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We discuss a model based on the dark sector described by a non-Abelian SUð2ÞD gauge symmetry where
we introduce SUð2ÞL × SUð2ÞD bidoublet vector-like leptons to generate active neutrino masses and
kinetic mixing between SUð2ÞD and Uð1ÞY gauge fields at the one-loop level. After spontaneous symmetry
breaking of SUð2ÞD, we have a remnant Z4 symmetry, guaranteeing the stability of dark matter candidates.
We formulate the neutrino mass matrix and related lepton-flavor-violating processes and discuss dark
matter physics where we estimate relic density of dark matter. We find that our model realizes a
multicomponent dark matter scenario due to the Z4 symmetry, and that the relic density can be explained by
gauge interactions with a kinetic mixing effect.
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I. INTRODUCTION

A mechanism for generating neutrino masses and the
existence of dark matter (DM) are key to understanding
physics beyond the standard model (SM). One attractive
scenario is that DM and neutrino-mass generation are
induced from a dark sector described by dark gauge
symmetry, under which the SM fields are singlets. Then,
we would expect that the nature of the neutrino-mass
generation mechanism and DM physics could be under-
stood using dark gauge symmetry. For example, the
stability of DM could be understood by using a remnant
of dark gauge symmetry [1,2], and neutrino masses at tree
level can be forbidden by such a symmetry.
One interesting scenario is a non-Abelian dark gauge

symmetry, such as SUð2Þ, which provides a dark sector with
a rich structure and the possibility of vector DM from the
dark gauge sector and Z0 as a mediator at the same time. In
fact, various approaches using a dark SUð2Þ gauge sym-
metry can be found in the literature, such as a remaining
Z2;3;4 symmetry with a quadruplet (quintet) [3–9], Z2 × Z0

2

symmetry [10], a custodial symmetry [11–13], an unbroken
Uð1Þ from SUð2Þ [14–16], a model adding a hidden Uð1Þh
[17], other DM scenarios [18–21], a model with classical
scale invariance [22], baryogenesis [23], and the electroweak

phase transition [24]. Here, one interesting question for the
non-Abelian dark-gauge-symmetric case is how we can
induce interactions among dark gauge bosons and the SM
particles, since kinetic mixing is not allowed at a renorma-
lizable level in contrast to the Abelian gauge-symmetric
case. In Ref. [25], we showed that such a term at the one-
loop level can generate kinetic mixing between dark SUð2Þ
and the SM Uð1ÞY , introducing fields that have both dark
SUð2Þ and Uð1ÞY charges. Interestingly, when we choose
such fields as vector-like leptons, they can also play a role in
generating active neutrino masses at the loop level [26–28]
by adding relevant dark SUð2Þ multiplet scalar fields.
In this work, we discuss a model with non-Abelian

SUð2ÞD gauge symmetry in which we introduce SUð2ÞL ×
SUð2ÞD bidoublet vector-like leptons. These bidoublet
leptons can induce mixing among SUð2ÞD andUð1ÞY gauge
fields and play a role in generating active neutrino masses
when we introduce relevant scalar SUð2ÞD multiplets. We
also find that there is a remnant Z4 symmetry after sponta-
neous symmetry breaking, and the stability of DM is
guaranteed by this symmetry. We then formulate active
neutrino masses and branching ratios (BRs) of the lepton-
flavor-violating (LFV) charged lepton decay li → ljγ in our
model. In addition, the relic density of our dark matter (DM)
candidate is estimated, where DM is more than one
component in our scenario.
This paper is organized as follows. In Sec. II we

introduce our model, and show its relevant Lagrangian
and particle content. In Sec. III we discuss the phenom-
enology of the model, such as the neutrino masses, LFVs
and DM physics. In Sec. IV we provide a summary and
discussion.
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II. A MODEL

We consider a model based on GSM × SUð2ÞD gauge
symmetry, whereGSM represents the SM gauge symmetries
and SUð2ÞD is the additional symmetry in our dark sector.
For the fermion sector, we introduce an SUð2ÞL × SUð2ÞD
bidoublet lepton L0 with Uð1ÞY charge −1=2, and an
SUð2ÞD doublet N which is a singlet under GSM. Here,
three generations of these fermions are considered in our
model. For the scalar sector, we introduce an SUð2ÞD
complex quintet Φ, a real triplet φ, and a complex doublet
χ; the SM Higgs doublet H is also included. The new field
content is summarized in Table I with their charge assign-
ments. We write L0 and N as

L0 ¼
�
n01 n02
e01 e02

�
; N ¼

�
n1
n2

�
; ð1Þ

where indices that distinguish generations are omitted. The
scalar multiplets are written as

χ ¼
�
χ1

χ2

�
; φ ¼

� φ0ffiffi
2

p φþ

φ− − φ0ffiffi
2

p

�
;

Φ ¼ ðΦþþ Φþ Φ0 Φ̃− Φ̃−− ÞT; ð2Þ

where φþ ¼ ðφ−Þ�. The triplet φ can be written as φασα=2
(α ¼ 1, 2, 3), with σα being the Pauli matrix acting on
SUð2ÞD representation space; thus, we redefine φ0 ¼ φ3 and
φ� ¼ ðφ1 ∓ iφ2Þ= ffiffiffi

