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We perform large scale simulations to characterize the transition in quenched QCD. It is shown
by a rigorous finite size scaling that the transition is of first order. After this qualitative feature, quantitative
results are obtained with unprecedented precision: We calculate the transition temperature
w0Tc ¼ 0.25384ð23Þ—which is the first per-mill accurate result in QCD thermodynamics—and the
latent heat ΔE=T4

c ¼ 1.025ð21Þð27Þ, in both cases carrying out controlled continuum and infinite volume
extrapolations. As it is well known, the cost of lattice simulations explodes in the vicinity of phase
transitions, a phenomenon called critical slowing down for second order phase transitions and supercritical
slowing down for first order phase transitions. We show that a generalization of the parallel tempering
algorithm of Marinari and Parisi [Europhys. Lett. 19, 451 (1992)] originally for spin systems can efficiently
overcome these difficulties even if the transition is of first order, like in the case of QCD without quarks, or
with very heavy quarks. We also report on our investigations on the autocorrelation times and other details.
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I. INTRODUCTION

There is no doubt in the theoretical physics community
that the SU(3) Yang-Mills theory, or QCD without quarks,
features a first order phase transition. The transition takes
place at a temperature around 290 MeV, the precise value
strongly depending on the choice of the variable to set the
scale. It separates the cold confining phase from a hot phase
with spontaneously broken center symmetry.
In the context of full QCD, this transition was expected

to happen as a consequence of Hagedorn’s exponential

spectrum [1], and a first phase diagram was drawn in
Ref. [2]. Later, the necessity of a transition was derived
from the underlying quantum field theory and linked to the
center of the gauge group [3]. In contrast to the well known
crossover transition in full QCD [4], the order of the
transition between the confining and weak-coupling phases
was argued to be first order in the quarkless SU(3) theory
[5,6]. The main argument relies on the Zð3Þ symmetry of
the three-dimensional effective theory and that no stable
renormalization group fixed point is known with that
symmetry. Such an effective theory has already been
studied extensively in the context of the Potts model [7].
Our main motivation to study the transition of the SU(3)

Yang-Mills theory is the exploration of the so-called
“Columbia plot,” a diagram showing the nature of the
QCD transition as a function of the light and strange quark
masses mu ¼ md ¼ ml;ms. Because of the absence of an
exact Zð3Þ symmetry for finite quark mass, the transition
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will turn into crossover below a certain critical mass [6].
This mass was estimated using Dyson-Schwinger equa-
tions [8] and in effective models [9]. In the opposing corner
of the Columbia plot, referred to as the “chiral limit,” one
again expects a first order transition for three or more
massless flavors, following from the ϵ expansion of a linear
σ model [10]. This diagram was first studied in lattice QCD
by the Columbia group [11] and has been a subject of
intense research ever since. In terms of simulation costs, the
study of the upper right corner is considerably simpler than
working close to the chiral limit, partly because of the slow
convergence of the iterative solvers and partly because of
the more elaborate fermion formulations that the chiral
limit requires. However, simulations are in progress even
near the chiral corner, and recent results challenge the
theoretical assumptions on the phase diagram [12].
However, even the upper right corner is nontrivial to

simulate. It has been addressed using reweighting from
quenched QCD [13,14], reweighting from a leading order
hopping-term expansion [15] or a three-dimensional effec-
tive theory for the Polyakov loop [16], or with direct
simulations [17,18]. While these results are promising and
appear to be consistent with matrix models [9], a con-
tinuum extrapolation could not be achieved, yet.
The main difficulty in pinpointing the critical mass is not

simply coming from the presence of quarks, as the iterative
solvers converge very quickly in these studies. The problem
is more general: The critical slowing down becomes severe
as the critical mass is approached. Even at a safe distance
from the critical mass, simulations on the first order side of
the phase transition line can be difficult [17], and the
exploration of both phases with the proper statistical weight
turns out to be extremely challenging.
Even in the quarkless SU(3) Yang-Mills theory, the clear

evidence of the expected first order nature of the transition
was quite challenging to obtain. Followed by the pioneer-
ing papers [19,20] to observe the transition in a gauge
theory, Kajantie et al. observed a hysteresis in the Polyakov
loop, the first numerical hint for a first order transition [21].
The initial two-state signal [22,23] was followed by first
estimates of the latent heat [24,25]. To determine the nature
of a transition from finite-box simulations, a finite size
scaling is necessary. This was done for fixed (coarse) lattice
spacing in Refs. [26,27]. However, not all works agreed
with this: Refs. [28,29] proposed a second order transition.
In fact, the SU(3) transition is weak. In comparison to other
SU(N) theories [30], the latent heat in SU(3) falls short of
the linear 1=N2 scaling [31].
While spin model simulations underwent great progress

thanks to cluster algorithms [32], the gauge theory studies
cited here mostly relied on local update algorithms. In such
cases, the only tool at hand is the reweighting method of
Ferrenberg andSwendsen [33,34],which allows combination
and interpolation between simulation results. Reference [35]
introduced a tempering algorithm to circumvent “freezing

simulations” in spinmodels. In a nutshell, the algorithm treats
temperature (or any other control parameter) as a dynamical
variable thatwalks around in the regionof interest. The strong
dependence of the order parameter on the dynamical control
parameter fosters a quick decorrelation. Parallel tempering is
a variant of this idea where a simulation is started for each
possible parameter value. This has been applied successfully
to, e.g., various spin models [36,37], adjoint SU(2) Wilson
action modified by a Z2 monopole suppression term [38,39],
and to lattice QCD [40–43], though in the latter case, not for
the study of phase transitions.
In this work, we advocate the use of parallel tempering in

lattice QCD thermodynamics and demonstrate its virtues
by presenting a precise description of the phase transition in
the SU(3) gauge theory, calculating the transition temper-
ature and the latent heat. We do this to lay the foundations
of a longer term work with dynamical fermions [18].
Although there have been many studies on this transition,
a complete infinite volume limit of continuum extrapolated
observables has not been calculated, yet. In Sec. II, we
describe the parallel tempering algorithm and show the
resulting improvement in the autocorrelation times and
simulation precision. In Sec. III, we present our determi-
nation of the critical couplings for the tree-level Symanzik
improved gauge action used in this study, the continuum
extrapolated transition temperature, and its infinite volume
limit. We confirm the first order nature of the transition by
performing a finite volume analysis of the continuum
extrapolated susceptibilities in Sec. IV. Finally, we calcu-
late the latent heat and compare this to the latest result in the
literature [44] in Sec. IV B, then conclude.

