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The E989 experiment at the Fermi National Laboratory reported a 4.2σ discrepancy between the
measured magnetic dipole moment of the muon, and its prediction in the Standard Model (SM). In this
study, we address the anomaly by considering a minimal and generic extension to the SM which also
provides for a dark matter (DM) candidate. The extra states in this framework are: a SM singlet Majorana
fermion, referred to as the Bino, playing the role of DM; and muonic scalars, referred to as sleptons. The
couplings between the sleptons, SM muons and the Bino can account for the muon g − 2 anomaly if the
scalar muon partners, or smuons, mix chirality. On the other hand, the DM relic density is satisfied
primarily through coannihilation effects involving the Bino and the lighter sleptons. The viable parameter
space of our model includes regions with relatively light coannihilating particles, similar to what has been
found in previous scans of the Minimal Supersymmetric Standard Model (MSSM). Relaxing the
assumption of minimal flavor violation typically assumed in the MSSM, we see that scenarios with
sizable smuon mixing and large mass splittings between the smuons can satisfy both the muon g − 2

anomaly and the DM relic density for coannihilating particle masses up to and beyond the TeV scale. When
we specify the origin of the left-right smuon mixing to be trilinear couplings between the smuons and the
SM Higgs boson, the constraints on these scenarios arising from perturbative unitarity and electroweak
vacuum stability confine the coannihilating particle masses to be ≲1 TeV. We demonstrate that next
generation direct detection experiments are only marginally sensitive to the viable parameter space of our
model, and, thus, a future lepton collider could be the essential probe necessary to distinguish our model
from other solutions to the muon g − 2 anomaly which involve extra states beyond the SM.
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I. INTRODUCTION

The identification of the nature of the dark matter (DM)
component of the Universe remains one of most pressing
open problems in science today. While cosmological and
astrophysical data can provide some insight into the
properties of DM, there is no direct evidence that DM
corresponds to a new elementary particle (or a new sector of
particles). One approach in the last several decades has thus
been to look for other hints of new physics which could be
related to the DM problem. Besides its numerous suc-
cesses, the Standard Model (SM) of particle physics is
unable to address several questions, including failing to
embed candidates for DM and dark energy, and a working
mechanism for the generation of the baryon asymmetry in

the Universe. While recent searches for the direct produc-
tion of new particles at the high energy frontier have been
unsuccessful, there have been a number of anomalies
emerging at the high precision frontier, possibly indirectly
pointing to new interaction states. In particular, for the last
few years there have been intriguing signs of new physics
in several flavor physics anomalies, see, e.g., [1,2].
One of the longest standing potential anomalies within the

SM is the discrepancy between the measured values for the
anomalous magnetic moment of the muon and its predicted
value. Recently the E989 experiment at the Fermi National
Laboratory reported its first results [3], confirming, with
higher precision, the picture that had already emerged in
2006 with the final report from the E821 experiment at the
BrookhavenNational Laboratory [4]: themeasuredmagnetic
anomaly parameter for the muon aμ ¼ ðgμ − 2Þ=2 differs
from its best up-to-date SMprediction [5–25] at a levelwhich
starts to be statistically intriguing, about 4.2σ when combin-
ing the result from the two experiments [3]:

Δaexpμ ¼ ð25.1� 5.9Þ × 10−10: ð1:1Þ
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While the debate regarding the SM computation of aμ and its
uncertainty is still ongoing, the discrepancy has attracted
significant attention in the last two decades since there are
several extensions to the SM in which a sizable contribution
to gμ − 2 is predicted (the literature in this respect is vast, see,
e.g., the recent reviews and general discussions [26–32]).
Matching the anomaly with an extra contribution at 1-loop
level is possible in rather generic scenarios; the general
requirement is to introducebeyond-the-SM(BSM) states that
couple to the muon and/or carry muonic lepton number, flip
chirality, and are either electrically charged or participate in
mediating another coupling to photons. Most minimal
setups, featuring a single new BSM field flowing in the
loop diagram, such as a second Higgs doublet [33–35], a
leptoquark [36], an axionlike particle [37], or a dark photon
[38]/dark Z [39], have been systematically studied; in
general, they are severely constrained by other observables,
see, e.g., the update in [26], and, most notably from our point
of view, they all fail to provide a DM candidate.
A BSM state can play the role of DM if it fulfills several

fairly generic requirements: it is stable or very long-lived,
its coupling to photons is very strongly suppressed (and it is
color neutral), its self-interactions are not too strong, and it
starts driving the gravitational collapse of bound structures
at the onset of the matter-dominated epoch (DM must be
cold or, at most, warm). A key ingredient is also the
identification of a viable production mechanism for this
state in the early Universe. Accommodating these features
and accounting for the gμ − 2 excess is possible in rather
minimal SM extensions, and the goal of this paper is to
highlight features of one of these most minimal frame-
works. With respect to other cases studied so far, the
scheme considered here is interesting from two perspec-
tives. This scenario is at the same time minimal from the
point of view of having minimal BSM particle content, as
well as being the minimal working recipe within well
motivated, more extended frameworks for BSM physics
such as generic supersymmetric SM extensions, and the
Minimal Supersymmetric SM (MSSM) in particular.
We consider a setup with at least two BSM fields relevant

for gμ − 2 and the DM relic density; we assume that both
are involved in the 1-loop diagram providing for the extra
contribution to aμ and that one of them is neutral and
accounts for DM. There are a few different possible choices
(see, e.g., the discussion in [40,41]) depending on which of
the two is a fermion and which is a boson, which carries
muonic lepton number, and how the muon chirality flip
proceeds (excluding the possibility that it comes only from
a mass insertion on the external legs of the relevant 1-loop
diagram). We will focus on the case in which the neutral
particle has zero muonic lepton number and is spin 1=2, a
Majorana state coupled to both the left-handed muon and
the right-handed muon via a charged scalar lepton partner,
which carries muon lepton number and mixes chirality.
With this particular and peculiar choice, while correctly

assigning the SUð2ÞL ×Uð1ÞY quantum numbers, we are
selecting a small subset of the particle content of the
MSSM, one of the frameworks in which BSM contribu-
tions to gμ − 2 have been first and most extensively studied,
with some of the earliest references including, e.g.,
[42–45]. In the MSSM jargon, which we will adopt in
the rest of the paper, we are considering a scenario with a
pure Bino DM candidate, and muon sleptons the only other
light (or relevant) supersymmetric partners, hence assum-
ing, e.g., that all other neutralinos and the charginos are
very heavy and decoupled.
Nonetheless, the model we consider is not simply

zooming in on a particular case generically included within
a MSSM parameter scan: the only contribution to gμ − 2

included here is most often very subdominant. In most
realizations of the MSSM, the mixing of right-handed and
left-handed sleptons is assumed to be negligible, with the
exception of models introduced in [46] and follow up
papers [47–50]. Also, the thermal relic density of pure Bino
DM tends to be (much) larger than the observed DM
density; this is because, in the MSSMwith a minimal flavor
violation (MFV) structure, the Bino pair annihilation rate is
suppressed and the DM decouples before its density is
sufficiently depleted. Sizable left-right slepton mixing can
play a role in enhancing the Bino annihilation rate, however
a simultaneous match of the relic density and the gμ − 2

anomaly is not possible unless one considers extra ingre-
dients: In [46] a CP-violating phase is introduced in the
Bino-lepton-slepton couplings to drive an ad hoc suppres-
sion of the contribution to the (CP-conserving) anomalous
magnetic moment operator, while still allowing for a large
Bino annihilation rate. As an alternative, we assume purely
real Bino-lepton-slepton couplings and study the parameter
space characterized by a small mass splitting between the
Bino and the muon slepton driving the extra 1-loop
contribution to gμ − 2. For spectra sufficiently degenerate
in mass, the muon slepton can delay the freeze out of the
Bino through the so-called coannihilation effect, making
the scenario cosmologically viable.
The model we study has very few parameters, essentially

only 3 masses and one mixing angle, and constraints from
gμ − 2 and the DM relic density sharply cut through this
parameter space. While recent studies (for example, see
[51–55]) explore the case of DM production by Bino-
smuon coannihilation in the context of addressing the muon
g − 2 anomaly within more typical realizations of the
MSSM, we find that relaxing the assumption of MFV
opens up a new region of parameter space in which the
mass of the smuons can sit at the TeV scale. While there
exists a viable parameter space in our model which is
independent of the mechanism that provides for the chiral
mixing of the smuons, we also consider the implications of
the rather generic assumption that the off-diagonal element
of the smuon mass matrix is associated with electroweak
(EW) symmetry breaking in the SM. In particular, a
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trilinear coupling between the SM-like Higgs boson, left-
handed smuon and right-handed smuon can both provide
for the contribution to gμ − 2 and can play an important role
in coannihilation processes which deplete the Bino relic
density. This scenario is clearly not natural from the point
of view of fine-tuning, we will simply assume a Higgs
sector which is SM-like and we will not address the issue of
why small mass splittings occur in order for coannihilation
effects to take place. On the other hand, we will discuss in
detail theoretical self-consistency issues, such as perturba-
tive unitarity and vacuum stability, illustrating trends
which are relevant from a more general perspective as
well as the model at hand. The scalar potentials of many
BSM scenarios, including but not limited to that of the
MSSM, can exhibit violations of perturbative unitarity or
unstable EW vacua when the (dimensionful) couplings of
trilinear scalar interactions become large. We explore the
low-energy phenomenology of the model, focusing on the
possibility of direct DM detection and commenting on
indirect DM detection and LHC observables.
Our main results can be summarized by Figs. 2 and 3,

which can generally be characterized by two different
regions of the parameter space. For Bino masses
≲400 GeV, the parameter points which satisfy both
gμ − 2 and the DM relic density are similar to what has
been typically found in previous scans of the MSSM, with
the trilinear coupling only marginally impacting relic
density. However, we again want to emphasize that the
gμ − 2 contribution in our model is typically subdominant
in scans of MSSM parameter space. As the size of the
trilinear coupling increases, we show that another region of
parameter space opens up which can satisfy both gμ − 2 and
the DM relic density for Bino masses up to ∼1 TeV.1 In
this parameter region extending out to higher Bino masses,
we demonstrate how violations of perturbative unitarity
manifest in the calculation of the smuon annihilation cross
section and then perform a detailed analysis of both
perturbative unitarity and EW vacuum stability in our
model. Regarding signatures in low-energy phenomenol-
ogy which could distinguish our model from other BSM
scenarios which address gμ − 2, we show that most param-
eter points are extremely challenging to probe using direct
DM detection. Also, mass spectra around ∼1 TeV with
such small mass splittings between the Bino and lightest
smuon are typically beyond the reach of searches for such
particles at the LHC (for example, see Refs. [65–69]).
However, it has been shown that future lepton colliders
with relatively large center of mass energies could be
sensitive to these models [54,70–74].
The rest of the paper is organized as follows: In Sec. II

we describe the particle content and interactions in our

model most relevant for the calculation of gμ − 2 and the
relic density, which are described in Sec. III and Sec. IV,
respectively. We investigate constraints from perturbative
unitarity and vacuum stability in Sec. V. We study the
sensitivity of direct DM detection to our model in Sec. VI.
In Sec. VII, we conclude with a discussion summarizing
our results and briefly comment on potentially interesting
future work related to this model.

II. CONSTRUCTING THE MODEL

The model contains a Bino B̃0, with mass MB̃. This is a
spin 1=2Majorana fermion, transforming as a singlet under
the SM SUð2ÞL ×Uð1ÞY , (1,0). We will assume throughout
the paper that B̃0 is the lightest BSM particle and stable,
with the stability protected by a Z2 symmetry under which
all BSM states introduced are odd. The Bino is coupled to
the SM only through the muon and muon neutrino, via the
terms:

L ⊃ −λμ̃R μ̃
�
R
¯̃B0PRμ − λμ̃L μ̃

�
L
¯̃B0PLμ − λν̃ν̃

�
μ
¯̃B0PLνμ þ H:c:;

ð2:1Þ

where PR and PL are the right-handed and left-handed
projectors, and we have introduced two electrically charged
complex scalars, μ̃�R transforming as (1,1) and the SUð2ÞL
doublet l̃L ¼ ðν̃μ; μ̃LÞT , which transforms as ð2;−1=2Þ.
While the different λ couplings can in principle be arbitrary
without significantly impacting the low-energy phenom-
enology of the model, we match them with those in the
MSSM, namely:

λμ̃R ¼
ffiffiffi
2

p
g0YR and λμ̃L ¼ λν̃ ¼

ffiffiffi
2

p
g0YL; ð2:2Þ

where g0 is the SM hypercharge coupling. On the other
hand, we consider a generic mixing for the two charged
scalars starting from a fully general mass matrix,

L ⊃ −ð μ̃�L μ̃�R Þ
�
m2

LL m2
LR

m2
LR m2

RR

��
μ̃L

μ̃R

�
; ð2:3Þ

and diagonalizing it to find mass eigenstates we have

�
μ̃1

μ̃2

�
¼

�
cos θμ̃ − sin θμ̃
sin θμ̃ cos θμ̃

��
μ̃L

μ̃R

�
: ð2:4Þ

The convention we adopt is that μ̃1 is always lighter than μ̃2
and the mixing angle θμ̃ is in the interval ½−π=2; π=2Þ. In
the following, rather than using the entries of the mass
matrix as free parameters, it is more convenient to refer to
physical parameters, namely the two massesMμ̃1 ,Mμ̃2 , and
θμ̃, or, equivalently toMμ̃1 , ΔM

2
21 ≡M2

μ̃2
−M2

μ̃1
and θμ̃; the

relative mapping is given by

1Previous studies have demonstrated that satisfying the DM
relic density is possible through coannihilations involving
OðTeVÞ scalars [56–64].

