa couplings in the Lorentz- and CPT-violating Standard Model extension (SME) induce
quantum contributions to the electromagnetic moments of quarks, which are calculated in the present
paper and then used to define contributions to electromagnetic moments of nucleons. High-sensitivity
measurements of the proton and neutron electromagnetic moments then yield constrains on SME
coefficients, reaching bounds as restrictive as 10−12. This approach notably grants access to SME effects
from the second and third quark families.
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I. INTRODUCTION

Symmetries are a main aspect behind the construction of
sensible field theories that pursue a faithful description of
nature. Most formulations of physics beyond the Standard
Model (SM) bear Lorentz invariance, which has not been
observed to fail so far, though high-energy descriptions
motivating the existence of Lorentz-symmetry nonconser-
vation exist [1–4]. The lack of experimental evidence
pointing towards the actual existence of Lorentz violation
and its presumable origin favors the usage of effective
Lagrangians, which provide model-independent descrip-
tions of effects at the reach of current experimental
sensitivity [5], but which come from high-energy field-
theory formulations. Built upon the generality provided by
effective theories, the Lorentz- and CPT-violating SM
extension (SME) [6,7], by Colladay and Kostelecký, is a
valuable tool for phenomenologists to look for traces, even
if tiny, of effects produced by the breaking of Lorentz
invariance. Lorentz violation in the SME Lagrangian is
characterized by constant coefficients that transform as
tensors with respect to observer Lorentz transformations,
but are, contrastingly, invariant under particle Lorentz
transformations [6,7], thus defining preferred directions
in spacetime.
A plethora of papers has been dedicated to bound

Lorentz-violation coefficients, among the huge list of
parameters characterizing the sectors of the SME. A

comprehensive and annually updated list of constraints
on the coefficients of this effective-Lagrangian description,
taken from a variety of papers by different authors, is
provided in Ref. [8]. The present work shows a calculation
of contributions from the Yukawa sector of the renorma-
lizable-SME [7,9], usually dubbed minimal SME, to the
anomalous magnetic moment (AMM) and to the electric
dipole moment (EDM) of quarks, as well as an estimation
of bounds on SME coefficients of this sector, in accordance
with current bounds on the neutron and the proton
electromagnetic moments (EMM) [10–12]. These new-
physics contributions to quarks EMMs are extracted from
the expression of the quark electromagnetic vertex AμqAqA,
with q denoting some A-flavored quark and Aμ refering to
the electromagnetic field, that arises from leading one-loop
Feynman diagrams generated by the minimal-SME
Yukawa-sector couplings. The assumption of Lorentz non-
conservation for the calculation of the vertex AμqAqA
enlarges the usual Lorentz-invariant parametrization
[13,14], which, nevertheless, still includes the usual
Lorentz-preserving EMM form factors. Therefore, SME
coefficients participating in these EMM contributions have
all their spacetime indices fully contracted among them-
selves and are found to emerge, for the first time, at the
second order in Lorentz-violation.
Our calculation has been carried out by following a

perturbative approach in which two-point Lorentz-violation
insertions are building blocks of Feynman diagrams con-
tributing to AμqAqA. While, in practice, dominant contri-
butions, found to emerge from Schwinger-like diagrams,
were the ones used to constrain SME coefficients, the
calculation of all the contributing diagrams has been
performed. Gauge-dependent diagrams have been calcu-
lated in the unitary gauge, thus reducing the number of
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involved diagrams. Even though a practical drawback of
this gauge choice is the increment of the superficial degree
of divergence of loop integrals, all contributions were
found to be ultraviolet (UV) finite. On the other hand,
Another type of divergences are the infrared (IR) ones,
which we find to remain within our expressions for both the
AMM and the EDM form factors, although such diver-
gences are expected to vanish from cross sections. While
this means that the resulting form factors are not to be
understood as observables, IR divergences have been, on
these grounds, disregarded in order to estimate these
quantities, as they will be present in physical processes.
Since SME Yukawa couplings are quark-flavor changing,
the SME contributions to quark EMMs yield bounds on
coefficients associated to the second and third quark
families, despite restrictions are established from EMMs
of nucleons, exclusively constituted by first-family quarks.
The remainder of the paper is as follows: in Sec. II, the

SME Yukawa terms, required for the calculation, are
provided; a discussion on the calculation of contributions
to the quark electromagnetic vertex and the electromagnetic
moments is given in Sec. III; bounds on SME coefficients
are estimated in Sec. IV; finally, in Sec. V conclusions are
presented.