II. TEMPERED SIMULATIONS
OF THE TRANSITION

A. The parallel tempering algorithm

We first describe the parallel tempering algorithm
[36,41,45,46].
Suppose we want to simulate some theory at various

parameter sets pi (which can include the gauge coupling β,
fermionic masses, etc.). Connected to each parameter, set
we have a subensemble Γi containing configurations (link
variables, pseudofermion fields, etc.) and an action Si
dependent on the parameters pi and on configurations
from Γi. The parallel tempering simulation considers a
Markov chain built on the direct product of the subensem-
bles’ configuration spaces: ΓPT ¼ Q

N
i¼1 Γi. Our intent is to

build a Markov chain that equilibrates to the distribution,

Peq
PT½faig� ¼

Y
i

Peq
i ðaiÞ ¼

Y
i

1

Zi
e−SiðaiÞ; ð1Þ

where ai are configurations from Γi, and Zi is the partition
function of subensemble Γi. The partition function of the
whole ensemble is then calculated as
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ZPT ¼
Y
i

Zi: ð2Þ

We define two kinds of transitions on ΓPT:
(1) Transitions within a subensemble: We can use

any Markovian updating procedure (HMC, local
Metropolis update, etc.) on the subensemble Γi using
the action Si.

(2) Swapping update of two subensembles: This step
mixes the phase space of Γi and Γj. We propose
to swap configurations a ∈ Γi and b ∈ Γj with
probability Psði; jÞ.

To satisfy the detailed balance of the swapping updates,
we must have

Psði; jÞe−SiðaÞe−SjðbÞ ¼ Psðj; iÞe−SiðbÞe−SjðaÞ: ð3Þ

This is easily satisfied with the usual Metropolis accep-
tance: Psði; jÞ ¼ minð1; e−ΔSÞ, with

ΔS ¼ SiðbÞ þ SjðaÞ − SiðaÞ − SjðbÞ: ð4Þ

To reach the desired equilibrium distribution, updates
within a subensemble are essential; they would suffice
without any swapping updates (that would be equivalent to
running independent calculations for each parameter set).
As we show below, swapping updates reduce the autocor-
relation times of the simulations immensely. The intuitive
understanding behind this observation is that the swapping
updates couple parameter sets with different autocorrela-
tion times τ. As configurations do a “random walk” in
parameter space, they decorrelate quickly at the low τ
region and wander back to the high τ region to contribute an
independent configuration. This is a more efficient way to
produce independent configurations than running the
Markov chain at a fixed parameter set.
For the parallel tempering to be effective, the acceptance

rate of swapping updates must be carefully controlled, such
that the action distributions of neighboring ensembles have
a substantial overlap. This can be achieved through the
control of the distance of the parameter sets pi, which, thus,
have to move closer to each other as the physical volume
increases. This is easily satisfied if the number of streams in
the transition region is kept constant as the width of the
transition region scales with inverse volume.
To locate the phase transition point for a given spatial

and temporal lattice size, we perform a β scan to search for
the peak of the Polyakov-loop susceptibility or the zero of
the third Binder cumulant (see Sec. III for details).
Typically, we have simulations at 16–256 β values, and
we use the parallel tempering algorithm. We introduce
swapping updates at predefined points in the Markov chain
(typically after five sweeps in each subensemble). This
algorithm can be especially efficiently parallelized in our
case where the β dependence of the action is simply given

as an overall factor of some function of the link variables.
We set up a number of streams updating a configuration at
certain β values (typically we use equidistant points). After
five sweeps on their configuration, all the streams need to
communicate one number (their action) to a master node,
which proposes (and accepts or rejects) several swapping
updates for each stream, and afterward, informs each
stream which β value they ended up at. This means that
the network bandwidth and computational requirements for
the swapping updates are negligible, although some effi-
ciency is lost as synchronization between the streams is
required. Note that this synchronization loss is independent
of the time that is needed for the calculation of one update
on the configurations (e.g., it is < 10% if a stream waits on
average less then half of an update time after every five
updates).

B. Explorations with the tempering algorithm

Below we show results of the parallel tempering method,
comparing it with the brute force (independent simulations
at each β value) and brute force with the multihistogram
method.
To set up the simulations, we need to choose the set of β

values we want to carry out simulations at. The distance
between neighboring ensembles, Δβ, needs to be small
enough such that the acceptance of the swapping updates is
Oð1Þ (see below for more details).
In Fig. 1, we show the β history of two streams (out of

128) for a simulation on a 453 × 10 lattice. As one
observes, the streams follow a trajectory similar to a
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FIG. 1. The β history (above) and Polyakov loop average
(below) of two streams as a function of the Monte Carlo sweeps
in a simulation on a 453 × 10 lattice with 128 streams on the
range 4.659 ≤ β ≤ 4.6844 divided equidistantly.
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random walk on the allowed β range, and they visit all
points for a long enough simulation. This introduces
correlations between ensembles at different β values, which
we will take into account later. As also visible on Fig. 1, the
value of the Polyakov loop changes relatively slowly
during the history of the stream. If we look at the history
of the Polyakov loop for a given β, the largest autocorre-
lation comes from the instances when the same stream
contributes (even if the stream visited other β values in the

meantime). We therefore reorder the Monte Carlo chain
using the stream ID number of the contributions (and keep
the chronological order among contributions from each
stream). This ensures that the most correlated contributions
will be close to each other (i.e., this ordering results in
the largest autocorrelation for the given Monte-Carlo
chain), which helps to minimize the correlations between
blocks in the jackknife analysis. In Fig. 2, we show the
resulting autocorrelation function for several lattice sizes at
β ¼ 4.5095, compared with autocorrelation functions of
brute force simulations. In the left panel of Fig. 3, we show
the measured autocorrelation times for various simulation
setups. As one observes, the autocorrelation is substantially
smaller for the parallel tempering simulations, although at
the increased cost of having to simulate at all β values.
Therefore, a fairer comparison would consider several brute
force simulations at all β values. In the right panel of Fig. 3,
we show the number of statistically independent configu-
rations created in brute force and in parallel tempering
simulations at similar parameters, using the same amount of
computational resources. We observe that τPP, the auto-
correlation time of the Polyakov loop, also improves
greatly as the number of β values increases in a given β
range and as Δβ decreases (increasing the acceptance rate
of swap updates). From the red and black points in Fig. 3,
we see that the number of independent configurations
created by the tempering algorithm increases substantially
by simply decreasing Δβ. Increasing the density of β

FIG. 2. The autocorrelation function of the absolute value of the
Polyakov loop at β ¼ 4.5095 for the lattice sizes 323 × 8,
403 × 8, 483 × 8, in a parallel tempering simulation (solid lines),
using 64β values with spacings Δβ ¼ 0.001 and in single
simulations (dashed lines).

