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The connection between tree-level scattering amplitudes and the Seiberg-Witten (SW) map in the Moyal
deformed U(1) noncommutative quantum electrodynamics (NCQED) is studied. We show that in the
minimal U(1) NCQED based on a reversible Seiberg-Witten (SW) map, SW map induced interactions
cancel each other in all tree-level scattering amplitudes and leave them identical to the Moyal NCQED
without SW map. On the other hand, the two-by-two Compton and light-by-light scattering amplitudes
deviate from minimal model when irreversible SW map is used. Therefore the reversibility of SW map and
equivalence between NCQED before and after SW map manifest as an identity between the tree-level
scattering amplitudes.
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I. INTRODUCTION

It is long known that a noncommutative (NC) U⋆ðNÞ
gauge theories can be converted into a UðNÞ gauge
theories by a Seiberg-Witten (SW) map, as required by
the symmetry of the underline D-brane systems [1].
Originally the SW map was constructed as a reversible
map between the noncommutative U⋆ðNÞ and commuta-
tive UðNÞ gauge fields. Soon after it was realized that an
irreversible SW map from commutative gauge fields
valued in any Lie algebra to deformed/NC gauge fields
valued in the universal enveloping algebra of the Lie
algebra can also be realized, resulting in many more
Moyal-deformed classical gauge theories [2–18]. SW
maps have also been used for constructing gauge theories
on other noncommutative spaces [19–21].
Since 1999 till today, the noncommutative gauge field

theories have been studied intensively as perturbative
quantum field theories [23–33]. Nowadays, a number of
open questions still remain. One frequently raised issue is
how the theories based on a SW map, either reversible or
irreversible, could be connected to the Moyal NC U⋆ðNÞ
gauge theories without SW map. In two prior works, we
addressed this issue by showing that the on shell effective

actions of noncommutative U(1) gauge theories before and
after a reversible SW map, obtained by the background
field method, are formally equivalent/dual to each other
[34,35]. The equivalence relation is verified by computing
directly the one-loop two-point function before and after
SW map.
Recently we have shown that the scattering amplitudes

of all tree-level two-by-two scattering processes in a
minimal U(1) noncommutative quantum electrodynamics
(NCQED) model based on a reversible SW map are
identical to the same theory without a SW map [36]. We
view this result as a strong suggestion that the aforemen-
tioned equivalence relation would be realized in tree-level
scattering amplitudes as an identity. It then becomes,
apparently, interesting to investigate whether this identity
can be generalized to all tree-level scattering amplitudes of
the same model and thus manifest the desired equivalence
relation. Another, related question, is what kind of changes
one would expect from a NCQED model based on
irreversible SW map, in which the formal equivalence
relation no longer holds.
In this article we address both issues with explicit

results. We first demonstrate that all tree-level scattering
amplitudes of the U(1) noncommutative QED minimal/
first model based on a reversible SW map are identical to
the corresponding scattering amplitudes of the NC U⋆ð1Þ
model without a SW map by a constructive method. Using
the relations obtained when proving the general identity,
we proceed to show that the same identity is lost already in
the two-by-two fermion-photon and photon-photon scat-
tering processes in the second NCQED model containing
two differently charged fermions which is based on an
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irreversible SW map. Therefore, the identical tree-level
scattering amplitudes in the U(1) NCQED model(s) are
indeed the consequence of the reversibility of the SW
map, as we have expected from the general formal
equivalence.
This article is organized as follows: In Sec. II we define

the minimal/first model, as the noncommutative Moyal
deformed QED action induced by means of a θ-exact
reversible Seiberg-Witten map for a single gauge field
(photon) and single charged fermion. In Sec. III we deal
with amplitudes in the gauge sectors of NCQED, i.e., with a
diagrammatic approach to the photon scattering amplitudes
in the U(1) SW mapped gauge theory. In particular in
Secs. III A and III B we consider the γγ → γγ scattering
amplitude and their generalization to the to n-photon
scattering amplitudes, respectively. Section III C is devoted
to the scattering amplitudes including fermions. In Sec. IV
we consider and analyze the second model of the deformed
QED built by a θ-exact irreversible Seiberg-Witten map,
with two gauge sectors and with fermion sector containing
two fermions ψ1 and ψ2, with two different charges [12,14],
and compared it with the minimal/first model. Finally, in
Sec. V we present a discussion and the conclusion.