MINIMAL DARK MATTER MODEL FOR MUON g − 2 WITH … PHYS. REV. D 105, 075007 (2022)

075007-3



m2
LL ¼ M2

μ̃1
þ ½1 − cosð2θμ̃Þ�=2 · ΔM2

21;

m2
RR ¼ M2

μ̃1
þ ½1þ cosð2θμ̃Þ�=2 · ΔM2

21;

m2
LR ¼ sinð2θμ̃Þ=2 · ΔM2

21: ð2:5Þ

The muon sneutrino ν̃μ, the left-handed neutral scalar we
introduced above, does not appear in the BSM contribution
to gμ − 2, however, it can play a role in the relic density
computation; as we will show in Sec. IV, we cannot simply
assume it is very heavy and decouples. Inspired again by
the MSSM, we write the muon sneutrino mass as

M2
ν̃μ
≡M2

μ̃1
þ ½1 − cosð2θμ̃Þ�=2 · ΔM2

21 − ΔM2
W: ð2:6Þ

Under the assumption of minimal flavor violation in the
MSSM one would simply have that ΔM2

W ¼ m2
μ −

M2
W cos 2β, i.e., in the large tan β limit, ΔM2

W ≃M2
W (here

mμ is the muon mass, MW theW boson mass, and tan β the
ratio between vacuum expectation values in the two Higgs
doublet structure of theMSSM). Ingeneral,wewill show that
the parameterΔM2

W cannot be far from theweak scale, and, if
ΔM2

W > 0 as in theMSSM, there is a range of smuonmasses
and mixings for which ν̃μ is lighter than μ̃1: In the limit
θμ̃ → 0, when μ̃1 is almost purely left-handed and Mμ̃1≃
mLL, ν̃μ is the lightest slepton with M2

ν̃μ
≃M2

μ̃1
− ΔM2

W ; on
the other hand, when the mixing angle increases, the mass
ordering between μ̃1 and ν̃μ can flip. In the opposite
limit, when jθμ̃j → π=2, μ̃1 is mostly right-handed, with
Mμ̃1 ≃mRR, while μ̃2 and ν̃μ can be (much) heavier.
The additional gauge invariant terms one can introduce

involve couplings of the BSM scalars to the SM Higgs.
Rather than considering a generic structure, our starting
point will again be the MSSM. For simplicity, we consider
the limit in which there is only one light Higgs (it would be
H0

2 in the MSSM jargon), which is SM-like and with its
mass fine-tuned to the experimental value. This picture is
equivalent to the “decoupling limit” of the MSSM, in which
the mass of the pseudoscalar A is very heavy and the
mixing angle between the two CP-even Higgs states, α, is
fixed such that sinðβ − αÞ → 1. We can then write the
couplings for the trilinear terms involving the physical
states that remain in the low energy theory, factoring out
gMW , where g is the SUð2ÞL coupling,

yH0
2
μ̃Lμ̃L

→
1=2−sin2θW

cos2θW
cosð2βÞ yH0

2
μ̃Lμ̃R

→−
ΔM2

21

4M2
W
sinð2θμ̃Þ

yH0
2
μ̃Rμ̃R

→
sin2θW
cos2θW

cosð2βÞ yH0
2
ν̃μν̃μ

→−
1

2cos2θW
cosð2βÞ;

ð2:7Þ

where θW is the Weinberg angle and we have neglected
contributions ∝ m2

μ=M2
W (in the following we will only

consider the large tan β limit, with cosð2βÞ → −1).

While we have taken a specific limit of the MSSM as a
benchmark to define the trilinear couplings in our model,
we again want to emphasize that the low-energy phe-
nomenology of the model would remain qualitatively the
same for different choices of couplings. As we have
mentioned and discuss further in Sec. III, the left-right
smuon mixing is a key ingredient for a sizable BSM
contribution to the anomalous magnetic moment. Over a
large part of parameter space in the model outlined above,
the particular origin of the left-right mixing does not
significantly impact the calculation of Δaμ. Given the
specific choices in Eq. (2.7), the “off diagonal” coupling
which provides for the left-right smuon mixing, yH0

2
μ̃Lμ̃R

,
only becomes relevant in the 1-loop diagrams which yield
the dominant contribution to gμ − 2 in the limit where this
coupling becomes large. Even for yH0

2
μ̃Lμ̃R

≫ 1, we dem-
onstrate that variations over several orders of magnitude
can be compensated byOð1Þ changes in the Bino mass for
fixed Δaμ.
Similarly, in Sec. IV we show that parts of the “model-

independent” parameter space which can satisfy gμ − 2 can
also satisfy the DM relic density largely independent from
how the left-right smuon mixing is generated. We dem-
onstrate how the calculation of the Bino relic density can be
effected when the delicate cancellation between contribu-
tions to the cross sections for various processes involving
SM gauge interactions is spoiled in scenarios with sizable
smuon mixing angles and large mass splittings between the
smuons. Placed within the context of our MSSM-like
benchmark, large trilinear couplings can also directly enter
into the calculation of cross sections for processes relevant
to the Bino relic density. In either case, any associated
changes to the cross sections can easily be absorbed into the
Boltzmann suppression factors which are exponentially
dependent on the mass splitting between the lightest
sleptons and the Bino. The quartic scalar interactions,
which we assume to take the form of the D-terms in the
MSSM, have only a marginal effect on the relic density and
a negligible role in the left-right mixing (at least for larger
smuon mixing angles or heavier smuon masses). The
specific form of the trilinear and quartic couplings are
instead crucial when considering constraints from pertur-
bative unitarity and vacuum stability; we thus give a more
detailed description of the full scalar potential in Sec. V.

III. CONSTRAINTS FROM THE MUON
ANOMALOUS MAGNETIC DIPOLE MOMENT

The leading extra contribution (the only contribution at
1-loop) to the muon anomalous magnetic dipole moment in
our model is given by two diagrams. Each of these
diagrams involves the Bino and one of the two smuons
as virtual states running in the loop, with the external
photon attached to the smuon. To lowest order in the muon
mass, this contribution can be written as (see, e.g., [75]):
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Δaμ ≃
g02YLYR

16π2
sinð2θμ̃Þ

mμ

MB̃
½Lðr1Þ − Lðr2Þ�; ð3:1Þ

where the loop function is

LðrÞ≡ r
ð1 − rÞ2

�
1þ rþ 2r ln r

ð1 − rÞ
�

and ri ≡ M2
B̃

M2
μ̃i

:

ð3:2Þ

A smoothly increasing function of r, LðrÞ is 0 for r ¼ 0 and
1=3 for r ¼ 1. To get an idea for how Δaμ depends on the
parameters of our model, we focus on the limit in which the
mass splitting betweenMB̃ andMμ̃1 is small, typicallyΔ1 ≡
ðMμ̃1 −MB̃Þ=MB̃ ≲ 5–10% for coannihilation effects to
sufficiently deplete the Bino relic density. If we further
assume thatΔM2

21 is sizable compared toM2
B̃
, we can match

the extra contribution to the muon anomalous magnetic
dipole moment with the central value of Δaexpμ in Eq. (1.1),

Δaμ
25.1 × 10−10

≃
�
− sinð2θμ̃Þ
2.6 × 10−2

��
100 GeV

MB̃

�

×

�
L0;2 þ L1;2 · ðΔ1=0.1Þ þOðΔ2

1Þ
0.23

�
:

ð3:3Þ

The loop function, L, in the expression above has been
evaluated assuming a fixed ratio between the smuon masses,
namely Mμ̃2 ¼ 2Mμ̃1, and expanded in Δ1, obtaining coef-
ficientsL0;2 ≃ 0.19 andL1;2 ≃ 0.04 (the picture is unchanged
for another sample choice, e.g., if Mμ̃2 ¼ 4Mμ̃1 , the asso-
ciated are coefficients L0;4 ≃ 0.28 and L1;4 ≃ 0.04).
ForMB̃ ∼ 100 GeV, matchingΔaexpμ in Eq. (3.3) requires

either θμ̃ slightly smaller than 0 (when μ̃1 is mostly left-
handed) or slightly larger than −π=2 (when μ̃1 is mostly
right-handed). TomatchΔaexpμ for increasingMB̃, j sinð2θμ̃Þj
must also increase either along a “left-handed branch” or a
“right-handed branch”. This functional dependence in
Eq. (3.3) suggests that the two branches would join at an
endpoint with maximal mixing and B̃0 ≳ 1 TeV. However,
as we discuss in Sec. IV, ΔM2

21 ≫ M2
W can lead to the

violation of perturbative unitarity in the cross sections
relevant for depleting the Bino relic density via coannihila-
tion. Thus, if we keepΔM2

21 of orderM
2
W instead and expand

the expression for Δaμ in the limit of large MB̃, we find

Δaμ
25.1 × 10−10

≃ 0.090 ·

�
−
ΔM2

21

4M2
W
sinð2θμ̃Þ

��
1 TeV
MB̃

�
3

×

�
1þ 0.24 · ðΔ1=0.1Þ þOðΔ2

1;Δ2
21Þ

1.24

�
;

ð3:4Þ

with Δ2
21 ≡ ΔM2

21=M
2
B̃
. The above expression emphasizes

the scaling of Δaμ with the parameter combination
introduced in Eq. (2.7) as the chirality flipping trilinear
coupling, yH0

2
μ̃Lμ̃R

. For MB̃ at the TeV scale and ΔM2
21=

ð4M2
WÞj sinð2θμ̃Þj ∼ 1, the extra contribution to gμ − 2 can-

not match Δaexpμ due to the additional suppression
∝ ΔM2

21=M
2
B̃

relative to Eq. (3.3). On the other hand,
while the expansion in Eq. (3.4) tends break down as
ΔM2

21 becomes much larger than M2
W while keeping

MB̃ ∼ 1 TeV, it suggests that Δaμ can match the measured
value for ΔM2

21=ð4M2
WÞj sinð2θμ̃Þj ∼Oð10Þ. In Sec. V, we

perform a detailed analysis of perturbative unitarity under
the assumption that yH0

2
μ̃Lμ̃R

provides for the chiral mixing of
the smuons, in addition to an investigation of how large
trilinear couplings can destabilize the EW vacuum.
In Fig. 1, the extra contribution to the muon anomalous

magnetic dipole moment, computed considering the full
1-loop result in Eq. (3.1), matches Δaexpμ for all models
displayed. In the left panel, values of the mixing angle θμ̃
are shown plotted against MB̃, having fixed the relative
mass splitting Δ1 between the lightest smuon and the Bino.
The mass of the heaviest smuon is fixed by selecting a
given value for the parameter

y≡ jyH0
2
μ̃Lμ̃R

j ¼ ΔM2
21=ð4M2

WÞ · j sinð2θμ̃Þj: ð3:5Þ

As sketched above, at low MB̃ one can see the left-handed
and the right-handed branches, while y sets the maxi-
mum Bino mass scale at which for they join. Larger y
corresponds to a heavier maximum MB̃, with a more
mild dependence on the precise value of Δ1. For y ¼ 1
we see that MB̃ ≲ 400 GeV and for y ¼ 10 we have
MB̃ ≲ 800 GeV, with the latter maximum Bino mass
somewhat smaller than what is suggested by the approxi-
mation in Eq. (3.4) after accounting for the full 1-loop
result for Δaμ.
However, in the case which fixes y ¼ 50 in the left

panel of Fig. 1, we see that satisfying gμ − 2 with MB̃ ∼
1 TeV is indeed possible for large enough values of y. In
the right panel, MB̃ is plotted against y for fixed values of
θμ̃ and Δ1. We see that models satisfying Δaexpμ with
MB̃ ≳ 1 TeV require larger values of y≳ 20, and hence
larger values of the mass splitting between heavy and
light smuons (at given θμ̃ there is of course a one-to-one
match between y and ΔM2

21, as indicated along the top of
the plot). Going to even larger Bino masses while still
matching Δaexpμ requires much larger y and smuon
mixing angles closer to maximal. For example, in the
case of maximal mixing θμ̃ ¼ −π=4, a Bino can be as
heavy as about 2 TeV only for y ≃ 190, corresponding
to

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔM2

21

p
≃ 2.8 TeV.

