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Radiative neutrino mass model in dark non-Abelian gauge symmetry
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We discuss a model based on the dark sector described by a non-Abelian SU(2), gauge symmetry where
we introduce SU(2), x SU(2),, bidoublet vector-like leptons to generate active neutrino masses and
kinetic mixing between SU(2),, and U(1), gauge fields at the one-loop level. After spontaneous symmetry
breaking of SU(2) 5, we have a remnant Z, symmetry, guaranteeing the stability of dark matter candidates.
We formulate the neutrino mass matrix and related lepton-flavor-violating processes and discuss dark
matter physics where we estimate relic density of dark matter. We find that our model realizes a
multicomponent dark matter scenario due to the Z, symmetry, and that the relic density can be explained by

gauge interactions with a kinetic mixing effect.
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I. INTRODUCTION

A mechanism for generating neutrino masses and the
existence of dark matter (DM) are key to understanding
physics beyond the standard model (SM). One attractive
scenario is that DM and neutrino-mass generation are
induced from a dark sector described by dark gauge
symmetry, under which the SM fields are singlets. Then,
we would expect that the nature of the neutrino-mass
generation mechanism and DM physics could be under-
stood using dark gauge symmetry. For example, the
stability of DM could be understood by using a remnant
of dark gauge symmetry [1,2], and neutrino masses at tree
level can be forbidden by such a symmetry.

One interesting scenario is a non-Abelian dark gauge
symmetry, such as SU(2), which provides a dark sector with
a rich structure and the possibility of vector DM from the
dark gauge sector and Z’ as a mediator at the same time. In
fact, various approaches using a dark SU(2) gauge sym-
metry can be found in the literature, such as a remaining
7,54 symmetry with a quadruplet (quintet) [3-9], Z, x Z)
symmetry [10], a custodial symmetry [11-13], an unbroken
U(1) from SU(2) [14-16], a model adding a hidden U(1),
[17], other DM scenarios [18-21], a model with classical
scale invariance [22], baryogenesis [23], and the electroweak
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phase transition [24]. Here, one interesting question for the
non-Abelian dark-gauge-symmetric case is how we can
induce interactions among dark gauge bosons and the SM
particles, since kinetic mixing is not allowed at a renorma-
lizable level in contrast to the Abelian gauge-symmetric
case. In Ref. [25], we showed that such a term at the one-
loop level can generate kinetic mixing between dark SU(2)
and the SM U(1)y, introducing fields that have both dark
SU(2) and U(1), charges. Interestingly, when we choose
such fields as vector-like leptons, they can also play a role in
generating active neutrino masses at the loop level [26-28]
by adding relevant dark SU(2) multiplet scalar fields.

In this work, we discuss a model with non-Abelian
SU(2)p gauge symmetry in which we introduce SU(2), X
SU(2), bidoublet vector-like leptons. These bidoublet
leptons can induce mixing among SU(2),, and U(1), gauge
fields and play a role in generating active neutrino masses
when we introduce relevant scalar SU(2),, multiplets. We
also find that there is a remnant Z, symmetry after sponta-
neous symmetry breaking, and the stability of DM is
guaranteed by this symmetry. We then formulate active
neutrino masses and branching ratios (BRs) of the lepton-
flavor-violating (LFV) charged lepton decay #; — ¢y in our
model. In addition, the relic density of our dark matter (DM)
candidate is estimated, where DM 1is more than one
component in our scenario.

This paper is organized as follows. In Sec. II we
introduce our model, and show its relevant Lagrangian
and particle content. In Sec. III we discuss the phenom-
enology of the model, such as the neutrino masses, LFV's
and DM physics. In Sec. IV we provide a summary and
discussion.
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II. A MODEL

We consider a model based on Ggy x SU(2),, gauge
symmetry, where Gy represents the SM gauge symmetries
and SU(2), is the additional symmetry in our dark sector.
For the fermion sector, we introduce an SU(2), x SU(2),
bidoublet lepton L’ with U(1), charge —1/2, and an
SU(2),, doublet N which is a singlet under Ggy. Here,
three generations of these fermions are considered in our
model. For the scalar sector, we introduce an SU(2),
complex quintet @, a real triplet ¢, and a complex doublet
x; the SM Higgs doublet H is also included. The new field
content is summarized in Table I with their charge assign-
ments. We write L’ and N as

