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Axions and other pseudoscalar fields comprise an interesting class of ultralight dark matter candidates,
that may independently play a role in solving the strong CP problem. In the presence of CP-violating
sources, these pseudoscalar fields can develop a coherent nonderivative coupling to nucleons, ḡaNN , thus
mediating ‘mass-mass’ and ‘mass-spin’ forces in matter that can be probed experimentally. We revisit
the nonperturbative generation of these CP-odd axion forces, and refine estimates of ḡaNN generated
by the electric dipole moments and color electric dipole moments of quarks. We also revisit the Standard
Model contribution to CP-odd axion couplings generated by the phase of the Cabibbo-Kobayashi-
Maskawa quark mixing matrix.
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I. INTRODUCTION

Axions have long been considered a compelling dark
matter candidate [1–3], given their independent motivation
as a potential resolution of the strongCP problem. In recent
years, with increasing constraints on scenarios of thermal
relic weakly interacting massive particle dark matter,
further attention has been paid more generally to
light or ultralight (pseudo)scalar fields as dark matter
candidates, or as components of light hidden or dark
sectors. Such ultralight bosonic degrees of freedom may
escape conventional direct detection and require novel
search strategies.
One such strategy is to consider precision tests for new

long-range forces. Pseudoscalar fields naively escape the
strongest constraints, since they couple to spin, and thus do
not mediate Yukawa-type forces. However, this conclusion
is not directly applicable in the presence ofCP-violation, as
all Lorentz-scalar fields then acquire scalar and pseudo-
scalar components. Long-range forces mediated by axions
are thus suppressed only by the small scale ofCP-violation.
The possibility of detecting axions via this channel was first
considered by Moody and Wilczek [4], and has been

addressed a number of times in the literature. In the
presence of CP violation, axions can mediate a (scalar)
monopole-monopole potential Vss

a ðr → ∞Þ ∝ e−mar=r
and also a spin-dependent monopole-dipole potential
Vsp
a ðr → ∞Þ ∝ ðσ̂ · r̂Þe−mar=r, in addition to the generic

spin-dependent dipole-dipole interactions. In this paper, we
revisit the problem of computing the scalar (as opposed to
pseudoscalar) coupling of axions to nucleons ḡaNN induced
by hadronic CP-violating phases, as the primary input
to monopole-monopole (∝ ḡ2aNN) and monopole-dipole
(∝ ḡaNN) long-range potentials in matter.
We consider three light quark flavors, transforming the

defining axion-gluon Lagrangian

L ¼ a
fa

αs
8π

Ga
μνG̃

a
μν; ð1Þ

to the more convenient form,

L ¼ −m�
a
fa

ðūiγ5uþ d̄iγ5dþ s̄iγ5sÞ þOða=faÞ2; ð2Þ

where m� ¼ ðPu;d;s m
−1
i Þ−1 ≃mumd=ðmu þmdÞ. Non-

pertubative effects, as manifest in the strong breaking of
Uð1ÞA symmetry which leads to mη0 ≫ moctet, generate the
axion mass

m2
a ¼ m2

π

�
Fπ

fa

�
2 m�
mu þmd

; ð3Þ
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where Fπ ≃ 93 MeV. Throughout this paper, we will
adhere to the conventional view of the axion mass,
corresponding to the relation (3).
The presence of CP-violation in the theory allows the

axion to have scalar couplings, and in particular a scalar
axion-nucleon coupling, ḡaNNaN̄N. We focus on determin-
ing a quantitative lower bound on the scale of these
couplings due to the Cabibbo-Kobayashi-Maskawa
(CKM) CP-violating phase, the residual θeff -parameter,
and the quark electric dipole moment (EDM) (dq) and
chromo-EDM (d̃q) sources. In other words, we are inter-
ested in determining

ḡaNN ¼ ḡaNNðθ̄; di; d̃i; δCKMÞ; ð4Þ

and identifying the hadronic matrix elements controlling
the size of these couplings. Relevant past work on this
subject includes estimates of ḡaNN due to δCKM [5], d̃i [6,7],
as well as recent literature [8–10] on ḡaNN induced by
CP-odd four-quark operators. Astrophysical limits on ḡaNN
have been updated in [11].
The rest of this paper is organized as follows. In Sec. II

we examine the scalar axion-nucleon coupling induced by
several CP-odd sources in turn. The results are discussed in
Sec. III, along with some concluding remarks.