II. THE MINIMAL MOYAL DEFORMED NCQED
MODEL BASED ON REVERSIBLE SW MAP

We consider the minimal/first NCQEDmodel in terms of
one noncommutative U(1) gauge field and one left-charged
fermion field, Aμ and Ψ , respectively [2],

1Smin ¼
Z

−
1

4e2
Fμν½AμðeaμÞ�⋆Fμν½AμðeaμÞ�

þ Ψ̄ðψ ; eaμÞ⋆ði=D −mÞΨðψ ; eaμÞ;
Fμν ¼ ∂μAν − ∂νAμ − i½Aμ ;⋆Aν�;

DμΨ ¼ ∂μΨ − iAμ⋆Ψ : ð1Þ

The connection between the NC and commutative quantities
is given by the reversible SW map [1], which is expressed
exactly with respect to the NC deformation parameter θμν as
an expansion over coupling constant e/formal power of fields
[13,18,30].

III. SCATTERING AMPLITUDES
OF THE MINIMAL MODEL

We start scattering amplitude analysis in minimal/first
model with pure gauge sector (and deal with the inclusion
of fermions later on) by recording a property of the θ-exact
SW mapped U(1) gauge theory; all photon self-interaction
vertices (V) satisfy the following identity,

kμii ·Vμ1…μi…μnðk1;…; ki;…; knÞ ¼ 0; i¼ 1…n: ð2Þ

Now we consider the n ≥ 3-photon self-interaction terms.
There are two origins of them:
(a) First, we have the three-photon and the four-photon

vertices from the U⋆ð1Þ NCYM without SW map,
which generate the γγ → γγ scattering amplitude
[36–38].

(b) Second, the SW mapped terms originated from the
quadratic (denoted as a box with two free lines
attached), cubic (black dot with three free lines
attached) and quartic terms (black dot with four free
lines attached) from the SW unmapped actions, shown
schematically in Fig. 1.

Relevant terms for each n can then be categorized into
three types according to their origins in the SW unmapped
theory:
(1) Those by attaching the ith order SW map and the jth

order SW map to a quadratic structure and having
iþ j ¼ n − 2 (Fig. 2);

(2) those by lifting the three-photon vertex with
the three-SW maps satisfying i1 þ i2 þ i3 ¼ n − 3
(Fig. 3);

(3) and those by lifting the four-photon vertex with the
four-SW maps satisfying i1 þ i2 þ i3 þ i4 ¼ n − 4
(Fig. 4).

We may denote the first type as ð2; i; jÞ, second
ð3; i1; i2; i3Þ and third as ð4; i1; i2; i3; i4Þ. We also require
j > i in ð2; i; jÞ, which can be achieved via integration by
part without ambiguity thanking to the quadratic backbone.
We introduce a set of fully ordered Feynman diagrams
equivalent/schematic diagrams as diagramatic illustration of
these vertex terms. The full Feynman diagram vertices can
be expressed by summing over all external leg permuations
of all relevant schematic diagrams.
Next, let us consider the ð2; 0; n − 2Þ type:

ð2; 0; n − 2Þ ¼ ð∂μ∂μaν − ∂μ∂νaμÞ · Aðn−2Þ
ν : ð3Þ

We notice that this term bears the form of a free field
equation multiplying an (n − 2)th-order SW map of the NC
gauge field Aν. One can immediately recognize that such
vertex does not contribute to the n-photon scattering
amplitude because of the field equation. There are still
more intriguing consequences of such terms as we are
going to see next.