!/ !
ny, n n
=1 "7), ~N=(1) (1)
e 1 e > ny
where indices that distinguish generations are omitted. The
scalar multiplets are written as

@
X1 705 P+

X = ’ P = [
X2 - =5

= (D, O, B . Dd__)T, (2)

where ¢ = (¢_)*. The triplet ¢ can be written as ¢p%c,,/2
(=1, 2, 3), with 6% being the Pauli matrix acting on
SU(2),, representation space; thus, we redefine ¢, = ¢* and
¢ = (9" F ip?*)/\/2. The SM Higgs field is written as

|

TABLE 1. Charge assignment for the fields in the SU(2),, dark
sector, where {y,¢,®} are scalars and {L',N} are Dirac
fermions. We introduce three generations of new fermions; we
choose the number of generations to match that of the SM
fermions, but we can also choose small number of generations.

Fields L' N X @ )

sU(2), 2 2 2 3 5

sU(2), 2 1 1 1 1

U(l)y -1 0 0 0 0
G+

H = , . 3

(\/%(v—i—h—HGO)) G)

where v ~ 246 GeV is the vacuum expectation value (VEV)
and G*(© is the Nambu-Goldstone boson absorbed by the
W (Z) boson.

The Lagrangian of our model is written as

L= Lsy+ Lyew +V, (4)

where Lgy is the SM Lagrangian without the Higgs
potential, Lye,, includes new terms in our model, and V
is the scalar potential. The new terms and the potential are
given such that

| - _
/:’New = _ZXWMXZ’D + TI‘[LI(D”]/M - ML')L/] + N(aﬂ},ﬂ - MN)N

(D) (D) + 5 TH(D49)! (D) + 5 (D) (D, 0)

+ fiali L' (ioy)x + fiLi L'sy* + g

L'4NYH + ¢¢*L'¢ N4 H

+ Y& N (io2) N} + vk N (ic2) Ny + v NE Ny + ya, L' oL, (5)

1
V=-MyHH+ My + EMf,Tr[go(p} - MZ® @ + A, () + A, Tr(pp]* + 1o (DT D)?

+ A (H H)? + py (OT D) + > (x (i02) py + H.c.) + A0 Tr[pep) (D)
+ Ao Tt @) (H H) 4 Ao (OT®)(HTH) + A,y (3 ) (HTH) + A, (") Tt (o]

+ Ao (") (®®) + 1,009 o D,

where X®¥ is the gauge field strength for SU(2),, with
a =1, 2, 3 being the index of the SU(2), adjoint repre-
sentation, and § = ¢*7 &5) is the 5 x 5 notation for the scalar
triplet [T is the 5 x 5 notation of SU (2), generation given
in the Appendix]. We assume that the Lagrangian is invariant
under ® — —® to simplify scalar potential forbidding non-
trivial cubic terms such as ®3 and ®gg.

(6)

A. Scalar sector and symmetry breaking

First, we consider gauge-invariant operators in the scalar
potential in terms of the components of the scalar multip-
lets. Quadratic terms are given by

X =xin + (7)
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1 1
5 Trlew] =505+ 91 0-, (8)
OO=P+ D, DP__+ D D_+D, D__+ D D_. 9)
Nontrivial terms in the potential are written as
PO = V3D, p_ + VID_gp. + VDD g+ V3DD_gp,
+ (20, ®__+ D, D_—-D D20, D__)gp,
+V2D__ D, +V2D__D g, + V2D, D_p_ + V2D, D_g_, (10)
D PHd = PR(4D  D__+4D, D__+ D, D_+ D D)
+ @ QP D__+20, D__ +50,P_+5D,P_)
+ P2 (30, D, + V6D D, + VDD, ) + 92 (3D_D_ + VoDd;D__ + V6D D__)
+ \/§€00‘D0(CD—(P+ - ci)#/’—) + \/§€00q)6(q)+§0— - ‘i)—fﬂ+)
+3V20(®, P+ O__ D, —D, D9 —D_D,g,), (11)
x(ioy)px +H.e. = =V 2001172 + 9_x 121 — x> + He. (12)