FIG. 3. (Left) The autocorrelation time of the Polyakov loop as a function of β for simulations on a 323 × 8 lattice computed using the
tempering algorithm (solid points) and using the brute force method (unfilled points) around the transition temperature for Nt ¼ 8 with
equal amounts of computer time. The number of β values and their spacing, Δβ, are given for each simulation. τPP is improved by about
an order of magnitude due to the stream swapping of the tempering algorithm compared to that of the brute force approach. τPP also
improves greatly as the number of β values increases (increasing the number of participating streams at any given β) and asΔβ decreases
(increasing the probability of any one stream being swapped). (Right) The efficiency of each simulation in terms of the number of
computed updates divided by the autocorrelation time.
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values, as between the red and blue points, results in nearly
the same efficiency, indicating that the decrease in the
number of updates (due to having twice as many streams
for the same computer time) scales roughly with the
decrease in the autocorrelation time.
Finally, in Fig. 4, we show one of the observables of

interest: the Polyakov loop susceptibility. We show results
from parallel tempering and brute force simulations using
the same amount of computational resources. For com-
parison, we also show the “correct” result we calculated
using much larger statistics. We observe that the parallel
tempering simulations give much smaller statistical errors.
Although the brute force simulations are normally analyzed
with the multihistogram method [34], we see that the
parallel tempered simulations are superior to that as well.
Moreover, one can also use the multihistogram method
for the results of the parallel tempering algorithm, for a
slight reduction of its errors, as most of the benefit of
information of nearby ensembles is gained already using
the swapping updates. As the parallel tempering introduces
correlations between ensembles at different βs, the multi-
histogram analysis becomes slightly more complicated (see
Appendix A). In fact, the multihistogram algorithm is
based on a linear combination of the reweighted results
of all the available ensembles to minimize statistical errors.
Therefore, if we use the uncorrelated multihistogram
procedure on the parallel tempered ensembles, we might
get slightly larger error bars, as we use a suboptimal linear
combination. In practice, the correlations between ensem-
bles are quite small; neglecting these correlations in the
multihistogram procedure causes a negligible change in the
results (much smaller than the statistical errors).

To summarize, we find the usage of the parallel tempering
algorithm is very beneficial in these investigations.
A multihistogram analysis helps to further reduce the
statistical errors only slightly, as most of the effect of the
swap updates is present already in the single β ensembles.

III. TRANSITION TEMPERATURE

Awell-defined transition temperature can be established
using a variety of observables that are moments of the order
parameter, which for pure SU(3) theory, is the Polyakov
loop P. In the analysis of this section, we extract the
transition temperature using two of these observables: the
susceptibility of the Polyakov loop,

χ ¼ N3
sðhjPj2i − hjPji2Þ; ð5Þ

and the third order Binder cumulant of the Polyakov loop,

b3 ¼
hjPj3i − 3hjPjihjPj2i þ 2hjPji3

ðhjPj2i − hjPji2Þ3=2 : ð6Þ

At finite volume, the susceptibility as a function of the
coupling β shows a peak around the transition temperature.
The value of the coupling at which the peak occurs, which
we call βχ , approaches a value βc in the infinite volume
limit as the height of peak diverges linearly with the
volume, and the width of the peak goes to zero linearly
with the inverse volume; this value corresponds to the
transition temperature. b3 is used in an analogous fashion:
As an odd central moment of the order parameter, instead of
a peak, b3 has a zero crossing at a particular coupling value,
which we call βb. The slope of b3 around the zero crossing
increases linearly with the volume. In the infinite volume
limit, the zero crossing of b3 becomes a jump discontinuity
at the phase transition, and βb approaches the same value of
the critical couplings as does βχ .
If one wants to compare results at different lattice

spacings, the susceptibility defined in Eq. (5) should be
renormalized when one extracts βχ [47]. The zero crossing
of b3 is clearly unaffected by scaling, so b3 does not need to
be renormalized when extracting βb. For every lattice, we
renormalize the bare susceptibility as

χRðβ; Ns; NtÞ ¼ ZNtðβÞχðβ; Ns; NtÞ; ð7Þ

where Nt is the temporal extension of that lattice, with the
renormalization condition that

χRðβb; 4Nt; NtÞ ¼ ZNtðβbÞχðβb; 4Nt; NtÞ ¼ 1; ð8Þ

i.e., we fix χRðβbÞ ¼ 1 for all lattices with aspect ratio
LT ¼ Ns=Nt ¼ 4. βb is used in the renormalization con-
dition because, as just mentioned, it is a scale-invariant
quantity. Because the normalization function ZðβÞ is itself
β-dependent, the location of the peak of χRðβÞ differs
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FIG. 4. The susceptibility of the Polyakov loop average Eq. (5)
measured on a 323 × 8 lattice with several different algorithms
and analyses as indicated, using 12k core hours of computer time.
One local update step consists of three complete sweeps of
overrelaxation and one heat bath step at each site and each of the
three SU(2) subgroups. On the 323 × 8 lattice, the full local
update completes in 0.64s on a 68-core KNL card. A high
statistics result is also shown for comparison.
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slightly from that of χðβÞ; hence, βχ is dependent on the
renormalization. Obviously, it is not strictly necessary to
renormalize the susceptibility in order to extract βc. As the
width of the bare peak decreases linearly with the inverse
volume, ZðβÞ becomes approximately constant across that
width, and so the difference between βχ of χðβÞ and βχ of
χRðβÞ should go to zero in the infinite volume limit. Thus,
the value of βc extracted from χðβÞ should agree with the
value of βc extracted from χRðβÞ. However, that our results
may be formally correct and to avoid any potential
ambiguities, we use the renormalized susceptibility in this
analysis.
We extract βχ and βb by fitting χRðβÞ and b3ðβÞ in the

vicinity of the peak and of the zero crossing, respectively.
We employ basic polynomial fits of degrees 3, 4, 5, and 6.
As a consequence of the stream swapping in the tempering
algorithm, correlations exist in the Polyakov loop data
computed at different values of β for a given lattice
(see Sec. II for details); thus, correlations also exist among
each moment of the Polyakov loop computed at different β
for each lattice. Therefore, we use the well-established
practice of fitting with correlations using a subspace of the
covariance matrix. The essential details are as follows.
When fitting either χRðβÞ or b3ðβÞ for a particular lattice,
the covariance matrix of the fitted quantity is computed
and diagonalized. In the diagonalized matrix, the smallest
eigenvalues are averaged over and replaced with that
average. After the averaging, the covariance matrix is
converted back to its original basis. The cutoff for what
counts as a small eigenvalue is freely chosen. We consider
three choices for the cutoff: 10%, 5%, and 1% of the largest
eigenvalue. For completeness and comparison, we also
consider an uncorrelated fit. Ultimately, whether one uses a
correlated fit or no correlation at all, we find that it makes
very little difference on the final result for the transition
temperature (see the error budget). In order to be able to
interpret the χ2 of the fit to χRðβÞ or b3ðβÞ, one can use a
correlated fit. The final result for the critical couplings
including combined systematic and statistical errors are
included in Appendix B.
To extrapolate βχ and βb to the continuum and infinite

volume limits to get βc, we use the following set of lattice
parameters:

Nt Ns

5 15, 20, 22*, 23*, 25, 30, 40
6 18, 21, 24, 27, 30, 36, 48
7 28
8 24, 28, 32, 36, 40, 48, 64
10 30, 35, 40, 45, 50, 60, 80
12 48

The volumes are chosen such that there are lattices with
aspect ratios LT ¼ 3, 4, 4.5, 5, 6, and 8, for Nt ¼ 5, 6, 8,
and 10 (to obtain data at LT ¼ 4.5 for Nt ¼ 5, we find βχ
and βb for the lattices 223 × 5 and 233 × 5 and then

interpolate linearly in 1=N3
s to get βχ and βb for a

hypothetical “22.53 × 5” lattice) and that there are lattices
with LT ¼ 3.5 for Nt ¼ 6, 8, and 10. Two additional
lattices of LT ¼ 4 are also chosen for Nt ¼ 7 and 12.
Now, the value of the coupling β is specific to the choice

of action on the lattice; hence, while β is useful for
comparing results computed using the same action, it must
be translated into a physically meaningful quantity, the
lattice temperature T, to yield results that are independent
of the choice of action. This requires the use of a scale
setting. We use the w0 scale based on the Wilson flow,
implicitly defined by

t
d
dt

½t2EðtÞ�t¼w2
0
¼ 0.3; ð9Þ

where EðtÞ is the expectation value of the gauge action of
lattice configurations evolved via the Wilson flow [48,49].
We compute the w0 scale in lattice units, w0=a, for many
values of β for two different discretisations of the flow
(WSC and SSC in the notation of [50]). This gives us
another systematic choice as to which version of the scale
setting to use. We then interpolate these results to get
w0=aðβÞ by fitting with a polynomial of order 6 and 7 in the
β range [4.0,4.95]. It is critical to ensure that finite-volume
effects on the w0 scale remain small, as these effects
increase with the flow time [48]. In Fig. 5, we present a
volume study of the w0 scale (WSC) computed in this
analysis. Fluctuations in w0=a are comparable in size to the
statistical error at each volume; consequently, no significant
volume dependence can be seen.
Once w0=aðβÞ is found for a particular β on a lattice with

a temporal extension of Nt, it can be converted into the
lattice temperature T ¼ ðNtaÞ−1 by dividing by Nt:
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FIG. 5. Volume dependence of the w0 scale. w0=a is computed
using fixed bare quark masses that correspond to the physical
point and is shown as a function of the spatial extent of the box in
lattice units L=w0. Fluctuations are comparable to the statistical
error at each volume in the study; hence, finite-volume effects
remain small.
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w0

aNt
¼ w0T: ð10Þ

In this way, βχ and βb are converted into the dimensionless
quantity w0Tc for each lattice.
To compute the continuum value of the transition temper-

ature w0Tc at infinite volume, we first find the continuum
value of w0Tc at finite volume and fixed lattice aspect ratio
LT ¼ Ns=Nt and then extrapolate the results of the con-
tinuum theory at differentLT to the limit where ðLTÞ3 → ∞.
That a continuum limit forw0Tc exists for pureSU(3) at finite
volume is not immediately obvious; however, as shown in
Fig. 6, a well-defined continuum value ofw0Tc can in fact be
established at fixed aspect ratioLT using both definitions for
βc. We use large lattices with aspect ratios LT ¼ 4, 4.5, 5, 6,
and 8 for four different temporal extensions:Nt ¼ 5, 6, 8, and
10. To check the consistency of the continuum extrapolation
at other temporal extensions, we also include two lattices
with Nt ¼ 7 and 12 in the LT ¼ 4 extrapolation. In the left
panel of Fig. 6, one can see that w0Tc goes roughly linearly
with N−2

t for each LT. We perform two types of fit to
extrapolate to the continuum: a linear fit to all lattices with
Nt ≥ 6, and a quadratic fit to all lattices withNt ≥ 5. The fits
are shown in Fig. 6; the error bands give the combined
statistical and systematic errors from all the similar fits
performed in the analysis.

The continuum results from χR and b3 are shown in
Fig. 7 as functions of ðLTÞ−3, which behaves as the
inverse volume. A quadratic fit to LT ≥ 4 is used to
extrapolate to the infinite volume limit. This fit is shown in
Fig. 7 for both χR and b3. The error bands give the
combined statistical and systematic errors from all the
similar fits that were performed. We find that the infinite
volume value of the transition temperature w0Tc com-
puted using χR agrees with the value computed using b3,
as expected.
Following the analysis method introduced in [51] to

estimate the statistical and systematic uncertainties of the
results, in total, we have performed 256 different analyses;
these are characterized by the choice of the moment of the
Polyakov loop (χR or b3), the degree of the fit to the
moment (3, 4, 5, or 6), whether and how the fit is correlated
(uncorrelated or correlated with an eigenvalue cutoff of
10%, 5%, 1%), the choice of the w0 scale calculation
(WSC, SSC), the degree of fit to the w0 scale data (6 or 7),
and the degree and range of the continuum extrapolation
(linear or quadratic). The cumulative distribution function
(CDF) of the infinite volume results of these analyses is
shown in Fig. 8 in red, where the central value and
statistical error of each result are given. The statistical
and systematic uncertanities are synthesized into a smooth
CDF defined by the equation,