II. THE MINIMAL-SME YUKAWA SECTOR

First given in Ref [7], the quark Yukawa sector of the
minimal SME reads

LSME
Y;q ¼ −

1

2
ðHuÞABμν QA ϕ̃ σμνu0B þ H:c:

−
1

2
ðHdÞABμν QAϕσ

μνd0B þ H:c: ð1Þ

It involves the SUð2ÞL spinor doublets QA and singlets u0A,
d0A, where A ¼ u, c, t is a quark-flavor index. The Higgs
doublet, denoted as ϕ, plays a role as well. These fields
couple through Yukawa-like constants ðHuÞABμν and ðHdÞABμν
bearing both quark-flavor indices A, B and spacetime
indices μ, ν. Under observer Lorentz transformations,
ðHuÞABμν and ðHdÞABμν transform as 2-tensors, whereas they
behave as scalars with respect to particle Lorentz trans-
formations, thus yielding Lorentz violation in Eq. (1).
Moreover, these SME Yukawa-like constants are antisym-
metric with respect to their spacetime indices, that is,
ðHfÞABμν ¼ −ðHfÞABνμ . Implementation of unitary transfor-
mations Uf

L and Uf
R, after spontaneous breaking of the

electroweak symmetry, then yields

LSME
Y;q ¼−

1

2
ðvþHÞ

X

f¼u;d

fA½ðYfÞABμν PLþðYfÞBA�μν PR�σμνfB;

ð2Þ
in the unitary gauge. Note that quark-flavor indices A, B in
Eq. (2) run over either u, c, t or d, s, b, depending

on whether f ¼ u or f ¼ d. Let us emphasize that the
Lorentz-violating couplings of the Higgs boson, H, to
quarks turned out to be quark-flavor changing.
Furthermore, ðYfÞμν ¼ Uf†

L ðHfÞμνUf
R, so that spacetime-

group 4 × 4 matrices ðYfÞAB are antisymmetric. Inspiration
is then taken from the relations linking the electromagnetic
tensor Fμν with the electric and magnetic fields to define the
complex electric-like vector eAB and the complex mag-
netic-like vector bAB by

YAB
0i ¼ eABi ; YAB

ij ¼ εijkbABk; ð3Þ

respectively.

III. SME CONTRIBUTIONS TO QUARK
ELECTROMAGNETIC FORM FACTORS

In this section, we discuss the calculation of contri-
butions from the Yukawa sector of the minimal SME
to the AMMs and EDMs of quarks. Aiming at the
accomplishment of such a task, we have followed the
tensor-reduction method, by Passarino and Veltman [15],
relying on computational tools, namely, the software
Mathematica, by Wolfram, along with the packages
Feyncalc [16–18] and Package X [19]. The EMMs of
fermions are generated exclusively at the loop level,
being identified from the general Lorentz-invariant
parametrization

Γf
μðq2Þ ¼ ie

�
γμðVfðq2Þ − Afðq2Þγ5Þ

þ σμνqν
�

i
2m

afðq2Þ −
1

e
dfðq2Þγ5

��
; ð4Þ

of the electromagnetic vertex Aμff [13,14], with f
representing some fermion, taken on shell, and q denot-
ing the incoming momentum of the photon, assumed to
be off the mass shell. Then the on-shell quantities
afðq2 ¼ 0Þ and dfðq2 ¼ 0Þ define the AMM and the
EDM, respectively. Calculations of the SM contributions
to the electron and muon AMMs, as well as measure-
ments of these quantities, have reached remarkable
precision [20–24], rendering the tiny experiment-theory
difference a standard place to look for new-physics traces.
On the side of the quarks, the authors of Ref. [25] carried
out an estimation of SM contributions to the AMMs of the
top and bottom quarks. EDMs are important because of
their connection with the interesting phenomenon of CP
violation, relevant in order to explain baryonic asymme-
try [26]. However, EDMs of elementary particles have
never been measured and, moreover, contributions from
the SM to these quantities are produced for the first time
at the three-loop level [27], thus being quite suppressed
and far beyond the reach of experimental sensitivity.
Tree-level vertices HqAqB are given by the expression