2
p

. The SM Higgs field is written as

H ¼
� Gþ

1ffiffi
2

p ðvþ hþ iG0Þ
�
; ð3Þ

where v ≃ 246 GeV is the vacuum expectation value (VEV)
and Gþð0Þ is the Nambu-Goldstone boson absorbed by the
Wþ (Z) boson.
The Lagrangian of our model is written as

L ¼ LSM þ LNew þ V; ð4Þ

where LSM is the SM Lagrangian without the Higgs
potential, LNew includes new terms in our model, and V
is the scalar potential. The new terms and the potential are
given such that

LNew ¼ −
1

4
X̃αμνX̃α

μν þ Tr½L̄0ðDμγ
μ −ML0 ÞL0� þ N̄ð∂μγμ −MNÞN

þ ðDμχÞ†ðDμχÞ þ
1

2
Tr½ðDμφÞ†ðDμφÞ� þ

1

2
ðDμΦÞ†ðDμΦÞ

þ fiaL̄i
LL

0a
Rðiσ2Þχ þ f0iaL̄

i
LL

0a
Rχ

� þ gabR L̄0a
RN

b
LH̃ þ gabL L̄0a

LN
b
RH̃

þ yabNL
Nac

L ðiσ2ÞφNb
L þ yabNR

Nac
R ðiσ2ÞφNb

L þ yabD N̄a
LφN

b
R þ yabL̄0aφL0b; ð5Þ

V ¼ −M2
HH

†H þM2
χχ

†χ þ 1

2
M2

φTr½φφ� −M2
ΦΦ†Φþ λχðχ†χÞ2 þ λφTr½φφ�2 þ λΦðΦ†ΦÞ2

þ λHðH†HÞ2 þ μ1ðΦ†φ̂ΦÞ þ μ2ðχðiσ2Þφχ þ H:c:Þ þ λφΦTr½φφ�ðΦ†ΦÞ
þ λφHTr½φφ�ðH†HÞ þ λΦHðΦ†ΦÞðH†HÞ þ λχHðχ†χÞðH†HÞ þ λχφðχ†χÞTr½φφ�
þ λχΦðχ†χÞðΦ†ΦÞ þ λ̃φΦΦ†φ̂ φ̂Φ; ð6Þ

where X̃αμν is the gauge field strength for SUð2ÞD, with
α ¼ 1, 2, 3 being the index of the SUð2ÞD adjoint repre-

sentation, and φ̂≡ φαT ð5Þ
α is the 5 × 5 notation for the scalar

triplet [T ð5Þ
α is the 5 × 5 notation of SUð2ÞD generation given

in the Appendix]. We assume that the Lagrangian is invariant
under Φ → −Φ to simplify scalar potential forbidding non-
trivial cubic terms such as Φ3 and Φφφ.

A. Scalar sector and symmetry breaking

First, we consider gauge-invariant operators in the scalar
potential in terms of the components of the scalar multip-
lets. Quadratic terms are given by

χ†χ ¼ χ�1χ1 þ χ�2χ2; ð7Þ

TABLE I. Charge assignment for the fields in the SUð2ÞD dark
sector, where fχ;φ;Φg are scalars and fL0; Ng are Dirac
fermions. We introduce three generations of new fermions; we
choose the number of generations to match that of the SM
fermions, but we can also choose small number of generations.