FIG. 6. Two example plots that summarize the continuum extrapolation of the transition temperature w0Tc computed from the zero
crossing of b3 at five fixed lattice aspect ratios LT; the zero crossing is converted into the quantity w0Tc using (left) the WSC w0 scale
and (right) the SSC w0 scale. Each data point is the median value of w0Tc computed for that lattice from the systematic analysis, and the
error bars give the combined statistical and systematic error. Error bands are shown for the two kinds of extrapolating fit that are used: a
linear fit to lattices with Nt ≥ 6 and a quadratic fit to lattices with Nt ≥ 5. The error bands give the combined statistical and systematic
error from all similar fits performed in the analysis.
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Fðw0TcÞ ¼
1

2
þ 1

2 · 256

X256
i¼1

wierf

�
w0Tc − μiffiffiffi

2
p

σi

�
; ð11Þ

where μi and σi are the central value and statistical
uncertainty, respectively, of the ith analysis, and wi is
the weight of the CDF of the ith result. (This equation then
assumes that the statistical result of each analysis is well
described by a normal distribution with a mean of μi and
standard deviation of σi.) We have no prior assumptions as
to the relative statistical significance of any of the analyses,
and so we take an agnostic position by weighting all
analyses equally, i.e., by setting wi ¼ 1. The result is shown
in blue in Fig. 8. The final result is then the median value of

the smooth CDF, implicitly defined by Fðw0TcÞ ¼ 0.5, and
the central 68% width is taken as twice the total error. This
yields a final value of w0Tc ¼ 0.25384ð23Þ, which is
shown in green in Fig. 7, with an error budget of

Median 0.25384
Statistical error 0.00011 0.043%
Full systematic error 0.00021 0.082%
Observable (b3, χR) 1.1 × 10−5 0.0042%
Fit order (3, 4, 5, 6) 2.1 × 10−5 0.0085%
Fit type (corr, uncorr) 1.2 × 10−5 0.0047%
Scale setting (WSC, SSC) 1.9 × 10−5 0.0075%
Scale fit order (6, 7) 2.4 × 10−6 0.0010%
Continuum limit range 1.2 × 10−4 0.0487%

IV. EVIDENCE FOR A FIRST
ORDER TRANSITION

In this section, we use our simulations to demonstrate
that the thermodynamic transition of the SU(3) Yang-Mills
theory is first order, as anticipated. We can perform this in
two ways.
First, we study the finite volume scaling of the suscep-

tibility (scaled variance) of the order parameter. As we did
in the case of the transition temperature study, we again use
the susceptibility (χR) of the renormalized Polyakov loop.
If the transition is of first order, the leading volume
dependence must be χ−1R ∼ V−1. Such a study would not
be new and also would not give a true evidence, if we used
data from a fixed lattice resolution. Here, we first calculate
the continuum limit of the peak height for various volumes
and then demonstrate the expected volume scaling.
Moreover, we show the continuum extrapolation of χR

FIG. 7. A summary plot of the infinite volume extrapolation of the continuum transition temperature w0Tc computed (left) from the
zero crossing of b3 and (right) from the peak of χR. Each point is the median value of w0Tc computed for each aspect ratio LT in the
systematic analysis, and the error bars give the combined statistical and systematic error. Error bands are shown for the quadratic fit to
LT ≥ 4. The error bands give the combined statistical and systematic errors from all similar fits in the analysis. The extrapolations from
b3 and χR are in agreement, as expected. The final result, w0Tc ¼ 0.25384ð23Þ, is shown in green.

FIG. 8. The cumulative distribution function (CDF) of all the
results from the systematic analysis of the infinite volume limit of
w0Tc in the continuum. The red curve shows the central value for
each analysis, and the error band shows the statistical error. The
blue curve gives the synthesized CDF defined in Eq. (11),
combining the statistical and systematic errors. The final result
is w0Tc ¼ 0.25384ð23Þ.
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as a function of w0T around the critical value w0Tc, and
display the expected volume dependence.
Perhaps the most convincing argument for the first order

nature of a transition is the existence of a latent heat in the
thermodynamic and continuum limit. Here, we are building
on the work of the WHOT collaboration [44,52]. Aided by
the tempering algorithm and the improved action, we arrive
at a combined continuum and infinite volume limit, 29
standard deviations away from zero.

A. Finite volume scaling of the
Polyakov loop susceptibility

To obtain the finite volume scaling of a susceptibility, it
has to be continuum extrapolated for several fixed physical
volumes. This raises the question of renormalization, a
topic that one could ignore as long as only one lattice
resolution is relied upon. As discussed before, χRðL; TÞ ¼
ZNtðβÞχðβ; Nx; NtÞ with L ¼ aðβÞNx and T−1 ¼ aðβÞNt.
The renormalization condition for Z is defined at a fixed
volume; for us, the choice is LT ¼ 4 (meaning Nx ¼ 4Nt).
Scanning through the resolutions Nt ¼ 4, 5, 6, 7, 8, 10, 12
and setting the renormalization condition χRðL ¼ 4T−1

c ;
T ¼ TcÞ≡ 1, one can easily obtain ZðβÞ for the whole
range of interest. Clearly, in this setting, we lose any
information about an overall constant in χR, but this being a
volume-independent factor, the actual finite size scaling is
left intact.
We select fixed physical volumes (LT ¼ 4.5, 5, 6, 8) and

interpolate ZðβÞ to the actual volume dependent βc of each
simulation with Nt ¼ 5, 6, 8 and 10. The renormalized
result χRðL; TÞ ¼ ZNtðβÞχðβ; Nx; NtÞ is simply continuum

extrapolated as N2
t . Such continuum extrapolation is shown

in Fig. 9 for the χRðw0TÞ curves at fixed volume and in
Fig. 10 for the inverse peak height. In Fig. 9 (left), each
curve is continuum extrapolated at the indicated fixed
volume, and the bands include both statistic and systematic
uncertainties. Note that had we subtracted the infinite
volume limit value χRðw0TcÞ instead of the volume-
dependent peak values χRðw0Tc;χðLTÞÞ, the curves would
not have have been exactly centered around zero, but a
trend would have appeared where larger volumes would
peak closer to zero. However, as can be seen in the right
panel of Fig. 7, the difference would be negligible since the
continuum extrapolated peak position shows a very mild
volume dependence. The right panel shows the same
curves, but scaled with the volume in order to highlight
the volume dependence. We can see that the bands
corresponding to LT ¼ 5, 6, 8 are overall almost indis-
tinguishable, clearly showing that they fall in the linear
volume scaling regime typical of a first order transition.
In Fig. 10, we actually show two extrapolations, one for

each definition of Tc, using the zero of the third Binder
cumulant or the susceptibility peak in red and blue,
respectively. The extrapolations do not differ at all depend-
ing on this ambiguity, and the main systematic uncertainty
comes from the possibility to include a inverse quadratic
volume term in the infinite volume extrapolations. We find
that the inverse susceptibility is extrapolated to be vanish-
ing, [or, actually, strongly constrained: χ−1R ðV ¼ ∞Þ ¼
0.0023ð58Þstatð65Þsys] in the infinite volume limit. (A
crossover transition is signaled by a positive value of the
infinite volume extrapolated inverse susceptibility).