II. SCALAR AXION-NUCLEON COUPLINGS

In the low-energy limit, the axion couplings to quarks
and gluons result in a mass term that can have its minimum
shifted from the field value a ¼ 0 due to the presence of
the CP-violating sources. Thus, at energies well below the
hadronic mass scale, and not too far from the minimum, the
axion potential can be written in the form

VðaÞ ¼ 1

2
m2

aða − haiÞ2 ≡ 1

2
m2

aða − faθindÞ2: ð5Þ

Here the expectation value of the axion field hai refers to
the vacuum value, i.e., the value where the vacuum energy
is minimized, min½VvacðaÞ� ¼ VvacðhaiÞ. The physical
axion field, by definition, is the deviation of a field
from hai,

aph ≡ a − hai; a ¼ aph þ faθind: ð6Þ

In this section we analyze scalar axion-nucleon cou-
plings gaNN , defined as the coupling of the nucleon scalar
densities to aph,

L ¼ −ḡð0ÞaNNaphN̄N − ḡð1ÞaNNaphN̄τ3N; ð7Þ

where N ¼ ðp; nÞ is the nucleon doublet. The isospin

singlet part, ḡð0ÞaNN is the most important, being enhanced

by A, the total number of nucleons in the nucleus. For that
reason, we will often drop the “0” superscript.
It is important to emphasize that we will focus on the

nonderivative coupling of axions to nucleons, that is
proportional to the lowest power of f−1a , gaNN ∝ f−1a .
This is in contrast to derivative couplings, such as
N̄N□a, that lead either to contact interactions, or to effects
proportional to the square of the axion mass, which are
therefore proportional by f−3a .
We classify the various sources of CP-violation in a

derivative expansion as follows:

LCP ¼ LIR þ LSMðδÞ þ Ldim≥5: ð8Þ

The higher-dimensional terms here are induced by CP-odd
physics beyond the Standard Model (SM) that preserve the
Peccei-Quinn (PQ) symmetry, and we consider the lowest
dimension operators,

Ldim≥5 ¼ −
X

q¼u;d;s

�
i
2
dqq̄Fμνσμνγ5q

þ i
2
d̃qq̄Ga

μνσμνtaγ5q

�
þ � � � ; ð9Þ

where dq and d̃q stand for the EDMs and color EDMs of
light quarks, and the ellipsis represents higher-dimensional
terms including the Weinberg operator and four-fermion
interactions. From now on we will use the condensed
notation Gσ ¼ gstaGa

μνσ
μν.

The source LSMðδÞ in (8) denotes the SM source of CP
violation where δ ¼ δCKM. From the low energy perspec-
tive, integrating out heavy quarks and W-bosons can
generate CP-violating effects in the flavor-conserving
channels only at OðG2

FÞ. Moreover, as is well known,
the overall CP-violating effect in such a channel is
necessarily proportional to the small combination of the
CKM angles given by the Jarlskog invariant J ∼ 10−5 [12].
Finally, we include a rarely discussed possibility; an

additional source of soft PQ symmetry breaking, associated
with the lowest-dimension axion field operators,

LIR ¼ Λ4
IRða=faÞ þ � � � ð10Þ

The only effect of such a tadpole operator is to shift the
axion minimum and induce the theta term,

θind ¼
hai
fa

¼ Λ4
IR

m2
πF2

πm�ðmu þmdÞ−1
: ð11Þ

This ‘infrared’ breaking of PQ symmetry, associated for
example with an additional non-Abelian dark sector,
ðθ0 þ a=faÞG0G̃0 → LIR, with a low condensation scale
ΛIR ≪ ΛQCD and a new source of CP violation (e.g., θ0), is
the only example where the ḡaNN coupling is associated
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solely with the induced value of theta. In all the other
examples considered, the contribution of the induced value
of theta is accompanied by direct contributions to ḡaNN .
To carefully define our terminology, we will make a

distinction between thevarious “induced” values of θ, which
are sometimes confused in the literature. First of all, there are
additive tree-level and radiative corrections to the theta term,
θrad, from colored massive fields, i.e., quarks. These cor-
rections can be absorbed into a redefinition of the theta term,
and the axion field. In the presence of an axion, they do not
lead to any new physical effects, and do not induce ḡaNN . To
simplify the expressions, all such corrections are already
included in the definition of the axion field in (1). An
important quantity in our discussion is the induced value of
θ, that can be identified with the expectation value of the
axion field as in Eq. (5). As stated above, this induced value
of theta can be the result of nontrivial IR physics, or it can be
induced by higher-dimensional operators, as discussed in
[13], generically formulated as follows,

θind ¼ −
R
d4xhT½αs

8πGG̃ð0Þ;Ldim≥5ðxÞ�ivacR
d4xhT½αs

8πGG̃ð0Þ; αs8πGG̃ð0ÞðxÞ�ivac
: ð12Þ

Finally, as convenient shorthand notation, we will also refer
to the a=fa combination as θ so that