Fields L0 N χ φ Φ

SUð2ÞD 2 2 2 3 5
SUð2ÞL 2 1 1 1 1
Uð1ÞY − 1

2
0 0 0 0
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1

2
Tr½φφ� ¼ 1

2
φ2
0 þ φþφ−; ð8Þ

Φ†Φ ¼ Φ2
0 þΦþþΦ−− þΦþΦ− þ Φ̃þþΦ̃−− þ Φ̃þΦ̃−: ð9Þ

Nontrivial terms in the potential are written as

Φ†φ̂Φ ¼
ffiffiffi
3

p
Φ0Φ̃þφ− þ

ffiffiffi
3

p
Φ0Φ−φþ þ

ffiffiffi
3

p
Φ�

0Φþφ− þ
ffiffiffi
3

p
Φ�

0Φ̃−φþ
þ ð2ΦþþΦ−− þΦþΦ− − Φ̃þΦ̃− − 2Φ̃þþΦ̃−−Þφ0

þ
ffiffiffi
2

p
Φ−−Φþφþ þ

ffiffiffi
2

p
Φ̃−−Φ̃þφþ þ

ffiffiffi
2

p
ΦþþΦ−φ− þ

ffiffiffi
2

p
Φ̃þþΦ̃−φ−; ð10Þ

Φ†φ̂ φ̂Φ ¼ φ2
0ð4ΦþþΦ−− þ 4Φ̃þþΦ̃−− þΦþΦ− þ Φ̃þΦ̃−Þ

þ φþφ−ð2ΦþþΦ−− þ 2Φ̃þþΦ̃−− þ 5ΦþΦ− þ 5Φ̃þΦ̃−Þ
þ φ2

−ð3ΦþΦ̃þ þ
ffiffiffi
6

p
Φ0Φ̃þþ þ

ffiffiffi
6

p
Φ�

0ΦþþÞ þ φ2þð3Φ−Φ̃− þ
ffiffiffi
6

p
Φ�

0Φ̃−− þ
ffiffiffi
6

p
Φ0Φ−−Þ

þ
ffiffiffi
3

p
φ0Φ0ðΦ−φþ − Φ̃þφ−Þ þ

ffiffiffi
3

p
φ0Φ�

0ðΦþφ− − Φ̃−φþÞ
þ 3

ffiffiffi
2

p
φ0ðΦþþΦ−φ− þΦ−−Φþφþ − Φ̃þþΦ̃−φ− − Φ̃−−Φ̃þφþÞ; ð11Þ

χðiσ2Þφχ þ H:c: ¼ −
ffiffiffi
2

p
φ0χ1χ2 þ φ−χ1χ1 − φþχ2χ2 þ H:c: ð12Þ

Note that the other quartet terms are trivially given by
applying quadratic terms and we do not write them
explicitly. We then consider VEVs of the scalar fields by
the condition ∂V=∂ϕ ¼ 0, where ϕ represents any scalar
field in the model. We find that we can take VEVs of Φ̃��
and φ0 to be nonzero, and we write them as hΦ̃��i≡
vΦ=

ffiffiffi
2

p
and hφ0i≡ vφ=

ffiffiffi
2

p
. These VEVs are derived from

the following conditions:

vΦ

�
−M2

Φ −
ffiffiffi
2

p
μ1vφ þ 2λ̃φΦv2φ þ

1

2
λΦHv2

þ 1

2
λφΦv2φ þ λΦv2Φ

�
¼ 0; ð13Þ

−
μ1ffiffiffi
2

p v2Φ þ 2λ̃φΦvφv2Φ þM2
φvφ þ

1

2
λφHvφv2

þ 1

2
λφΦvφv2Φ þ λφv3φ ¼ 0; ð14Þ

v

�
−M2

H þ 1

2
λφHv2φ þ

1

2
λΦHv2Φ þ λHv2

�
¼ 0; ð15Þ

where the first, second, and third equations are obtained from
∂V=∂vΦ ¼ 0, ∂V=∂vφ ¼ 0, and ∂V=∂v ¼ 0, respectively.
In our analysis, we consider that the mixing among the SM
Higgs and other scalar bosons are suppressed by assuming
tiny values for λφH and λΦH, and the SM Higgs VEV is

approximately given by v ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H=λH
p

as in the SM; thus,
h is the SM-like Higgs boson. On the other hand, the VEVs

vφ and vΦ are determined by Eqs. (13) and (14) The VEVs
obtained from these equations can be minimum of the
potential. Here, we briefly discuss how we can realize the
minimum of the potential when we take M2

fH;χ;φ;Φg > 0,

λfH;φ;Φ;χg > 0, λfφH;ΦH;φΦ;χH;χφ;χΦg > 0, and μ1 > 0. For

μ1 > 0 case, nonzero values of hΦ̃��i and hφ0i provide
negative contribution to the potential as we see from Eq. (10)
and our vacuum configuration is preferred to obtain the
minimum of the potential. We also assume small values for
λ̃φΦ and μ2 so that the negative contributions to the potential
from the corresponding terms do not affect the minimum of
the potential. Note that a detailed analysis of the potential is
difficult since we have many free parameters, and as such is
beyond the scope of this paper. After spontaneous symmetry
breaking, three degrees of freedom from Φ and φ are
absorbed by SUð2ÞD gauge bosons X̃1;2;3

μ , and the remaining
scalar degrees of freedom from φ and Φ become massive
physical scalar bosons. Here, we do not discuss the details of
these physical scalar bosons since they are irrelevant in our
phenomenological analysis below.
Note that there is a remaining Z4 symmetry in our

scenario, where each SUð2ÞD multiplet ξ transforms as
ξ → eiT3πξ, with T3 being the diagonal SUð2ÞD generator.
We can understand the remnant Z4 symmetry as follows. The
quintet VEV hΦi is invariant under the unitary transformation
of UT3

¼ eiπT3 , which is a part of SUð2ÞD: UT3
hΦi ¼ hΦi,

where T3 ≡ diagð2; 1; 0;−1;−2Þ for the quintet (the triplet
VEV hφi has no effect since its T3 value is 0). Then, a
component ξm in a multiplet ξ transforms as ξm → eimπξm,
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where m is the eigenvalue of T3 for the component. Thus,
a component with half-integer m transforms as ξm → �iξ,
while one with integer m transforms as ξm → �ξm.
Therefore, we have the remaining Z4 symmetry after
spontaneous breaking of SUð2ÞD. In our case, the compo-
nents in the SUð2ÞD doublet have Z4 charge �i, while the
components of the triplet and quintet have charge �1 or 0.
As a result, Z4 charged particles can be stable and become
our DM candidates.
The scalar bosons from χ will be one of our DM

candidates since they transform as χ1ðχ2Þ → iχ1ð−iχ2Þ
under this remnant Z4 symmetry. The mass matrix for χ
is obtained as

�
χ�1
χ̃�2

�T� M̃2
χ −

ffiffiffi
2

p
μ2vφ

−
ffiffiffi
2

p
μ2vφ M̃2

χ

��
χ1

χ̃2

�
; ð16Þ

where χ̃2 ≡ χ�2 and M̃2
χ ¼ M2

χ þ 1
2
λχHv2 þ 1

2
λχφv2φ þ 1

2
λχΦ

v2Φ. We then obtain the mass eigenstates and eigenvalues
such that

�
χ1

χ̃2

�T

¼
� 1ffiffi

2
p − 1ffiffi

2
p

1ffiffi
2

p 1ffiffi
2

p

��
ρ1

ρ2

�
; ð17Þ

m2
1;2 ¼ M̃2

χ �
ffiffiffi
2

p
μ2vφ; ð18Þ

where we denote m1;2 as the masses of ρ1;2, choosing
m1 < m2, and assume M̃2

χ >
ffiffiffi
2

p
μ2vφ to make the eigen-

values positive.

