
Taylor expansions and Padé approximants for cumulants of conserved
charge fluctuations at nonvanishing chemical potentials

D. Bollweg ,1 J. Goswami ,2 O. Kaczmarek,2 F. Karsch,2 Swagato Mukherjee,3 P. Petreczky,3 C. Schmidt ,2 and P. Scior3

(HotQCD Collaboration)

1Physics Department, Columbia University, New York, New York 10027, USA
2Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

3Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 25 February 2022; accepted 1 April 2022; published 28 April 2022)

Using high statistics datasets generated in (2þ 1)-flavor QCD calculations at finite temperature, we
present results for low-order cumulants of net-baryon-number fluctuations at nonzero values of the baryon
chemical potential. We calculate Taylor expansions for the pressure (zeroth-order cumulant), the net-
baryon-number density (first-order cumulant), and the variance of the distribution on net-baryon-number
fluctuations (second-order cumulant). We obtain series expansions from an eighth-order expansion of the
pressure and compare these to diagonal Padé approximants. This allows us to estimate the range of values
for the baryon chemical potential in which these expansions are reliable. We find μB=T ≤ 2.5, 2.0, and 1.5
for the zeroth-, first-, and second-order cumulants, respectively. We, furthermore, construct estimators for
the radius of convergence of the Taylor series of the pressure. In the vicinity of the pseudocritical
temperature Tpc ≃ 156.5 MeV, we find μB=T ≳ 2.9 at vanishing strangeness chemical potential and
somewhat larger values for strangeness neutral matter. These estimates are temperature dependent and
range from μB=T ≳ 2.2 at T ¼ 135 MeV to μB=T ≳ 3.2 at T ¼ 165 MeV. The estimated radius of
convergences is the same for any higher-order cumulant.
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I. INTRODUCTION

While we gained a lot of information on the thermody-
namics of strong interaction matter through numerical
calculations in the framework of lattice regularized quan-
tum chromodynamics (QCD) at finite temperature, the
extension to nonvanishing values of conserved charge
densities, i.e., net baryon number (B), electric charge
(Q), and strangeness (S), is difficult due to the lack of
appropriate numerical techniques. The currently most
actively pursued approaches to QCD at nonzero temper-
ature and nonzero conserved charge densities are based on
the application of Taylor series expansions in terms of
conserved charge chemical potentials, μ⃗ ¼ ðμB; μQ; μSÞ
[1,2], or direct simulations at nonzero imaginary chemical
potentials [3,4] (for recent reviews, see, e.g., [5–7]).
While the former approach has to deal with the range of
validity of series expansions arising from a finite radius of

convergence of such expansions and truncation errors
arising from the limited knowledge on the number of
expansion parameters [8], the latter requires analytic con-
tinuation to physical, real values of the chemical potential
and, thus, is limited by the Ansatz used for analytic
continuation of thermodynamic observables [9,10], which
in practice also is limited by the statistical accuracy with
which parameters of such an analytic continuation can be
constrained.
Recently, much effort has been put into a better under-

standing of the analytic structure of the QCD partition
function as a function of complex-valued chemical poten-
tials. This is important for our ability to generate suitable
Ansätze for the analytic continuation of calculations per-
formed with imaginary values of the chemical potentials as
well as for choosing appropriate resummation schemes that
allow us to extend results obtained in Taylor series beyond
the radius of convergence of such expansions. Poles of the
logarithm of the QCD partition function in the complex
chemical potential plane might be of simple thermal
origin, arising, e.g., from the analytic structure of Fermi
or Bose distribution functions [11], or stem from universal
critical behavior, known as Lee-Yang and Lee-Yang edge
singularities [12–15]. Studies of Lee-Yang zeros and
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singularities have a long history in QCD; recent studies
include, e.g., Refs. [16–18]. The scaling of the Lee-Yang
edge singularities and its influence on the QCD phase
transition was considered only recently [14,19–22].
We will focus here on the analysis of the Taylor series

expansion of the partition function of (2þ 1)-flavor QCD
and discuss the resummation of such series using Padé
approximants. The range of validity of Taylor expansions
using cumulants calculated at physical values of the quark
masses is limited by singularities of the logarithm of the
QCD partition function, i.e., the pressure, that occur for
complex-valued μ⃗. These singularities may either occur for
real values of μ⃗ or in the complex plane, e.g., where
ImðμBÞ ≠ 0. Only poles on the real μ⃗ axis correspond to
phase transitions in QCD. As recent studies of (2þ 1)-
flavor QCD with lighter than physical quark masses have
shown that the chiral phase transition temperature is at
Tc ¼ 132þ3

−6 MeV [23] and as this is expected to set an
upper bound on the location of a possible critical point at
nonzero values of the baryon chemical potential [24], we
expect to find only complex poles for the analytically
continued pressure in (2þ 1)-flavor QCD at temperatures
above T ≃ 135 MeV. Such singularities will limit the
radius of convergence for the Taylor series, which has
been estimated ever since the first applications of the Taylor
expansion approach in lattice QCD calculations [1,2,17].
The singularities in QCD partition functions in the

complex μB plane also have an impact on the range of
applicability of series expansions performed at real values
of the chemical potentials. Limitations for the determina-
tion of the searched-for critical point in QCD, arising from
a finite radius of convergence of Taylor expansions, can,
however, be circumvented by using appropriate resumma-
tion schemes for the Taylor series [11,18,25–29]. Using
Padé approximants is one way to gain information on the
analytic structure of the QCD partition function. They
allow one to explore, e.g., the pressure of QCD beyond the
limit set by a finite radius of convergence of Taylor series
[8,21,22,26,30].
Results for Taylor expansion coefficients, i.e., the