FIG. 1. The backbone of interacting structures.
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A. The γγ → γγ scattering amplitude

As starting example, let us reexamine the SW map
invariance of γγ → γγ scattering amplitude found in [36].
Only the three- and four-photonvertices—(1Va3) and (

1Va4)
—from minimal/first model defined in Eq. (1) are relevant
to this process described in Fig. 5. They can be expressed
by the following terms

1Va3 ≡ ð2; 0; 1Þ þ ð3; 0; 0; 0Þ; ð4Þ

1Va4 ≡ ð2; 0; 2Þ þ ð2; 1; 1Þ þ ð3; 1; 0; 0Þ þ ð3; 0; 1; 0Þ
þ ð3; 0; 0; 1Þ þ ð4; 0; 0; 0; 0Þ; ð5Þ

and be illustrated by the schematic diagrams listed in
Figs. 6 and 7. Notice that we have fixed the order of photon
lines completely and neglected all the permutations; they
can be reintroduced later without affecting the cancellation
of SW map contributions we would like to prove.
We then consider the Feynman diagrams for scattering

amplitudes and expand them into schematic diagrams. These
include the four-point vertices in Fig. 7 and nonvertex
diagrams in Fig. 8.
We can first eliminate ð2; 0; 2Þ as it vanishes on shell.

Next we realize that the vertex ð2; 0; 1Þ must have the leg
from zeroth order SW map, i.e., with a field equation
attached, connected to an internal line in any term/diagram
including this vertex, otherwise the resulting term vanishes
on shell too. The schematic diagrams which are vanishing
on shell because of the field equation in ð2; 0; 1Þ are
illustrated in Fig. 9. Once ð2; 0; 1Þ is connected to another
(full) vertex V via the leg from the zeroth-order SW map,
the second term in the right-hand parenthesis of (3) does
not contribute because of the property (2), i.e.,

ð2; 0; 1Þ≡ ∂μ∂μaν · Að1Þ
ν : ð6Þ

Now we consider attaching the simplified ð2; 0; 1Þ, i.e.,
(6), to another vertex for four photon scattering. The
zeroth leg, i.e., the field equation part must be attached
to the internal propagator. There are two possibilities:

FIG. 3. The ð3; i1; i2; i3Þ type interaction, with the same notations as in Fig. 2.

FIG. 2. The ð2; 0; iÞ and ð2; i; jÞ type interactions. Here full
lines denote photon legs which are at the zeroth order of SWmap/
directly from the unmapped backbone schematic diagrams in
Fig. 1, while dashed lines represents photon legs generated by the
SW map. Crosses denote legs of the backbone interaction which
are replaced by SW-mapped composite field operators.
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One is to have two ð2; 0; 1Þ terms connected together via
their zeroth legs, the other is to connect it to a ð3; 0; 0; 0Þ
term. In both cases, the zeroth leg is connected to another
zeroth leg. We mark such connections by a contraction
line between terms, and by a double solid line in the
schematic diagram. We then notice the following impor-
tant relations,

ð7Þ

ð8Þ

FIG. 6. The three-photon schematic vertices in SW mapped NCQED.

FIG. 4. The ð4; i1; i2; i3; i4Þ type interaction, with the same notations as in Fig. 2.

FIG. 5. Generic diagram contributions, containing the three- and four-field vertices, to the two-by-two (2 → 2) scatterings. Full lines
denote arbitrary quantum fields.
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given in the language of Wick contractions. This enables the
cancellation of all SW map induced contributions, whose
procedures are given diagrammatically in the Fig. 10.

It is also plain to see that ð3; 1; 0; 0Þ and ð3; 0; 1; 0Þ
are canceled by and ,

respectively. These cancellations then leave the diagrams
which are not induced by the SW map the only non-
vanishing contribution to four-photon scattering amplitude.