While the numerical results reported in this Section hold
for the specific choice of λμ̃R and λμ̃L in Eq. (2.2), the
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general picture is unchanged for generic Bino-smuon-muon
couplings. The replacement g02YLYR → λμ̃Lλμ̃R=2 in the
expression for Δaμ given by Eq. (3.1) would imply
different “plateau values” of θμ̃ at small Bino masses in
Fig. 1 (with, eventually, a flip in the sign of θμ̃). For large
MB̃, generic Bino-smuon-muon couplings could be
absorbed into a different definition of the parameter y,
for instance y0 ∝ λμ̃Rλμ̃LΔM

2
21 sinð2θμ̃Þ.

IV. CONSTRAINTS FROM THE RELIC
DENSITY CALCULATION

A stable massive particle, with weak interaction cou-
plings to the thermal bath of the early Universe, tends
to have a relic density the order of the measured DM
density of the Universe. This is the celebrated “WIMP
miracle,” often summarized with a formula stating
an approximate inverse relation between the relic abun-
dance and the thermally averaged pair annihilation cross
section for the DM particle computed at the freeze-out
temperature Tf,

Ωh2 ∼ 0.1
�

1 pb
hσviðTfÞ

�
: ð4:1Þ

This approximation is best applied to the case of “vanilla”
thermal relics, in which the pair annihilation is not s-wave
suppressed: Since Tf is generically about 5% of the DM
particle mass M, one can consider the expansion

hσviðTfÞ ¼ σ0 þ σ1 ·

�
Tf

M

�
þO

�
T2
f

M2

�
; ð4:2Þ

to highlight that s-wave annihilations provide a contribution
to all terms, σi, in the series and the first nonzero coefficient
from higher wave contributions to the thermally averaged
cross section arises from p-wave annihilations in σ1. In the
MSSM with a minimal flavor violation structure, Bino
annihilation into light SM fermions is s-wave suppressed.
This is because the annihilation, at zero orbital angular
momentum, of a pair of identical Majorana fermions (total
spin equal to 0) into a pair of chiral fermions requires a
chirality flip in order to conserve total angular momentum; if
the flip can proceed only via an insertion of the final state
fermion mass, then σ0 ∝ m2

f=M
2, which is sharply sup-

pressed formf ≪ M (e.g., for the annihilation ofBinoDM in
the so-called “bulk region” of the MSSM).
For the model we are considering, the picture is in

principle different: At tree level, Binos can annihilate only
into νμν̄μ and μ−μþ. Bino annihilation into muons arises
from the first two interaction terms of the Lagrangian in
Eq. (2.1). The process is mediated by smuons in the t- and
u-channels, and—most relevantly—the chirality flip can be
provided for by the explicit left-right mixing introduced in
the smuon mass matrix. This is the same mechanism which
allows for a sizable contribution to Δaμ and, thus, Bino
annihilation into muons can be correlated with gμ − 2 in our
model. To lowest order in the muon mass, the s-wave
contribution to the cross section for Bino annihilation into
muons is given by (see also, e.g., [46])

FIG. 1. Left panel: Plot of the mixing angle θμ̃, in degrees, corresponding to an extra contribution to gμ − 2matching the central value
in Eq. (1.1), for a given value of the Bino massMB̃, a few sample choices of the relative mass splitting between the Bino and the lightest
smuon Δ1, and fixed values of the parameter y, which contains information on the mass of the heaviest smuon [see the definition in
Eq. (3.5)]. Right panel: Plot of the Bino mass for which a gμ − 2 match is possible versus the parameter y and sample choices of θμ̃ and
Δ1; labels at the top of the plot indicate the one-to-one correspondence between y and the smuon mass squared differences ΔM2

21 for
fixed θμ̃. As discussed in Sec. V under the assumption that y is associated with a trilinear coupling between the SM Higgs and the
smuons, models with values of y ≫ 1 can be subject to constraints from perturbative unitarity and EW vacuum stability.
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σ0;B̃0B̃0→μ−μþ ≃
g04Y2

LY
2
R

8π
sin2ð2θμ̃Þ

1

M2
B̃

�
1

1þ r1
−

1

1þ r2

�
2

:

ð4:3Þ

Matching this expression to Δaμ from Eq. (3.1), the cross
section can be rewritten as

σ0;B̃0B̃0→μ−μþ ≃
32π3ðΔaμÞ2

m2
μ

�ð1þ r1Þ−1 − ð1þ r2Þ−1
Lðr1Þ − Lðr2Þ

�
2

≃ 2.2 × 10−4 pb

�ð1þ r1Þ−1 − ð1þ r2Þ−1
Lðr1Þ − Lðr2Þ

�
2

×

�
Δaμ

25.1 × 10−10

�
2

: ð4:4Þ

Note that the function in the square brackets in the
expression above is at most

ffiffiffiffiffiffiffiffi
8=3

p
for any 1 ≥ r1 ≥ r2.

Therefore, at any point in the parameter space of our model
for which Δaμ ≃ Δaexpμ , σ0 is much smaller than the
annihilation cross section needed to satisfy the rule-of-
thumb in Eq. (4.1). As a result, s-wave pair annihilation
cannot be the mechanism providing for the thermal relic
density that matches the DM density in the Universe.
As a related issue, it follows that the prospect for indirect

DM detection of annihilation signals from DM halos
(in which DM particles have typically very small velocities)
are not encouraging in our scenario. One notable exception
may be for annihilation signals from extremely overdense
DM environments, such as the “DM spike” which could
form around a black hole after its adiabatic growth [76–78];
we are not going to discuss these scenarios further here.
Notice that the correlation between Bino s-wave annihila-
tion and Δaμ, as well as the associated difficulty of
simultaneously satisfying the relic DM abundance and
gμ − 2, holds for any generic real Bino-smuon-muon
couplings λμ̃R and λμ̃L . The tension between the relic
density arising from s-wave DM annihilation and Δaμ
can only be softened by introducing CP-violating phases,
as suggested in [46].
The leading p-wave contribution to the cross section for

Bino annihilation into muons from chirality conserving
processes can be approximated by

σ1;B̃0B̃0→μ−μþ ·

�
Tf

MB̃

�
∼ 0.5 pb

�
100 GeV

Mμ̃1

�
2

; ð4:5Þ

and becomes relevant only if the particle spectrum is rather
light. However, such light spectra are in the parameter
region where smuon masses have been excluded by collider
searches in a model independent way [65,66]. For generic
choices of λμ̃R and λμ̃L , the tension between satisfying the
relic density and constraints from colliders can be relaxed
to a certain extent since the p-wave contribution above
scales with the fourth power of one of these couplings and

is not necessarily correlated with Δaμ or the smuon
production cross section relevant for a collider search.
We are not going to follow this route, nor the suggestion to
consider CP violation as in [46], but rather concentrate on
our minimal setup and explore the consequences of com-
pressed particle spectra.
Consider a setup in which the DM candidate is the

lightest particle among a set of BSM states that share a
quantum number and are all in thermal equilibrium in
the early Universe. The DM candidate is, thus, stable and
states with mass splittings relative to the DM particle no
larger than about Tf have abundances at freeze out
comparable to the DM state. Moreover, the states that
are nearly degenerate in mass with the DM can couple to
the SM heat bath significantly more strongly than the
DM particle. Processes involving the slightly heavier
initial state particles can then keep the ensemble of
BSM states in equilibrium for a longer time and further
deplete the DM density before freeze-out. This effect is
typically dubbed “coannihilation” [79,80] and the par-
ticles involved are usually referenced as “coannihilating”
particles. Coannihilation can be described by a set of
coupled Boltzmann equations. Since heavier states are
expected to decay into the lightest stable species shortly
after decoupling and one is usually interested only in the
final DM density, it is possible to reformulate the
problem in terms of a single density evolution equation
[80–82],

dn
dt

¼ −3Hn − hσeffviðTÞðn2 − n2eqÞ: ð4:6Þ
In Eq. (4.6), n ¼ P

i ni is the sum of the number
densities of all coannihilating particles, neq the analogous
quantity for thermal equilibrium distributions, H the
Hubble parameter, and hσeffvi an effective thermally
averaged annihilation cross section. The latter is a sum
of thermally averaged annihilation cross sections for any
pair of coannihilating states, i and j, weighted over
equilibrium densities,

hσeffviðTÞ ¼
X
ij

hσijviðTÞ
neqi ðTÞneqj ðTÞ
½neqðTÞ�2

¼
R
∞
0 dpeffp2

effWeffðsÞK1ð
ffiffi
s

p
T Þ

m4
1T½

P
i
gi
g1

m2
i

m2
1

K2ðmi
T Þ�

2
: ð4:7Þ

In the second equivalence above, KhðxÞ, (h ¼ 1, 2) are
the modified Bessel functions of the second kind of order
h, mi and gi the mass and number of internal degrees of
freedom (statistical weights) for the particle i (i ¼ 1
labels the lightest state), peff an effective momentum
defined through the usual Mandelstam variable s as
s ¼ 4p2

eff þ 4m2
1, and Weff the effective annihilation rate

given by
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WeffðsÞ ¼
X
ij

pij

p11

gigj
g21

Wij

¼
X
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðmi −mjÞ2�½s− ðmiþmjÞ2�

sðs− 4m2
1Þ

s
gigj
g21

Wij:

ð4:8Þ

For the coannihilation of particles i and j, Wij is the
annihilation rate per unit volume and unit time,

Wij ¼ 4pij
ffiffiffi
s

p
σij ¼ 4σij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi · pjÞ2 −m2

i m
2
j

q
¼ 4EiEjσijvij; ð4:9Þ

where

pij ¼ ½s − ðmi þmjÞ2�1=2 · ½s − ðmi −mjÞ2�1=2=ð2
ffiffiffi
s

p Þ
ð4:10Þ

is the common magnitude of the 3-momentum of
particles i and j in the center-of-mass frame of the
i-j pair.
Returning to the specific model we consider in this study

and the computation of the Bino relic density, processes
involving states besides the Bino can indeed contribute to
the effective annihilation rate. Both the smuons, introduced
as key ingredients for satisfying gμ − 2, and the sneutrino,
introduced for theoretical consistency, may have rates for
pair annihilations and coannihilations with Binos larger
than the Bino pair annihilation rate. If one or more of these
scalars are sufficiently degenerate in mass with the Bino
then its relic density can be depleted to the level favored by
cosmological measurements. Table I contains the full list of
annihilation and coannihilation processes which are
included in our analysis; the relic density computation is
then performed via a proper implementation of the model in
the DarkSUSY package [83].
In Fig. 2, for fixed values of the parameter y and models

matching the central value in Δaexpμ , we show the mass
splitting between the Bino and coannihilating states which
yields a Bino thermal relic density matching the central
value of the dark matter density measured by Planck [84],

ΩDMh2 ¼ 0.11933� 0.00091: ð4:11Þ

The left panel refers to models on the “right-handed”
branch (RHB), while the right panel to the “left-handed”
one (LHB); with the exception of the case in which y ¼ 50,
for the sample set of y displayed the two branches do not
join. On the RHB the relevant quantity is the mass splitting
between the Bino and the (mostly right-handed) lightest
smuon. For the LHB, we have fixed the mass splitting
parameter ΔM2

W in the sneutrino mass Eq. (2.6) to its
MSSM value, ΔM2

W ≃M2
W . From the related discussion of

the mass spectrum in Sec. II, recall that small smuon
mixing angles imply M2

ν̃μ
≲M2

μ̃1
and the mass hierarchy

can flip as the mixing angle increases. As shown in the left
panel of Fig. 1, satisfying gμ − 2 requires the smuon mixing
angle to become larger as MB̃ increases. Also, the increase
in the mixing angle must be more pronounced at smaller
MB̃ for smaller values of y. Thus, at small Bino masses and
low y on the LHB, the sneutrino is the next-to-lightest BSM
state and its coannihilations drive the relic density. At
moderate values of y, the lightest smuon (in this case
mostly left-handed) may become lighter than the sneutrino
for models that satisfy both the relic density and gμ − 2. For
example, the lightest smuon becomes lighter than the
sneutrino at Bino masses larger than about 350 GeV for
y ¼ 15, and larger than about 220 GeV for y ¼ 25.
Another point worth noting: At values of y≲ 15 the

parameter dependence of models that satisfy the relic
density follows from the intuition that increases to the
Bino mass must be compensated for by smaller mass

TABLE I. Included coannihilation processes through s-, t-, u-
channels and four-point interactions (p).