B. Gauge sector

Here we focus on the gauge sector of SUð2ÞL×
SUð2ÞD ×Uð1ÞY , where the Lagrangian is

LG ¼ −
1

4
WaμνWa

μν −
1

4
X̃αμνX̃α

μν −
1

4
B̃μνB̃μν; ð19Þ

and Waμν and B̃μν are the gauge field strengths of SUð2ÞL
and Uð1ÞY , respectively. In addition the terms in Eq. (19), a
term connecting SUð2ÞD and Uð1ÞB is generated by one-
loop diagrams in which L0 propagates [25], as shown in
Fig. 1. We obtain such a term as

LXB ¼
X
a

gXgByaa
12π2ML0

B̃μνX̃αμνφα: ð20Þ

Then. after φ develops its VEV, we obtain the kinetic
mixing term

LKM ¼
X
a

gXgByaavφ
12

ffiffiffi
2

p
π2ML0

B̃μνX̃3μν≡−
1

2
sinζB̃μνX̃3μν; ð21Þ

where X̃3
μν ≡ ∂μX̃3

ν − ∂νX̃3
μ. We thus find the magnitude of

the kinetic mixing parameter sin ζ as

sin ζ ≃ 1.8 × 10−3
gX
0.5

vφ
ML0

X
a

yaa: ð22Þ

In our analysis, we consider sin ζ < 10−3. We can diago-
nalize the kinetic terms for X̃3

μ and B̃μ by using the
following transformations:

B̃μ ¼ Bμ − tan ζX3
μ; ð23Þ

X̃3
μ ¼

1

cos ζ
X3
μ: ð24Þ

Since the kinetic mixing term is generated at the one-loop
level, ζ is typically very small. Thus, we can take tan ζ ≃ ζ
and cos ζ ≃ 1, writing the gauge field approximately as

B̃μ ≃ Bμ − ζX3
μ; X̃3

μ ≃ X3
μ: ð25Þ

After the quintet and triplet scalar fields develop nonzero
VEVs, the mass terms for SUð2ÞD gauge fields and the SM
Z boson field are

LM ¼ 1

2
m2

ZSM
Z̃μZ̃ þm2

ZSM
ζ sin θWZ̃μX3μ

þ 1

2
m2

X3X3
μX3μ þm2

X�Xþ
μ X−μ; ð26Þ

m2
ZSM

¼ v2

4
ðg2 þ g2BÞ; m2

X3 ¼ 4g2Xv
2
Φ;

m2
X� ¼ g2Xv

2
Φ

�
1þ v2φ

v2Φ

�
; ð27Þ

where g and gB are the gauge couplings of SUð2Þ and
Uð1ÞY , Z̃ is the Z boson field in the SM, and
X�
μ ¼ ðX̃1

μ ∓ iX2
μÞ=

ffiffiffi
2

p
. Diagonalizing the Z̃ and X3 mass

terms, we obtain the mass eigenstates and mixing angles as

Bµ
X B X

Xµ

L '
L '

FIG. 1. One-loop diagrams generating kinetic mixing between
SUð2ÞD and Uð1ÞY .
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m2
Z;Z0 ¼ 1

2
ðm2

X3 þm2
ZSM

Þ

∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

X3 −m2
ZSM

Þ2 þ 4ζ2sin2θWm4
ZSM

q
; ð28Þ

tan 2θZZ0 ¼ 2 sin θWζm2
ZSM

m2
ZSM

−m2
X3

; ð29Þ

where we approximate mZ ≃mZSM
and mZ0 ≃mX3 for tiny

ζ, and we take 0 ≤ θZZ0 ≤ π
2
as our convention. Here, we

emphasize that the mass relation mZ0 ∼ 2mX� is obtained
when dark gauge boson masses are dominantly induced by
the quintet VEV, and the X� annihilation cross section via
Z0 is enhanced by resonant effect.
Thus, the mass eigenstates Z and Z0 are written as

�
Z

Z0

�
¼

�
cos θZZ0 − sin θZZ0

sin θZZ0 cos θZZ0

��
Z̃

X3

�
: ð30Þ

We find that sin θZZ0 ≲ 10−4 for ζ ≤ 10−3 and mX� ≥
100 GeV. The Z-Z0 mixing modifies Z interactions with
the SM fermions, and electroweak precision tests should be
considered. In fact, we can easily avoid current constraints
from electroweak precision tests since θZZ0 is sufficiently
small [29–31]. In addition, we can also avoid constraints
from direct searches of Z0 boson at collider experiments
since Z0 production cross section is small enough.