cumulants χBQS
ijk , in (2þ 1)-flavor QCD up to eighth order,

i.e., for all 0 < ðiþ jþ kÞ ≤ 8, get improved steadily by
the HotQCD Collaboration [31–33] in calculations with
the highly improved staggered quark (HISQ) action [34].
These expansion coefficients have been used for a
determination of the line of pseudocritical temperatures
TpcðμBÞ [31] and in an analysis of high-order cumulants at
nonvanishing values of the chemical potentials [32]. The
datasets used in these calculations have been extended by
adding calculations at a lower temperature, T ≃ 125 MeV,
for lattices with temporal extent Nτ ¼ 8, and more
statistics has been added on lattices with temporal extent
Nτ ¼ 12 and 16. Based on these updated datasets, we
presented in Ref. [33] an analysis of first- and second-
order cumulants at vanishing values of the chemical

potentials. Using in addition the results for higher-order
cumulants, we present here an analysis of the low-order
cumulants at nonvanishing values of the chemical poten-
tials. The datasets that are now available for Taylor
coefficients calculated with the HISQ action contain more
than a factor of 10 higher statistics on lattices with
temporal extent Nτ ¼ 8 and a factor of 20 higher statistics
for Nτ ¼ 12 than used previously in studies at nonzero μ⃗.
This allows a careful analysis of the reliability range
of such expansions, on the one hand, and an estimate of
the radius of convergence of the Taylor series, on the
other hand.
Aside from a systematic discussion of convergence

properties of the Taylor series and their improvement
through resummation of the series, applying techniques
commonly used for other statistical systems, e.g., Padé
approximations, the analysis of low-order cumulants also
provides the basis for a new, highly improved, analysis of
the QCD equation of state of (2þ 1)-flavor QCD at
nonvanishing chemical potentials. We provide here results
on the pressure and net-baryon-number density and leave
the analysis of other bulk thermodynamic observables to a
forthcoming publication.
This paper is organized as follows. In Sec. II, we present

our results on Taylor expansions for the pressure of (2þ 1)-
flavor QCD, the net-baryon-number density, and the
second-order cumulant of net-baryon-number fluctuations,
involving cumulants of up to eighth order. In Sec. III, we
construct Padé approximants for these Taylor series and
discuss information on the location of poles closest to the
origin that give estimators for the radius of convergence of
the Taylor series. Section IV presents a comparison of
Taylor series and Padé approximants that allows us to
estimate the range of chemical potentials in which current
series expansions, that can be constructed by using up to
eighth-order cumulants only, provide reliable results.
Finally, we give our conclusions in Sec. V. In three
Appendixes, we present (Appendix A) an explicit expres-
sion for the eighth-order Taylor expansion coefficient of the
pressure, (Appendix B) additional expansion coefficients
needed for the Taylor series of the second-order cumulant
of net-baryon-number fluctuations in strangeness neutral,
isospin symmetric systems, and (Appendix C) some details
on poles of the diagonal [4,4] Padé for the pressure in
(2þ 1)-flavor QCD.

II. TAYLOR EXPANSIONS OF LOW-ORDER
CUMULANTS AND THE EQUATION OF STATE

A. Computational setup for Taylor expansion
in (2 + 1)-flavor QCD

The framework for our calculations with the HISQ [34]
discretization scheme for (2þ 1)-flavor QCD with a
physical strange quark mass and two degenerate, physical
light quark masses is well established and has been used by
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us in several studies of higher-order cumulants of con-
served charge fluctuations and correlations. The specific
setup used in our current study has been described in
Ref. [32]. The framework for Taylor series expansions for
strangeness neutral systems with a fixed ratio of net electric
charge to net baryon number has been given up to sixth
order in Ref. [35]. It has been extended in Ref. [32] by
providing the necessary expansion coefficients for calcu-
lations involving up to eighth-order cumulants. In that
publication, the eighth-order expansion coefficient of the
pressure in strangeness neutral systems was not included.
In this work, we present an explicit expression for it in
Appendix A.

B. Taylor expansion coefficients
up to and including Oðμ8BÞ

We consider thermodynamic quantities, in particular,
low-order cumulants of conserved charge fluctuations,
derived from Taylor expansions for the pressure of
(2þ 1)-flavor QCD:

P
T4

¼ 1

VT3
lnZðT; V; μ⃗Þ ¼

X∞
i;j;k¼0

χBQS
ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð1Þ

with μ̂X ≡ μX=T and arbitrary natural numbers i, j, and k.

The expansion coefficients
χBQS
ijk

i!j!k! are derivatives of P=T4

with respect to the associated chemical potentials,
μ⃗ ¼ ðμB; μQ; μSÞ, evaluated at μ⃗ ¼ 0⃗:

χBQS
ijk ¼ 1

VT3

∂ lnZðT; V; μ⃗Þ
∂μ̂iB∂μ̂jQ∂μ̂kS

����
μ⃗¼0

; iþ jþ k even: ð2Þ

Aside from the Taylor expansion of the pressure, we
will focus here on the analysis of Taylor series for the
first- and second-order cumulants of net-baryon-number
fluctuations:

nB ¼ ∂P=T4

∂μ̂B ; ð3Þ

χB2 ¼ ∂2P=T4

∂μ̂2B : ð4Þ

For these observables we will introduce constraints on the
electric charge and strangeness chemical potentials [32,35]:

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þ q5ðTÞμ̂5B þ � � � ;
μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þ s5ðTÞμ̂5B þ � � � ð5Þ

that enforce strangeness neutrality (nS ¼ 0) and a fixed
ratio nQ=nB ¼ r. Here, the case r ¼ 0.5 refers to an isospin
symmetric medium, which is realized for μQ ¼ 0. The case

r ¼ 0.4 corresponds to the situation met in heavy ion
collision experiments. Explicit expressions for the expan-
sion coefficients qi and si with i ¼ 1, 3, 5 are given in
Ref. [35]; the coefficients q7 and s7 are given in Ref. [32].
With these constraints, we arrive at Taylor series in terms of
the baryon chemical potential only:

χBn ðT; μ̂BÞ ¼
X
k

χ̄B;kn ðTÞ
k!