B. Generalization to n-photon scattering amplitudes

To generalize our cancellation results to all tree-level
photon scattering amplitudes, we first notice that all
ð2; i > 0; j > i > 0Þ, ð3; i1; i2; i3Þ with i1 þ i2 þ i3 > 0,
and ð4; i1; i2; i3; i4Þ with i1 þ i2 þ i3 þ i4 > 0 vertices
can be canceled by summing with schematic diagrams
which have crossed legs replaced by double-line-box-cross
propagators one by one until all of them. These relations
can be written in terms of zero-zero contractions as follows:
First, we define the vanishing sum

FIG. 10. Cancellation of the SW map induced contributions to
2 → 2 scattering amplitude in SW mapped NCQED.

FIG. 7. The four-photon schematic vertices in SW mapped NCQED.

FIG. 8. The four-photon schematic diagrams which we call the
nonvertex type. Solid double lines are used to mark the zero-zero
type propagator connections here.

FIG. 9. Vanishing parts of the SW map induced contributions to
the 2 → 2 (γγ → γγ) scattering amplitudes in the SW mapped
NCQED.
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ð9Þ

then

ð10Þ

and finally

ð11Þ

Above we have introduced square brackets ½2; i > 0;
j > i > 0�, ½3; i1; i2; i3�, and ½4; i1; i2; i3; i4� to denote these
vanishing sums. We realize that we can treat these vanish-
ing sums as effective vertices. All double-solid internal
lines are then absorbed into these effective vertices.
Introducing also the compatible notation

½2; 0; i�≡ ð2; 0; iÞ; ½3; 0; 0; 0�≡ ð3; 0; 0; 0Þ;
½4; 0; 0; 0; 0�≡ ð4; 0; 0; 0; 0Þ; ð12Þ

we can define a modified type of schematic diagrams by
demanding that the new, box-bracket vertices can only be
connected by internal propagators which are not the double
solid line type. Usual n-photon correlation functions can still
be expressed in terms of these new schematic diagrams since
all terms in the definition of box-bracket vertices are
equivalent to each other if we restrict the internal propagator
connections as stated.
It is then straightforward to see that one new schematic

diagram vanishes if it contains any of the ½2; i > 0;

j > i > 0�, ½3; i1; i2; i3� with i1 þ i2 þ i3 > 0, and ½4; i1; i2;
i3; i4� with i1 þ i2 þ i3 þ i4 > 0 vertices. So the nonvanish-
ing new schematic diagrams can only be built up by ½2; 0; i�,
½3; 0; 0; 0�, and ½4; 0; 0; 0; 0� vertices and internal propagators
which are not the double solid line type. Now assume that
one schematic diagram is from the SW map. then it must
contain at least one ½2; 0; i� vertex. The leg of this ½2; 0; i�
vertex with a field equation attached must then not be
external, as otherwise that diagram vanishes on shell. This
leg can not connect to a ½3; 0; 0; 0� or ½4; 0; 0; 0; 0� vertex
either because of the modifield Feynman rule we just
imposed. Thus the only choice is to connect this leg with
one dashed line of another ½2; 0; j� vertex. Then the next
vertex’s zeroth leg must find one more dashed line of one
more vertex to connect. Now this chain of vertices must end
somewhere for any scattering amplitude with a finite number
of photons. Then the zeroth leg of the last vertex on this
chain has to stay external, which forces the whole diagram to
vanish on shell. Therefore all SWmap-induced contributions
must vanish on shell in the very end.
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C. Scattering amplitudes including fermions