for the Yukawa-sector Lagrangian in Eq. (2), which also
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carries terms quadratic in quark fields, used in the present
investigation to define bilinear insertions that enter
Feynman diagrams. At one loop, there are contributions
to the electromagnetic vertex AμqAqA from Feynman
diagrams with such two-point and/or three-point
Lorentz-violating insertions. Note that both the bilinear
insertions and the trilinear vertices can induce quark-flavor
change in Feynman diagrams. While this feature plays a
main role in our calculation, through virtual-particle effects,
keep in mind that the present work focuses on diagonal
EMMs rather than transition EMMs, so the quark flavors of
the external quark fields coincide with each other. The
assumption of Lorentz-invariance violation enriches the
analytical structure of the parametrization of the electro-
magnetic vertex. Even so, the resulting parametrization still
includes the Lorentz-invariant form factors that character-
ize Eq. (4), so keep in mind that the quark AMM and the
quark EDM are Lorentz-invariant, which means that all
SME coefficients within the contributions from the Yukawa
sector to these quantities must have all their spacetime
indices contracted among themselves, as this ensures
invariance of the EMMs under both observer transforma-
tions and particle transformations. Note that the SME
coefficients under consideration are all antisymmetric in
their spacetime indices, meaning that at the first order in
Lorentz-violation SME coefficients within such factors,
which necessarily appear as traces over Lorentz-indices,
vanish, thus forbidding the occurrence of SME contribu-
tions to EMMs at the first order in Lorentz-violation
coefficients. Therefore, contributions from the minimal-
SME Yukawa sector to AMMs and EDMs emerge for the
first time from one-loop diagrams at the second order in
Lorentz-violating coefficients [28].
The full set of contributing Feynman diagrams is

displayed in Figs. 1–3. The calculation of such diagrams
is involved for a number of reasons. Notice that each two-
point insertion comes along with a Dirac propagator, which
increases the number of propagator denominators, some of
which are subjected to a loop integral. Since two SME
insertions, either bilinear, trilinear or both simultaneously,
were required in order to generate the Lorentz-invariant
EMMs, we found momenta integrals with up to five of such
denominators. A detailed discussion on how to proceed can
be found in Ref. [28]. Moreover, the aforementioned extra
propagator denominators caused the expressions of the
electromagnetic form factors to be gigantic. On the other
hand, the resulting amplitude comprises several nonstand-
ard tensor structures, in comparison with the conventional
Lorentz-invariant parametrization. We spare the reader
from dealing with cumbersome enormous expressions
and we better omit the explicit results of the full calculation
from the paper, concentrating instead in the leading
contributions, produced by Schwinger-like diagrams
[29]. With this in mind, we write the SME contribution
to the amplitude AμqAqA as

ð5Þ

where UA is a momentum-space quark spinor, and q
denotes the incoming momentum of the external photon.
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FIG. 1. Feynman diagrams AμqAqA contributing to EMMs,
with SME effects entering exclusively through bilinear insertions
qAqB. If the virtual boson is Z, A, or H, then C ¼ A and D ¼ B,
while these indices can differ in the case of theW boson, as there
are two sources of quark-flavor change.
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FIG. 2. Feynman diagrams AμqAqA contributing to EMMs,
with SME effects entering exclusively through bilinear insertions
qAqB. These diagrams require the presence of a three-point vertex
AμWαWβ in order to exist.
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Then, fMA ðq2Þ and fEAðq2Þ define SME contributions to the
AMM aSME

A and the EDM dSME
A , respectively, with both

quantities preserving Lorentz invariance. Those diagrams
explicitly displayed in the left-hand side of Eq. (5) produce
the leading contributions, while the presence of other
diagrams has been indicated by the ellipsis. Dots on
internal lines of such diagrams represent two-point inser-
tions, which either preserve or change quark flavor, so B ¼
A or B ≠ A, with all the corresponding diagrams summed
together in Eq. (5). Other terms not explicitly shown in the
right-hand side of this equation have been indicated by the
ellipsis. Using our calculation of the SME Yukawa-sector
contributions to quark electromagnetic form factors, which
we identify from Eq. (5), we write the corresponding
contributions to AMMs and EDMs as

aSME
A ¼

X

B

afAB ¼
X

B

½ãABðjRe eABj2 þ jRebABj2Þ

þ âABðjIm eABj2 þ jImbABj2Þ�; ð6Þ

dSME
A ¼

X

B

dfAB ¼
X

B

d̃ABðjRe eABjjImbABj

þ jRebABjjIm eABjÞ: ð7Þ

where the sum index B runs over u, c, t if A is a u-type
quark index, whereas for A being a d-type quark index
B ¼ d, s, b. If A ¼ B, the following definitions hold,

afAA ¼ e3v2

ð4πÞ2m2
A
ð3ðjImbAAj2þjImeAAj2Þ

þðjRebAAj2þjReeAAj2Þ
�
15þ8

�
ΔIRþ log

μ2

m2
A

��
;