θ ¼ aph
fa

þ θind: ð13Þ

A. Theta term: ḡaNNðθÞ
Our strategy in computing the axion-nucleon coupling

will be to start from L ¼ θ αs
8πGG̃ and evaluate the order θ2

contribution to the nucleon mass. Then, expanding the
corresponding terms to first order in the physical axion
mass and θind, one obtains the corresponding value of ḡaNN ,

1

2

d2mNðθÞ
dθ2

����
θ¼0

θ2 →
d2mNðθÞ

dθ2

����
θ¼0

θind ×
aph
fa

: ð14Þ

Therefore, as is well known, the problem reduces to finding
the quadratic terms in the dependence of the nucleon
masses on θ (see e.g., Ref. [14]). We include the corre-
sponding result here for completeness.
Taking the initial axion Lagrangian (1), we perform the

chiral rotation

q → ei
θq
2
γ5q; q ¼ u; d; ð15Þ

with θq ¼ m�
mq

θ (so that θ ¼ θu þ θd). This removes the θ

coupling to the GG̃ term, while transforming the quark
mass terms to

L4 ¼ −muuū −mddd̄þ 1

2
θ2m�

�
uūþ dd̄

2

�

þ 1

2
θ2m�

md −mu

md þmu

�
uū − dd̄

2

�

−m�θðūiγ5uþ d̄iγ5dÞ þ � � � ; ð16Þ

Substituting θ ¼ θind þ aph=fa, we note that the third term
in the first line leads to the axion mass, on expanding θ. If
instead, we isolate the terms linear in θind and retain only
the isoscalar part, we obtain

Lθ¼
1

2
θindm�

aph
fa

ðūuþ d̄dÞ−m�θðūiγ5uþ d̄iγ5dÞ; ð17Þ

which, in addition to the pseudoscalar axion couplings in
(2), also includes an induced scalar coupling. It then
follows that the isoscalar axion-nucleon coupling is deter-
mined by the nucleon sigma term [4],

ḡaNN×fa¼
m�θind
muþmd

σπN∼1.5×10−9MeV×
θind
10−10

; ð18Þ

where σπN ≡ ðmu þmdÞhNjūuþ d̄djNi=2 ∼ 40 − 50
MeV, and for numerical estimates we have inserted
the current bound on θ from measurements of hadronic
EDMs [13]. Note that the isovector coupling
is also induced, but it is suppressed since ðmu −mdÞ<
pjūu − d̄djp > =ð2σπNÞ ∼Oð10−2Þ.

B. Quark EDMs: ḡaNNðdqÞ
Avariety of higher-dimensional sources of CP-violation

can induce long-range axion forces [6]. As one example,
we will consider the EDMs of quarks [13] as part of Ldim≥5,

LEDM ¼ −
X
q

i
2
dqq̄Fμνσμνγ5q: ð19Þ

The chiral rotation, q → ei
θq
2
γ5q, used to bring the axion

coupling to the form (16), now induces the following terms

LEDM →
X

q¼u;d;s

1

2
m�θFμν

dq
mq

q̄σμνq; ð20Þ

where we can simply identify θ ¼ aph=fa in this case.
Using the definition for the EM-polarizability of the

QCD vacuum

h0jq̄σμνqj0iF ≡ Fμν × eqχhq̄qi; ð21Þ

and assuming SUð3Þ flavor invariance, we arrive at the
following coupling of the axion field to the square of the
EM field strength,
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a
2fa

ðeFμνÞ2 × χhq̄qi ×
X

q¼u;d;s

dqQqm�
mqe

; ð22Þ

where Qu;d;s ¼ 2=3;−1=3;−1=3.
The nonperturbative-succeptibility parameter χ [13,15,16],

is given by the following analytic expression derived by
Vainshtein with the assumption of pion pole dominance,

χ ¼ −
3

4π2F2
π
; ð23Þ

which slightly exceeds earlier numerical estimates of
χ ≃ 5 GeV−2 [17].
In a relatively large nucleus, the operator ðeFμνÞ2 can be

treated almost classically, a la Weisskopf, and approxi-
mated as

Z
ðeFμνÞ2d3x ≃ −

48π

5

ðZαÞ2
RN

; ð24Þ

where a constant charge density sphere model is used for
the nucleus, with radius RN ≃ 1.2 fm × A1=3. Taking this
estimate per nucleon we arrive at the effective ḡaNN
constant induced by the quark EDMs,

ḡeffaNN × fa ≃
18ðZαÞ2hq̄qi
5πAF2

πRN
×
XdqQqm�

mqe
: ð25Þ

Inserting the numerical factors, hq̄qi ∼ ð250 MeVÞ3,
Fπ ≃ 93 MeV, and taking Z ≃ A=2, we obtain the follow-
ing numerical estimate for typical quark EDM values close
to the current bounds,

ḡeffaNN × fa ≃ 5 × 10−14 MeV ×

P dqQqm�
mqe

10−26 cm
; ð26Þ

with Z ¼ 50 used for the estimate.