FIG. 9. (Left) The continuum extrapolated renormalized Polyakov loop susceptibility at different volumes, centered around the
volume-dependent peak position w0Tc;χðLTÞ. The bands include both statistic and systematic uncertainties. (Right) Same curves as in
the left panel, but scaled with appropriate powers of the volume, in order to highlight the linear volume dependence typical of a first
order transition.
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B. Calculation of the latent heat

A nonvanishing latent heat identifies a transition to be
first order beyond doubt. Its calculation, however, is much
less trivial than observing a transition peak in a suscep-
tibility. Most conveniently, the latent heat can be under-
stood as the discontinuity of the trace anomaly,
ðϵ − 3pÞ=T4, as the transition is crossed. This assumes a
continuous pressure, which is assumed in all transition
scenarios. The difficulty in quantifying this gap arises from
two sources:
(a) To calculate a discontinuity, one must get very close to

Tc from both sides. The trace anomaly happens to
have a pronounced temperature dependence just above
and just below Tc.

(b) The trace anomaly has a quartic divergence; thus,
brute force statistics must scale with ∼N8

t to compen-
sate. Even in quenched QCD, this can quickly become
the driving factor in the costs for Nt ≥ 8.

When the continuum limit is desired, point (b) deter-
mines the amount of statistics needed, but point (a) must be
addressed in all cases. Just “reading off the jump” could
give any value between zero and 2 for Δðϵ − 3pÞ=Tc, as
shown in Fig. 1 of our earlier study [53]. One could define
the latent heat as the surface under the peak of the energy
susceptibility; however, the signal-to-noise ratio is dimin-
ishing in the infinite volume limit.
The most successful method to define the latent heat, the

one we also use here, is to simulate right at βc and classify

the lattice configurations into the cold and hot phases (see
Refs. [44,52]). The trace anomaly can then be evaluated for
both the hot and cold halves of the ensemble; the difference
gives the latent heat up to a renormalization factor. The
absolute value of the Polyakov loop shows a clear double
peaked histogram. Selecting the Polyakov loop magnitude
at the minimum of this histogram between the two peaks as
the cut value, we introduce a phase categorization that has a
systematic error decreasing exponentially with growing
volume. This criterion works well on smeared (flowed)
configurations as well [44].
We illustrate this approach on our Nt ¼ 5 ensembles at

βc. We reweighted our closest β ensemble to the point
where b3ðβÞ ¼ 0 for the particular simulation volume. The
bare Polyakov loop histograms are shown in Fig. 11 for
three of our simulation volumes. We show the standard
jackknife errors on the histograms. For this lattice spacing,
we could reach an aspect ratio of LT ¼ 16, where the
separation of the two peaks are very clear, indeed. Yet, even
near the minimum, we have enough hits in the Polyakov
loop bins to quantify the trace anomaly bin by bin.
The trace anomaly shows no discontinuity between the

phases, and its Polyakov loop dependence can be modeled
by a polynomial. In Fig. 11, we fit a third order polynomial
with finite volume corrections proportional to 1=L3 to
obtain the infinite volume extrapolation (red curve). This
picture connects the latent heat with the hot phase value of
Polyakov loop. The cold phase peak moves to zero as 1=L3,
hence, the y–intercept of the red curve points to the trace
anomaly at Tc − ϵ. Similarly, the nontrivial position of
second histogram peak in the thermodynamic limit is
translated by the same curve to the trace anomaly at Tc þ ϵ.
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FIG. 10. Infinite volume extrapolation of the inverse Polyakov
loop susceptibility. The results are renormalized and continuum
extrapolated, systematic errors are included. The renormalization
condition was χRðL ¼ 4T−1

c ; TcÞ ¼ 1. We use red symbols if we
defined Tc though the zero of the third Binder cumulant and blue
symbols when we defined Tc as the peak of the susceptibility.
Depending on the details of the infinite volume extrapolation, we
get a slightly positive or negative result. All in all, we get the
result χ−1R ðV ¼ ∞Þ ¼ 0.0023ð58Þstatð65Þsys The linear scaling
sets in for LT ≥ 5. The linear convergence of χ−1R to zero
indicates a first order transition.
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FIG. 11. We show the Polyakov loop histograms for three
volumes (Nt ¼ 5) along with the trace anomaly expectation
values for each Polyakov loop bin. The double peak structure and
the sharpening of the peaks with increasing volume match our
expectations for a first order transition. The trace anomaly shows
no discontinuity in this representation, and the infinite volume
limit can be found using a polynomial model.
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As observed in Fig. 11, one may define the latent heat at
a fixed ensemble by translating the peak positions into a
pair of trace anomaly values through the red curve (the
infinite volume extrapolation of the trace anomaly as
function of the magnitude of the Polyakov loop) and then
taking the difference. While this is clearly possible, it is to
be seen in practice if the volume scaling turns linear in 1=L3

for practical lattice sizes. Alas, this is not the case. Both the
peak positions and the trace anomaly they relate to, are
heavily nonlinear in the range 4 ≤ LT ≤ 8, where most of
our statistics is collected. However, integrating the trace
anomaly curve with the histogram peak’s weight for both
peaks gives a linear result. This is then equivalent to the
approach in Ref. [52] where the trace anomalies were
simply averaged for both cold and hot subensembles. In
summary, we first define a cut value in the modulus of the
Polyakov loop for each lattice size individually as the
minimum position of the discussed histogram. These bins
play no role in the second step, where we calculate the trace
anomaly for the configurations above and below this cut,
separately. The trace anomaly difference between these two
subensembles gives the latent heat normalized to T4.
Let us now come to point (b). Reference [44] introduces

a truly innovative way to separate the UV noise of the
physics result in the trace anomaly. The results are
calculated at small gradient flow time, where the square
root of the flow time replaces the lattice spacing in its role
as a cutoff scale. The presence of a small, physical flow
time eliminates the quartic divergence, and the continuum
limit can be taken. Using larger flow time allows the usage
of coarser lattices. This then needs to be related to the real
theory at zero flow time using small flow time expansion
[54], which gets harder as the selected flow time increases.
In this study, we analyzed the configurations at zero flow