ð8Þ

dfAA ¼ 2e3v2

ð4πÞ2m3
A

ðjRe eAAjjImbAAj

þ jImeAAjjRebAAjÞ
�
2

�
ΔIR þ log

μ2

m2
A

�
− 3

�
; ð9Þ

whereas for B ≠ A we find

afAB ¼ e3v2

96π2m2
Aðm2

A −m2
BÞ2

�
ðjImbABj2 þ jIm eABj2Þ

�
2m7

Að12mB − 17mAÞ log
�
m2

A

m2
B

�

þ ðm2
A −m2

BÞ
�
−24m5

AmB þ 13m4
Am

2
B − 18m2

Am
4
B − 2ðmA −mBÞ2ðmA þmBÞð−7m2

AmB

− 9mAm2
B þ 17m3

A − 9m3
BÞ log

�
m2

B

m2
B −m2

A

�
þ 39m6

A

��
− ðjRebABj2 þ jRe eABj2Þ

�
2m7

Að17mA

þ 12mBÞ log
�
m2

A

m2
B

�
þ ðm2

A −m2
BÞ
�
−24m5

AmB − 13m4
Am

2
B þ 18m2

Am
4
B

þ 2ðmA −mBÞðmA þmBÞ2ð7m2
AmB − 9mAm2

B þ 17m3
A þ 9m3

BÞ log
�

m2
B

m2
B −m2

A

�
− 39m6

A

���
; ð10Þ

dfAB ¼ e3v2m3
B

2π2m4
Aðm2

B −m2
AÞ

ðjRe eABjjImbABj þ jIm eABjjRebABjÞ log m2
B

m2
B −m2

A
: ð11Þ
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FIG. 3. Feynman diagrams AμqAqA contributing to EMMs,
with SME effects entering through both bilinear insertions qAqB
and three-point vertices HqAqB. These diagrams require the
presence of a virtual Higgs-boson line in order to exist.
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Mass-dependent coefficients ãAB and âAB, which are part of
Eq (6), are derived from Eqs. (8) and (10). Meanwhile,
coefficients d̃AB and d̂AB, in Eq. (7), follow from Eqs. (9)
and (11). Since these EMMs contributions are entirely
given by real and imaginary parts of Lorentz-violation
coefficients eAB and bAB, such quantities are the ones to be
compared with experimental results and thus the ones to
bound, but keep in mind that the original SME coefficients,
which constitute them, are ðHuÞABμν and ðHdÞABμν , as intro-
duced in Eq. (1). Another point to remark is the presence
of infrared divergences, ΔIR, which we discuss in a
moment.
While Eqs. (6)–(11) display explicitly the leading con-

tributions, which correspond to a subset of virtual-photon
diagrams, let us comment that we performed the full
calculation indeed, which includes diagrams with (1) virtual
W bosons, (2) virtual Z bosons, and (3) a virtual Higgs
boson. In particular, some of such contributions bear gauge
dependence, caused by gauge-boson propagators. For
practical reasons, we executed the calculation of these
contributions in the unitary gauge, which eliminates
pseudo-Goldstone bosons, thus reducing the number of
contributing diagrams. A latent issue entailed by this gauge
choice originates in the form acquired by gauge-boson
propagators, which increases the superficial degree of
freedom of loop integrals, thus entangling the elimination
of UV divergences from amplitudes that are, presumably,
UV finite. However, after an explicit calculation, we have
arrived at the conclusion that all our expressions are free of
UV divergences. On the other hand, IR divergences did not
vanish from these new-physics contributions, though, as
argued in Ref [28], they are expected to vanish from cross
sections. Note that, among the whole set of contributing
diagrams, which can be looked at in Figs. 1–3, those having
a virtual photon and involving two two-point insertions on
a single loop fermion line are the only ones giving rise to IR
divergences. In order to discuss how the elimination of
these IR divergences is expected to happen, let us consider,
in the context of Lorentz-invariant quantum electrodynam-
ics, the one-loop contribution to the electromagnetic vertex
AμlAlA,

ð12Þ

given in terms of two form factors, F1ðq2Þ and F2ðq2Þ, both
depending only on the squared incoming external-photon
momentum q2 and the lepton mass ml. While the magnetic
form factor, F2ðq2Þ, is free of IR divergences, and from UV
divergences as well, the charge form factor, F1ðq2Þ, bears
both sorts of divergences, with the latter eliminated from
the amplitude through renormalization. Conversely, IR
divergences nested within F1ðq2Þ remain in the amplitude,
to be later cancelled from some cross section. To illustrate

this, think about the total contribution from Lorentz-
invariant quantum electrodynamics to the process lþA l