C. Quark chromo-EDMs: ḡaNNðd̃qÞ
We can also consider the color EDMs (CEDMs) of

quarks [13] as a source for the long-range interaction,

LCEDM ¼ −
X
q

i
2
d̃qq̄Gσγ5q: ð27Þ

Moreover, given the poorly known scalar s-quark operator
matrix elements in nucleon states, for this subsection, we
concentrate on u and d CEDMs.
Similarly to the EDM sources considered above, the

chiral rotation, q → ei
θq
2
γ5q used to bring the axion coupling

to the form (16), also induces a shift in the CEDM sources,

LCEDM → −
X
q

i
2
d̃qq̄Gσγ5q

þ 1

2
m�θ

�
d̃u
mu

ūGσuþ d̃d
md

d̄Gσd

�
; ð28Þ

where θ ¼ θu þ θd. The second line again leads to a direct
contribution to the scalar aNN coupling. However, the
CEDM sources also induce a linear term in the axion
potential so that, on relaxation to the minimum, a finite
value of θind remains. This leads to a further contribution to
the scalar axion coupling through (18).
To determine these contributions, we first note that

Lagrangian (28) contains terms that can mediate transitions
between the vacuum and pseudoscalar mesons that are light
in the chiral limit: π0 and octet η. One can account for these
diagrams either explicitly by combining the tadpole vac-
uum-to-pseudoscalar vertex with the ππNN rescattering
terms (see e.g., [13]), or equivalently, by chirally trans-
forming (28) further, so that the tadpoles disappear. The
parameters of such a rotation θ0q are determined via

h0j −
X
q

i
2
d̃qq̄Gσγ5q −

X
q

θ0qmqq̄iγ5qjπ0i ¼ 0: ð29Þ

Requiring that θ0u þ θ0d ¼ 0 so that θGG̃ is not regenerated,
one finds a correction θ0u ¼ −θ0d ∝ ðd̃u − d̃dÞ that multi-
plies only isotriplet operators. This way we arrive at the
following complete but somewhat lengthy expression that
includes dimension-four and dimension-five operators and
where we retain only the terms that will contribute to ḡaNN ,

L ¼ 1

2
θ2m�

�
uūþ dd̄

2

�
þ 1

2
θ2m�

md −mu

md þmu
×
ūu − d̄d

2

þ θm�m2
0

d̃u − d̃d
mu þmd

×
ūu − d̄d

2

þ 1

2
θm�

�
d̃u
mu

ūGσuþ d̃d
md

d̄Gσd
�
; ð30Þ

where m2
0 ¼ <0jq̄Gσqj0>

<0jq̄qj0> ∼ 0.8 GeV2.
For most applications, the isosinglet coupling is the most

relevant. Thus, using

d̃u
mu

ūGσuþ d̃d
md

d̄Gσd ¼
�
d̃u
mu

þ d̃d
md

��
ūGσuþ d̄Gσd

2

�

þ
�
d̃u
mu

−
d̃d
md

��
ūGσu − d̄Gσd

2

�
;

ð31Þ

we project Eq. (30) onto the isosinglet part which then takes
the form
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Ljiso−singlet ¼
1

2
θ2m�

�
uūþ dd̄

2

�

þ 1

2
m�θ

�
d̃u
mu

þ d̃d
md

��
ūGσuþ d̄Gσd

2

�
: ð32Þ

This Lagrangian accounts for both direct and induced
contributions to the scalar axion-nucleon coupling.
Extremizing in aph to find the minimum of the axion
potential, we obtain

θind ¼ −
m2

0

2

X
q

d̃q
mq

: ð33Þ

The resulting contribution to the scalar axion nucleon
coupling is given by (18). Finally, on expanding θ2 terms
and retaining the linear terms in aph, we obtain the nucleon
couplings as follows:

ḡaNN ×fa ¼
1

2
m�

�
d̃u
mu

þ d̃d
md

�

×

�
N

���� ūGσuþ d̄Gσd
2

−m2
0

uūþdd̄
2

����N
�
: ð34Þ

This expression clearly satisfies the tadpole cancellation
requirement; namely, the result should vanish on replacing
the nucleon state with the vacuum. In this case the direct
and induced contributions precisely cancel. The remaining
matrix element is the same as the one encountered in
computing the CP-odd pion-nucleon couplings induced by
CEDMs [13,18]. To appropriately translate the results of
that work, we introduce singlet and triplet operators H,