Diagrams

Process s t u p

B̃0B̃0 → νμν̄μ ν̃μ ν̃μ
B̃0B̃0 → μ−μþ μ̃1;2 μ̃1;2

μ̃iB̃0 → Z0μ−; γμ−; H0μ− μ− μ̃1;2
μ̃iB̃0 → W−νμ μ− ν̃μ

μ̃iμ̃
�
j → ff̄ H0; Z0; γ

μ̃iμ̃
�
j → μ−μþ H0; Z0; γ B̃0

μ̃iμ̃j → μ−μ− B̃0

μ̃iμ̃
�
j → W−Wþ H0; Z0; γ ν̃μ p

μ̃iμ̃
�
j → Z0Z0; H0H0 H0 μ̃1;2 μ̃1;2 p

μ̃iμ̃
�
j → Z0γ μ̃1;2 μ̃1;2 p

μ̃iμ̃
�
j → γγ; γH0 μ̃1;2 μ̃1;2

μ̃iμ̃
�
j → Z0H0 Z0 μ̃1;2 μ̃1;2

ν̃μB̃0 → Z0νμ; H0νμ νμ ν̃μ
ν̃μB̃0 → Wþμ− νμ μ̃1;2

ν̃μν̃
�
μ → ff̄ H0, Z0

ν̃μν̃
�
μ → νμν̄μ Z0 B̃0

ν̃μν̃
�
μ → νμνμ B̃0

ν̃μν̃
�
μ → W−Wþ H0, Z0 μ̃1;2 p

ν̃μν̃
�
μ → Z0Z0; H0H0 H0 ν̃μ ν̃μ p

ν̃μν̃
�
μ → Z0H0 Z0 ν̃μ ν̃μ

ν̃μμ̃
�
i → fuf̄d Wþ

ν̃μμ̃
�
i → νμμ

þ Wþ B̃0

ν̃μμ̃i → νμμ
− B̃0

ν̃μμ̃
�
i → WþZ0 Wþ μ̃1;2 ν̃μ p

ν̃μμ̃
�
i → Wþγ Wþ μ̃1;2 p

ν̃μμ̃
�
i → WþH0 Wþ μ̃1;2 ν̃μ
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splittings between the Bino and the coannihilating scalars.
As the Bino mass increases, the masses of the scalars
increase as well and the rates of the associated annihilation
and coannihilation processes are suppressed. A decrease in
the mass splitting can increase the weights of these
processes in the effective thermally averaged annihilation
cross section. The larger the Bino mass, the smaller the
mass splitting, until the effect saturates at a maximum
mass and zero mass splitting. Thus, incorporating the relic
density constraint sets an upper bound MB̃ ≲ 400 GeV
virtually independent of y≲ 15, which only enters margin-
ally in the setting the effective annihilation rate. With the
exception of the case with the smallest y ¼ 1, this upper
bound on the Bino mass is more stringent than those which
arise from requiring gμ − 2 alone.
Going to larger values of y in Fig. 2, we see the trend can

change drastically. Specifically, for y ¼ 25 (RHB) and
y ¼ 50 (RHB and LHB), we see that satisfying the relic
density and gμ − 2 for larger Bino masses requires the mass
splittings to remain roughly constant or even become larger.
In contrast to the cases with y≲ 15, this trend suggests that
the rates for the most relevant annihilation and coannihi-
lation processes can grow for larger particle masses and a
corresponding increase in the mass splitting must decrease
the weights of these processes in the effective thermally
averaged annihilation cross section. We investigate the
manifestation of this peculiar behavior in the cross sections
most relevant for the calculation of the relic density at large
y at the end of this Section. Also, assuming that y is
associated with a trilinear coupling between the SM
Higgs and the smuons, we perform a detailed analysis of
perturbative unitarity and EW vacuum stability in Sec. V.
We indicate the results of the analysis in Sec. V with the
colored markers along curves for larger y in Fig. 2. ForMB̃

larger than the “x” along a given curve, such models have
short-lived metastable EW vacua and, for MB̃ larger than
the square along a given curve, such models are constrained
by perturbative unitarity. We see that these conditions
arising from theoretical self-consistency can severely
restrict the parameter space of our model.
Before considering the theoretical self-consistency of our

model in detail, we further explore the parameter space at
large y to identify regions which can satisfy both gμ − 2 and
the relic density for MB̃ ≳ 400 GeV. This parameter space
is best illustrated in scans with a fixed mixing angle θμ̃ and
varying y, as shown in Fig. 3. For mixing angles fixed to
θμ̃ ¼ −π=2þ π=64 (RHB) and θμ̃ ¼ −π=64 (LHB), MB̃ ≃
500 GeV is determined by Δaμ almost independently of y.
Also, since y is large enough in these cases such that
coannihilation processes drive the relic density, increases in
y enhance the effective annihilation rate and must be
compensated for by larger mass splittings. For larger smuon
mixing angles, the relationship between the mass splittings
and y is similar but the MB̃ required to satisfy gμ − 2 for a
given value of y largely follows from the parameter
dependence of Δaμ shown in the right panel of Fig. 1.
For the higher mass scales associated with the coanni-

hilating particles in models with larger mixing angles
shown in Fig. 3, the contributions to the most relevant
cross sections from terms involving the trilinear coupling
are suppressed. However, as for the cases with large y in
Fig. 2, the cross sections for processes which involve gauge
interactions can grow with the coannihilating particle
masses in models with moderately large y and sizable
left-right mixing. Again, a corresponding increase in the
mass splitting is necessary to compensate for this peculiar
effect. Similarly to Fig. 2, the colored markers along the
curves in Fig. 3 indicate the largest y value along a given

FIG. 2. Relative mass spitting between lightest smuon and Bino (solid lines) and sneutrino and Bino (dashed lines) required for
coannihilation processes to drive the thermal relic density of the Bino to match the observed dark matter density. A few values of the
smuon mass splitting parameter y have been selected along the right-handed branch (left panel) and the left-handed branch (right panel).
All models displayed match the gμ − 2 excess. As discussed in Sec. V for cases with larger y associated with a trilinear coupling between
the SM Higgs and the smuons, we also indicate constraints for MB̃ along the respective curves arising from perturbative unitarity
(square) and EW vacuum stability (“x”).
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curve which is consistent with a sufficiently long-lived
metastable EW vacuum and perturbative unitarity. We can
see that vacuum stability constrains all points show which
assume maximal smuon mixing while severely restricting
the viable y for other mixing angles. However, for
θμ̃ ¼ −π=2þ π=8, points with MB̃ ≃ 1 TeV remain which
can satisfy both gμ − 2 and the relic density.
For cases considered above with arbitrarily large y, it is

clear that the relic density constraint is not setting an upper
limit on the Bino mass because of the peculiar behavior
of the cross sections which yield the dominant contribu-
tions to the effective annihilation rate. To illustrate this
point further, we take one step back and we rewrite the
effective thermally averaged annihilation cross section
from Eq. (4.7) as

hσeffvi ¼
Z

∞

0

dpeff
WeffðpeffÞ
4E2

eff

κðpeff ; TÞ; ð4:12Þ

where Eeff ¼ ðp2
eff þM2

B̃
Þ1=2 is the energy per particle in

the center of mass frame for Bino pair annihilation. The
term we have isolated, Weff=4E2

eff , can be thought of as an
effective σv term [compare with Eq. (4.9)]. In the peff → 0
limit, it reduces to the DM annihilation rate at zero temper-
ature,which is the relevant quantity for indirectDMdetection
of signals from DM pair annihilation. With Eq. (4.12) in this
form, the function κ contains the Boltzmann factors and the
phase-space integrand term fromEq. (4.7). In effect, κ can be
interpreted as a window function that, at a given temperature
T, selects the range of peff which is relevant in the thermal
average. The phase-space integrand term dominates at small

peff such that κ ¼ 0 at peff ¼ 0. The function κ exhibits a

peak at intermediate peff and then rapidly decreases with
larger peff due to the Boltzmann suppression in the thermal
particle distributions; the position and height of the peak
depends on the temperature considered and on the particles
involved.
In the left panel of Fig. 4 the thick solid line displays

Weff=4E2
eff versus peff for a sample model in our scans

matching the gμ − 2 excess and the relic density constraint.
We consider a point withMB̃ ¼ 300 GeV along the LHB at
y ¼ 15, and relative mass splittings with the lightest smuon
and the sneutrino being, respectively, 1.85% and 1.33%;
the mixing angle is about θμ̃ ≃ −1.6°. The effective rate
picks up contributions from individual annihilation and
coannihilation channels, with each contribution appearing
at thresholds in peff corresponding the value of

ffiffiffi
s

p
equal

to the sum of the masses of the initial state particles.
Regarding individual terms, we display the two allowed
tree-level final states for the Bino pair annihilations (with
the s-wave contribution suppressed and the p-wave con-
tribution taking over). For each coannihilation process, we
display the final state providing the largest contribution to
the thermally averaged annihilation cross section. The role
of coannihilating particles is made explicit by the weight
function κ, which is also displayed in the plot. κ is plotted at
the freeze out temperature, chosen here for illustrative
purposes to be the temperature at which the abundance of
the relic species is 50% higher than the equilibrium value.
At the top of the panel, the tick mark labeled “1” indicates
the position of the momentum pmax

eff corresponding to the
maximum of κ, while the other tick marks indicate the

momenta pðnÞ
eff at which κðpðnÞ

eff Þ=κðpmax
eff Þ ¼ 10−n. The tick

marks provide a visual guide to the interval in peff which is

FIG. 3. The same as in Fig. 2, but choosing a few sample values of the mixing angle θμ̃ and varying y in the range [1,300]. Along each
line, the small black markers indicate values of y, starting from the smallest mass splitting, y ¼ 30, 40, 50, 60, 70, 80, 90, 100, 200, and
the endpoints at y ¼ 300; for θμ̃ ¼ −π=2þ π=64 only, the black marker at the smallest mass splitting indicates y ¼ 20. Larger colored
markers correspond to upper limits on y along the curves from perturbative unitarity (square, circle) and EW vacuum stability (“x”), see
Sec. V for details. Note that EW vacuum stability constrains all models with θμ̃ ¼ −π=4 and all models in the right panel are constrained
except for a subset of those with θμ̃ ¼ −π=64. Perturbative unitarity constrains no models displayed for either θμ̃ ¼ −π=2þ π=64
or θμ̃ ¼ −π=64.
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relevant in the thermal averaging: the convolution of
Weff=4E2

eff with κ gives hσeffvi thermally averaged at the
freeze out temperature, shown in the figure as a horizontal
thin dotted line and in fair agreement with what is expected
based on the rule of thumb in Eq. (4.1).
The sample model we have considered illustrates rather

generic trends: There is no single coannihilating channel
which is clearly driving the system of coupled Boltzmann
equations, nor a single final state dominating the annihi-
lation rate for a given pair of particles in the initial state; a
slight change in any parameter of our model drives a
“coherent” shift for several terms. The other recurrent
feature is the small contributions from Bino pair annihi-
lation relative to all of the other terms, indicating the Bino
relic density is extremely sensitive to the mass splittings
between the Bino and the lightest scalars. In particular,
from the point of view of the relic density calculation, a
slight change in the Bino mass can be consistent with
relatively large and compensatory changes of the param-
eters to which the coannihilation rates are most sensitive,
specifically the mass splittings and y.
To investigate the peculiar relation between Bino mass

and mass splitting with the coannihilating particle at
moderate to large values of y found in Figs. 2 and 3, we
consider the process:

μ̃iðp1Þ þ μ̃�jðp2Þ → W−ðk1Þ þWþðk2Þ: ð4:13Þ

For lightest smuons in the initial state (i ¼ j ¼ 1), going to
heavy masses and large y, this is one of the channels with
largest weights in the effective annihilation rate. The right

panel of Fig. 4 shows the relative contribution of this single
coannihilation process to the total effective annihilation rate
for the models with the moderate to large values of y
already considered in Fig. 2; it can reach a level of 40% for
MB̃ ≃ 1 TeV along the RHB.
At any point in the parameter space considered here, the

cross section for the process in Eq. (4.13) correctly scales as
σij ∝ 1=s for s → ∞. On the other hand, the cross section is
not s-wave suppressed and the limit that is most relevant for
the effective thermally averaged annihilation rate is the one
in which the three-momenta of the initial state particles
jp⃗1;2j → 0. In this limit and forMμ̃i ; Mμ̃j ≫ MW, one would
generally expect that σijv scales as the inverse of the square
of the masses in the initial state or, equivalently, that the
amplitude squared scales a constant function of the smuon
masses. This does not happen for a generic slicing of our
parameter space: as we detail in the following, y appears
again, at different levels, as a crucial parameter.
The expression of the modulus squared of the amplitude,

summed overW polarizations, for jp⃗1;2j → 0 takes the form

X
λλ0

jMijj2 ¼ g2
��

Aij

ðMμ̃i þMμ̃jÞ2
4M2

W
−Aijþ

Bij

2

�2
þBij

2

2

�
;

ð4:14Þ
where Aij and Bij are given in terms of contributions from
the diagrams with ν̃μ in the t-channel, the four-point
smuon-W vertex, and H0 in the s-channel (see Table I
and note that the diagrams with γ and Z0 in the s-channel do
not contribute in the limit jp⃗1;2j → 0):

FIG. 4. Left panel: The thick solid line is the effective annihilation cross section plotted versus the effective momentum for a sample
DM model, see the text for details; also shown are individual contributions from the two tree-level final states in the Bino pair
annihilation channel and from a single final state in each coannihilation channel, the one providing the largest contribution to the
thermally averaged annihilation cross section. The dotted line is the weight function κ, computed at the freeze-out temperature and
rescaled by a factor of 100, given in units of GeV−1 still referring to the displayed vertical axis scale; the convolution ofWeff=4E2

eff with
κ gives the thermally averaged effective annihilation cross section, shown in the plot as a horizontal thin dotted line. Right panel:
Relative weight of μ̃1μ̃�1 → W−Wþ in the thermally averaged effective annihilation cross section for a subset of models displayed
in Fig. 2.
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Aij ¼ Cν̃μij þ Cpij þ CH0ij Bij ¼ Cpij þ CH0ij