To extend the above procedure to fermions it is necessary
to use a general result in QED, that is: “Eq. (2) type of off
shell contraction vanish for a general QED amplitude if and
only if all charged particles are on shell” (Weinberg, Vol. 1,
§ 10.5 [39]). SWmap-generated vertices can now come from
the quadratic Ψ̄Ψ and cubic Ψ̄=AΨ backbone terms. We can
introduce the notation ðΨ̄Ψ ; ī; iÞ and ðΨ̄=AΨ ; ī; j; iÞ to denote
the SW mapped terms. Here in the first term ī denotes the

order of SWmap for Ψ̄ and i for Ψ , while in the second ī for
Ψ̄ , j for Aμ and i for Ψ , respectively.
Vanishing effective vertices ½Ψ̄Ψ ; ī; i� and ½Ψ̄=AΨ ; ī; j; i�

can then be built using ðΨ̄Ψ ; 0̄; iÞ, ðΨ̄Ψ ; ī; 0Þ, and ð2; 0; iÞ
elements. We have

ð13Þ

and

ð14Þ

Remaining arguments then follow the photon only case,
except that we need all external fermions to be on shell.

IV. MOYAL DEFORMED QED BUILT
BY IRREVERSIBLE SW MAP: SECOND

NCQED MODEL

In previous sections we have proven that all tree-level
scattering amplitudes of the Moyal U(1) NCQED model (1)
satisfy the Seiberg-Witten map invariance, i.e., that all tree-
level scattering amplitudes are the same before and after
performing SW map. On the other hand, it is long known
that Moyal deformed NCQED can bear a more general
definition than minimal/first model (1), if irreversible SW
map is used. This more general definition allows commu-
tative matter fields with different charges to couple to the
same commutative U(1) gauge field by building multiple NC
gauge fields required from the same commutative gauge
field [12]. Such constructions were relevant for proper
NC deformations of commutative theories with comprhen-
stive U(1) charge assignments [8,9,11,12]. This procedure
yields a commutative U(1) gauge invariant classical theory,
yet breaks the formal equivalence relation between the
theories before and after SW map [34,35], as they have
different degrees of freedom now. In this section we discuss
how the tree-level scattering amplitudes in such theories can,
in turn, differ from the Moyal NCQED without SW map
and/or with reversible SW map.
We consider a second model, built by irreversible θ-

exact SW map, in order to compare with the minimal
model (1). This model has a fermion sector with two NC
fermion fields Ψ 1 and Ψ 2, with charges e and κe
respectively, for simplicity [12,14]. The gauge sector
contains, in turn, two terms generated by two different

NC gauge fields. The formal NC action of such a model
can be constructed as follows:

2S½Ψ 1ðψ1; eaμÞ;Ψ 2ðψ2; κeaμÞ; A1μðeaμÞ; A2μðκeaμÞ�

¼
X2
i¼1

Z
Ψ̄ i⋆ði=DðiÞ

−mÞΨ i

− 1

4G2

Z
ðFμν½A1μðeaμÞ�⋆Fμν½A1μðeaμÞ�

þ λFμν½A2μðκeaμÞ�⋆Fμν½A2μðκeaμÞ�Þ; ð15Þ

where

DðiÞ
μ Ψ i ¼ ∂μΨ i − iAiμ⋆Ψ i: ð16Þ

The normalization constant G2 is set to be

G2 ¼ e2ð1þ λκ2Þ; ð17Þ

which ensures that (15) has the regular commutative limit
when θ → 0. And the weight factor λ between two different
parts of the gauge sector is free. One can then notice that the
deviation from the minimal model (1) comes from the fact
that one can only build up vertices based purely on A1μ or
A2μ. On the other hand, diagrams can freely connect vertices
from both Aiμ parts, since in the end they are expressed in
terms of the same commutative gauge field aμ. We then
expect modification to the fermion-photon scattering and
photon-photon scattering amplitudes of the two-by-two
scattering processes.
Since the photon interaction vertices are now linear

combination of two separated parts, we can generalize the
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notation in previous sections by marking the origin of each
term. We can write the three- and four-field vertices from
the second model (15) as follows:

2Va3 ¼ ðA1j2; 0; 1Þ þ ðA1j3; 0; 0; 0Þ þ ðA2j2; 0; 1Þ
þ ðA2j3; 0; 0; 0Þ; ð18Þ

2Va4 ¼ ðA1j2; 0; 2Þ þ ðA1j2; 1; 1Þ þ ðA1j3; 0; 0; 1Þ
þ ðA1j4; 0; 0; 0; 0Þ þ ðA2j2; 0; 2Þ þ ðA2j2; 1; 1Þ
þ ðA2j3; 0; 0; 1Þ þ ðA2j4; 0; 0; 0; 0Þ; ð19Þ

and

2V ψ̄ iaψ i
¼ ðΨ̄ iΨ i; 0̄; 1Þ þ ðΨ̄ iΨ i; 1̄; 0Þ þ ðΨ̄ i=AiΨ i; 0̄; 0; 0Þ;

ð20Þ
2V ψ̄ ia2ψ i

¼ ðΨ̄ iΨ i; 0̄; 2Þ þ ðΨ̄ iΨ i; 2̄; 0Þ þ ðΨ̄ iΨ i; 1̄; 1Þ
þ ðΨ̄ i=AiΨ i; 1̄; 0; 0Þ þ ðΨ̄ i=AiΨ i; 0̄; 1; 0Þ
þ ðΨ̄ i=AiΨ i; 0̄; 0; 1Þ: ð21Þ

It is not difficult to notice that the SW map used for the
second model is the same as for the first model, except for
different charge prefactors in front of aμ when defining
A1μðeaμÞ and A2μðκeaμÞ. For this reason, each parenthesis
term in the vertices (18) to (22) of the second model is equal
to its counterpart in the first model up to a prefactor. These
relations can be expressed explicitly for the gauge sector as
follows:

ðA2j2; i; jÞ ¼ λκiþjðA1j2; i; jÞ

¼ λκiþj

1þ λκ2
ð2; i; jÞ; ð22Þ

ðA2j3; i; j; kÞ ¼ λκiþjþkðA1j3; i; j; kÞ

¼ λκiþjþk

1þ λκ2
ð3; i; j; kÞ; ð23Þ

ðA2j4; i; j; k; lÞ ¼ λκiþjþkþlðA1j4; i; j; k; lÞ

¼ λκiþjþkþl

1þ λκ2
ð4; i; j; k; lÞ; ð24Þ

where ð2; i; jÞ, ð3; i; j; kÞ, and ð4; i; j; k; lÞ are vertex terms
of the first model.
Similarly, the matter sector vertices of both models are

related as follows:

2V ψ̄2anψ2
¼ κn · 2V ψ̄1anψ1

¼ κn · 1V ψ̄anψ ; ð25Þ

where 1V ψ̄anψ denote the vertex terms with n photon field
legs and two fermions legs of the minimal/first model (1),

after the SW map was performed, (with the fermions
relabeled).
Since the coefficients are different between parentheses, it

is reasonable to expect the cancellation of SW map con-
tributions no longer holds in general in the second model.
Indeed, a detailed inspection of two-by-two scattering
amplitudes of the second model (IV) resulted in that the
ψ̄ iψ i → ψ̄ jψ j (and as well ψ iψ i → ψ jψ j) scattering ampli-
tude is, up to an overall factor, the same as ψ̄ψ → ψ̄ψ (and
ψψ → ψψ ) of the first model (1), while for Compton
(γψ i → γψ i) and light-by-light (γγ → γγ) scatterings we
have new terms because we linearly shifted the photon
self-interactions. With the help of relations (22) to (25), we
can express the γψ i → γψ i; i ¼ 1, 2 and γγ → γγ scattering
amplitudes (2Γ) of the second model (IV) as their counter-
parts (1Γ) in the first model (1), in which all SW map
contributions vanish, plus the irreversible θ-exact SW map
induced corrections Δ,