C. Mass terms of hidden fermions

In this subsection we discuss mass terms for hidden
fermions. Neutral fermion masses: After spontaneous
symmetry breaking, we obtain mass terms of dark neutral
fermions such that

LMN
¼Mab

N ðna1nb1 þ na2n
b
2Þ þMab

nnðnca2Lnb1L þ nca1Ln
b
2LÞ

þ M̃ab
nnðnca2Rnb1R þ nca1Rn

b
2RÞ þMab

Dn
ðna1Lnb1R − na2Ln

b
2RÞ

þMab
nn0 ð ¯n0a1Rn

b
1L þ ¯n0a2Rn

b
2LÞ

þ M̃ab
nn0 ð ¯n0a1Ln

b
1R þ ¯n0a2Ln

b
2RÞ

þMab
L0 ðn̄0a1n0b1 þ n̄0a2n

0b
2Þ; ð31Þ

where the mass matrices appearing in these terms are
given by

Mab
nn0 ¼

gabRffiffiffi
2

p vH; M̃ab
nn0 ¼

gabLffiffiffi
2

p vH; Mab
nn ¼

yabNL

2
vφ;

M̃ab
nn ¼

yabNR

2
vφ; MDn

¼ yabD
2

vφ: ð32Þ

We thus obtain the Majorana mass matrix for dark neutral
fermions under the basis ΨR ¼ ðn01R; n02R; n0c1L; n0c2L; n1R;
n2R; nc1L; n

c
2LÞT :

MR¼

0
BBBBBBBBBBBBBBBBBB@

0 0 MT
L0 0 0 0 M�

nn0 0

0 0 0 MT
L0 0 0 0 M�

nn0

ML0 0 0 0 M̃nn0 0 0 0

0 ML0 0 0 0 M̃nn0 0 0

0 0 M̃T
nn0 0 0 M̃†

nn M̃T
NþMT

Dn
0

0 0 0 M̃T
nn0 M̃†

nn 0 0 M̃T
N−MT

Dn

M†
nn0 0 0 0 M̃NþMDn

0 0 M†
nn

0 M†
nn0 0 0 0 M̃N−MDn

M†
nn 0

1
CCCCCCCCCCCCCCCCCCA

; ð33Þ

where indices that distinguish generations are omitted and
it is 24 × 24 since each element is 3 × 3 matrix. This mass
matrix can be diagonalized by the 24 × 24 orthogonal
matrix VN , assuming all matrix elements are real, and the
mass eigenstates are given by

ψR ¼ VT
NΨR: ð34Þ

We write the mass eigenvalues as Mxðx ¼ 1;…; 24Þ. The
orthogonal matrix VN and mass Mx can be obtained
numerically.

Charged fermion masses: We obtain Dirac mass terms of
e01;2 from the ML0Tr½L̄0L0� term such that

ML0Tr½L̄0L0� ⊃ ML0 ðe01e01 þ e02e
0
2Þ; ð35Þ

where index that distinguishes generation is omitted. We
choose the basis in which ML0 is diagonal without loss of
generality.
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III. PHENOMENOLOGY

In this section we discuss the phenomenology of our
model, such as active neutrino masses, LFVs, and DM
physics.

A. Neutrino mass generation and LFV

In this subsection we discuss the neutrino mass gen-
eration mechanism and related LFV processes. The relevant
interactions are obtained from the first two terms of the
third line on the rhs of Eq. (5). Writing the terms in terms of
the mass eigenstates, we obtain

L ⊃
1ffiffiffi
2

p fþiaðVNÞaxνiLψx
Rρ

�
1 þ

1ffiffiffi
2

p f−iaðVNÞaxνiLψx
Rρ

�
2

−
1ffiffiffi
2

p f−iaðVNÞ3þa;xν
i
Lψ

x
Rρ1 þ

1ffiffiffi
2

p fþiaðVNÞ3þa;xν
i
Lψ

x
Rρ2

þ 1ffiffiffi
2

p fþiae
i
Le

0a
1Rρ

�
1 þ

1ffiffiffi
2

p f−iae
i
Le

0a
1Rρ

�
2 −

1ffiffiffi
2

p f−iae
i
Le

0a
2Rρ1 þ

1ffiffiffi
2

p fþiae
i
Le

0a
2Rρ2 þ H:c:; ð36Þ

where fþia ¼ ðf þ f0Þia and f−ia ¼ ðf − f0Þia.
Neutrino mass generation: In our model, active neutrino masses are generated through the one-loop diagrams shown in

Fig. 2, which are given by the original flavor eigenstates in the Lagrangian. The neutrino mass matrix is then calculated as

ðMνÞij ¼
Mx

ð4πÞ2 ðf
þ
iaf

−
jbm

2
1 − f−iaf

þ
jbm

2
2ÞðVNÞaxðVNÞ3þb;x

Z
1

0

½dX�3
1

xM2
x þ ym2

1 þ zm2
2

þ ði ↔ jÞ

≃ 10−10 GeV
Mx

TeV

ðfþiaf−jb m2
1

m2
2

− f−iaf
þ
jbÞðVNÞaxðVNÞ3þb;x

10−11

Z
1

0

½dX�3
m2

ρ2

xM2
x þ ym2

1 þ zm2
2

þ ði ↔ jÞ; ð37Þ

where
R
1
0 ½dX�3 ¼

R
1
0 dxdydzδð1 − x − y − zÞ and summations over indices fa; bgð¼ 1–3Þ and xð¼ 1–24Þ are taken. It is

possible to accommodate experimental data for the neutrino sector by tuning the Yukawa couplings f�ia, as we have
18 degrees of freedom (when Yukawa couplings are real). For illustration, we consider the current observed values of
mixing angles and mass-squared differences in the normal-ordering case [32] (NuFit 5.0):

sin2θ12 ¼ 0.304þ0.013
−0.012 ; sin2θ23 ¼ 0.570þ0.018

−0.024 ; sin2θ13 ¼ 0.02221þ0.00068
−0.00062 ;