Cν̃μij ¼
2Mμ̃iMμ̃j

−Mμ̃iMμ̃j −M2
ν̃μ
þM2

W
UiLUjL Cpij ¼ UiLUjL

CH0ij ¼
2M2

W

ðMμ̃i þMμ̃jÞ2 −M2
H0

yH0ij; ð4:15Þ

with the Higgs coupling that, within the MSSM-like
scheme introduced in Eq. (2.7), is given by

yH0ij ≡ 1 − tan2θW
2

UiLUjL þ tan2θWUiRUjR

þ ysgnðsinð2θμ̃ÞÞðUiLUjR þ UiRUjLÞ; ð4:16Þ

and we have generically indicated with UiL and UiR the
projection of the smuon i on, respectively, the left- and right-
handed fields. The expression in Eq. (4.14) shows that the
modulus squared of the amplitude would not increase with
the smuon masses only if the inverse scaling with M2

W is
canceled out, i.e., ifAij ∝ M2

W forMμ̃i ; Mμ̃j ≫ MW (there is
no inverse scalingwithM2

W inBij). Since this is explicitly the
case for the CH0ij term, one only needs to examine the
behavior of the ν̃μ and four-point contributions.
We do this check for the sample case of annihila-

tion between the lightest smuons, i.e., when i ¼ j ¼ 1;
inserting the expression for the sneutrino mass Eq. (2.6),
one finds

Cν̃μ11 þ Cp11 ¼
�
1 −

1

1 − ðM2
W þ ΔM2

WÞ=ð2M2
μ̃1
Þ þ j tanðθμ̃Þjy ·M2

W=M
2
μ̃1

�
cos2ðθμ̃Þ: ð4:17Þ

Considering first a purely left-handed lightest smuon,
θμ̃ ¼ 0, one sees that A11 ∝ M2

W can be obtained only if
the splitting jΔM2

W j in the sneutrino mass squared is not
much larger than M2

W , i.e., the sneutrino decoupling limit
cannot be taken. For example, in the MSSM-like case with
ΔM2

W ¼ M2
W , one finds Cν̃μ11 þ Cp11jθμ̃¼0 ¼ −M2

W=M
2
μ̃1
þ

OðM4
W=M

4
μ̃1
Þ. Allowing for θμ̃ ≠ 0, on the LHB an analo-

gous expansion can only be performed if j tanðθμ̃Þyj does
not become large, namely for moderate values of y. On
the RHB, j tanðθμ̃Þyj is large even for small y and the
cancellation between the leading terms of the sneutrino and
4-point diagrams does not take place. However the term
is suppressed if the cos2ðθμ̃Þ factor in the numerator is
sufficiently small (the two diagrams are relevant only for
left-handed interaction eigenstates). In summary, for mod-
erate to large values of y and sizable left-right mixing, the
annihilation cross section for the lightest smuons (as well as
other processes) can potentially grow as the masses of the
coannihilating particles increase. This peculiar effect can be
particularly important for models fulfilling gμ − 2 and the
relic density in Fig. 2, but is also relevant for the models
shown in Fig. 3.
While this statement holds regardless of what is assumed

for the coupling yH0ij, within our MSSM-like scheme a
large Higgs contribution to the amplitude is also present for
sizable left-right mixing and large y, simply because both
enter linearly in yH0ij. More specifically, we can go back to
Eq. (4.16) and consider the case where the last term
dominates the s-channel Higgs contribution to the ampli-
tude for μ̃iμ̃�j → W−Wþ, i.e.,

yH0ij ≈ ysgnðsinð2θμ̃ÞÞSxijðθμ̃Þ;

Sxðθμ̃Þ≡
�− sinð2θμ̃Þ cosð2θμ̃Þ

cosð2θμ̃Þ sinð2θμ̃Þ
�
: ð4:18Þ

Again focusing on the annihilation between the lightest
smuons, i ¼ j ¼ 1, we have yH011 ≈ −yj sinð2θμ̃Þj. If we
then considerM2

μ̃1
≫ M2

H0, we see there is a contribution to
the amplitude squared in Eq. (4.14) ∝ y2 sin2ð2θμ̃Þ arising
from the corresponding CH011 term in A11. Regarding the
associated cross section for smuon annihilation in the limit
jp⃗1;2j → 0, there is a suppression of this term as Mμ̃1
increases rather than the peculiar growth seen when
considering the spoiled cancellation between gauge inter-
actions described above. However, for fixed Mμ̃1 , this term
from the s-channel Higgs contribution to the amplitude can
raise the smuon annihilation cross section as the mixing
angle is maximized and y is taken to be arbitrarily large.
This scaling explains much of the relationship between y
and the mass splitting shown for models fulfilling gμ − 2

and the relic density in Fig. 3. In addition, as one can see in
the right panel of Fig. 4, on the RHB the Higgs diagram
drives a further enhancement to the smuon annihilation
rate, while on the LHB there is a partial cancellation
between the gauge and Higgs contributions. Such cancel-
lation is accidental for the particular process of the lightest
smuons annihilating toW-bosons and cross sections in this
limit remain potentially problematic for other coannihila-
tion channels, e.g., for the same initial state and two Z0

bosons in the final state.
As a rule of thumb, we could exclude models with too

large couplings/cross sections by implementing limits
imposed by requiring the unitarity of partial wave cross
sections for individual contributions to the effective anni-
hilation cross section [85],

ðσvÞJ ≤
4πð2J þ 1Þ

m2
i v

; ð4:19Þ

where J is the angular momentum and mi is some com-
mon mass of initial state particles. In practice, all models
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displayed in Figs. 2 and 3 do not violate such bounds.
However, models with large y and sizable mixing angles
are severely constrained when considering the unitarity of
the general form of the scattering matrix. Even more
stringent constraints arise from considering the vacuum
structure in our theory and the (meta)stability of the EW
vacuum. We will discuss these issues in the next Section.

V. PERTURBATIVE UNITARITY AND
VACUUM STABILITY

The analysis at the end of the previous section regarding
the squared amplitude of the process μ̃iμ̃�j → W−Wþ sug-
gests that y should not exceed a certain value for a fixed θμ̃.
This condition on y follows from the requirement that the
squared amplitude be sufficiently small for annihilation and
coannihilation processeswhichdeplete the relic density, such
that we are well within the regime for which perturbativity
still holds. Thus, requiring perturbative unitarity can impose
theoretical limits on the allowed couplings andmasses of the
species in our setup. In particular, if we assume the MSSM-
like benchmark for the Higgs trilinear couplings with the
sleptons introduced in Eq. (2.7), theoretical limits on y
correspond to constraints on the off-diagonal coupling
between the Higgs and the smuons. Such a criterion based
on the simple principle of perturbative unitarity has been
used, for instance, in Ref. [86] to obtain an upper bound on
the Higgs mass, long before its discovery.
The key concept behind the determination of constraints

from perturbative unitarity is the condition that one
imposes on the J ¼ 0 partial wave amplitude. We begin
by writing down the condition on the transition matrix
elements Tfi from the unitarity of the S-matrix, i.e.,

ImfTfig ¼
X
k

T�
kfTki: ð5:1Þ

We only consider the block of the S-matrix that corre-
sponds to two-particle initial (i) and final (f) states, i.e.,
processes of type ϕ1ϕ2 → ϕ3ϕ4. The sum in Eq. (5.1) runs
over all possible intermediate states and quartic interaction
terms k. For simplicity, we only consider two-scalar initial
and final states, as well as scalar mediators in the sum on k;
this underestimates the right-hand side of Eq. (5.1), which
leads to conservative bounds. In general, the entries in the
S-matrix depend on the center of mass energy

ffiffiffi
s

p
and the

scattering angle θ, which can be traded with the
Mandelstam variable t; the tree level amplitude for a 2-2
process ϕ1ϕ2 → ϕ3ϕ4 can be heuristically written as

Tfi ¼ c4 þ
cs

s −m2
P;s

þ ct
t −m2

P;t
þ cu
u −m2

P;u
; ð5:2Þ

where c4, cs, ct, and cu are quantities, with the appropriate
mass dimension, that are built from the couplings in the
theory. It is then convenient to sift out the angular

dependence of the scattering amplitudes by implementing
a partial wave decomposition. By projecting the transition
amplitudes on a complete set of Legendre polynomials
PJðcos θÞ, it can be shown that

2Imfafi;Jg ≤
X
k

a�kf;Jaki;J; ð5:3Þ

for all J [87]. Here the partial wave matrix element afi;J is
given by

afi;JðsÞ≡ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p1p3

2δ122δ34s

r Z
1

−1
dðcosθÞTfiðs;cosθÞPJðcosθÞ;

ð5:4Þ
where p1ðp3Þ is the magnitude of the 3-momenta of the
initial (final) states in the barycentric frame, and δ12ðδ34Þ is
zero if particles 1 and 2 (3 and 4) are nonidentical, and 1
otherwise. Further restricting our attention to the J ¼ 0
partial wave, and diagonalizing a0, Eq. (5.3) implies that

the eigenvalues aðiÞ0 ðsÞ must satisfy

ImfaðiÞ0 ðsÞg≤ jaðiÞ0 j2⇒ ½RefaðiÞ0 ðsÞg�2

þ
�
ImfaðiÞ0 ðsÞg−1

2

�
2

≤
1

4
: ð5:5Þ

We emphasize that Eq. (5.5) holds at all orders in
perturbation theory, since there is no assumption that
the amplitudes are truncated at tree level. In the case
where Eq. (5.5) is an equality—an assumption used in
Refs. [88,89]—Eq. (5.5) determines the so-called unitarity

circle in the complex âðiÞ0 ðsÞ plane; any transition amplitude
that satisfies unitarity must lie on this circle. However, at
tree level—the order at which all of the cross sections, e.g.,
for the relic density, are calculated—the transition matrix is
real and symmetric, the eigenvalues are always real, and
thus the partial wave, tree level amplitude will always lie
outside the unitarity circle. In principle, one will approach
the unitarity circle if one includes corrections from all
orders in perturbation theory, including loop contributions,
to the amplitude [88]. An estimate of the amount of loop
corrections to the tree level amplitude, in order to satisfy
unitarity, can be obtained by taking the closest distance d
between the unitarity circle and the tree level amplitude that
lies on the real axis.
The criterion that one can adopt to ensure perturbative

unitarity is to set

a≡ d

maxfjRefaðiÞ0 ðsÞgjg
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2max

p
− 1

2λmax
ð5:6Þ

to be less than some value which ensures the unitarity of
the scattering matrix. Here, i runs over all the eigenvalues
of the partial wave S-matrix. Note that the maximum
eigenvalue λmax is taken over all partial wave S-matrix
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eigenvalues and over all physically allowed s. It is worth
mentioning that we are implicitly pointing out that the
strongest limits from perturbative unitarity can occur at
finite energy in theories with large trilinear couplings,
in contrast with some previous works, e.g., [90,91], that
study limits on quartic couplings in the s → ∞ limit.
Reference [89] adopts jRefλmaxgj ≤ 1=2 for perturbative
unitarity, and jRefλmaxgj ≤ 1=6 to ensure the smallness of
the Born amplitude; each criterion corresponds, respec-
tively, to at most 41% and 16% corrections from higher
orders to ensure unitarity.
Before turning to the constraints that requiring pertur-

bative unitarity can place on our model, we first describe
the full scalar potential in detail. In addition to the mass
term for the sleptons and the trilinear Higgs-slepton
couplings specified in Eq. (2.7), we also must include
quartic terms in order for the potential to be bounded from
below. From the perspective of effective field theory, all
quartic interactions allowed by the symmetries of the
Lagrangian should be included in the scalar potential.
As a benchmark, we consider quartic interactions and
couplings arising from the D-term of the scalar potential
in the MSSM. As discussed in Sec. II, such terms do not
significantly impact the observables in our simplified
model, but can be important for the constraints on our
model arising from perturbative unitarity and EW vacuum
stability. The corresponding terms in the full tree-level
scalar potential are given by

V2 ¼ m2
LLl̃

†
Ll̃L þm2

RRμ̃
†
Rμ̃R þ μ2H†H ð5:7Þ

Vmix ¼ ksðH†l̃Lμ̃
†
R þ l̃†LHμ̃RÞ ð5:8Þ

Vð1Þ
D ¼ g02

2
jYHH†H þ YLl̃

†
Ll̃L þ YRμ̃

†
Rμ̃Rj2 ð5:9Þ

Vð2Þ
D ¼ g2

4

�
trðM2Þ − 1

2
½trðMÞ�2

�
; ð5:10Þ

where μ2 is the Higgs mass parameter,2 ks ≡
ffiffiffi
2

p
gMWy and

M≡HH† þ l̃Ll̃
†
L. The total tree-level potential can then be

written as

V tot ¼ V2 þ Vmix þ Vð1Þ
D þ Vð2Þ

D : ð5:11Þ
Note that the analysis of perturbative unitarity in the
S-matrix proceeds in the physical basis of mass eigenstates
and, thus, the interactions involving the smuons in the scalar
potential above should be considered in terms of the
eigenstates arising from the diagonalization of the smuon
mass matrix described in Sec. II. In order to account for
processes in the S-matrix involving gauge bosons, such as
μ̃iμ̃

�
j → W−Wþ, we work in the Feynman Rξ¼1-gauge.