2Γðγψ1 → γψ1Þ ¼ 1Γðγψ → γψÞ þ Δðγψ1 → γψ1Þ; ð26Þ

2Γðγψ2→ γψ2Þ¼ κ2 · 1Γðγψ→ γψÞþΔðγψ2→ γψ2Þ; ð27Þ

2Γðγγ → γγÞ ¼ 1Γðγγ → γγÞ þ Δðγγ → γγÞ; ð28Þ

where

Δðγψ1 → γψ1Þ ¼ −λκΔðγψ2 → γψ2Þ

¼ λκ2ð1 − κÞ
1þ λκ2

ðΨ̄=AΨ ; 0̄; 1; 0Þjon-shell; ð29Þ

Δðγγ → γγÞ ¼ λ2κ2ð1 − κÞ2
ð1þ λκ2Þ2 ½ð2; 1; 1Þ þ ð3; 0; 0; 1Þ

þ ð3; 0; 1; 0Þ þ ð3; 1; 0; 0Þ�on-shell: ð30Þ

As expected, the above irreversible SW map induced
corrections vanish when κ equals to 1 and 0, since κ ¼ 1
makes A1μ equal A2μ and κ ¼ 0 forces ψ2 to decouple from
the gauge field. The fact that Δðγψ2 → γψ2Þ does not
depend linearly on λ implies that it is not possible to remove
the irreversible θ-exact SW map corrections by adjusting
the weight between two parts of the gauge sector.
The annihilation ψ iψ̄ i → γγ and pair production

γγ → ψ iψ̄ i amplitudes can be derived from the Compton
amplitude by crossing symmetry, so they carry the same κ
and λ dependences as the γψ i → γψ i does.
It is very important to note that Δðγψ i → γψ iÞ; i ¼ 1, 2

and Δðγγ → γγÞ do not contain infrared divergences since
they can be expressed as vertices only, i.e., there are no
Green functions generating additional singularities.
Therefore, the leading IR singularities of the differential
cross sections from the second model (15) remain the
same as that of the minimal/first model (1).
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V. DISCUSSION AND CONCLUSION

In this work we show in two parts the connection between
reversibility of Seiberg-Witten maps and an identical relation
between the tree-level scettering amplitudes of the Moyal
NCQEDwith and without a SWmap. The first andmain part
of the manuscript demonstrates that all tree-level scattering
amplitudes of a minimal/first NCQED U(1) model with
gauge boson and one left-charge fermion before and after a
reversible SW map are equal to each other. The second part
handles one of the opposite scenarios, in which an irrevers-
ible SW map is used to define the second NCQED model
with two, differently charged, fermions. We find that the
aforementioned identity breaks down for the two-by-two
photon-fermion and photon-photon scattering amplitude.
The difference between these amplitudes in the latter model
and the minimal model are expressed by terms from the
minimal model in a fairly compact fashion. The outcome
confirms that these extra terms can not be suppressed by
extra parameters in the second model except at the trivial
limits.
We consider the identity found for the minimal model

before and after reversible SW map as the manifestation of
the formal equivalence between on shell effective actions of
these two theories found in an earlier works [34,35]. While

we focus on left-charged fermions in this work, the method
could be generalized in a straightforward manner to right-
charged and adjoint fermions in principle. We are therefore
confident that the identity is a property of all NCQED
models based on reversible SW maps. Once the SW map
becomes irreversible the formal equivalence breaks down
consequently. And as we have seen in Sec. IV the scattering
amplitudes of the second model becomes different from the
first model exactly via the deviations of the cancellation of
the SW map contributions. One particular part of the two-
by-two scattering amplitudes in second model, namely the
collinear divergences, still follow those of the minimal
model. Taking into account the nontrivial nature of the
collinear divergences of the two-by-two scattering ampli-
tudes of the minimal model itself [36], it could be worthy to
study the IR behaviors of the scattering amplitudes of both
the first and the second models in the future.
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