Note that the other quartet terms are trivially given by
applying quadratic terms and we do not write them
explicitly. We then consider VEVs of the scalar fields by
the condition 0V /0¢ = 0, where ¢ represents any scalar
field in the model. We find that we can take VEVs of @, |
and ¢, to be nonzero, and we write them as (®,,) =
ve/V2 and (¢py) = v,/ /2. These VEVs are derived from
the following conditions:

~ 1
Vo (—Mé‘ - \/5/4]1)(/, + 2/1(%1)1}(%7 + Ej'(DHvz
1 2 2
+§ﬂ(p¢v(p +/1¢,Ud) = 0, (13)

P12 | 57 2 2 1 2
- 751@ + 2,00,V + Myv, + 5’1491'1”41”

1
+ Eﬁq@vwvé + 4,05 =0, (14)

1 1
v <—M%_1 + Ellq,H’Ué + Eﬂ‘bHUé + AHZ}2> = 0, (15)

where the first, second, and third equations are obtained from
OV /0ve =0, 0V /0v, = 0, and OV /Ov = 0, respectively.
In our analysis, we consider that the mixing among the SM
Higgs and other scalar bosons are suppressed by assuming
tiny values for 4,4 and Agy, and the SM Higgs VEV is

approximately given by v ~ /M2 /Ay as in the SM; thus,
h is the SM-like Higgs boson. On the other hand, the VEVs

v, and vg, are determined by Eqs. (13) and (14) The VEVs
obtained from these equations can be minimum of the
potential. Here, we briefly discuss how we can realize the
minimum of the potential when we take M%H.x«p,@} > 0,

ﬂ{H’(/,_q;.%} > 0, A’{WH,@H,(/@,)(H,}((/?-)(@}~> 0, and H1 > 0. For
u1 > 0 case, nonzero values of (@) and (¢p,) provide
negative contribution to the potential as we see from Eq. (10)
and our vacuum configuration is preferred to obtain the
minimum of the potential. We also assume small values for
Z(/@ and p, so that the negative contributions to the potential
from the corresponding terms do not affect the minimum of
the potential. Note that a detailed analysis of the potential is
difficult since we have many free parameters, and as such is
beyond the scope of this paper. After spontaneous symmetry
breaking, three degrees of freedom from @ and ¢ are
absorbed by SU(2) , gauge bosons X }4'2’3, and the remaining
scalar degrees of freedom from ¢ and ® become massive
physical scalar bosons. Here, we do not discuss the details of
these physical scalar bosons since they are irrelevant in our
phenomenological analysis below.

Note that there is a remaining Z, symmetry in our
scenario, where each SU(2), multiplet ¢ transforms as
& — e'T37 & with T being the diagonal SU(2),, generator.
We can understand the remnant Z, symmetry as follows. The
quintet VEV (®) is invariant under the unitary transformation
of Ur, = ™, which is a part of SU(2): Ur,(®) = (D),
where T3 = diag(2, 1,0, —1,-2) for the quintet (the triplet
VEV (@) has no effect since its 75 value is 0). Then, a
component &,, in a multiplet & transforms as &,, — e"*¢,,,
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where m is the eigenvalue of 75 for the component. Thus,
a component with half-integer m transforms as &,, - +i¢,
while one with integer m transforms as &, - +¢,.
Therefore, we have the remaining Z, symmetry after
spontaneous breaking of SU(2),. In our case, the compo-
nents in the SU(2),, doublet have Z, charge +i, while the
components of the triplet and quintet have charge £1 or 0.
As a result, Z, charged particles can be stable and become
our DM candidates.

The scalar bosons from y will be one of our DM
candidates since they transform as y;(y,) — iy;(—iy»)
under this remnant Z, symmetry. The mass matrix for y
is obtained as

<xT)T< M; —Vﬁﬂﬂ%><X1> (16)
/) \=2wuv, M )

where 7, =3 and M2 = M2 +10,50* +12,,02 + 10,0

v%. We then obtain the mass eigenstates and eigenvalues

such that
;L L
G)-C DG o
X2 NIV P2

mi, =M, + \/Zusz, (18)

—_

where we denote m;, as the masses of p;,, choosing
m; < m,, and assume M2 > v/2,v,, to make the eigen-
values positive.