−
A →

lþB l
−
B at one loop, whose amplitude can be written as

M2→2 ¼ Mtree
2→2 þM1-loop

2→2 , where Mtree
2→2 is the tree-level

contribution. The one-loop termM1-loop
2→2 , on the other hand,

is expressed as M1-loop
2→2 ¼ MγlAlA

2→2 þ � � �, where

ð13Þ

carries the full contribution from the electromagnetic vertex
AμlAlA, as parametrized in Eq. (12), to the amplitude of
lAlA → lBlB, with the second diagram representing the
counterterm, entering as part of the renormalization pro-
cedure. Since the interference terms of the differential
cross section, given as dσinterf2→2 ∝

P
spin½ðMtree

2→2Þ�MγlAlA
2→2þ

Mtree
2→2ðMγlAlA

2→2 Þ��, are still IR divergent, they are not to be
understood as observables. Nevertheless, the bremsstrah-
lung process lAlA → AμlBlB, with the assumption of soft-
photon emission, results in the amplitude Mtree

2→3 ¼
MγlAlA

2→3 þ � � �, where

ð14Þ

The differential cross section of this process, given
as dσ2→3 ¼ dσγlAlA2→3 þ � � �, with dσγlAlA2→3 ∝

P
spin jMγlAlA

2→3 j2,
turns out to be IR divergent. Now consider the afore-
discussed IR-divergent differential cross sections, dσinterf2→2

and dσγlAlA2→3 , simultaneously, that is, think about the sum
dσinterf2→2 þ dσγlAlA2→3 . IR divergences of individual contributing
terms of this sum remarkably cancel each other when added
together. Regarding this result, we find it worth comment-
ing that any bremsstrahlung diagram of Eq. (14) is
constructed by insertion of the electromagnetic vertex in
an external line of some tree-level diagram lAlA → lBlB,
thus introducing a matrix factor γμ, which coincides with
the one characterizing the IR-divergent form factor F1ðq2Þ,
in Eq. (12).
With this discussion in mind, let us go back to the IR-

divergent contributions from the minimal-SME Yukawa
sector to the electromagnetic vertex AμqAqA. The corre-
sponding IR divergences do not arise from the charge form
factor, in contrast with the SM case, but they are nested
within the electromagnetic form factors instead, meaning
that the Dirac-matrix factors going together with them are
σμν and σμνγ5, rather than γμ. Therefore, bremsstrahlung
diagrams with SME bilinear insertions, coming along with
matrix factors σμν and σμνγ5, are reasonably expected to
eliminate such divergences when considering soft-photon
emission and summing them together with the IR-divergent
loop contributions. Aiming at an illustration of this,
consider the amplitude characterizing the contributions
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from the minimal-SME Yukawa sector to qAqA → qBqB,
which includes the combination of Feynman diagrams

ð15Þ

both involving SME bilinear insertions, at the second order
in Lorentz violation, in loop lines. On the other hand,
consider the following tree-level diagrams, contributing to
the bremsstrahlung process qAqA → AμqBqB,

ð16Þ

with the final-state photon assumed to be soft. These tree-
level diagrams also include SME bilinear insertions, two of
them in a single fermion propagator. Both sums of
diagrams, being IR divergent and proportional to matrices
σμν and σμνγ5, are expected to produce contributions to
differential cross sections which, summed together, should
cancel all IR divergencies, thus resulting in a finite total
cross section. The proof of such a statement is not an
objective of the present investigation, but a matter of a
future work, so, proceeding in a practical manner, we
assume that such a cancellation of IR divergences occurs
and we ignore them accordingly. Note that the presence of
IR divergences within the electromagnetic form factors, at
the level of amplitude, implies that the calculated contri-
butions to AMMs and EDMs cannot be considered as
observables, though keep in mind that such quantities,
presumably finite at the level of cross section, carry
contributions to physical processes, which endows them
with physical significance. For that reason, their estimation
is relevant and well motivated.
In general, the AMM and EDM contributions calculated

for the present investigation are complex quantities, even
though all the external lines have been taken on shell and
the one-loop electromagnetic vertex has been assumed to
be quark-flavor conserving. The emergence of imaginary
parts takes place as long as perturbative two-point inser-
tions connect external lines to virtual lines of lighter
particles, since this induces thresholds. The occurrence
of such thresholds can be appreciated in Eqs. (10) and (11),
which involve logarithm factors carrying factors m2