Δm2
sol ¼ 7.42þ0.21

−0.20 × 10−5 ½eV2�; Δm2
atm ¼ 2.515þ0.028

−0.027 × 10−3 ½eV2�; ð38Þ

whereΔm2
solðatmÞ corresponds to the solar (atmospheric) mass-

squared difference. In Table II we show a benchmark point
that gives the observed mixing and mass-squared differences.
For our benchmark point, we assume mass matrix ML0 , MN ,
Mnn0 , M̃nn0 ,Mnn, M̃nn andMDn

to be diagonal for simplicity;

nonzero elements of VN is found to be Oð0.1Þ to Oð1Þ and
Mx ¼ fM1;…;M24g ≃ f80;…; 1000g GeV. We then ob-
tain the mixing angles and mass-squared differences as
outputs. The goodness of fit is evaluated by calculating the
χ2 value,

L L

L ' L 'N N

H H

L L

L ' L 'N N

H H

FIG. 2. One-loop diagrams generating neutrino masses.
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χ2 ¼
X
i

�
Oth

i −Oexp
i

σi

�
2

; ð39Þ

where Oth, Oexp, and σ are the theoretically obtained value,
experimentally observed value, and experimental error for the
observables in Eq. (38). Note that we did not consider CP
phase choosing real Yukawa couplings for simplicity; but it is
easy to add complex phases in coupling and obtain CP phase
in the neutrino mass matrix.
LFV decays of charged leptons: Yukawa interactions

associated with charged dark fermions induce LFV decay

of l → l0γ at the one-loop level. We then estimate the BRs
by calculating relevant one-loop diagrams, and the branch-
ing ratio of li → ljγ is given by

Bðli → ljγÞ ¼
48π3Cijαem

G2
Fm

2
i

ðjðaRÞijj2 þ jðaLÞijj2Þ; ð40Þ

wheremiðjÞ, ðiðjÞ ¼ 1; 2; 3Þ is the mass for the initial (final)
state of the charged lepton identified as 1≡ e, 2≡ μ, 3≡ τ,
and ðC21; C31; C32Þ ¼ ð1; 0.1784; 0.1736Þ. Relevant ampli-
tudes are estimated as

ðaRÞij ¼ −
X
K¼1;2

fþjaf
þ†
ai

2ð4πÞ2 mlj

Z
a

0

½dX�3
xz

xðx − 1Þm2
li
þ xm2

K þ ðyþ zÞm2
e0aK

−
f−jaf

−†
ai

2ð4πÞ2mlj

Z
a

0

½dX�3
xz

xðx − 1Þm2
li
þ xm2

2 þ ðyþ zÞm2
e0a
1

−
f−jaf

−†
ai

2ð4πÞ2mlj

Z
a

0

½dX�3
xz

xðx − 1Þm2
li
þ xm2

1 þ ðyþ zÞm2
e0a
2

; ð41Þ

ðaLÞij ¼ −
X
K¼1;2

fþjaf
þ†
ai

2ð4πÞ2 mli

Z
a

0

½dX�3
xy

xðx − 1Þm2
li
þ xm2

K þ ðyþ zÞm2
e0aK

−
f−jaf

−†
ai

2ð4πÞ2 mli

Z
a

0

½dX�3
xy

xðx − 1Þm2
li
þ xm2

2 þ ðyþ zÞm2
e0a
1

−
f−jaf

−†
ai

2ð4πÞ2 mli

Z
a

0

½dX�3
xy

xðx − 1Þm2
li
þ xm2

1 þ ðyþ zÞm2
e0a
2

: ð42Þ

TABLE II. Numerical benchmark point of our parameter sets and corresponding outputs.

Input

MN [GeV] Diagonal [40, 50, 60]
ML0 [GeV] Diagonal [500, 700, 1000]
Mnn0 [GeV] Diagonal [50, 70, 90]
M̃nn0 [GeV] Diagonal [60, 80, 100]
Mnn [GeV] Diagonal [100, 150, 180]
M̃nn [GeV] Diagonal [110, 120, 130]
M̃Dn

[GeV] Diagonal [50, 70, 90]
fm1; m2g [GeV] f500; 800g
ffþ11; fþ12; fþ13; fþ21; fþ22; fþ23; fþ31; fþ32; fþ33g f1.82; 3.89; 3.16;−1.22; 4.45; 40.3; 4.81; 4.26;−10.7g × 10−7

ff−11; f−12; f−13; f−21; f−22; f−23; f−31; f−32; f−33g f3.94; 7.73;−4.61;−4.71; 9.71; 21.5;−2.17; 85.3;−27.5g × 10−7

Output

sin2 θ12 0.300
sin2 θ23 0.557
sin2 θ13 0.0214
Δm2

sol 7.56 × 105 eV2

Δm2
atm 2.53 × 103 eV2

χ2 2.66
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The current experimental upper bounds for the BRs are
given by [33–35]

Bðμ → eγÞ ≤ 4.2 × 10−13; Bðτ → μγÞ ≤ 4.4 × 10−8;

Bðτ → eγÞ ≤ 3.3 × 10−8: ð43Þ

We can easily avoid these constraints at our benchmark
point since the Yukawa coupling f�ia tends to be smaller
than Oð10−5Þ and the LFV decay ratios are much smaller
than current constraints.