B. Gauge sector

Here we focus on the gauge sector of SU(2),x
SU(2)p x U(1)y, where the Lagrangian is

Lo=- 411 W wea, — %XWVS(;’V - %BMDBW, (19)
and W and B are the gauge field strengths of SU(2),
and U(1)y, respectively. In addition the terms in Eq. (19), a
term connecting SU(2),, and U(1)z is generated by one-
loop diagrams in which L’ propagates [25], as shown in
Fig. 1. We obtain such a term as

9x9BYaa 3
Lxp = —————B,, X"~ 20
XB - 127[2ML’ 177% @ ( )

Then. after ¢ develops its VEV, we obtain the kinetic
mixing term

V, ~
EKM:Z 9x9BYaa 17 B

- 1 . -
XM =——sin¢B,, X*, (21
12v22°M ;" Z5neBy 21)

a

where X3, = 0,X} — 0,X}. We thus find the magnitude of
the kinetic mixing parameter sin¢ as

---%

@
i
[

Bﬂ XV

Ll

FIG. 1. One-loop diagrams generating kinetic mixing between
SU(2)p and U(1)y.

O~ 39x Yy
sin¢ ~ 1.8 x 10 ﬁM_L,Zy“”' (22)

a

In our analysis, we consider sin{ < 1073, We can diago-
nalize the kinetic terms for X} and B, by using the
following transformations:

B, =B, —tan{X}, (23)
- Ly (24)
B cos¢ M

Since the kinetic mixing term is generated at the one-loop
level, ¢ is typically very small. Thus, we can take tan { ~ ¢
and cos { ~ 1, writing the gauge field approximately as

B ~ 3 Y3 ~ Y3
B,~B,-(X3, X ~X. (25)

After the quintet and triplet scalar fields develop nonzero
VEVs, the mass terms for SU(2),, gauge fields and the SM
Z boson field are

1 ~ ~ . ~
Ly =sm3 2,7 +m5_ {sinOyZ,X*

2
1
+ §m§(3X2X3M +my X X7, (26)
2 v, 2 o)
Mz = 4 (9° + 93), my; = 4gx Vg,
02
e = iy (142) 27)
Vo

where ¢ and gp are the gauge couplings of SU(2) and
U(l)y, Z is the Z boson field in the SM, and
X = (X} F iX2)/V/2. Diagonalizing the Z and X> mass
terms, we obtain the mass eigenstates and mixing angles as
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m%,Z’ = E (m§(3 + m%sm)
1 )
F3 \/(mi3 — m%SM)2 + 4Czs1n29Wm§SM, (28)
2 sin Oy Cm>
tan 2622/ = +§2ZSM B (29)
Zon — My

where we approximate my ~ my  and my =~ mys for tiny
¢, and we take 0 < 0,4 5% as our convention. Here, we
emphasize that the mass relation m, ~ 2my: is obtained
when dark gauge boson masses are dominantly induced by
the quintet VEV, and the X* annihilation cross section via
7' is enhanced by resonant effect.

Thus, the mass eigenstates Z and Z' are written as

(2)=( J(e) oo

We find that sin@,, <107 for ¢ <107 and my: >
100 GeV. The Z-Z' mixing modifies Z interactions with
the SM fermions, and electroweak precision tests should be
considered. In fact, we can easily avoid current constraints
from electroweak precision tests since 6, is sufficiently
small [29-31]. In addition, we can also avoid constraints
from direct searches of Z' boson at collider experiments
since Z' production cross section is small enough.

Z
Z/

Z
X3

COS 922! —sin ezzr

sin 922/ COS QZZ’

0o 0 ML 0 0
0o 0 o0 M, 0
My 0 0 0 M,
0 My 0 0 0
Me=| 0 0o T, 0 0
o 0 0 M, i,
M, 0 0 0 My+Mp,
0 M, 0 0 0

where indices that distinguish generations are omitted and
it is 24 x 24 since each element is 3 x 3 matrix. This mass
matrix can be diagonalized by the 24 x 24 orthogonal
matrix V, assuming all matrix elements are real, and the
mass eigenstates are given by

Yr = V{/\le (34)
We write the mass eigenvalues as M, (x =1, ...,24). The

orthogonal matrix V and mass M, can be obtained
numerically.