The Goldstone bosons associated with the SM-like Higgs
doublet then represent the longitudinal polarizations of
the SM gauge bosons and, by the Goldstone boson
equivalence theorem, each has a mass equivalent to the
corresponding gauge boson (for related discussion see
[87,89]). For the analysis of vacuum stability below, it is
more convenient to work in the chiral basis of the smuons
and the unitary gauge.
At this point we can discuss the practical aspects of the

perturbative unitarity analysis for the parameter space of our
model which can satisfy both gμ − 2 and the relic density.We
scan along curves of constant y or constant θμ̃ shown in
Figs. 2 and 3, respectively. For the curves with fixed y,
perturbative unitarity sets a limit on the smuon mixing angle
or, through the dependence of θμ̃ onMB̃ necessary to satisfy
gμ − 2 shown in the left panel of Fig. 1, the masses of the
coannihilating particles. For the curves with fixed θμ̃,
perturbative unitarity sets a limit on y or, equivalently, on
the masses of the coannihilating particles implied by the
dependence of MB̃ on y in the right panel of Fig. 1.
For each parameter point, we construct the J ¼ 0 partial

wave projection of the S-matrix from tree level ampli-
tudes for all 2-particle initial and final states possible in
the scalar potential described above. In principle, the
maximumeigenvalue of the partialwaveS-matrix is obtained
by scanning over all physically allowed

ffiffiffi
s

p
. Through this

process, we extract the maximum eigenvalue λmax as well as
the center of mass energy at which this maximum eigenvalue
occurs, which we refer to as the best energy. However, there
are subtle points thatmust be addressedwhenperforming this
scan in

ffiffiffi
s

p
, particularly in handling the poles associated with

propagators that go on shell. In previous studies of pertur-
bative unitarity [87,92], a pole cutting procedure is imple-
mented in order to avoid artificial enhancements to the
S-matrix elements arising from physical poles. However,
such a proceduremay unnecessarily prune out some portions
of the scan in

ffiffiffi
s

p
, which could result in an underestimate of

the matrix elements containing the poles and weakened
unitarity limits. The specific implementation of the pole
cutting procedure could also not be sufficient to completely
eliminate any enhancements to S-matrix elements associated
with the physical poles, resulting in overly stringent unitarity
limits.
Rather than implementing a similar pole-cutting pro-

cedure in our analysis, we regulate the singular behavior of

2To recover the EW vacuum of the SM, we see that the
potential has a minimum along the field direction of the physical
Higgs boson for μ2 < 0. Note that the associated tadpole
condition fixes the Higgs mass to the Z0-boson mass at tree-
level in the Lagrangian, as for the MSSM in the limit where the
vacuum expectation value (VEV) for one of the Higgs doublets
vanishes. For simplicity, when calculating observables predicted
by our model we assume that some additional mass contributions
(e.g., loops of additional scalars) raise the Higgs mass to what is
observed by LHC, MH0 ≃ 125 GeV. On the other hand, as we
only calculate the constraints from perturbative unitarity and
vacuum stability using the tree-level potential, we assumeMH0 ¼
MZ0 when evaluating constraints on our model from theoretical
consistency.
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poles by introducing an artificial width Γi ¼ bimP to each
propagator with mass mP; here i refers to the width for
s-, t-, or u-channel propagators. We then restrict our scans
in

ffiffiffi
s

p
within the so-called safe intervals for the S-matrix of

a given parameter point. Due to the characteristic scaling of
all S-matrix elements ∝ 1=s, the best energy is typically
located near the kinematic threshold of a certain process.
We therefore define safe intervals to be bounded from
below in

ffiffiffi
s

p
by the kinematic thresholds for all possible

2-particle states in our model and bounded from above by
some constant multiple of each kinematic threshold, 1þ η.
We then ensure that each safe interval does not overlap with
intervals in

ffiffiffi
s

p
that are centered about the physical poles.

We shall refer to these as pole intervals; for center of mass
energy associated with each pole

ffiffiffiffiffi
s�

p
, the pole interval is

defined as ½ ffiffiffiffiffi
s�

p ð1 − ϵÞ; ffiffiffiffiffi
s�

p ð1þ ϵÞ�. For any safe interval
not associated with the highest kinematic threshold which
does overlap with a pole interval, we remove the safe
interval from our scan of the S-matrix. We keep the safe
interval associated with the highest kinematic threshold in
all scans of

ffiffiffi
s

p
since that interval typically contains the

largest eigenvalue not enhanced by a physical pole.3

The algorithm outlined above can be efficiently imple-
mented by first specifying our model in SARAH [93], and
then generating the associated SPheno [94,95] code for
scans of the S-matrix. We have modified the SPheno code
to accommodate for the widths in the s=t=u-channel
propagators and we have not implemented any of the

available pole cutting procedures. We fix the coefficients of
the widths to be bs ¼ bt ¼ bu ¼ 0.5 and define the safe and
pole intervals with the parameters η ¼ 0.25, ϵ ¼ 0.1. In the
left panel of Fig. 5 we show the maximum eigenvalues of
the S-matrix as a function of y along the curves of constant
θμ̃ from Fig. 3, for which gμ − 2 and the relic density limits
are satisfied. Similar constraints from perturbative unitarity
can be obtained for the viable parameter points shown in
Fig. 2, for which we have instead fixed y and scanned along
θμ̃. In both Figs. 2 and 3, the square and circle markers
correspond to λmax ¼ 1=6 and 1=2, respectively. The solid
curves in Fig. 5 correspond to smuon mixing angles on
the LHB, θμ̃ ¼ −π=n, n ¼ 4, 8, 16, 32, and 64; the dashed
curves refer to smuon mixing angles on the RHB,
θμ̃ ¼ −π=2þ π=n, n ¼ 8, 16, 32, and 64. For each iso-
θμ̃ curve, λmax increases with y; meanwhile, for fixed y, λmax

increases as we move towards maximal mixing, i.e., θμ̃ →
−π=4 from either the LHB or RHB.
Both of these trends can be explained by the dominant

contributions to the S-matrix, which can be traced back to
processes that involve the “dangerous” trilinear terms in the
scalar potential ∝ y. The dominant S-matrix element can
involve one or two of these vertices, which is enhanced
by either increasing y for fixed θμ̃ or θμ̃ approaching
maximal mixing for fixed y. This functional dependence of
the S-matrix elements is consistent with the scaling of the
corresponding annihilation and coannihilation rates dis-
cussed at the end of Sec. IV. As depicted in the right
panel of Fig. 5 for a representative case, the best energy
located within a safe interval is typically above the
maximum possible threshold 2Mμ̃2 for a given spectrum.
This suggests that the most important contribution ulti-
mately comes from S-matrix elements with couplings
like yH022 ≈ yj sinð2θμ̃Þj, as defined by Eq. (4.18).

FIG. 5. Left panel: Plot of the maximum S-matrix eigenvalue as a function of y, along curves of constant θμ̃ where both gμ − 2 and the
relic density are satisfied. The LHB (solid curves) corresponds to θμ̃, while the RHB (dashed curves) corresponds to −π=2 − θμ̃. The
horizontal green and red dashed lines correspond to upper limits of 1=6 and 1=2, respectively. Right panel: Scans in

ffiffiffi
s

p
for a benchmark

value of y ≃ 41, for fixed θμ̃ values −π=8 and −π=2þ π=8 in the LHB and RHB, respectively. The black dot-dashed line corresponds to
the

ffiffiffi
s

p
of the maximum possible threshold, while the blue vertical lines correspond to the values of

ffiffiffi
s

p
which gives the maximum

eigenvalue across all safe intervals.

3We leave a detailed comparison of the different techniques
used to analyze perturbative unitarity to future work, which will
also include an investigation of semianalytic approximations for
the bounce action discussed below in the context of EW vacuum
stability.
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Clearly, this coupling increases with y for fixed θμ̃ and
reaches a maximum at fixed y when θμ̃ → −π=4. Also,
since jyH022ð−π=4þ βÞj ¼ jyH022ð−π=4 − βÞj, the domi-
nant S-matrix element on the LHB is the same as that on the
RHB. This match can be seen in the left panel of Fig. 5,
where the curves for θμ̃ and −π=2 − θμ̃ are nearly identical.
Additional constraints can be placed on the trilinear

coupling in our model by considering the (meta)stability
of the EW vacuum. The EW vacuum is said to be
absolutely stable if it corresponds to the global minimum
of the potential. Otherwise, the EW vacuum is said to be
metastable and tunneling to the true vacuum of the theory
will occur over some time scale which should be suffi-
ciently long relative to the age of the Universe. This kind
of analysis has been implemented in, e.g., [64,96–98]; in
particular, Ref. [64] shows that the EW vacuum can be
sufficiently long-lived in the MSSM with maximally mixed
staus as heavy as ∼1 TeV.
If we return to the scalar potential in Eq. (5.11), we can

work in the unitary gauge and perform SU(2) rotations on
the Higgs and left-handed slepton doublet. Any scalar field
ϕ can be written in terms of its real and imaginary parts,
such that

ϕ ¼ 1ffiffiffi
2

p ϕR þ iffiffiffi
2

p ϕI; ð5:12Þ

the normalization factor 1=
ffiffiffi
2

p
ensures that we have

canonical kinetic terms for ϕR and ϕI . We assume
CP-conservation in the scalar potential and a phase rotation
on a field does not change the total potential, and hence we
can simply work with the real parts of the different scalar
fields. Letting h be the real component of the neutral Higgs,
X and Y be the real parts of ν̃ and μ̃L, respectively, and Z be
the real part of μ̃R, we have

V2 ¼
m2

LL

2
ðX2 þ Y2Þ þm2

RR

2
Z2 þ μ2

2
h2 ð5:13Þ

Vmix ¼
ksffiffiffi
2

p hYZ ð5:14Þ

Vð1Þ
D ¼ g02

32
½h2 − ðX2 þ Y2Þ þ 2YRZ2�2 ð5:15Þ

Vð2Þ
D ¼ g2

32
½h4 − 2h2ðX2 − Y2Þ þ ðX2 þ Y2Þ2�: ð5:16Þ

With the relevant form of the scalar potential in hand, we
now consider the vacuum structure. The EW vacuum
corresponds to the minimum of the potential which devel-
ops when only the real part of the Higgs acquires a VEV,
vEW ¼ 246 GeV. When the real parts of the scalar fields
other than the Higgs also acquire VEVs, the potential
can develop additional extrema due to the trilinear term.
In particular, for the large trilinear couplings necessary

to satisfy muon g − 2 and the relic density, the global
minimum of the potential corresponds to vacuum configu-
rations where the Higgs and smuons acquire VEVs ≫ vEW.
In addition to the global minimum, the trilinear term
coupling the smuons to the Higgs also gives rise to a
saddle point (SP) in the scalar potential. As we shall see,
consideration of this saddle point is important when
calculating the tunneling rate between vacua. Note that
the sneutrino VEV vanishes for any vacuum configuration
associated with the above potential and, thus, we only
consider field trajectories involving the Higgs and smuons
(i.e., X ¼ 0) in the analysis that follows.
The probability of tunneling from the EW vacuum to the

global minimum of the tree-level potential at zero temper-
ature is given by [97]

P ¼ expð−M4Ṽ light-conee−BÞ; ð5:17Þ

where M is a characteristic scale of the theory and the
spacetime volume of the past light-cone can be written in
terms of the current value for the Hubble parameter
V light-cone ∼ 0.15=H4

0. While a precise determination of
M is beyond the scope of this work, Ref. [97] demonstrates
that the EW vacuum can be considered metastable over
timescales longer than the age of the universe for B≳ 440
after considering a range of M within several orders of
magnitude of the EW scale, ∼1 TeV. The four dimensional
Euclidean bounce action is

B ¼
Z

∞

0

dρ½T þ V�; T ¼ π2

2
ρ3
�
1

2

X
ϕ¼h;Y;Z

�
dϕ
dρ

�
2
�
;