time directly. To mitigate the quartic divergence, we used
the tree-level Symanzik improved action. This choice does
not improve the quartic scaling of the simulation noise, yet
it endorses coarser lattices within the linear range con-
tinuum scaling. We use lattices up toNt ¼ 10 instead of the
Nt ¼ 16 of Ref. [44]; this immediately allows for simulat-
ing a factor 43 ≈ ð16=10Þ8 less statistics due to the quartic
divergence of the trace anomaly. (This factor must be
considered together with the fact that the improved action
comes at a 2.1 times higher cost [55].)
The trace anomaly in Fig. 11 was renormalized using the

standard scheme of Ref. [56],

ϵ − 3p
T4

¼ N4
t a

dβ
da

ðhSgiN3
s×Nt

− hSgiinfiniteNt
Þ; ð12Þ

where Sg is the gauge action without the factor of the
inverse coupling β. The logarithmic derivative of the β—
lattice spacing (a) relation was obtained using our w0 scan,
the same that was already used as high precision scale
setting in Sec. III. The same runs were used to calculate the

zero temperature gauge action hSgiinfinite Nt
, which is not

necessary for latent heat itself, only if one is interested in
trace anomalies at Tc � ϵ.
We calculated the trace anomaly differences for the

ensembles that we generated. We find that a combined
linear continuum and infinite volume fit is possible, and
thus, we get the result in Fig. 12.
For the final results, we consider the following sources of

systematic uncertainties. The continuum limit is calculated
both using and not usingNt ¼ 5, including or not including
the aspect ratio LT ¼ 4.5 into the infinite volume extrapo-
lation. We use various number of Polyakov bins (100, 200
or 400) and two different log-polynomial models for fitting
the negative logarithm of the histogram so that cut value
separating the phases can be calculated. We have performed
two separate analyses: first using reweighting to βc from the
closest available β ensemble, second, using the multihisto-
gram method to calculate averages at βc. In the end, we
obtain

Δ
�
ϵ − 3p
T4

�
¼ 1.025ð21ÞðstatÞð27ÞðsysÞ; ð13Þ

with an error budget of

Median 1.0249
Statistical error 0.021 2.1%
Full systematic error 0.027 2.7%
Histogram fitting 0.0030 0.29%
Histogram binning 0.0002 0.02%
βc definition 0.0135 1.32%
w0 interpolation 0.0007 0.07%
LT range 0.0121 1.18%
Nt range 0.0157 1.53%
Analysis method 0.0019 0.18%
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FIG. 12. Combined and continuum limit of the trace anomaly
difference between the hot and cold phases. The extrapolation is
linear both in 1=N2

t and 1=L3; in this example, we exclude all
ensembles with Nt < 6 or LT < 5. The continuum extrapolated
but finite volume results in Ref. [44] are shown for comparison.
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V. CONCLUSION

In this paper, we have studied the phase transition in an
SU(3) pure gauge theory. First we have investigated the
efficiency of parallel tempering simulations to measure
properties of the system near the phase transition point. The
parallel tempering allows one to swap updates between
simultaneous calculations at different temperatures. One
observes a sizable decrease of the autocorrelation times
compared to simulations at a fixed temperature. As
observed the efficiency of parallel tempering is superior
to even brute force simulations using multihistogram
analysis to combine the data of all the ensembles.
Next we have determined the critical temperature of the

theory. We used two definitions to find the transition point:
the peak of the Polyakov loop susceptibility and the zero of
the third Binder cumulant of the Polyakov loop. The
ensembles in this study consisted of lattices with temporal
lattice size Nt ¼ 5, 6, 8, 10, and 12 with aspect ratios
LT ¼ 4, 4.5, 6, 8, 10, 12, using the Symanzik gauge action.
First, we carried out a continuum extrapolations for fixed
aspect ratios, giving the continuum extrapolated critical
temperatures for finite physical volumes. Second, we
calculated the infinite volume extrapolated critical temper-
atures and observed the coincidence of the two definitions
extrapolated to the thermodynamic limit in the continuum,
as expected. The systematic errors of the calculation were
thoroughly investigated by exploring many possible fitting
and extrapolation procedures. Our final result for the
critical temperature with combined statistical and system-
atic error is w0Tc ¼ 0.25384ð23Þ.
Finally, we have investigated the properties of the phase

transition. We have confirmed the first order nature of the
transition by first investigating the finite volume scaling of
the peak of the Polyakov loop susceptibility. For this, we
have calculated the continuum limit of the renormalized
Polyakov loop susceptibility for different physical system
sizes. As one observes, both the height and the width of
the susceptibility follow the appropriate scaling in the
infinite volume limit, confirming that the phase transition
is first order. Second, we have calculated the latent heat of
the transition, with the help of the discontinuity of the
trace anomaly. The discontinuity was measured for each
ensemble by averaging the trace anomaly at the critical
coupling for “hot” and “cold” configurations, where the
classification is based on the value of the Polyakov loop.
Finally, we carried out a combined infinite volume and
continuum extrapolation, yielding the value Δϵ=T4

c ¼
1.025ð21Þð27Þ.
The tempering algorithm is not limited to quenched

QCD. The same first order transition and the corresponding
critical end point can be addressed using tempering updates
in gauge coupling in the heavy quark region [18].
Introducing pseudofermions, the tempering updates can
be extended to mass, imaginary chemical potential, or other
parameters of the fermionic action. This algorithm will

probably play an important role in the exploration of the
QCD phase diagram.
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APPENDIX A: CORRELATED
MULTIHISTOGRAM

Here, we adopt the well-known reweighting method by
Ferrenberg and Swendsen [34] and extend it to corre-
lated data.
The weighted average a of data sets xi, i ¼ 1; 2;…; m

can be calculated by minimizing

χ2 ¼
Xm
i;j

ðxi − aÞðC−1Þi;jðxj − aÞ; ðA1Þ

with C−1 being the inverse covariance matrix [58]. The
minimum is found for

a ¼
P

m
i;j¼1 ðC−1Þi;jxjP
m
i;j¼1 ðC−1Þi;j

; ðA2Þ

which has minimal fluctuations compared to other possible
linear combinations.
Interpolating observables such as the Polyakov loop to a

target coupling β demands a precise knowledge of the
partition function ZðβÞ and thus, of the density of statesW,

ZðβÞ ¼
X
E

WðEÞe−βE: ðA3Þ

Since WðEÞ does not depend on β, it can be estimated by
the densities of states of the individual simulations WiðEÞ,
according to Eq. (A2). Thus, i labels the simulation at βi,
which is correlated with the other ones due to the β
tempering algorithm. The histograms of the energy
NiðEÞ can be related to the density of states by