C. Mass terms of hidden fermions

In this subsection we discuss mass terms for hidden
fermions. Neutral fermion masses: After spontaneous
symmetry breaking, we obtain mass terms of dark neutral
fermions such that

Ly, = M3} (nfnf + ngn3) 4+ Miy (n5n}, +n{inb, )
+ M (nSent e + nSensy) JrMD (nf b —

+ Mab

nn'

b
”2L”2R)
(” anlL +n ZRHIZ)L)

+ Mab (” anlR +n 2L”§R)

+Mab(n/a /b /b) (31)

where the mass matrices appearing in these terms are
given by

b
Mab — g%b v ab __ gzh v Mab — y%L
nn' \/E H> nn' \/i H> nn 2 P
b b
. YN YD
Mgz - 2R @ D, — 2 U(/)' (32)

We thus obtain the Majorana mass matrix for dark neutral
fermions under the basis Wi = (1), nhg. 'S, 05 Nig.

c c \T.
Nog, Ny, N5 )"

0 M, 0
0 0 M,
0 0 0
My 0 0
i, wyemh 0| (33)
0 0 My -Mj,
0 0 M
My-Mp, M, 0

Charged fermion masses: We obtain Dirac mass terms of
e} , from the M Tr[L'L’] term such that

MTHL'L) 5 My(die) + dheh). (39)

where index that distinguishes generation is omitted. We
choose the basis in which M, is diagonal without loss of
generality.
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III. PHENOMENOLOGY

In this section we discuss the phenomenology of our
model, such as active neutrino masses, LFVs, and DM
physics.

A. Neutrino mass generation and LFV

In this subsection we discuss the neutrino mass gen-
eration mechanism and related LFV processes. The relevant
interactions are obtained from the first two terms of the
third line on the rhs of Eq. (5). Writing the terms in terms of
the mass eigenstates, we obtain

1 — 1 —
LD ﬁf{;(vN>uxl/2W§pT + \/_—ft_a(VN)uxl/LW)Ici’p;

2
1

+ i la %

1 1 — .
“‘ﬁ ia€LC1RP1 +7§fiae’Le/1“R/72 -

where fttz = (f+fl)ia and fz_a = (f_fl)ia'

I, — 1 —
ﬁf;eieét}epl + \ﬁf,tze}_e/z“,gpg +H.c.,

- ﬁfﬁz(vmﬂu,x”lﬂ/’f@ﬂl + ﬁf?z_z(VN)3+u.xl/ZWJ1ri’p2

(36)

Neutrino mass generation: In our model, active neutrino masses are generated through the one-loop diagrams shown in
Fig. 2, which are given by the original flavor eigenstates in the Lagrangian. The neutrino mass matrix is then calculated as

1 . .
—|— <>
3 xM)ZC + ym% + Zm% (i 7

M, _ _ 1
(M) = G % = Faf ) V)V [ 10)
le
<100 Gey Mo Vel

TeV 101!
+ (i < Jj),

_f;l ;rb)(VN)ax(VN)3+b.x/Ol[ ]3XM2 m;2)2

+ ym? + zm3
(37)

where [}[dX]; = [} dxdydz5(1 — x — y — z) and summations over indices {a, b}(= 1-3) and x(= 1-24) are taken. It is

possible to accommodate experimental data for the neutrino sector by tuning the Yukawa couplings f7

=, as we have

18 degrees of freedom (when Yukawa couplings are real). For illustration, we consider the current observed values of
mixing angles and mass-squared differences in the normal-ordering case [32] (NuFit 5.0):

sin?0;, = 0.30475913,

Am?; = 742702 x 1075 [eV?],

where Amgol (atm corresponds to the solar (atmospheric) mass-
squared difference. In Table II we show a benchmark point
that gives the observed mixing and mass-squared differences.
For our benchmark point, we assume mass matrix M/, My,

M, M, M,, M,, and M p, to be diagonal for simplicity;

T
|
H % H

sin?0,3 = 0.57075-98,

AmZy, = 251570938 % 1073 [eV?],

§in20;; = 0022211000068

(38)

[
nonzero elements of Vy is found to be O(0.1) to O(1) and
M, ={M,....My}~{80,...,1000} GeV. We then ob-
tain the mixing angles and mass-squared differences as
outputs. The goodness of fit is evaluated by calculating the
x? value,