HðiÞ ¼ ūGσu� d̄Gσd
2

−m2
0

uū� dd̄
2

; ð35Þ

where the choice of plus sign corresponds to isosingletHð0Þ

and the minus sign to isovector Hð1Þ. According to [18],

jhNjHð0ÞjNij ≫ jhNjHð1ÞjNij; ð36Þ

where the singlet matrix element is estimated as,

hNjHð0ÞjNi ≃ 0.6 GeV2: ð37Þ

With this result, we obtain the isosinglet coupling,

ḡaNNðd̃qÞ × fa ≃ 1.5 × 10−10 MeV ×

�m�d̃u
mu

þ m�d̃d
md

10−26 cm

�
: ð38Þ

We have normalized the CEDM sources according to the
generic limit from the neutron and 199Hg EDM constraints
[19,20], in the absence of tuning. The ongoing lattice QCD
effort to calculate matrix elements relevant for the CP-odd

EDM-related observables may eventually improve on the
estimate of Ref. [18] regarding the size of the hHi nucleon
matrix elements, which will then also improve the accuracy
of (38).
We note, in passing, that a much larger numerical

coefficient for our CEDM treatment, Eq. (38), compared
to (26), strongly suggests that a more important mechanism
for inducing ḡaNN from quark EDMs is through their
radiative mixing with CEDM, if all quantities in Ldim≥5
are induced at the weak scale and/or above. The same could
apply to the CP-odd Weinberg operator as well, GGG̃ that
radiatively mixes with the flavor-singlet combination of
quark CEDMs. Direct contribution of GGG̃ to ḡaNN at low
energy are likely to be suppressed.

D. CKM phase: ḡaNNðδÞ
The presence of CP-violation in the quark mixing matrix

is a well-studied topic of the SM, both experimentally and
theoretically. A natural question is how large the axion-
mediated long range force between nucleons would be,
if it were sourced solely by the CKM phase. Assuming
that it is flavor-diagonal, the result will be proportional to
the reduced Jarlskog invariant J ∼ 10−5 [12]. Since flavor
diagonal CP-odd effects are necessarily of second order in
the weak interactions, we anticipate that the coupling will
be ∝ JG2

F. Arguments based on naive dimensional analysis
(NDA) and chiral effective field theory have been used to
argue that that scale of the coupling is [5],

ḡaNNðδÞjNDA × fa ∼m�JG2
FF

4
π ∼ 10−18MeV; ð39Þ

which is highly suppressed. This suppression is fully
expected due to the fourth power of the ratio of the
QCD scale to the weak scale, and the smallness of the
CKM angles. To a certain extent, this estimate is very
uncertain, due to the high power of hadronic scale in the
numerator. If we consider Eq. (39) to be induced by loops,
then one may include numerically small factors, but then
some of the hadronic scales may be traded for the charm
quark mass, F2

π → m2
c. Thus, in reality ḡaNNðδÞ may be

significantly smaller or larger than the estimate (39) would
suggest. Our goal in this section is to test the estimate above
with explicit calculations.
We note that short distance radiative effects, relative to

the QCD scale, do induce dd and d̃d operators at G2
Fm

2
c

order, so that effectively two powers of Fπ in (39) are
replaced with m2

c. Unfortunately, such contributions come
with the associated numerical suppression of three loops,
and the corresponding Wilson coefficients are expected
to be small: we estimate d̃dðδÞ as gsd̃d ∼ ðgs=ðe=3ÞÞdd,
while dd was calculated in [21], and found to be
dd∼0.7×10−34 cm×ðmd=ð10MeVÞÞ. Using this together
with the CEDM result (38), we arrive at the following
estimate of the short distance contributions to ḡaNN ,
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ḡaNN j short dist: × fa ∼ 10−18 MeV; ð40Þ

which interestingly is close to the NDA estimate (39).
Long-distance effects dominate dnðδÞ and contributions

to ḡπNN [22–25], and since very similar physics is involved,
such effects may well dominate ḡaNN . The goal for the rest
of this section is to provide an estimate of the long distance
contributions to ḡaNN by describing it as a combination of
two strangeness-changing transitions, ΔS ¼ �1. As is well
known, long-distance effects are crucially important for
nonleptonic jΔSj ¼ 1 effects in kaons and hyperons. In
particular, studies of hyperon physics can be employed for
a “data-driven” estimate of ḡaNNðδÞ. Specifically, we will
follow the approach where one of the weak ΔS ¼ �1
vertices is identified with the nucleon-hyperon mixing
term, and in that sense our calculation is closely related
to approach of Ref. [23].
To proceed, we start with the ΔS ¼ 1 effective

Lagrangian, given by

LΔS¼1
eff ¼ GFffiffiffi

2
p V�

usVud

X
i¼3;…;6;8g

CiðμÞOi þ H:c: ð41Þ

where Vqq0 are CKM matrix elements. The Wilson coef-
ficients CiðμÞ contain the dependence on the CKM phase.
A diagram of interest for ḡaNN is pictured in Fig. 1,
where the black dot refers to the CP-even hyperon-nucleon
vertex dominated by the long-distance ΔS ¼ 1 operators.
There are strong indications that this transition is domi-
nated by the QCD-evolution-enhanced penguin operator
O6 [26],