μ̂kB; ð6Þ

where n ¼ 0 corresponds to the Taylor series for the μ̂B-
dependent part of the pressure, n ¼ 1 gives the net-baryon-
number density, and n > 2 gives higher-order cumulants of
net-baryon-number fluctuations:

χB0 ðT; μ̂BÞ≡ PðT; μBÞ − PðT; 0Þ
T4

¼
X∞
k¼1

P2kðTÞμ̂2kB ; ð7Þ

χB1 ðT; μ̂BÞ≡ nBðT; μBÞ
T3

¼
X∞
k¼1

NB
2k−1ðTÞμ̂2k−1B ; ð8Þ

χB2 ðT; μBÞ ¼
X∞
k¼0

χ̃B;k2 ðTÞμ̂2kB ; ð9Þ

with P2k ≡ χ̄B;2k0 =ð2kÞ! and NB
2k−1 ¼ χ̄B;2k−11 =ð2k − 1Þ!.

The expansion coefficients χ̄B;kn are simply related to the
expansion coefficients χ̃B;kn defined in Ref. [32]:

χ̃B;kn ≡ χ̄B;kn

k!
: ð10Þ

For convenience, we use here χ̄B;kn rather than χ̃B;kn , as
this emphasizes the close relation of the constraint expan-
sion coefficients to the standard cumulants of net-baryon-
number fluctuations χBk which equal χ̄B;kn in the case
μQ ¼ μS ¼ 0. Explicit expressions for χ̄B;kn are given in
Appendix A in Ref. [32] for k ≤ 7. For k ¼ 8, we give the
expansion coefficient χ̄B;8n here in Appendix A. We also
note that, in the case μQ ¼ μS ¼ 0 as well as in the isospin
symmetric case r ¼ 1=2, the expansion coefficients for the
pressure and number density series are closely related:

NB
2k−1ðTÞ ¼ 2kP2kðTÞ: ð11Þ

In fact, in the case μQ ¼ μS ¼ 0 the expansion coefficients
of all higher-order cumulants are simply related to those of

the pressure series: χ̄B;kn ¼ ðkþnÞ!
k! χ̄B;kþn

0 . The expansion
coefficients shown in Fig. 1, thus, are sufficient to construct
the expansions for P=T4 (n ¼ 0), nB=T3 (n ¼ 1), and χB2
(n ¼ 2). In the strangeness neutral case, μQ ¼ 0, nS ¼ 0,
the above relation holds only for n ¼ 1. We, thus, still need
to give results for the expansion coefficients of χ̄B;k2 with
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k ¼ 2, 4, 6. We show these expansion coefficients in
Appendix B. As expected, the qualitative features of the
temperature dependence of χ̄B;k2 in the nS ¼ 0 and μS ¼ 0

cases are similar; i.e., they behave like χBkþ2.
In Fig. 1, we show results for χ̄B;2k0 for the two different

cases considered throughout this paper; i.e., we work in the
isospin symmetric case, corresponding to μQ ¼ 0, and
consider for the strangeness sector (i) the case μS ¼ 0
(left) and (ii) the strangeness neutral case nS ¼ 0 (right),
respectively. Continuum extrapolated results for the

leading-order expansion coefficient of the pressure series,
χ̄B;20 , are shown in the two panels on the top in Fig. 1. They
are based on datasets generated on lattices with temporal
extent Nτ ¼ 6, 8, 12, and 16. Results for the case μQ ¼
μS ¼ 0 at T ≳ 135 MeV had been shown already in
Ref. [33]; we added here our results at T ¼ 125 MeV
obtained on lattices with temporal extend Nτ ¼ 8, which
have not been used in the continuum extrapolations. The
insets given in these figures for χB2 (left) as well as χ̄B;20

(right) show comparisons with the same cumulants

FIG. 1. The nth-order cumulants χ̄B;n0 , contributing to the Taylor series of the pressure of (2þ 1)-flavor QCD as a function of
μ̂B ¼ μB=T versus temperature. Shown are the expansion coefficients for the cases of (i) μQ ¼ μS ¼ 0 (left column) and (ii) μQ ¼ 0,
nS ¼ 0 (right column), respectively. In both cases, the actual nth-order expansion coefficients in the Taylor series are obtained with these
cumulants as χ̄B;n0 =n!. Yellow bands show the location of the pseudocritical temperature Tpcð0Þ ¼ 156.5ð1.5Þ MeV [31].
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calculated in a hadron resonance gas (HRG) model
describing the thermodynamics of noninteracting, pointlike
hadrons.1 This calculation uses the hadron spectrum
compiled in the QMHRG2020 list [33].
For the Oðμ̂4BÞ expansion coefficients, we show in Fig. 1

continuum extrapolations based on Nτ ¼ 6, 8, and 12
datasets. For the higher-order expansion coefficients, we
use only results from our high statistics calculations on
lattices with temporal extent Nτ ¼ 8, where more than
1.5 million gauge field configurations2 have been generated
at each temperature value. Results for larger Nτ are
consistent with these results but have significantly larger
statistical errors. However, as can be seen from the lower-
order expansion coefficients, cutoff effects are generally
small for expansion coefficients at nonzero values of μ̂B.
The interpolating curves for the Oðμ6BÞ and Oðμ8BÞ expan-
sion coefficients shown in Fig. 1 are cubic spline
interpolations.