FIG. 2. One-loop diagrams generating neutrino masses.
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TABLE II. Numerical benchmark point of our parameter sets and corresponding outputs.
Input

My [GeV] Diagonal [40, 50, 60]

My [GeV] Diagonal [500, 700, 1000]

M,y [GeV] Diagonal [50, 70, 90]

M, [GeV] Diagonal [60, 80, 100]

M, [GeV] Diagonal [100, 150, 180]

M,, [GeV] Diagonal [110, 120, 130]

My [GeV] Diagonal [50, 70, 90]

{my,my} [GeV] {500, 800}

o o [ faas fa1s S [33) {1.82,3.89,3.16,—1.22,4.45,40.3,4.81,4.26,—-10.7} x 1077

U s 135 Fa1s o 330 310 300 33 {3.94,7.73,-4.61,-4.71,9.71,21.5,-2.17,85.3, =27.5} x 107’
Output

sin? 6, 0.300

sin® 6,5 0.557

sin% 6,3 0.0214

AmZ, 7.56 x 105 eV?

Amg, 2.53 x 103 eV?

2 2.66

th €Xp
Oi — Oi

O

2
=3 ) (39)
where O™, 0P, and ¢ are the theoretically obtained value,
experimentally observed value, and experimental error for the
observables in Eq. (38). Note that we did not consider CP
phase choosing real Yukawa couplings for simplicity; but it is
easy to add complex phases in coupling and obtain CP phase
in the neutrino mass matrix.

LFV decays of charged leptons: Yukawa interactions
associated with charged dark fermions induce LFV decay
|

of £ — ¢’y at the one-loop level. We then estimate the BRs
by calculating relevant one-loop diagrams, and the branch-
ing ratio of £; — 7y is given by

4873C;
B(fi - fﬂ’) = Gz—n;g(KaR)ijP + |(aL)ij|2)’ (40)
F'%i
where m;(;), (i(j) = 1,2, 3) is the mass for the initial (final)

state of the charged lepton identifiedas 1 = e,2 =pu,3 =1,
and (Cy;, C31, C35) = (1,0.1784,0.1736). Relevant ampli-
tudes are estimated as

a - jalai ./" dX Xz
s K=Zl,22(4”)2 7 Jo | ]3x(x—1)m§i+xm%+(y+z)m3%
f/Ta ;lT /ll -XZ
Yy me. X
2@ne ™ ), Xl D)z + xn + (v + 2)mi2,
f;a ;zT /a Xz
- s X ’ Al
20422 [ ]3x(x = Dmj, + xmi + (y + 2)m, (41)
+ T
i “ Xy
ar)ij = — 2 m / dXx
( L)l] & 22(471')2 g 0 | hx(x - 1)’"34 +xm%< + O+ z)mg’,?
il a Xy
Sialai / IX
2(4r)? i [ ]3x(x - l)mél_ +xm3 + (y + z)mﬁ,]a
f/_u a_j /a Xy
— 5 M, dX ' "
26422 ), [ ]3x(x = 1)m, +xmi + (y + 2)m3, (42)
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The current experimental upper bounds for the BRs are
given by [33-35]

B(u — ey) <4.2x 10713,
B(t — ey) <33 x 1078,

B(t = py) < 4.4 x 1078,
(43)

We can easily avoid these constraints at our benchmark
point since the Yukawa coupling fi tends to be smaller
than O(107°) and the LFV decay ratios are much smaller
than current constraints.

B. Dark matter

In our model DM candidates are Z, charged particles in
the dark sector, which are X*, p; ,, ¢*, and y. Here, we
consider a scenario in which p;, and/or X* are DM
candidates choosing the other particles to be heavier than
them. Under Z, symmetry, p; , and X* transform as p; , —
ip1, and X* — —X*, respectively. In our analysis we focus
on gauge interactions to calculate relic density of DM
candidates since scalar portal interaction is preferred to be
small to avoid constraints from direct-detection experi-
ments of DM, and Yukawa couplings f;, should be very
small to realize neutrino mass as we discussed above.