V ¼ π2

2
ρ3V totðh; Y; ZÞ ð5:18Þ

for bounce solutions which are functions of the Euclidean
radius, ρ2 ¼ P

i x
2
i − t2, along the field trajectories

between the true vacuum (TV) and false vacuum (FV).
For field configurations which extremize the bounce action,
the Euclidean equation of motion and boundary conditions
for each field are given by

d2ϕ
dρ2

þ 3

ρ

dϕ
dρ

¼ ∂V tot

∂ϕ ; ϕð0Þ ¼ ϕTV; ϕð∞Þ ¼ ϕFV;

dϕ
dρ

ð0Þ ¼ dϕ
dρ

ð∞Þ ¼ 0: ð5:19Þ

In our specific case with three relevant fields, the equations
of motion are analogous to a particle moving through a 3D
potential. However the potential is inverted relative to the
total potential (i.e., −V tot) and the particle is also subject to
a path-dependent drag term, which becomes singular as
ρ → 0. In practice, the calculation of the field configuration
which minimizes the bounce action is often treated as
boundary value problem where an initial ansatz for the field
trajectory begins near the inverted global minimum of the
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potential and the bounce solution is iterated for different
initial conditions until finding a field trajectory which ends
on top of the inverted false minimum.
We calculate the bounce action for tunneling out of

the EW vacuum using FindBounce [99]. The package
implements a semianalytical calculation of the bounce
solution by first discretizing the potential into an inter-
connected series of finite, linear segments along the initial
ansatz for the field trajectory. The associated polygonal
bounce solution is then constructed by solving for the field
trajectory along each segment, requiring the piecewise
function to be continuous and differentiable at each
segmentation point. Subsequently, the bounce solution
can be perturbatively improved by expanding the potential
to higher order at each segmentation point and iteratively
building upon the polygonal bounce solution. FindBounce
is particularly well suited for the potentials we consider
since the large trilinear terms necessary to satisfy gμ − 2

and the relic density are associated with bounce solutions
which deviate significantly from straight lines in field space
connecting the true and false minima.
In the left panels of Fig. 6, we plot the value of the scalar

potential along the field trajectories corresponding to the
bounce solutions for several points from Fig. 3 which
satisfy both gμ − 2 and the relic density. The black curves
correspond to the bounce solution for the model with
θμ̃ ¼ −π=2þ π=8 and y ≃ 23, for which the bounce action
is B ≃ 432. The model for the bounce solution shown by
the blue curves holds y constant but reduces the mixing to

θμ̃ ¼ −π=2þ π=16 (B ≃ 469), while the red curves corre-
spond to a model with θμ̃ ¼ −π=2þ π=8 but the trilinear
coupling is reduced to y ≃ 21 (B ≃ 530). The top left panel
shows the potentials near the beginning of the respective
field trajectories4 and each curve is normalized to the value
of the potential at the TV for the corresponding model. For
all models shown, we see that the bounce solutions begin
trajectories fairly displaced from the TV, but that models
with smaller y or θμ̃ further from maximal mixing tend to
have trajectories which start marginally closer to the TV.
This follows from the TV being deeper for models with
larger trilinear couplings or mixing angles closer to
maximal and, thus, the associated bounce solutions can
begin relatively further from the TV in order for the
trajectories to end in the FV. In addition, field trajectories
for models with deeper minima tend to move more quickly,
in terms of the Euclidean radius ρ, through the potential
from the respective starting points of each bounce solution.
We can see the cumulative effect of the slower moving

bounce solutions in the lower left panel of Fig. 6, which is
similar to the top panel but for ρ which is near the SP for
each trajectory. In particular, for the bounce solution
corresponding to the model with θμ̃ ¼ −π=2þ π=8 and

FIG. 6. Left panels: Plots of the potential as a function of Euclidean radius ρ along the field trajectories corresponding to the bounce
solutions for points shown in Fig. 3 with θμ̃ ¼ −π=2þ π=8 and y ≃ 23 (black lines, B ≃ 432); θμ̃ ¼ −π=2þ π=16 and y ≃ 23 (blue,
B ≃ 469); θμ̃ ¼ −π=2þ π=8 and y ≃ 21 (red, B ≃ 530). We show the potential at the beginning of the trajectory (normalized to its value
at the TV) for each bounce solution in the top panel, while we show the potential along the field trajectory near the SP (normalized to its
value at the SP) in the bottom panel. Right panel: Plot of the separate contributions from the kinetic energy (dashed lines) and potential
(dot-dashed) to the integrand for the bounce action, along with the sum (solid). The line colors correspond to the same models as in the
left panel. Note that we have rescaled the kinetic term, potential and the Euclidean radius in Eq. (5.18) to be dimensionless and the
bounce solutions all converge to the EW vacuum at ρ ≃ 270.

4For both numerical stability of the FindBounce solutions and
visual clarity, we have rescaled the kinetic term, potential and the
Euclidean radius in Eq. (5.18) to be dimensionless. Note that the
bounce action we consider here is invariant under such trans-
formations.
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y ≃ 21 (red curve) the slower start at small ρ can lead to a
significantly larger ρ at which the potential is maximized
along the field trajectory. While the delay of Δρ ≃ 2might
not seem particularly relevant for bounce solutions which
extend to ρ ≃ 270, note that the integrand in Eq. (5.18) is
∝ ρ3 so that even such a small delay in the field trajectory
can have a significant impact on the bounce action. The
manifestation of these effects in the calculation of the
bounce action is clearer in the right panel of Fig. 6, in
which we have plotted the separate contributions to the
integrand in Eq. (5.18) from T and V, as well as the sum.
After accounting for the factor of ρ3 in the integrand, we
see how the smuon mixing angles closer to maximal and
larger y ultimately yield smaller bounce actions. As
mentioned above for models with deeper true minima,
the contribution to the bounce action from V is smaller
since the field trajectory in such cases is able to start
further away from the TV and moves away from the
starting point of the trajectory at smaller values of ρ. If we
then look to the associated contribution to the bounce
action from T , we see that smaller values of the potential
at the beginning of the trajectory lead to smaller sub-
sequent contributions from the kinetic energy. As a
consequence, the cancellation between the two contribu-
tions when summed is more precise for models with
deeper true minima and the resulting bounce action is
smaller.
More generally, the bounce action increases for poten-

tials with smaller trilinear terms until EW vacuum becomes
the global minimum of the scalar potential. For all points
we consider which satisfy both the relic density and the
gμ − 2, the EW vacuum is metastable. In Fig. 7, we show

the dependence of the bounce action onMB̃ for points from
Fig. 2 and on y for points from Fig. 3. As in Fig. 6, we see
the bounce action decreases for models with larger y and
mixing angles closer to maximal. To constrain the param-
eter space of our simplified model, we interpolate to find
the point on each curve which corresponds to a bounce
action of B ¼ 440. We consider all points along the curves
with B < 440 to be excluded since the tunneling time the
EW vacuum to the TV is not sufficiently large compared to
the age of the Universe. For the points which satisfy gμ − 2

and the relic density with larger y in Fig. 2, the constraints
on MB̃ vary significantly depending on the value of y,
with MB̃ ≲ 800 GeV for y ¼ 25 and MB̃ ≲ 250 GeV for
y ¼ 50. For model points from Fig. 3, we see the
constraints on the trilinear coupling vary from y≲ 30 for
the mixing angles further from maximal to y≲ 25 for
mixing angles closer to maximal. When compared to the
constraints from perturbative unitarity, it is clear at least for
the simplified model we have implemented that requiring a
sufficiently stable EW vacuum provides for a more strin-
gent limitation on the viable parameter space.

VI. DIRECT DETECTION

In this Section we consider the prospects of testing our
model by detecting the nuclear recoils induced by DM-
nucleus elastic scattering. Since the Bino DM candidate in
our model has no tree-level couplings to quarks, such direct
detection signals are in general expected to be small, except
for specific regions in parameter space in which the leading
1-loop contributions to the scattering cross section can be
enhanced. We calculate the sensitivity of direct detection

FIG. 7. Left panel: Plot of the bounce action as a function of MB for the models with fixed y satisfying gμ − 2 and the relic density in
Fig. 2. Right panel: Plot of the bounce action as a function of y for the models with fixed smuon mixing angle satisfying gμ − 2 and the
relic density in Fig. 3. The horizontal blue dashed lines show the lower limit B > 440, below which the EW vacuum is short-lived
compared to the age of the Universe. In both panels we fit curves to the bounce actions calculated by FindBounce at points with
200≲ B≲ 1000, as the calculation can become numerically unstable for models with B ≪ 440 or B ≫ 440. The dependencies of the
bounce actions are good fits for model points along both of the corresponding RHB and LHB in Figs. 2 and 3. In the right panel, we label
each curve for the mixing angle, θμ̃, corresponding to points from Fig. 3 along the LHB, but the fit is also valid for points along the RHB
in Fig. 3 for smuon mixing angles −π=2 − θμ̃.
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searches to our model within the effective field theory
(EFT) framework for WIMP-nucleon scattering.
The EFT operators relevant for pure Binos coupled to

mixed-chirality sfermions (either squarks or sleptons) have
been collected systematically in the literature, e.g., in
Ref. [100]. For our model, at the level of Bino-quark
interactions, three sets of penguin diagrams contribute at
leading order in perturbation theory. The loops in all of
these diagrams involve the SM muon and the smuons
introduced in our theory to satisfy gμ − 2. Three possible
states can mediate the corresponding t-channel interaction
with the quark current: the SM Higgs, the Z0 boson and the
photon. These contribute, respectively, to the scalar (spin-
independent), pseudovector (spin-dependent) and anapole
operators:

LB̃0q ¼ cð0Þq
¯̃B0B̃0mqq̄qþ cð1Þq

¯̃B0γμγ
5B̃0q̄γμγ5q

þ eQqcAðk2Þ ¯̃B0γμγ
5B̃0q̄γμq; ð6:1Þ

where the Wilson coefficients cð0Þq , cð1Þq , and cAðk2Þ are
obtained by computing the loops and integrating out
sleptons and massive mediators (full expressions can be
found, e.g., in the Appendix of Ref. [100]). The scalar and
anapole operators yield the dominant contribution to the
scattering cross section since the separate contributions add

up coherently when folded on the nucleon and then nucleus
currents, with scattering amplitudes scaling respectively as
the mass and atomic number of the nucleus. Also, the
Wilson coefficients for the scalar and anapole operators can
be enhanced in some regions of the parameter space most
relevant for our model.
Starting with the photon-mediated anapole operator, the

only operator typically considered within the MSSM for
spectrawith pure BinoDMand light sleptons, the expression
for cAðk2Þ simplifies in the limit in which the dependence on
the momentum transfer can be neglected (k2 ≪ m2

μ):

cA ≈
e

48π2
X
i¼1;2

αðiÞμ βðiÞμ
Z

1

0

dx
3x − 2

xþ ð1 − xÞti − xð1 − xÞri
;

ð6:2Þ

where the couplings αðiÞμ and βðiÞμ are obtained from rewriting
the Bino-muon-smuon interaction for mass eigenstates in the
form:

L ⊃
X
i¼1;2

fμ̃iμ̄½αðiÞμ þ βðiÞμ γ5�B̃0 þ H:c:g; ð6:3Þ

and ri ≡M2
B̃
=M2

μ̃i
and ti ≡m2

μ=M2
μ̃i
. To estimate the integral

in Eq. (6.2), one can perform an expansion at ti ≪ 1 and
ri → 1 or ri → 0 to find:

LAðri; tiÞ≡
Z

1

0

dx
3x− 2

xþð1− xÞti− xð1− xÞri
≈

8<
:
	
2− 2

ti
− 3 ln ti



þ
	
4þ 1

t2i
− 5

ti
− 3 ln ti

�
ð1− riÞþOðð1− riÞ2Þ;

ð3− 3tiþ 2 ln tiÞþ
	
7
2
− 5tiþ 3t2i

2
þ 2 ln ti



riþOðr2i Þ:

ð6:4Þ

We can see that as one smuon becomes nearly degenerate in mass with the Bino—the relevant regime for coannihilations in
the early Universe—the anapole moment is enhanced due to the large hierarchy between the smuons and the muon; in the
regime of large smuon-Bino mass splittings there is instead only a mild logarithmic enhancement.

Regarding the Wilson coefficient for scalar interactions cð0Þq , while the small muon Yukawa coupling suppresses the
contribution from Higgs mediation with the muon in the loop, an enhancement can be present if the Higgs-smuon coupling
yH0

2
ij [see Eq. (4.16)] is large. In the limit of a massless muon, one has [100]:

cð0Þq ≃
g2

16π2M2
H0 MB̃

X
i≤j

ðαðiÞμ αðjÞμ þ βðiÞμ βðjÞμ ÞyH0
2
ij

ri
1 − ri=rj

Z
1

0

dxð1 − xÞ ln
�
1=ri − x
1=rj − x

�
: ð6:5Þ

The computation of the integral can be performed analytically and the largest contribution in the limit r2 ≪ r1 arises from
the case i ¼ j ¼ 1,

cð0Þq ≃
g2yH0

2
11

32π2M2
H0 MB̃

ðλ2μ̃Rsin2ðθμ̃Þ þ λ2μ̃Lcos
2ðθμ̃ÞÞ

�
1þ 1 − r1

r1
lnð1 − r1Þ

�
; ð6:6Þ

with the Higgs coupling that, at large y and sizable left-right
smuon mixing, tends to yH0

2
11 → yj sinð2θμ̃Þj, and hence

can potentially lead to a y2 scaling of the scattering cross
section.