C. Cumulants and the equation of state at nonzero μB
From the temperature dependence of the Oðμ̂2BÞ expan-

sion coefficient of the pressure shown in Fig. 1, it is
apparent that deviations from the thermodynamics
of a noninteracting HRG reach about 20% at the pseudoc-
ritical temperature of (2þ 1)-flavor QCD, Tpcð0Þ ¼
156.5ð1.5Þ MeV [31], and rapidly become larger at higher
temperatures. Below Tpc, the leading-order expansion
coefficient agrees quite well with HRG model calculations
[33]. As can be seen also in Fig. 1, already the Oðμ̂4BÞ
Taylor coefficient deviates from HRG model results more
strongly than the Oðμ̂2BÞ expansion coefficient. For all
temperatures in the range 135 MeV ≤ T ≤ 165 MeV, the
sixth- and eighth-order expansion coefficients are negative,
in contrast to the noninteracting HRG expansion coeffi-
cients, which are all positive. Even at low temperatures, we,
thus, expect to find that deviations from HRG model
calculations increase with increasing values of the baryon
chemical potential.
Compared to our earlier analysis of the QCD equation of

state, presented in Ref. [35], the new results for the
expansion coefficients shown in Fig. 1 are based on 10
times higher statistics for Nτ ¼ 8 and 12 and include also
data on lattices with temporal extent Nτ ¼ 16. This allows
us to determine also the contribution from eighth-order

expansion coefficients to Taylor series of various thermo-
dynamic observables. The highly improved statistics results
in a huge improvement of the current calculation over that
published previously [35]. We update in Fig. 2 our results
for the pressure and the net-baryon-number density calcu-
lated in sixth and fifth orders of the Taylor expansion,
respectively. Results are shown as a function of temperature
for the case μQ ¼ μS ¼ 0 using the continuum extrapolated
data for χB2 and χB4 , as well as the spline interpolated data for
χB6 , obtained on lattices with temporal extent Nτ ¼ 8.
Obviously, the “wiggly” structure seen in the old calcu-
lations for Oðμ̂6BÞ expansions at μ̂B ¼ 2.5 [35] is smoothed
out in our new high statistics analysis, and the Oðμ̂6BÞ
results agree well with Oðμ̂4BÞ expansions in the entire
temperature range.
On the basis of a sixth-order Taylor expansion, we, thus,

have no indications for a radius of convergence being
smaller than μ̂B ¼ 2.5, nor do we have indications for a
poor convergence of the Taylor expansions of P=T4 and
nB=T3, respectively. This will change when discussing the
eighth-order contribution to the Taylor series. We stress,
however, already here that we need to distinguish between
the radius of convergence of the Taylor series, which is the
same for all observables determined as derivatives of P=T4

with respect to μ̂B, and the rate of convergence of
expansions for these observables to their asymptotic values,
which will be slower with increasing order of the
derivatives.

FIG. 2. Fourth- and sixth-order Taylor series results for the
pressure and corresponding third- and fifth-order expansion
results for the net-baryon-number density as a function of
temperature for the case μQ ¼ μS ¼ 0.

1Throughout this work, we use a model based on noninteract-
ing, pointlike hadrons listed in the QMHRG2020 list [33] as the
HRG model reference system. Such models have been improved
by incorporating interactions as described by the S matrix [36]
or more phenomenological through the use of finite volume
for baryons [37].

2These datasets have been generated using a rational hybrid
Monte Carlo algorithm (RHMC) [38,39]. They contain gauge
field configurations that have been stored after ten subsequent
RHMC time units. The actual code package used for our
calculations is described in Ref. [40].
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Taking also into account the contribution from eighth-
order Taylor expansion coefficients of the pressure, we
show in Fig. 3 results for the μ̂B dependence of the pressure,
net-baryon-number density, and the second-order cumulant
of net-baryon-number fluctuations. Shown are results
obtained by using different orders of the Taylor expansion
at a fixed value of the temperature in the vicinity of Tpc,
i.e., T ¼ 155 MeV, for the case μQ ¼ μS ¼ 0. As can be
seen, deviations from QMHRG2020 increase with increas-
ing μ̂B, and these deviations are larger for higher-order
cumulants. It also is apparent from this figure that the rate
of convergence of the expansions for higher-order cumu-
lants slows down. Being limited to a certain order in the
expansion, thus, allows us to give reliable results for
higher-order cumulants only in a smaller μ̂B range,
although the expansions for all cumulants have the same
radius of convergence. We will give a more quantitative
discussion of the μ̂B range, in which the current Taylor
expansions for different cumulants are expected to give
reliable results, in Sec. IV.