First, interactions among dark gauge bosons are written
as

| oy
£ —gye O, XEKMR" — e Ve XXX R, (44)

where €*" are the structure constants of SU(2),,. We note
that the four-point gauge interaction in Eq. (44) does not
provide the dominant contribution to the DM annihilation
process since my ~ mys 2 my+ in our scenario. Thus, we
focus on the three-point interactions which are written in
terms of mass eigenstates X* and Z’ as

L2igxCrp[(0,X5 =0, X)XHZ" —(9,X; —0,X;)X 2"

1
+§(8ﬂZ,’J—6yZ,’4)(X+”X‘”—X‘”X*”)], (45)
where C,, =cos8,,. Through the Z-Z' mixing, Z’
interactions with SM fermions f are obtained as

9 7 .
ﬁz,ff - X;R cos Oy, Zufxr"(Szz (T3 = Oy sin*Gy,)

+ CZZIK:Y Sin gw]fx, (46)
where T is the diagonal generator of SU(2),, Qy is the
electric charge of an SM fermion, and S;z =sinf,,.
Gauge interactions associated with scalar DM candidates
p1, are also obtained as

.9xCzz
LD

2

+ l_XX:tr(ﬂla”Pz - p30"p})

V2

. 9x
— =X Mpr — prO*
3 2 (P10 — 20 py)

Z,(p10"py = p10p] + p30¥py — p20¥p3)

&

T

C3,Z, 2" (pip1 + p>p2)

2
g .
=5 (XiZ"pips + X, Z"pipa).

Note that our DM candidates can also interact with the SM
Z boson through the mixing effect. These are obtained by
substituting {C,,,Z,} for {S;,,Z,}. Such interactions
are thus suppressed by the tiny Sz in our scenario.
In our scenario we have more than one DM component,
depending on the mass relations among X=, p;, and p,:
(1) my+ +m; < my - X* and p, are DM.
(2) m; + my < my+ — p; and p, are DM.
() my—my <my= <my+my—p, P
are DM.
Here p, decays into p{X_ in case 1, while X* decays into
p\7p8) in case 2. In the following, we consider case 1; in
case 2, the scalar portal interaction tends to be required as
dark gauge bosons are heavier, and case 3 is more
complicated as we have three DM components. The
relevant DM annihilation processes in case 1 are given
by the diagrams in Fig. 3: pair annihilation of p, ,, pair
annihilation of X*, the semiannihilation Pi2)P12) = X +tZ,
and the semi-coannihilation p;p, — X*Z' (Z' decays into
SM particles). Then, we scan the relevant parameters
{my+,my, gy} within the following regions:

and X*

Pra sM X sM
AN
\ Z !
AN N Z !
7
7/
7
/
. M X~ M
P12
p]\,? Z' p]'z\ X+ p] X+
N N S
N N ~
AN N |
pz |
Ve 7 |
.7 . e . prad /\/\/\/\,
Prs 7z P z P A
FIG. 3. Feynman diagrams for DM annihilation processes.
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FIG. 4. Parameter points satisfying the observed relic density, where the color gradient indicates the ratio of the relic density
Rq = Q- /Q, . For the left and right panels, the horizontal axis corresponds to the mass of X= and p;, respectively.

my- € [100,1000] GeV,  m; € [100,1000] GeV,
gx € [0.01,1.0], (48)

where we fix the other parameters as m, = my:++
my + 100 GeV, v2/v3 = 0.1, and { = 5 x 107*. We then
estimate the relic density of p, and X*, where we use
micrtOMEGAs 5 [36] to implement relevant interactions. In
the left and right panels of Fig. 4, we show parameter points
in the {my+,g.,} and {m,g,} planes satisfying the
observed relic density in the approximated region 0.11 <
Qh? = (Qy+ +Q, )h* <0.13 around Qh* ~0.12 [37],
where the color gradient indicates the ratio of the relic
density for two DM components: Rqg = Qy-/Q, . In
addition, we show the parameter points realizing the
observed relic density in the {my+, m;} plane in Fig. 5.
We find that the relic density of X* tends to be smaller than
that of p, since the cross section of the X*X* — Z' —
fsmfsm process is enhanced by the resonant condition
myz ~ 2my=+. The relic density of the two components can
be of similar order when my+ ~ m; ~ m /2. Note also that
the relic density can be explained in the region where p; is
much heavier than X*. In this region, p1(2) can annihilate
into dark gauge bosons, including semiannihilation and
semi-coannihilation processes, and the relic density of p,
can be reduced to satisfy QA% ~ 0.12. Note that we can also
choose a larger ratio vg, /v3 by modifying parameters in the
scalar potential. In that case, the mass relation between X
and Z' does not satisfy resonant condition m, ~ 2my- and
the relic density of X* will be larger for fixed gy; Rq in
Figs. 4 and 5 becomes larger for larger v,,/v¢.