B −m2
A

in their arguments. Recalling that mA is the mass of the
external quark and mB corresponds to the mass of some
virtual quark, note that such differences of quadratic masses
can be either positive or negative, thus opening the
possibility of having complex quantities. For instance, this
happens if A ¼ t and B ¼ u, because mt > mu. An
illustrative discussion on this issue can be found in
Ref. [28], for the case of leptons, where a set of graphs
is provided in which the comportment of real and

imaginary parts of contributions to lepton EMMs for
different virtual-particle masses mB is shown. Among
the whole set of quark EMMs, the only cases in which
the contributions are real correspond to the up and down
quarks, for in such cases external lines correspond to
particles that are always lighter than virtual particles, thus
ensuring the emergence of real-valued contributions. This
observation is pertinent to the present investigation, pro-
vided that the EMMs of nucleons are calculated from the
SME Yukawa-sector contributions to the up and down
quark AMMs and EDMs, which are then ensured to be real.
The minimal-SME CPT-even sectors of quarks and the

Higgs boson, defined in Ref [7], bear couplings which may
also produce contributions to quark EMMs. In the case of
the quark Lagrangian terms, such contributions would arise
from the antisymmetric parts of SME coefficients cμν,
which, however, are removed from the theory by an
appropriate redefinition of spinor fields [30]. On the other
hand, the contributions from the aforementioned Lorentz-
violating Higgs sector carry a suppressing factor 1

m4
W
, with

respect to the contributions calculated in the present
investigation, so we disregard them. Finally, let us point
out that, in general, the SME Lagrangian terms, being part
of an effective field theory, may not all be produced by the
genuine fundamental physical description.

IV. BOUNDS ON SME COEFFICIENTS

This section is devoted to the implementation of the
analytical expressions previously found, for the leading
contributions to quark AMMs and EDMs, to the particular
cases of the up and down quarks, aiming at the definition of
Lorentz-violation contributions to EMMs of the proton and
the neutron. Experimental data on such quantities are then
utilized to set bounds on SME coefficients. For the
determination of constraints on SME coefficients, we use
those values of nucleon EMMs which have been recom-
mended by the Particle Data Group [12]. Relying on a
variant of the Penning-Trap experiment, the authors of
Ref. [31] reached the value

μp ¼ 2.7928473446ð8ÞμN; ð17Þ

for the magnetic moment of the proton, given in units of the
nuclear magneton, μN ¼ e

2mp
, with mp the mass of the

proton. On the other hand, the Committee on Data for
Science and Technology (CODATA) published, in
Ref. [32], a comprehensive list of physical constants,
which included the value

μn ¼ −1.9130427ð5ÞμN; ð18Þ

for the neutron magnetic moment. By assuming that new-
physics traces might be as large as the errors in these data,
the proton magnetic moment measurement, whose error is

JAVIER MONTAÑO-DOMÍNGUEZ et al. PHYS. REV. D 105, 075018 (2022)

075018-6



smaller than the one for the magnetic moment of the
neutron by three orders of magnitude, is our choice to
constrain SME coefficients. Reference [33] provides an
estimation of upper bounds on the EDMs of the proton and
the neutron, based on the measurement of the EDM of
199Hg atom, claiming that

jdpj < 2.1 × 10−25e · cm; ð19Þ

in the case of the proton and jdnj < 2.2 × 10−26e · cm for
the neutron. A little improvement on the neutron EDM
bound was reported two years later in Ref. [34], according
to which

jdnj < 1.8 × 10−26e · cm; ð20Þ

reached by using ultracold neutrons and oscillating mag-
netic fields. Being better by one order of magnitude, the
neutron EDM is the one to be used in the present paper to
bound SME coefficients.
We connect the nucleon EMMs to those of constituent

quarks by using the standard prescriptions [27,35]

ap ¼ 4

3
au −

1

3
ad; dn ¼

4

3
dd −

1

3
du: ð21Þ

From our calculation of the quark AMM and EDM given in
Eqs. (6)–(11), we write the contribution to the proton
magnetic moment and the contribution to the EDM of the
neutron as

aSME
p ¼

X

q¼u;d

X

B

ξqp½ãqBðjRe eqBj2 þ jRebqBj2Þ

þ âqBðjIm eqBj2 þ jImbqBj2Þ�; ð22Þ

dSME
n ¼

X

q¼u;d

X

B

ξqn d̃qBðjRe eqBjjImbqBj

þ jRebqBjjIm eqBjÞ; ð23Þ

respectively. In these expressions, ξup ¼ 4
3
, ξdp ¼ − 1

3
,

ξun ¼ − 1
3
, and ξdn ¼ 4

3
. Note, however, that other approaches

are available, as, for instance, the one followed in Ref. [36],
where chiral perturbation theory is utilized to write down
Lorentz-violating Lagrangian terms, at the level of hadrons.
In the nonperturbative regime of quantum chromodynam-
ics, the SM leading contributions to up- and down-quark
AMMs are generated by Schwinger-type Feynman dia-
grams, amounting to aSMu ≈ 2α