In Fig. 4, we show the μ̂B-dependent contribution to the
pressure as a function of temperature for some values of μ̂B,
i.e., for μ̂B ¼ 1.0, 1.5, 2.0, and 2.5, and for the net-baryon-
number density for μ̂B ¼ 1.0, 1.5, 2.0. In all cases, we show
results obtained in different orders of the Taylor series
expansion. For these values of the baryon chemical
potential, the Oðμ̂8BÞ Taylor series for the pressure agrees
well with the lower-order results. For nB=T3, we do not
show results from an Oðμ̂8BÞ at μ̂B ¼ 2.5, as it is apparent
from Fig. 3 that higher-order expansion coefficients will be
needed to obtain reliable results for the pressure at that large
value of μ̂B.
In the entire temperature range analyzed by us, the

Taylor series for pressure converges well for 0 ≤ μ̂B ≤ 2.5.
For the number density, this can be stated at present only
for the range 0 ≤ μ̂B ≤ 2.0, although that may turn out to be
somewhat larger once the statistical accuracy in calcula-
tions of eighth-order expansion coefficients is increased.
Nonetheless, based on the analysis of eighth-order
Taylor expansions of the pressure, we have no hint for a
radius of convergence smaller than μ̂B ∼ 2.5 that would
limit the applicability of Taylor expansions at temper-
atures T ≳ 125 MeV.

III. RADIUS OF CONVERGENCE AND PADÉ
APPROXIMATIONS

In general, the radius of convergence of the Taylor series
for a function

fðxÞ ¼
X∞
n

cnxn ð12Þ

is given by the location of a singularity of f in the complex
x plane that is closest to the origin. Of course, rigorous
statements on the radius of convergence of a Taylor series
can be made only by analyzing the asymptotic behavior of
the expansion coefficients in the limit n → ∞. Having at
hand only a few expansion coefficients of the Taylor series
for the pressure in QCD, we naturally can obtain estimators
only for the radius of convergence and extract some
information on the analytic structure of thermodynamic
functions in the plane of complex chemical potentials.
We are dealing with Taylor series in terms of μ̂B for

which only every second expansion coefficient is nonzero,
e.g., the pressure series which has nonvanishing expansion
coefficients χ̄B;n0 only for even n. The simplest estimator
rc;n for the radius of convergence rc ¼ limn→∞rc;n is
obtained from subsequent, nonvanishing expansion coef-
ficients. We define rc;n ¼

ffiffiffiffiffiffiffiffijAnj
p

, with

An ¼
cn
cnþ2

; n even: ð13Þ

Another frequently used estimator, with improved con-
vergence properties, has been introduced by Mercer and
Roberts [41], rMR

c;n ¼ jAMR
n j1=4, with

FIG. 3. The pressure (top), net-baryon-number density
(middle), and net-baryon-number fluctuations (bottom) versus
μ̂B at T ¼ 155 MeV.
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AMR
n ¼ cnþ2cn−2 − c2n

cnþ4cn − c2nþ2

; n even: ð14Þ

The estimators based on the ratios An and AMR
n are related to

poles of ½n; 2� and ½n; 4� Padé approximants for the series
expansion of fðxÞ. We, thus, will consider the structure of
such Padé approximants in the following.
When constructing Padé approximants for the pressure

series of (2þ 1)-flavor QCD, we take advantage of the fact
that the two leading expansion coefficients of the pressure,
P2k ¼ χ̄B;2k0 =ð2kÞ!, k ¼ 1, 2, are strictly positive. We, thus,
rescale the pressure by a factor P4=P2

2 and redefine the
expansion parameter as

x̄ ¼
ffiffiffiffiffiffi
P4

P2

s
μ̂B ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ̄B;40

12χ̄B;20

s
μ̂B: ð15Þ

This allows us to rewrite the expansion of the pressure in
terms of expansion coefficients

c2k;2 ¼
P2k

P2

�
P2

P4

�
k−1

; ð16Þ

which gives c2;2 ¼ c4;2 ¼ 1. Therefore, for μQ ¼ μS ¼ 0 as
well as for the strangeness neutral case, the analytic
structure of the QCD pressure, that one can deduce from
an eighth-order Taylor series in QCD, entirely depends on
two expansion parameters:

c6;2 ¼
P6P2

P2
4

¼ 2

5

χ̄B6 χ̄
B
2

ðχ̄B4 Þ2
; ð17Þ

c8;2 ¼
P8P2

2

P3
4

¼ 3

35

χ̄B8 ðχ̄B2 Þ2
ðχ̄B4 Þ3

: ð18Þ

With this, we obtain

ðΔPðT; μBÞ=T4ÞP4

P2
2

¼
X∞
k¼1

c2k;2x̄2k

¼ x̄2 þ x̄4 þ c6;2x̄6 þ c8;2x̄8 þ � � � ; ð19Þ

with ΔPðT; μBÞ ¼ PðT; μBÞ − PðT; 0Þ.
The two diagonal Padé approximants that can be con-

structed from our eighth-order series for the pressure are
given by

P½2; 2� ¼ x̄2

1 − x̄2
; ð20Þ

P½4; 4� ¼ ð1 − c6;2Þx̄2 þ ð1 − 2c6;2 þ c8;2Þx̄4
ð1 − c6;2Þ þ ðc8;2 − c6;2Þx̄2 þ ðc26;2 − c8;2Þx̄4

:

ð21Þ

The [2, 2] Padé has a pole on the real axis for x̄2 ¼ 1, i.e.,
for μB;c ≡ rc;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12χ̄B2 =χ̄

B
4

p
, which is the standard ratio

estimator for the radius of convergence. The [4, 4] Padé has
four poles which come in two pairs, corresponding to zeros

FIG. 4. Pressure (top) and net-baryon-number density (bottom) versus temperature for several values of the baryon chemical potential.
Figures on the left correspond to the case μQ ¼ μS ¼ 0 and on the right to the strangeness neutral, isospin symmetric case. The Taylor
expansions are based on the continuum and spline interpolated data shown in Fig. 1.
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of the polynomial in the denominator of Eq. (21) which is
quadratic in z≡ x̄2. The two zeros in z are given by

z� ¼
c8;2 − c6;2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc8;2 − cþ8;2Þðc8;2 − c−8;2Þ

q
2ðc8;2 − c26;2Þ

; ð22Þ

with

c�8;2 ¼ −2þ 3c6;2 � 2ð1 − c6;2Þ3=2: ð23Þ

It is easy to see that the argument of the square root
appearing in Eq. (22) is positive for c6;2 > 1. Complex
zeros with Reðμ̂BÞ ≠ 0 thus exist only for