Here we comment on constraints from the direct detec-
tion of our DM candidates. Our DM can interact with
nucleons via Z’' and Z boson exchange processes associated
with Z-Z' mixing. In our model, the mixing is small since it

1000 vy Bo
0f 4000000 00 0 0n, Y %0 o 4
900 :‘-“.";‘5.‘:‘:2.:.;:.\- . LAt ’
o 4 o Se°. . * %
soofie st Cwerty M (¥ WY
P e fo. . Ui s o -X 4 3
7000 " ¥ReS T2 T ET Skt 06
T C R I ALy L g
T 600 (m 5t of che otit 8% et
g ..:o 2= .h:‘:.'.'.s .‘ '? /‘}u
= 500 !.:" . t e ....0."" .\.... 0.4
S ool e e £ R L
400 &« o LTor¥ 03
| X S A8 %
300p ° ‘:"' .’o .' 0.2
..‘o‘h', :'.'o
waslts 'y
20010l 01
S,
19950" 200 300 400 500 600 700 800 9001000
my= [GeV]
FIG.5. Parameter points satisfying the observed relic density in

the two-DM mass plane, where the color gradient is the same as
in Fig. 4.

is induced at the loop level and the DM-nucleon scattering
cross section will be sufficiently small to avoid current
constraints. For example, we can estimate the cross section
for p;-nucleon scattering1 as

2
L ogxe (191 M
 2mcos?Oy \36 4] ) m?,

2 2 \V4 4
Ngg(( ¢ ) (00 Ge ) 107 cm?,  (49)

10_4 mZ/

Oplnl-p,

'"The X=-DM scattering cross section tends to be smaller than
that of p.

075010-9



TAKAAKI NOMURA and HIROSHI OKADA

PHYS. REV. D 105, 075010 (2022)

where p[n] stands for proton[neutron]. Thus, our parameter
region is safe from constraints of DM direct detections
[37,38] when the kinetic mixing is sufficiently small.

IV. SUMMARY AND DISCUSSION

We have discussed a model based on dark SU(2), gauge
symmetry in which we introduced SU(2), x SU(2),
bidoublet vector-like leptons. The bidoublets connect the
dark sector and SM sector through the interaction asso-
ciated with the SM lepton doublets and SU(2), scalar
doublet. Then, we obtained active neutrino masses and
interactions realizing kinetic mixing between SU(2),, and
U(1), gauge fields at the loop level. Moreover, there is a
remnant Z, symmetry after the spontaneous breaking of
SU(2)p in our scenario, and this symmetry guarantees the
stability of our DM candidates.

We have formulated the active neutrino mass matrix and
related LFV processes in our model. Also, the relic
density of our DM candidates was estimated by scanning
some relevant parameters. Remarkably, we found a
multicomponent scenario in some parameter space where
we have vector and scalar DM components. We have
shown the parameter points realizing the observed relic
density, where vector DM tends to provide a smaller relic
density due to the resonant enhancement of the corre-
sponding annihilation cross section.
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APPENDIX: SOME FORMULAS FOR THE SU(2),,
QUINTET

Here we summarize some formulas to write interactions
for the SU(2), quintet. We write SU(2),, generators in

5 x 5 form (denoted by 7 5,5>) such that

0 2 0 0 0
2 0 V6 0 0
TS”:% 0 v6 0 V6 0],
0 0 vV6 0 2
0 0 0 2 0
0 -2 0 0
12 0o -6 o0
79 =10 v6 0o -6 ,
2
0 0 V6 0 =2
0 0 0 20

T = diag(2.1,0,-1,-2). (A1)
We can then write SU(2), gauge interactions for the
quintet ® using the kinetic term (D,®)"(D*®), where
the covariant derivative is

D,® = (9, + igyT Y X2)®s. (A2)
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