9π and aSMd ≈ α
18π, respectively,

with α the fine-structure constant. According to Eq. (21),

this yields aSMp ≈ 5
ffiffi
α

p
36π2

μN ¼ 1.12 × 10−3μN , for the SM
contribution to the AMM of the proton. In the context
of the SM, the authors of Ref. [27] calculated EDMs
of quarks, claiming that an accidental cancellation of
contributions at the two-loop level forces the first

EDM contributions to emerge from three-loop Feynman
diagrams. Then, by considering the resulting three-loop
contributions to the EDMs of the up and down quarks, and
using the prescription given in Eq. (21), they arrived at the
conclusion that the neutron EDM is jdSMn j ∼ 10−34e · cm.
Through our expression for the SME Yukawa-sector

contribution to the proton AMM, we write down Table I,
which displays upper bounds on maximal attained sensi-
tivities of the real and imaginary parts of eAB and bAB. The
most stringent limits, of order ∼10−11, are established on
the SME parameters eut and but, which link the physics of
Lorentz-invariance violation of the u and t quarks. Let us
comment on Penning-Trap experiments, which is another
method to probe Lorentz invariance though EMMs of
electrons, protons and their antiparticles [10,37–39].
Such devices, aimed at handling stable particles, have
the clear advantage that they are sensitive to first-order
contributions in SME coefficients. Notice that, while the
path followed by us in the present paper requires second-
order contributions from SME coefficients, it has given us
access to effects of SME coefficients linked to heavy
quarks, inaccessible to Penning-Trap experiments.
Next, we discuss bounds from the neutron EDM.

Consider some fixed quark-flavor indices q, B in the
sum defining the EDM contribution in Eq. (23) and assume
that all contributions associated to other combinations of
indices vanish. Then bound the remaining terms through
experimental data. The resulting constraints, for each fixed
q, B, are shown in Table II, which is an illustrative mean to
compare sensitivities to SME coefficients of experiments
that measure proton AMMs with those aimed at neutron
EDMs. In most cases the best constraints are given by the
neutron EDM experimental bound, being q ¼ u, B ¼ t the
only case in which the proton AMM yields the most
stringent limit. In this framework, consider a scenario in
which all SME parameters jReeABj, jRebABj, jImeABj, and
jImbABj are practically equal to each other. Under such

TABLE I. Bounds from the proton magnetic moment on
Lorentz-violation parameters (LVP) of the minimal-SME
Yukawa sector. RefeAB;bABg denotes both Re eAB and
RebAB, and the same applies for imaginary parts.

LVP Bounds

jRefeuu;buugj 6.828 × 10−10

jImfeuu;buugj 1.526 × 10−9

jRefeuc;bucgj 1.921 × 10−8

jImfeuc;bucgj 1.925 × 10−8

jRefeut;butgj 7.156 × 10−11

jImfeut;butgj 7.156 × 10−11

jRefedd;bddgj 6.828 × 10−9

jImfedd;bddgj 1.526 × 10−8

jRefeds;bdsgj 3.267 × 10−8

jImfeds;bdsgj 3.441 × 10−8

jRefedb;bdbgj 2.194 × 10−7

jImfedb;bdbgj 2.220 × 10−7
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circumstances, the neutron EDM experimental bound gives
rise to Table III, according to which Lorentz-violation
parameters jeuuj and jbuuj are restricted to be as small as
10−12, thus improving bounds from AMMs (Table I) by
about two orders of magnitude.

V. SUMMARY AND CONCLUSIONS

The present work comprises a calculation of Lorentz-
invariant electromagnetic properties of quarks, developed

in the context of the Lorentz- and CPT-violating Standard
Model Extension, usually referred to by the acronym SME.
Being an effective field theory, the SME allows for the
analysis and quantification, at current experimental sensi-
tivity, of some fundamental physical description of nature
that produces effects not preserving Lorentz symmetry,
without even knowing the actual high-energy formulation
behind such effects. The calculation has been restricted to
the renormalizable part of this Lorentz-nonpreserving
effective theory, the so-called minimal SME. More spe-
cifically, we have considered the Yukawa sector of this field
formulation, which is characterized by Yukawa-like con-
stants endowed with spacetime indices and which are
antisymmetric with respect to them. Implementation of
the Brout-Englert-Higgs mechanism then defined a
Lagrangian density involving couplings that yield two-
point insertions and three-point vertices, both bearing
Lorentz violation and contributing to low-energy ampli-
tudes upon insertion in Feynman diagrams.
An intricate calculation of the electromagnetic vertex