B. Dark matter

In our model DM candidates are Z4 charged particles in
the dark sector, which are X�, ρ1;2, φ�, and ψx

R. Here, we
consider a scenario in which ρ1;2 and/or X� are DM
candidates choosing the other particles to be heavier than
them. Under Z4 symmetry, ρ1;2 and X� transform as ρ1;2 →
iρ1;2 and X� → −X�, respectively. In our analysis we focus
on gauge interactions to calculate relic density of DM
candidates since scalar portal interaction is preferred to be
small to avoid constraints from direct-detection experi-
ments of DM, and Yukawa couplings fia should be very
small to realize neutrino mass as we discussed above.
First, interactions among dark gauge bosons are written

as

L⊃−gXϵαβγ∂μX̃α
ν X̃βμX̃γν−

1

4
g2Xϵ

αβγϵαρσX̃β
μX̃

γ
νX̃σμX̃ρν; ð44Þ

where ϵαβγ are the structure constants of SUð2ÞD. We note
that the four-point gauge interaction in Eq. (44) does not
provide the dominant contribution to the DM annihilation
process since mZ0 ≃mX3 ≳mX� in our scenario. Thus, we
focus on the three-point interactions which are written in
terms of mass eigenstates X� and Z0 as

L⊃ igXCZZ0 ½ð∂μXþ
ν −∂νXþ

μ ÞX−μZ0ν−ð∂μX−
ν −∂νX−

μ ÞXþμZ0ν

þ1

2
ð∂μZ0

ν−∂νZ0
μÞðXþμX−ν−X−μXþνÞ�; ð45Þ

where CZZ0 ≡ cos θZZ0 . Through the Z-Z0 mixing, Z0
interactions with SM fermions f are obtained as

LZ0ff ¼
X
X¼L;R

g
cos θW

Z0
μf̄Xγμ½SZZ0 ðT3 −Qfsin2θWÞ

þ CZZ0ζY sin θW �fX; ð46Þ

where T3 is the diagonal generator of SUð2ÞL, Qf is the
electric charge of an SM fermion, and SZZ0 ≡ sin θZZ0 .
Gauge interactions associated with scalar DM candidates
ρ1;2 are also obtained as

L ⊃ i
gXCZZ0

2
Z0
μðρ�1∂μρ1 − ρ1∂μρ�1 þ ρ�2∂μρ2 − ρ2∂μρ�2Þ

þ i
gXffiffiffi
2

p Xþ
μ ðρ�1∂μρ�2 − ρ�2∂μρ�1Þ

− i
gXffiffiffi
2

p X−
μ ðρ1∂μρ2 − ρ2∂μρ1Þ

þ g2X
4
C2
ZZ0Z0

μZ0μðρ�1ρ1 þ ρ�2ρ2Þ

−
g2X
2
ðXþ

μ Z0μρ�1ρ
�
2 þ X−

μZ0μρ1ρ2Þ: ð47Þ

Note that our DM candidates can also interact with the SM
Z boson through the mixing effect. These are obtained by
substituting fCZZ0 ; Z0

μg for fSZZ0 ; Zμg. Such interactions
are thus suppressed by the tiny SZZ0 in our scenario.
In our scenario we have more than one DM component,

depending on the mass relations among X�, ρ1, and ρ2:
(1) mX� þm1 < m2 → X� and ρ1 are DM.
(2) m1 þm2 < mX� → ρ1 and ρ2 are DM.
(3) m2 −m1 < mX� < m1 þm2 → ρ1, ρ2 and X�

are DM.
Here ρ2 decays into ρ�1Xþ in case 1, while X� decays into

ρð�Þ1 ρð�Þ2 in case 2. In the following, we consider case 1; in
case 2, the scalar portal interaction tends to be required as
dark gauge bosons are heavier, and case 3 is more
complicated as we have three DM components. The
relevant DM annihilation processes in case 1 are given
by the diagrams in Fig. 3: pair annihilation of ρ1;2, pair
annihilation of X�, the semiannihilation ρ1ð2Þρ1ð2Þ → XþZ0,
and the semi-coannihilation ρ1ρ2 → XþZ0 (Z0 decays into
SM particles). Then, we scan the relevant parameters
fmX� ; m1; gXg within the following regions:

FIG. 3. Feynman diagrams for DM annihilation processes.
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mX� ∈ ½100; 1000� GeV; m1 ∈ ½100; 1000� GeV;
gX ∈ ½0.01; 1.0�; ð48Þ

where we fix the other parameters as m2 ¼ mX�þ
m1 þ 100 GeV, v2φ=v2Φ ¼ 0.1, and ζ ¼ 5 × 10−4. We then
estimate the relic density of ρ1 and X�, where we use
micrOMEGAs 5 [36] to implement relevant interactions. In
the left and right panels of Fig. 4, we show parameter points
in the fmX� ; gxg and fm1; gxg planes satisfying the
observed relic density in the approximated region 0.11 <
Ωh2 ¼ ðΩX� þ Ωρ1Þh2 < 0.13 around Ωh2 ≃ 0.12 [37],
where the color gradient indicates the ratio of the relic
density for two DM components: RΩ ≡ΩX�=Ωρ1 . In
addition, we show the parameter points realizing the
observed relic density in the fmX� ; m1g plane in Fig. 5.
We find that the relic density of X� tends to be smaller than
that of ρ1 since the cross section of the X�X� → Z0 →
fSMfSM process is enhanced by the resonant condition
mZ0 ∼ 2mX� . The relic density of the two components can
be of similar order whenmX� ∼m1 ∼mZ0=2. Note also that
the relic density can be explained in the region where ρ1 is
much heavier than X�. In this region, ρ1ð2Þ can annihilate
into dark gauge bosons, including semiannihilation and
semi-coannihilation processes, and the relic density of ρ1
can be reduced to satisfy Ωh2 ∼ 0.12. Note that we can also
choose a larger ratio v2φ=v2Φ by modifying parameters in the
scalar potential. In that case, the mass relation between X�
and Z0 does not satisfy resonant condition mZ0 ∼ 2mX� and
the relic density of X� will be larger for fixed gX; RΩ in
Figs. 4 and 5 becomes larger for larger vφ=vΦ.
Here we comment on constraints from the direct detec-

tion of our DM candidates. Our DM can interact with
nucleons via Z0 and Z boson exchange processes associated
with Z-Z0 mixing. In our model, the mixing is small since it

is induced at the loop level and the DM-nucleon scattering
cross section will be sufficiently small to avoid current
constraints. For example, we can estimate the cross section
for ρ1-nucleon scattering1 as

σp½n�−ρ1 ≃
g2Xe

2ζ2

2πcos2θW

�
19

36

�
1

4

��m2
p½n�
m4

Z0

∼ g2X

�
ζ

10−4

�
2
�
200 GeV

mZ0

�
4

10−46 cm2; ð49Þ

FIG. 4. Parameter points satisfying the observed relic density, where the color gradient indicates the ratio of the relic density
RΩ ≡ ΩX�=Ωρ1 . For the left and right panels, the horizontal axis corresponds to the mass of X� and ρ1, respectively.

FIG. 5. Parameter points satisfying the observed relic density in
the two-DM mass plane, where the color gradient is the same as
in Fig. 4.

1The X�-DM scattering cross section tends to be smaller than
that of ρ1.
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where p½n� stands for proton[neutron]. Thus, our parameter
region is safe from constraints of DM direct detections
[37,38] when the kinetic mixing is sufficiently small.

IV. SUMMARY AND DISCUSSION

We have discussed a model based on dark SUð2ÞD gauge
symmetry in which we introduced SUð2ÞL × SUð2ÞD
bidoublet vector-like leptons. The bidoublets connect the
dark sector and SM sector through the interaction asso-
ciated with the SM lepton doublets and SUð2ÞD scalar
doublet. Then, we obtained active neutrino masses and
interactions realizing kinetic mixing between SUð2ÞD and
Uð1ÞY gauge fields at the loop level. Moreover, there is a
remnant Z4 symmetry after the spontaneous breaking of
SUð2ÞD in our scenario, and this symmetry guarantees the
stability of our DM candidates.
We have formulated the active neutrino mass matrix and

related LFV processes in our model. Also, the relic
density of our DM candidates was estimated by scanning
some relevant parameters. Remarkably, we found a
multicomponent scenario in some parameter space where
we have vector and scalar DM components. We have
shown the parameter points realizing the observed relic
density, where vector DM tends to provide a smaller relic
density due to the resonant enhancement of the corre-
sponding annihilation cross section.
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APPENDIX: SOME FORMULAS FOR THE SUð2ÞD
QUINTET

Here we summarize some formulas to write interactions
for the SUð2ÞD quintet. We write SUð2ÞD generators in

5 × 5 form (denoted by T ð5Þ
a ) such that

T ð5Þ
1 ¼ 1

2

0
BBBBBBB@

0 2 0 0 0

2 0
ffiffiffi
6

p
0 0

0
ffiffiffi
6

p
0

ffiffiffi
6

p
0

0 0
ffiffiffi
6

p
0 2

0 0 0 2 0

1
CCCCCCCA
;

T ð5Þ
2 ¼ i

2

0
BBBBBBB@

0 −2 0 0 0

2 0 −
ffiffiffi
6

p
0 0

0
ffiffiffi
6

p
0 −

ffiffiffi
6

p
0

0 0
ffiffiffi
6

p
0 −2

0 0 0 2 0

1
CCCCCCCA
;

T ð5Þ
3 ¼ diagð2; 1; 0;−1;−2Þ: ðA1Þ

We can then write SUð2ÞD gauge interactions for the
quintet Φ using the kinetic term ðDμΦÞ†ðDμΦÞ, where
the covariant derivative is

DμΦ ¼ ð∂μ þ igXT
ð5Þ
α Xα

μÞΦ5: ðA2Þ
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