ðiÞ c6;2 < 1 and c−8;2 < c8;2 < cþ8;2: ð24Þ

Outside this region, the zeros z� are real and, thus,
correspond to pairs of real poles in terms of μ̂B if z�>0

and purely imaginary poles if z� < 0. In fact, as we show in
Appendix C, there is a small region in parameter space
ðc6;2; c8;2Þ, close to cþ8;2 in which zþ < 0 and z− < 0,

ðiiÞ c6;2 < 0 and cþ8;2 < c8;2 < c26;2: ð25Þ

This leads to two pairs of purely imaginary poles in μ̂B.
Everywhere else in parameter space, at least one pair of real
zeros exists, which, however, not always is the pair of zeros
closest to the origin (see Appendix C).
In order to get further information on the poles of the

[4, 4] Padé approximant for the pressure and, in particular,
deduce conditions for the occurrence of real poles, we
show in Fig. 5 results for c8;2 versus c6;2 obtained in the
temperature range3 125 MeV ≤ T ≤ 170 MeV from the
spline interpolated Nτ ¼ 8 expansion coefficients, χ̄B;60 and

χ̄B;80 , and the continuum extrapolations for χ̄B;20 and χ̄B;40

shown in Fig. 1. Also shown in this figure are the
boundaries for the triangular-shaped region, bounded by
cþ8;2 and c−8;2, inside which only complex poles exist for the
[4, 4] Padé of the eighth-order Taylor series of the pressure.
We show results for the case μQ ¼ μS ¼ 0 (left) and
μQ ¼ 0, nS ¼ 0 (right), respectively.
As can be seen in Fig. 5, despite the currently large errors

on the location of the poles, it is well established that the
poles occur in the complex μ̂B plane for all temperatures
135 MeV ≤ T ≤ 165 MeV. Within our current statistical
errors, we cannot rule out that pairs of real and/or purely
imaginary poles will occur at temperatures below T ¼
135 MeV as well as for temperatures above T ¼ 165 MeV.
In fact, this is expected to be the case at low enough
temperatures, where one can see in Fig. 1 that χ̄B;60 and χ̄B;80

become positive at T ≃ 125 MeV, and also at high temper-
ature, where Fig. 1 shows that χ̄B;60 < 0 while χ̄B;80 > 0

at T ≃ 175 MeV.
At low temperatures, the complex-valued poles leave the

area bounded by c�8;2 in a region of parameter space where
c6;2 > 0 or, correspondingly, χ̄B;60 > 0. As discussed and
also indicated in the figure shown in Appendix C, for
c6;2 > 0 there is a small region in parameter space above
the boundary defined by cþ8;2 where all poles are strictly
real, before entering the region where a pair of real and
imaginary poles exists. One can check that for all 0 <
c6;2 < 1 the real pole actually is closer to the origin as long
as c26;2 < c8;2 < c6;2. Our results on the temperature
dependence of c26;2 and c28;2, thus, suggest that with
decreasing temperature a pair of complex poles moves
toward the real axis and gives rise to two real poles. With
decreasing temperature, one of these real poles moves
toward infinity and comes back as an imaginary pole with
large magnitude.
In the region where the conditions given in Eq. (24) hold,

one has four zeros in terms of x̄ corresponding to the

FIG. 5. The expansion coefficients c8;2 versus c6;2 on lattices with temporal extent Nτ ¼ 8 in the entire temperature range 125 MeV <
T < 175 MeV covered in our calculations. The area bounded by the two black lines indicates the region in parameter space, in which all
poles of the [4, 4] Padé are complex. The left-hand figure corresponds to the case μQ ¼ μS ¼ 0, and the right-hand figure is for the
strangeness neutral, isospin symmetric case.

3We do not show results for T ¼ 175 MeV, as errors are even
larger than those shown for T ¼ 170 MeV.
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positive and negative roots of z�. They yield four poles of
the [4, 4] Padé in the complex μB plane with the non-
vanishing imaginary part of μ̂B. We represent these poles in
polar coordinates:

μ̂�B;c ¼ �rc;4e�iΘc;4 : ð26Þ
For temperatures 135 MeV ≤ T ≤ 165 MeV, the zeros z�
are complex conjugate to each other. In the x̄ plane, the
absolute value of the distance of the poles from the origin is
then given by

jzþz−j1=4 ¼
���� 1 − c6;2
c26;2 − c8;2

����1=4; ð27Þ

which is the Mercer-Roberts estimator, introduced in
Eq. (14), for a series in the rescaled expansion parameter
x̄. We note that this relation between the Mercer-Roberts
estimator and the magnitude of jz�j does not hold for the
case of purely real or purely imaginary poles of the [4, 4]
Padé (see discussion in Appendix C). In these cases, the
distances to the origin jzþj and jz−j differ from each other.
Using Eqs. (26) and (27), we obtain for c6;2 < 1 the

location of the poles in the complex μB plane:

rc;4 ¼ rc;2jzþz−j1=4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12χ̄B;20

χ̄B;40

s ���� 1 − c6;2
c26;2 − c8;2

����1=4; ð28Þ

Θc;4 ¼ arccos

0
B@ c6;2 − c8;2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c6;2Þðc26;2 − c8;2Þ

q
1
CA

¼ arccos

�ðc6;2 − c8;2Þχ̄B;40

24ð1 − c6;2Þχ̄B;20

r2c;4

�
: ð29Þ

Expressing the relation given in Eq. (28) in terms of the
cumulants χ̄B;n0 entering the Taylor series for the pressure
[Eq. (7)], we have in the region of complex poles

rc;4 ¼
�
8!