The computation of the scattering rate on a nucleus
proceeds with the standard steps. First the Lagrangian in
Eq. (6.1) is folded on nucleon states (protons and neutrons),
taking into account QCD nucleon form factors, to find the
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EFT for DM-nucleon interactions. Then a nonrelativistic
reduction is performed, finding:

LNREFT ¼
X
N¼p;n

½cð0ÞN OðNÞ
1 − 4cð1ÞN OðNÞ

9 �

− ecAðk2Þ½2OðpÞ
8 − 2OðpÞ

9 �; ð6:7Þ

where O1 is just the identity operator acting on isospin
space, while

O8 ≡ S⃗χ · v⃗⊥; O9 ≡ iS⃗χ ·

�
S⃗N ×

k⃗
mN

�
; ð6:8Þ

where S⃗N and S⃗χ are, respectively, the spin of the nucleonN
and the spin of the DM species χ, and v⃗⊥ is the component
of the DM-nucleon relative velocity orthogonal to the
momentum transfer k⃗. The coefficients cN are obtained
as a sum over quark flavors for the Wilson coefficients cq,
weighted by the associated nucleon form factors. Having
performed the reduction on this operator basis, we can use a
generic tool such as DDCalc [101,102] to calculate the
recoil spectrum for a given nucleus.
Now that we have the necessary ingredients to compute

the nuclear recoil spectrum, we can address the potential
sensitivity of direct detection searches to our model. To
check whether a model is excluded, one must compute the
test statistic λTS, defined as

λTS ≡ −2 ln
LðNo ¼ 0; bjNpÞ
LðNo; bjNpÞ

; ð6:9Þ

where the likelihood function is a Poisson distribution
given by

LðNo; bjNpÞ ¼
ðbþ NpÞNo

No!
e−ðbþNpÞ; ð6:10Þ

b is the number of background events, Np is the number of
expected events, and No is the observed number of recoil
events. Then the criterion for obtaining the region of the
parameter space that is rejected at 90% CL is

λTS ≤ −1.64; ð6:11Þ

which follows from the fact that λ follows a half-chi
squared distribution. Np depends on the model parameters.
We use the DDCalc package [103,104] to compute both the
event rates (including all interaction terms at 1-loop level)
and the likelihood functions for a particular detector.
We focus on DARWIN [105] as a benchmark for a future

detector, and check what exposure time would be necessary
to be sensitive at 90% CL to the nuclear recoil spectra
associated with our model. For a given set of model
parameters, this check gives an estimate of how close to

(or far from) an eventual discovery that a hypothetical
DARWIN detector would be. Performing the reverse, i.e.,
projecting the sensitivity of the detector onto the parameter
space of the model, is more subtle, since different operators
can contribute to the scattering cross section: Although in
general anapole interactions are the most relevant, the other
operators cannot be neglected, and scalar interactions can
actually become dominant at large y and sizable mixing.
We compute the quantity T live, defined as the minimal
required live time5 for a DARWIN-like detector with a
fiducial target mass of 40 t [108], to reach λTS ¼ −1.64. We
focus on the parts of parameter space most relevant for
models satisfying gμ − 2 and the relic density shown in
Figs. 2 and 3.
In Fig. 8, T live is plotted versus the Bino mass MB̃ for

each of the curves in each of the panels from Figs. 2 and 3.
The left panels show T live for points along the RHB and the
right panels for points along the LHB; the top panels
correspond to points from the curves in Fig. 2 with fixed y
and the bottom panels correspond to points from the curves
in Fig. 3 with fixed θμ̃. We see that T live for most of the
points that satisfy gμ − 2 and the relic density is above the
5-year run time foreseen for DARWIN, except for a subset
of points in Panel (a) with y ≤ 10 and a few points in Panel
(c) corresponding to θμ̃ ¼ −π=2þ π=64. The improvement
in sensitivity for points along the RHB relative to the
LHB can be explained in part by the gauge couplings
associated with our choices of Bino-muon-smuon cou-
plings, jYRj ¼ 2jYLj. Also, in models with mixing angles
closer to θμ̃ ¼ 0 and y sufficiently small, the sneutrino can
be degenerate enough in mass with the Bino such that
coannihilation processes involving the sneutrino become
relevant for depleting the relic density. For these points
along the LHB, the (mostly left-handed) lightest smuon can
be heavier than the (mostly right-handed) lightest smuon
for the corresponding points along the RHB. Thus, the
contribution from the anapole moment to the scattering
cross section, which is dominant in these cases, can be
relatively suppressed along the LHB.
In Panels (a) and (b) we also see that the exposure time

monotonically decreases for Bino masses larger than
300 GeV for points with y ≤ 10. As shown in Fig. 2,
these models correspond to points with relative mass split-
tings between the Bino and lightest smuon ∼10−3−10−2,
where the required mass splitting decreases with increasing
MB̃. The associated trend in T live is consistent with
the discussion above regarding the contribution to the

5While T live is extrapolated to extremely large values to
demonstrate the challenge of probing our model with direct
detection, note that this estimate obviously does not account for
the practical implications of such large exposure times or other
relevant effects. For example, at large enough exposure the
sensitivity of any direct detection experiment would become
limited by the atmospheric and solar neutrino background
[106,107].

ACUÑA, STENGEL, and ULLIO PHYS. REV. D 105, 075007 (2022)

075007-20



scattering cross section from anapole interactions, which
sharply increases in the limit of small mass splitting
between Bino and lightest smuon. On the other hand,
models with sizable mixing angles in Panels (c) and
(d) exhibit a “turnaround” in T live as MB̃ increases.
Referring to Fig. 3, we can see this turnaround is the result
of two effects: at fixed θμ̃ both y and the mass splitting
between the Bino and lightest smuon must increase to
satisfy gμ − 2 and the relic density for largerMB̃. The latter
suppresses anapole interactions, while a large y and sizable
mixing enhances Higgs mediated scalar interactions, with
the contribution to the recoil spectrum from Higgs
exchange becoming dominant over the anapole contribu-
tion. To show where the Higgs exchange starts to dominate
the scattering cross section in Fig. 8, we indicate with a
triangle along the relevant curves where the anapole
contribution becomes subdominant for increasing MB̃.

In order to see the relative contributions to the recoil
spectra from either anapole interactions or Higgs (and Z0)
exchange in more detail, we show the recoil spectra for two
benchmark points in the left panel of Fig. 9. Recoil spectra
labeled “Relic 1” and “Relic 2” correspond to benchmark
points along the θμ̃ ¼ −π=2þ π=64 curve from Fig. 3
with y ¼ 50 and y ¼ 100, respectively. For each case, we
display the recoil spectrum assuming that either all Higgs,
Z0, and photon exchange processes or all processes except
photon exchange contribute to the scattering cross section.
We observe that the anapole contribution dominates the
recoil spectrum for Relic 1, while it is subdominant for
the case of Relic 2 where y is larger. The right panel of
Fig. 9 shows the normalization of the recoil spectrum at
ER ¼ 8 keV, along the θμ̃ ¼ −π=2þ π=64 curve from
Fig. 3 either including or excluding the contributions from
anapole interactions. As discussed above, the relative mass

FIG. 8. Plots of the T live, the exposure time necessary for a DARWIN-like detector with a fiducial target mass of 40 t to be sensitive at
90% CL to scattering cross sections for models satisfying gμ − 2 and the relic density. The panels in the top row correspond to model
points along the RHB (a) and LHB (b) shown in Fig. 2 with fixed y, while the panels in the bottom row correspond to model points along
the RHB (c) and LHB (d) shown in Fig. 3 with fixed θμ̃. For panels (c) and (d), the black dots correspond to those in Fig. 3 with y ¼ 30,
40, 50, 60, 70, 80, 90, 100, and 200 as MB̃ increases along each respective curve. The triangular markers along various curves in all of
the panels indicate the transition from an anapole-dominated recoil spectrum to a Higgs-dominated one. The scattering cross sections for
models along those curves without triangles are dominated by anapole interactions.
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splitting between the Bino and the lightest smuon generally
increases for larger y along the curves of constant θμ̃ in
Fig. 3. The increased mass splitting suppresses the anapole
contribution to the total recoil spectrum. Also, increasing y
simply drives up the Higgs-slepton trilinear coupling,
resulting in a larger nonanapole contribution to the recoil
spectrum.

VII. CONCLUSIONS

Rather generic extensions to the SM of particle physics
can provide extra 1-loop contributions to the muon g − 2,
possibly accounting for the 4.2σ anomaly reported by the
E989 experiment. The embedding of a dark matter candi-
date in such extensions has also been discussed on rather
general grounds. In this work, we have considered a
minimal BSM framework in which the extra states respon-
sible for the muon g − 2 discrepancy also provide for a dark
matter candidate and determine its relic abundance in the
early Universe.
The analysis has been carried out within a specific model

in which the essential BSM states are: a Majorana fermion
with no electric charge or muonic lepton number, playing
the role of dark matter; a scalar with mixed chirality
carrying electric and muon leptonic charges. The particle
spectrum of this model, with the appropriate choices of
SUð2ÞL ×Uð1ÞY quantum number assignments, maps onto
a small subset of the particle content of the MSSM, from
which we have borrowed the terminology—the extra states
just mentioned are referred to as, respectively, the Bino and
a smuon—and that we exploit as an embedding framework
when specifying the origin of the chiral mixing for the
leptonic scalar.

The model has a reduced parameter space, essentially
only 3 masses and one mixing angle. If we require that the
model satisfies the gμ − 2 anomaly, then the parameter
space foliates along left-handed or right-handed branches
for the lightest smuon. Along these branches the level of
left-right mixing, dictated by the chirality flip necessary for
the BSM contribution to gμ − 2, is much larger than what is
usually considered in the MSSM under the assumption of
minimal flavor violation. The phenomenology of our model
then clearly departs from what is usually discussed in the
context of MSSM parameter scans.
The requirement that the Bino relic density matches the

dark matter density of the Universe leads us to consider
scenarios in which the sleptons are just slightly heavier than
the Bino (relative mass splittings of order 10% or lower).
Since the sleptons interact with the heat bath more
efficiently than the Bino, the charged scalars can drive
thermal freeze out via coannihilation effects. For coanni-
hilating particles with relatively light masses ≲400 GeV,
the parameter space for which our model satisfies both
gμ − 2 and the relic density is similar to that of Bino-slepton
coannihilation scenarios previously investigated in the so-
called bulk region of the MSSM. However, once the
assumption of minimal flavor violation is relaxed, the
viable parameter space of our model opens up into regions
in which the coannihilating particles are sensibly heavier.
We find that a proper description of this effect is given in
terms of the dimensionless parameter y, introduced in
Eq. (3.5), which is a measure of the mass splitting between
the lighter and heavier smuons relative to the weak scale,
weighted by the left-right mixing angle. For moderate
values of y, we move away from the usual slepton
coannihilation regime in the bulk region of the MSSM,

FIG. 9. Left panel: Recoil spectra for two benchmark points, either including all contributions to the scattering cross section (solid
lines) or excluding the contribution from anapole interactions (dashed). “Relic 1” and “Relic 2” correspond to benchmark points along
the θμ̃ ¼ −π=2þ π=64 curve from Fig. 3 with y ¼ 50 and y ¼ 100, respectively. Right panel: Normalization of the differential recoil
rate at ER ¼ 8 keV versus y along the θμ̃ ¼ −π=2þ π=64 curve from Fig. 3, either including (solid line) or excluding (dashed) the
contributions from anapole interactions. The difference between the normalizations of the recoil spectra with or without anapole
contributions is shown by the dotted curve.
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to scenarios with coannihilating particle masses at the TeV
scale and beyond.
Upon a detailed examination of the relic density calcu-

lation in this parameter space characterized by heavy Binos,
large y and sizable mixing, we see that some of the relevant
cross sections tend to become large, although not large
enough to violate face-value perturbative unitarity bounds.
Taking one step further and borrowing the structure of the
full scalar potential from the MSSM, a comprehensive
analysis of the full S-matrix shows that unitarity rules out
large to moderate values of y, depending on whether the
mixing is mild or maximal. The parameter space is con-
strained even further when considering the stability of the
electroweak vacuum. For models with sizable smuon
mixing and large trilinear couplings, the scalar potential
can develop minima deeper than the EW vacuum.
Requiring that the tunneling time from the EW vacuum
to the true vacuum is longer than the age of the Universe
sets the tightest constraints on the parameter space of the
model: y cannot exceed moderate values regardless of the
smuon mixing angle and the Bino mass scale cannot be
larger than about 1 TeV.
The prospects of testing our scenario with the next

generation of direct detection experiments are unfortu-
nately limited to a marginal portion of the viable parameter
space. There is no tree-level coupling between the Bino and

SM quarks in our model, and the anapole operator relevant
for direct detection searches is only sufficiently enhanced
for cases with very small mass splittings between the Bino
and lightest smuon. On the other hand, a future lepton
collider with a relatively large center of mass energy could
directly probe the extended parameter space of our model.
Since the most stringent constraints arise from perturbative
unitarity and vacuum stability in our simplified model, it
would also be interesting to consider the phenomenological
implications of embedding our simplified model into a
framework which provides for a more theoretically con-
sistent extension of the SM.
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