O6 ¼ s̄αγμð1 − γ5Þdβ
X
q

q̄βγμð1þ γ5Þqα; ð42Þ

and its naive extrapolation to very low hadronic normali-
zation scales may provide a satisfactory description of the
famous empirical ΔI ¼ 1=2 rule. Assuming the dominance
of lowest-order chiral perturbation theory leads to the
following matrix elements for the ΔS ¼ �1 transition
amplitudes [27],

LΔS¼�1¼−aWTrðB̄fh;BgÞ−bWTrðB̄½h;B�ÞþH:c:; ð43Þ

where B is the standard baryon matrix in flavor space, h is a
3 × 3 matrix that has a single nonvanishing matrix element
h23 ¼ 1, and the weak amplitudes aW , bW are determined
from the fit to the s- and p-wave amplitudes of the hyperon
decays. A tree-level fit to data gives [27]

aW ¼ ãW ×
ffiffiffi
2

p
GFFπm2

πþ ; bW ¼ b̃W ×
ffiffiffi
2

p
GFFπm2

πþ ;

ãW ¼ 0.56; b̃W ¼ −1.42: ð44Þ

In these expressions, mπþ should be understood as simply
the numerical scale of 139.6 MeV, which is independent of
the values of light quark masses rather than a theoretical
quantity that tends to zero in the chiral limit. Given the fact
that the external particles are either n or p, one can truncate
Eq. (43) to

LΔS¼�1¼−aW
�
−
1

6
n̄ð

ffiffiffi
6

p
Λþ3

ffiffiffi
2

p
Σ0Þþ p̄Σþ

�

−bW

�
−
1

2
n̄ð

ffiffiffi
6

p
Λ−

ffiffiffi
2

p
Σ0Þ− p̄Σþ

�
þH:c: ð45Þ

In Fig. 1, the cross corresponds to a CP-violating vertex
with a nonderivative coupling to the axion, and therefore it
has to be chirality-flipping at the quark level. Among all
possible ΔS ¼ 1 operators of lowest dimension, only one
such operator violates chirality, and it is the chromo-
magnetic s − d dipole operator O8g,

O8g ¼
1

8π2
mss̄ðGσÞð1 − γ5Þd: ð46Þ

Examining the Wilson coefficients, one finds at leading
order an enhanced contribution of the top quark to C8g, and
as a consequence, a much larger imaginary part for the
corresponding coefficient:

���� ImðC6Þ
ReðC6Þ

���� ≃ A2λ4η ≪
���� ImðC8gÞ
ReðC8gÞ

���� ≃ η; ð47Þ

where λ ∼ 0.23, A ∼ 0.79 and η ∼ 0.36 are Wolfenstein
parameters in the CKM matrix, and the leading CP-
violating contributions arise via top loops. This justifies
taking the aW and bW coefficients to be real. Next-to-
leading order corrections are not negligible [27], but
maintain this hierarchy, which allows us to focus on the
chirality violating dipole operator O8g as the primary
source of CP violation.
At the next step, we can include axion dependence via

the md;s → md;s þ im�θγ5 substitution. It turns out that the
axion dependence of O8g in the limit of exact SUð3Þ flavor
invariance takes the following form,

FIG. 1. The pole diagrams contributing to the induced axion-
nucleon coupling in the presence of the Standard Model CKM
phase. See the text for further details of the vertices.
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O8g → O8g þ
1

4π2
m�θs̄ðGσÞiγ5d: ð48Þ

One should note that the operator ∼θs̄ðGσÞd cancels in this
limit exactly, which also means that the aphB̄B vertex is not
generated. We note, however, that there is no profound
reason why this operator should be absent, and speculate
that after accounting for unspecified SUð3Þ breaking effects
one would expect nonvanishing θs̄ðGσÞd terms. To this
end, we introduce a phenomenological parameter κ that
accounts for SUð3Þ violation (probably at the level of
jκj ∝ 0.2), and write the axion-quark dipole operator in the
following form,

LΔS¼�1;a ¼ κθm�ðs̄ðGσÞd−m2
0s̄dþH:c:Þ

×
GFffiffiffi
2

p Im½VtdV�
ts�

4π2

�
x3t −5x2t −2xt
8ðxt−1Þ3 þ 3x2t logxt

4ðxt−1Þ4
�
:

ð49Þ

where xt ¼ m2
t =m2

W . The numerical value of the second
line in this expression, which we will call Gloop is
GFffiffi
2

p × 3.3 × 10−7. (Part of this suppression comes from

the expression in parentheses, that turns out to be rather
small, ∼0.1.)
Notice that there is an additional subtraction of m2

0s̄d
present in (49). This subtraction can be justified more
generally as follows. Notice that θ in (49) is constant, and
therefore is momentum independent. Thus, any quark
bilinear operator s̄Od where O is some combination of
gamma matrices and gluon fields should be modified due to
the following argument: if O is replaced with the unit
operator, its physical effect must disappear as it would then
represent a slight correction to the quark mass basis that
does not have any real physical effect. Therefore, the
expected modification to any such operator in the SUð3Þ
limit should be

s̄Od → s̄Od − s̄d ×
h0jq̄Oqj0i
h0jq̄qj0i : ð50Þ

In chiral perturbation theory such subtractions typically
arise after the inclusion of tadpole and mass insertions into
the pseudoscalar meson lines in diagrams.
The operator in (49) can be translated to the aB̄B vertex

using the same matrix elements we encountered in the
evaluation of ḡaNNðd̃qÞ. Notice that the operator in paren-
theses from the first line of Eq. (49) can be viewed as an
SUð3Þ generalization of (35), Hsd ¼ 1

2
ðH6 þ iH7Þ, where

Ha ¼ q̄Gσλaq −m2
0q̄λ

aq: ð51Þ

The required vertices then follow from SUð3Þ flavor
symmetry, with two unknown parameters

hB̄jHajBi ¼ −d1TrðB̄λaBÞ − d2TrðB̄BλaÞ: ð52Þ

It follows that

hBjHsdjBi ¼ d1

� ffiffiffi
2

3

r
n̄Λ

�

− d2

�
n̄

�
1ffiffiffi
6

p Λ −
1ffiffiffi
2

p Σ0

�
þ p̄Σþ

�
þ � � � :

ð53Þ

We can determine d1 and d2 via considering matrix
elements over the proton. From (52) we have hpjH3jpi ¼
d1p̄p, and hpjH8jpi ¼ 1ffiffi

3
p ðd1 − 2d2Þp̄p. If we define the

diagonal flavor operators as Hi ¼ q̄iGσqi −m2
0q̄iqi, and

take guidance from lattice and QCD sum rules estimates of
similar operators with the same chiral structure, implying
hpjHsjpi; hpjHu −Hdjpi ≪ hpjHu þHdjpi, then we
find that d1 can be neglected while d2 is given by (37),

d2 ∼
1

2
hpjHu þHdjpi ∼ 0.6 GeV2: ð54Þ

Combining all the pieces together in the diagrams of
Fig. 1, we take into account Λ, Σ0, and Σþ pole contri-
butions. We finally obtain the following estimate,

LaNN ∼
a
fa

× κm�d2G2
FFπm2

πþ × 3.3 × 10−7
�
n̄nð− b̃W

2
− ãW

6
Þ

mn −mΛ
þ n̄nð− b̃W

2
þ ãW

2
Þ

mn −mΣ0

þ p̄pð−b̃W þ ãWÞ
mp −mΣþ

�
: ð55Þ

Numerically evaluating this expression and extracting the
dominant isoscalar component, we obtain

ḡaNNðδÞ × fa ∼ 1 × 10−18 MeV × κ; ð56Þ

which is close to but somewhat subdominant, on account of
κ being small, to the naive estimate (39) and to the short-
distance contribution (40).

Finally, we would like to discuss the possibility of
generating an equivalent ḡaNN coupling via meson
exchange inside a large nucleus, with CP violation sourced
again by δCKM. We will calculate contributions to operators
of the form aðN̄NÞðN̄NÞ, and evaluate the effective aNN
coupling using the mean free field approximation. A
representative diagram is shown in Fig. 2. The kaon
exchange that mediates ΔS ¼ �1 transitions can be
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thought of as a contact interaction, as mK is larger than the
typical nucleon momenta. Therefore, the result of kaon
exchange can be expressed via a single coupling,

L4N ¼ −g4N × aphðN̄NÞðN̄NÞ: ð57Þ

Inside a large nucleus, there is an approximately constant
number density

nN ≃ A=VN ≃ 0.15ðfmÞ3 ≃ ð106 MeVÞ3: ð58Þ

The energy scale associated with nN is not small compared
to other low-energy QCD parameters such as Fπ and mπ .
The interaction (57) gives the axion coupling to the whole
nucleus as g4Nn2NVN ¼ g4NnNA, and therefore the equiv-
alent axion-nucleon coupling is given by

gequivaNN ≃ g4N × nN: ð59Þ

Next we evaluate the CKM phase contribution to g4N .
First, we evaluate the kaon coupling to the nucleon. The
CP-odd gluonic dipole operator, O8g (46) generates non-
derivative KLN̄N coupling, and the result of an explicit
calculation leads to