4!

�
1=4

���� 30ðχ̄B;40 Þ2 − 12χ̄B;60 χ̄B;20

56ðχ̄B;60 Þ2 − 30χ̄B;80 χ̄B;40

����1=4: ð30Þ

The positions of the poles in the complex μ̂B plane are
shown in Fig. 6. Only the two poles in the region
Reðμ̂BÞ ≥ 0 are shown. With decreasing temperature, the
poles move closer to the real axis as c8;2 approaches cþ8;2,
i.e., Θc;4 ¼ 0 for c8;2 ¼ cþ8;2. Furthermore, it is clear from
Eq. (29) that Θc;4 and rc;4 are correlated, which leads to the
orientation of the 1σ error ellipse in the complex μB;c plane
arising from the errors on c6;2 and c8;2, which are assumed
to given by independent Gaussian distributions of the
variables c6;2 and c8;2.
In Fig. 7, we show as symbols and bands, respectively,

the distance of poles of the [2, 2] and [4, 4] Padé
approximants from the origin as a function of temper-
ature. The bands shown in Fig. 7 have been obtained by
using the spline interpolations of χ̄B;60 and χ̄B;80 on Nτ ¼ 8

FIG. 6. Location of poles nearest to the origin obtained from the [4, 4] Padé approximants in the complex μ̂B plane. Only poles with
ReðμBÞ > 0 are shown. Shown are results for the case μQ ¼ μS ¼ 0 (left) and the strangeness neutral, isospin symmetric case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained from
the [2, 2] (squares and circles) and [4, 4] (bands) Padé
approximants for Taylor expansions at μQ ¼ μS ¼ 0 and for
strangeness neutral, isospin symmetric media, respectively.
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lattices and the continuum extrapolated results
for χ̄B;20 and χ̄B;40 , shown in Fig. 1, respectively. As can
be seen, the two estimators yield a similar magnitude for
rc;2 and rc;4. Their location in the complex μB plane,
however, is quite different. While the poles of the [2, 2]
Padé are always on the real axis, the poles of the [4, 4]
Padé are in the complex plane in the entire inter-
val 135 MeV ≤ T ≤ 165 MeV.
For 135 MeV ≤ T ≤ 165 MeV, we find that the poles

of the [4, 4] Padé appear at a distance from the origin
corresponding to jμ̂Bj≳ 2.5 at T ≃ 135 MeV and rise to
values larger than jμ̂Bj≳ 3 for T ≳ Tpc. These also are
the best estimates for a temperature-dependent bound on
the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator.
The information extracted from the [4, 4] Padé approx-
imants on the location of poles in the analytic function
representing the pressure as a function of a complex-
valued chemical potential μ̂B, thus, seems to be con-
sistent with the good convergence properties of the
Taylor series itself.

IV. COMPARISON OF PADÉ APPROXIMANTS
AND TAYLOR SERIES

In Fig. 8, we compare the ½n; 4� Padé approximants for
the pressure (n ¼ 4), the net-baryon-number density
(n ¼ 3), and the second-order cumulant of net-baryon-
number fluctuations (n ¼ 2) with corresponding Taylor
expansions that use expansion coefficients χ̄B;k4−n with k ≤ 8.
We show results obtained at three temperatures in the
interval in which our results clearly yield complex-valued
poles only, i.e., T ¼ 135, 155, and 165 MeV, respectively.
As error bands quickly become large for large μ̂B, we show
errors only up to the point where relative errors are less then
15%. In this range of μ̂B values, also the Padé approximants
and the straightforward Taylor expansions agree quite well.
In the entire temperature interval 135MeV≤T≤

165MeV, the expansion coefficient χ̄B;80 is negative for
μQ ¼ μS ¼ 0 as well as for μQ ¼ 0, nS ¼ 0. It will
dominate the expansion at large μ̂B and, thus, forces the
Taylor expansion of P=T4 to have a maximum at some
value of μ̂max

B . As the net-baryon-number density is the

FIG. 8. Comparison of the ½n; 4� Padé approximants for the pressure (n ¼ 4), the net-baryon-number density (n ¼ 3), and the second-
order cumulant of net-baryon-number fluctuations (n ¼ 2) with corresponding Taylor expansions. Shown are results for T ¼ 135 (left),
155 (middle), and 165 MeV (right) versus μ̂B for the case μQ ¼ μS ¼ 0. Also shown are derivatives of the [4, 4] Padé approximants with
respect to μ̂B (green bands).
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derivative of P=T4 with respect to μ̂B, it has a maximum
below μ̂max

B and vanishes at μ̂max
B . Similarly, the second-

order cumulant reaches a maximum at an even smaller
value of μ̂B. As can be seen in Fig. 8, the ½n; 4� Padé
approximants (blue bands), the direct μ̂B derivative of the
[4, 4] Padé (green bands), and the Taylor expansions (red
bands) agree quite well up to values of the chemical
potentials close to the respective value of μ̂max