AμqAqA, performed in the unitary gauge, leaded us to
analytic expressions for the one-loop contributions to
AMMs and to EDMs of quarks. We argued that Lorentz-
violating contributions from the Yukawa sector of the SME
to the these quantities, defined to be Lorentz invariant, arise
for the very first time at the second order in Lorentz
violation.Our results are free ofUVdivergences, but involve
IR divergences, meaning that these quantities are not
measurable, but can be rendered finite only at the level of
cross section and then contribute to some physical process.
Since our analytical results are vast, we reported explicitly
only the leading contributions to the electromagnetic form
factors, generated by Schwinger-like Feynman diagrams.
The aforementioned antisymmetry of Lorentz-violating
Yukawa-like constants is used to define constant electriclike
fields, eAB, and magneticlike fields, bAB, where A, B are
quark-flavor indices. The analytic expressions of the con-
tributions from theSME to quark electromagnetic factors are
then entirely given in terms of absolute values of the real and
imaginary parts of eAB andbAB, which are thus the quantities
to be compared with experimental data and then bounded.
Once calculated the analytical expressions for the lead-

ing contributions to AMMs and the EDMs of quarks, we
particularized our generic expressions to the cases of the up
and down quarks. This was then utilized to define EMMs of
the proton and the neutron, as high-precision measurements
of such quantities are available. Regarding the magnetic
moment, the one characterizing the proton turned out to be
the best option, whereas bounds on the EDM of the
neutron, being the most stringent, were used. Then our
estimations of the EMMs of nucleons and their comparison
with experimental data yielded constraints on SME coef-
ficients which parametrize effects of Lorentz violation at
low energies. Bounds on these quantities as restrictive as
10−12 were established.

TABLE II. Comparison of sensitivities to SME coefficients of
experimental bounds from the proton magnetic moment and the
neutron EDM.

EMM Bounds Best

ap j1.963jRe euuj2 þ 0.393jImbuuj2j < 9.2 × 10−19

dn 0.970jRe euujjImbuuj < 1.8 × 10−23 ✓

ap j1.963jRebuuj2 þ 0.393jIm euuj2j < 9.2 × 10−19

dn 0.970jRebuujjIm euuj < 1.8 × 10−23 ✓

ap j2.479jRe eucj2 − 2.468jImbucj2j < 9.2 × 10−16

dn 2.037jRe eucjjImbucj < 1.8 × 10−20 ✓

ap j2.479jRebucj2 − 2.468jIm eucj2j < 9.2 × 10−16

dn 2.037jRebucjjIm eucj < 1.8 × 10−20 ✓

ap j1.787jRe eutj2 þ 1.787jImbutj2j < 9.2 × 10−21 ✓

dn 1.497jRe eutjjImbutj < 1.8 × 10−18

ap j1.787jRe butj2 þ 1.787jIm eutj2j < 9.2 × 10−21 ✓

dn 1.497jRebutjjIm eutj < 1.8 × 10−18

ap j1.963jRe eddj2 þ 0.393jImbddj2j < 9.2 × 10−17

dn 6.208jRe eddjjImbddj < 1.8 × 10−21 ✓

ap j1.963jRebddj2 þ 0.393jImeddj2j < 9.2 × 10−17

dn 6.208jRebddjjImeddj < 1.8 × 10−21 ✓

ap j − 8.575jRe edsj2 þ 7.727jImbdsj2j < 9.2 × 10−15

dn 4.329jRe edsjjImbdsj < 1.8 × 10−20 ✓

ap j − 8.575jRebdsj2 þ 7.727jIm edsj2j < 9.2 × 10−15

dn 4.329jRebdsjjIm edsj < 1.8 × 10−20 ✓

ap j − 1.901jRe edbj2 þ 1.857jImbdbj2j < 9.2 × 10−14

dn 0.990jRe edbjjImbdbj < 1.8 × 10−19 ✓

ap j − 1.901jRebdbj2 þ 1.857jIm edbj2j < 9.2 × 10−14

dn 0.990jRebdbjjIm edbj < 1.8 × 10−19 ✓

TABLE III. Bounds from the neutron electric moment on LVPs
of the minimal-SME Yukawa sector. jeAB;bABj denotes both
jeABj and jbABj.

LVP Bounds

jeuu;buuj 4.308 × 10−12

jeuc;bucj 9.401 × 10−11

jeut;butj 1.096 × 10−9

jedd;bddj 1.703 × 10−11

jeds;bdsj 6.449 × 10−11

jedb;bdbj 4.264 × 10−10
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