LCP−odd
KNN ¼ KLðp̄pþ n̄nÞ ×Gloop ×

ms

2Fπ
hNjHð0ÞjNi; ð60Þ

where the matrix element is exactly the one encountered
before in Eq. (37).
The CP-even block of the diagram Fig. 2 is given by the

already familiar hyperon pole contributions. The new
element in the calculation encountered here is the nonde-
rivative aphKLN̄N vertex that is the direct analog of the
nucleon σ-term in the ΔS ¼ �1 channel, and its size is
dictated by the matrix element of the ðFπfaÞ−1m�ðd̄sþ s̄dÞ
operator. From the point of view of SUð3Þ flavor symmetry,
this operator transforms as an octet, and therefore its matrix
elements are given by exactly the same SUð3Þ structures as

those proportional to msλ8 that lead to the s-quark mass-
induced baryon mass splitting, Eq. (52). Combining this
vertex, the baryon poles, and the weak interaction-induced
transitions proportional to aW and bW , Eq. (43), we end up
with the following CP-conserving interaction of protons
and neutrons with aKL,

LCP−even
KNN ¼ð2.0p̄pþ2.8n̄nÞθKL

Fπ
×
2m�
ms

ffiffiffi
2

p
GFFπm2

πþ : ð61Þ

Notice that m−1
s in this expression is a remnant of the

baryon pole, whilemπþ is again simply the numerical value
of the pion mass that remains fixed in the chiral limit. For a
large nucleus, 2.0p̄pþ 2.8n̄n can be approximated as
≃2.5N̄N. Finally, putting together LCP−even

KNN and LCP−odd
KNN

and integrating out the KL field, we obtain g4N , and the
equivalent ḡaNN coupling in the following approximate
form,

gequivaNN × fa ≃ 5 × 10−7 × GeV2 ×
G2

Fm
2
πþnNm�

m2
KFπ

: ð62Þ

Numerically, this corresponds to

gequivaNN ðδÞ × fa ≃ 2 × 10−19 MeV; ð63Þ

which is again remarkably close to the earlier estimates.
The advantage of (63) is that it does not have an
indeterminate parameter κ as in Eq. (56), and it dominates
in the chiral limit, as then κ → 0. We also note that this
contribution does not deviate too far from the crude NDA
estimate (39), and is a factor of a few smaller than the
estimate of the short-distance contribution (40).

III. DISCUSSION

Ongoing experimental efforts to search for spin-mass
and mass-mass couplings mediated by axion forces [28]
motivate reconsideration of the CP-odd coherent ḡaNN
coupling. In this paper we have revisited the calculation
of this coupling, concentrating on its generation by
beyond the SM contributions coming from dimension
≤ 5 operators, and on its baseline CKM phase-induced
contribution.
Our results show that the induced theta term contributing

to ḡaNN may only dominate in models where CP violation
arises at very low energy, through the generation of
‘tadpole’ contributions linear in the axion field. In all
scenarios with CP-violation originating at or above the
electroweak scale, and parametrized by effective higher-
dimensional operators, the induced θ term is only one
contribution, inseparable from ‘direct’ contributions. This
is the case for CEDM sources, for example. The results for
the CEDM-driven value for ḡaNN depends on the poorly
known matrix element of the H operators, estimated in [6].
These are the same matrix elements that determine the

FIG. 2. The diagrams contributing to the mean-field equivalent
aNN coupling in the presence of the Standard Model CKM
phase. See the text for further details of the vertices.
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CP-odd ḡπNN effective couplings, and future progress in
calculating these matrix elements on the lattice will also
improve the quality of these estimates. In addition, we have
calculated the direct effect of the quark EDMs on ḡaNN but
the result appears to be rather small, so that RG mixing of
EDM → CEDM is likely the dominant source.
We have carefully considered the CKM-induced value of

ḡaNN , finding that long-distance contributions (from sep-
arate ΔS ¼ �1 transitions) contribute to ḡaNN × fa at the
level of ∼few × 10−19 MeV, which is close to both the
short-distance contribution from CKM-induced d̃d, and to
the naive dimensional analysis estimate ∼10−18 MeV. We
also find that the composite nature of the nucleus provides
an additional calculable source of an equivalent ḡaNN

coupling, mediated by aðN̄NÞ2 interactions in the mean
field approximation. It is easy to see, however, that all these
CKM estimates of ḡaNN are of academic interest only given
current experimental sensitivity. They are below the limits
on new physics that saturates current EDM bounds by

about eight to nine orders of magnitude. One should also
bear in mind the approximate nature of these long-distance
estimates, and with so many different terms and inter-
actions at play, further long-distance contributions may
be found.
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