WiðEÞ
e−βiE

ZðβiÞ
¼ NiðEÞ

ni
; ðA4Þ

where ni is the total amount of entries of the histogram. In
the same manner, the exact density of states WðEÞ is
estimated by multiple simulations performed at the same
coupling,
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WðEÞ ¼ NiðEÞZðβiÞ
nie−βiE

: ðA5Þ

It is important to note that Ni is the averaged histogram of

these simulations; thus, its error is σi ¼
ffiffiffiffiffiffiffiffiffi
giNi

p
. The factor

gi takes the correlation time τi of the ensemble into account
and reads gi ¼ 1þ 2τi. The covariance for a certain energy
E between the densities of states of individual simulations
Wi and Wj can be calculated as

covðWi;WjÞ ¼ W2
covðNi; NjÞ

Ni Nj
¼ W2

corrðNi; NjÞgigj
σiσj

:

ðA6Þ
Here, covðNi; NjÞ and corrðNi; NjÞ stand for components
of the covariance and correlation matrix, respectively,
which are estimated according to the standard Jackknife
resampling method.
With Eq. (A2), the estimator of the exact density of states

WðEÞ can be written as

WðEÞ ¼
P

m
i;j¼1 σiσjðgigjÞ−1corr−1ðNi; NjÞWjP
m
i;j¼1 σiσjðgigjÞ−1corr−1ðNi; NjÞ

¼
P

m
i;j¼1ðgigjÞ−1=2

ffiffiffiffiffiffiffi
niZj

njZi

q
eEðβj−βiÞ=2NjðEÞcorr−1ðNi; NjÞP

m
i;j¼1ðgigjÞ−1=2

ffiffiffiffiffiffiffi
ninj
ZjZi

q
e−EðβiþβjÞ=2corr−1ðNi; NjÞ

: ðA7Þ

In some cases, the correlation matrix is singular, caused by
bins that only contain a few entries. Since these bins have a
very small contribution to the end result of WðEÞ, we
neglect the correlation of them with other bins. In the case

of uncorrelated simulations, the correlation matrix is the
unity matrix, and we get back to the standard Ferrenberg-
Swendsen equation for the density of states,

TABLE I. Critical couplings calculated using the fitting method explained in Sec. III and by the multihistogram analysis.

Lattice βc from b3, fit βc from b3, multihist βc from χR, fit βc from χ, fit βc from χ, multihist

15 × 5 4.19667(15) 4.19676(13) 4.20246(73) 4.20019(46) 4.19996(16)
20 × 5 4.19855(9) 4.19858(8) 4.20048(47) 4.19987(14) 4.19998(10)
22 × 5 4.19917(5) 4.19915(6) 4.20050(28) 4.20020(9) 4.20020(6)
23 × 5 4.19926(9) 4.19930(9) 4.20073(13) 4.20040(12) 4.20026(9)
25 × 5 4.19995(11) 4.19996(11) 4.20084(21) 4.20064(16) 4.20069(11)
30 × 5 4.20056(11) 4.20052(10) 4.20103(13) 4.20095(13) 4.20090(10)
40 × 5 4.20112(3) 4.20110(4) 4.20126(6) 4.20123(3) 4.20123(4)

18 × 6 4.30962(39) 4.30986(41) 4.31706(116) 4.31412(97) 4.31324(60)
21 × 6 4.31081(33) 4.31090(29) 4.31470(72) 4.31325(53) 4.31319(33)
24 × 6 4.31210(19) 4.31190(12) 4.31434(28) 4.31355(28) 4.31361(12)
27 × 6 4.31233(9) 4.31230(12) 4.31389(16) 4.31350(14) 4.31347(12)
30 × 6 4.31291(13) 4.31290(15) 4.31402(19) 4.31376(17) 4.31374(16)
36 × 6 4.31379(11) 4.31373(10) 4.31427(17) 4.31415(10) 4.31417(10)
48 × 6 4.31432(3) 4.31432(5) 4.31447(4) 4.31445(3) 4.31447(5)

24 × 8 4.50511(26) 4.50506(24) 4.51309(77) 4.50954(47) 4.50936(38)
28 × 8 4.50633(23) 4.50639(20) 4.51191(46) 4.50980(43) 4.50964(37)
32 × 8 4.50756(14) 4.50758(13) 4.51060(34) 4.50965(19) 4.50964(12)
36 × 8 4.50788(6) 4.50795(7) 4.50985(7) 4.50934(9) 4.50936(8)
40 × 8 4.50846(9) 4.50847(10) 4.50985(16) 4.50951(12) 4.50952(11)
48 × 8 4.50929(10) 4.50930(9) 4.50996(12) 4.50982(11) 4.50982(9)
64 × 8 4.51028(7) 4.51024(7) 4.51048(8) 4.51046(8) 4.51041(7)

30 × 10 4.66673(71) 4.66695(68) 4.67641(231) 4.67065(160) 4.67175(182)
35 × 10 4.66990(24) 4.67002(30) 4.67634(44) 4.67382(35) 4.67362(43)
40 × 10 4.67099(12) 4.67098(14) 4.67421(47) 4.67299(25) 4.67306(20)
45 × 10 4.67166(13) 4.67159(15) 4.67371(22) 4.67309(15) 4.67318(19)
50 × 10 4.67188(30) 4.67199(31) 4.67295(54) 4.67253(52) 4.67267(43)
60 × 10 4.67244(19) 4.67259(21) 4.67326(29) 4.67314(28) 4.67318(25)
80 × 10 4.67365(10) 4.67364(11) 4.67389(12) 4.67386(11) 4.67383(12)
48 × 12 4.80980(17) 4.80980(17) 4.81303(48) 4.81199(20) 4.81205(26)
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Inserting Eq. (A7) in Eq. (A3), the partition functions Zi of
the individual simulations can be calculated iteratively.
Assuming constant autocorrelation times τi, the gi factors
are the same for every simulation. According to Eqs. (A7)
or (A8), they represent a constant factor for all Zi which can
be dropped.

APPENDIX B: CRITICAL COUPLINGS

The critical couplings for the ensembles used in this
study are listed in Table I. The quoted errors are combined
systematic and statistical errors for the βc values calculated
using fitting as described in Sec. III. Note that the critical
couplings calculated using the multihistogram analysis
have no systematic error, as they are simply solutions of
the equations b3ðβbÞ ¼ ∂βχðβχÞ ¼ 0.
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