B , and this
maximum arises at larger μ̂B as the temperature increases.
This is in accordance with the increase of the estimator
μMR
c;4 ðTÞ for the magnitude of the Padé poles given in Fig. 7.
Starting with a Taylor series limited to eighth order,

obviously the expansions possible for higher-order deriv-
atives become shorter. Correspondingly, the order of an
½n; 4� Padé used by us becomes smaller. If, however, the
Padé approximant used for the original pressure series, i.e.,
in our case the [4, 4] Padé approximant, provides a good

approximation for the pressure in the complex μ̂B plane,
taking directly subsequent derivatives with respect to μ̂B
will give good resummed approximants for, e.g., the net-
baryon-number density and higher-order cumulants. In
Fig. 8, we, thus, also show approximations for nB=T3

and χB2 obtained by taking the first and second derivatives
of the [4, 4] Padé approximant of P=T4 (green bands). By
construction, the poles of these approximants are identical
to those of the [4, 4] Padé approximant of P=T4. As can be
seen, these derivatives agree with the corresponding ½n; 4�
approximants up to values of μ̂B similar to those where the
latter start to differ from the corresponding Taylor series.
Although the radius of convergence for the Taylor series of

all higher-order cumulants is determined by that of the
pressure series, the currently available eighth-order Taylor
series for the pressure clearly does provide a reliable approxi-
mation for higher-order cumulants only in a smaller interval of

FIG. 9. Comparison of Taylor expansions and ½n; 4� Padé approximants for the pressure (n ¼ 4) (top), net-baryon-number density
(n ¼ 3) (middle), and the second-order cumulant (n ¼ 2) of net-baryon-number fluctuations (bottom) versus temperature for several
values of the baryon chemical potential. Shown are results for the cases μQ ¼ μS ¼ 0 (left) and μQ ¼ 0, nS ¼ 0 (right), respectively. The
Taylor expansions are based on the continuum and spline interpolated data shown in Fig. 1.
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μ̂B values.We consider the range of μB values indicated by the
range of error bands given in Fig. 8 as the regionwhere current
results on the pressure, net-baryon-number density, and the
second-order cumulant of net-baryon-number fluctuations are
reliable. As can be seen in that figure, this range of baryon
chemical potentials is somewhat larger at higher temperatures
than at lower temperatures.
In Fig. 9, we compare results obtained for these observ-

ables using Taylor expansions as well as Padé approximants
for several values of μ̂B. We show results in the entire
temperature range 135 MeV ≤ T ≤ 175 MeV using values
of the chemical potential up to the largest value indicated by
the bands given in Fig. 8. As can be seen for the pressure, we
find excellent agreement up to values of the chemical
potential μ̂B ≃ 2.5. The corresponding largest values of μ̂B
for nB=T3 and χB2 are μ̂B ¼ 2 and 1.5, respectively. This
choice of μ̂B values is enforced by demanding good agree-
ment between Taylor series results and Padé approximants at
the lowest temperature. At higher temperatures, Figs. 7 and 8
suggest that in the vicinity of Tpc the range of μ̂B values in
which eighth-order Taylor series can provide reliable results
is larger, e.g., μ̂B ≲ 3 for P=T4.

V. CONCLUSIONS

We have presented results for eighth-order Taylor series
expansions of the pressure in (2þ 1)-flavor QCD for
isospin symmetric matter corresponding to vanishing elec-
tric charge chemical potentials. From this Taylor series, we
derived the first two cumulants of net-baryon-number
fluctuations, corresponding to the mean and variance of
the net-baryon-number distribution. We used Padé approx-
imants to resum these Taylor series.
We have shown that the [4, 4] Padé approximant, which

reproduces the eighth-order Taylor series of the pressure
series, has only complex poles in the entire temperature
interval 135 MeV ≤ T ≤ 165 MeV, which gives further
support to the observation that a possible critical point in
the QCD phase diagram may be found only at temperatures
below 135 MeV. From the location of the poles in the
complex plane, we estimate the radius of the convergence
for these Taylor series expansions to be slightly temperature
dependent, increasing from μ̂B;c ≃ 2.2 at T ¼ 135 MeV to
μ̂B;c ≃ 3.2 at T ¼ 165 MeV. In the vicinity of the
pseudocritical temperature Tpc ≃ 156.5 MeV, we find
μB=T ≳ 2.9 at vanishing strangeness chemical potential
and somewhat larger values for strangeness neutral matter.
If poles of ½n; n� Padé approximants continue to lie in the
complex μ̂B plane, an efficient resummation of the Taylor
series of the QCD pressure to even larger values of μ̂B will
be possible in this temperature range.
A comparison of Taylor series and Padé approximants

for the Taylor series of the pressure and the first two
cumulants of net-baryon-number fluctuations allows
us to estimate the range of μ̂B values in which current

series expansions give reliable results. For the pressure and
the first two cumulants in (2þ 1)-flavor QCD, we deduce
that the current eighth-order series for the pressure and its
derivatives agree well with the resummed [4, 4] Padé
approximants and its derivatives for μ̂B ≤ 2.5 (pressure),
2.0 (net number density), and 1.5 (second-order cumulant).
All data presented in the figures of this paper can be

found in [42].
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APPENDIX A: TAYLOR EXPANSION
COEFFICIENTS FOR STRANGENESS NEUTRAL,

ISOSPIN SYMMETRIC QCD MATTER

We give here the general form of the eighth-order
expansion coefficients χ̄B;kn for nth-order cumulants of
net-baryon-number fluctuations. In the context of this
work, it is needed only for the pressure series (n ¼ 0) in
the case μ̂Q ¼ 0, which corresponds to setting qn ¼ 0 in the
following expression. Expansion coefficients of all other
cumulants χ̄B;kn that involve only cumulants χBQS

ijk with
iþ jþ k ≤ 8 are given in Appendix A of Ref. [32]:
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χ̄B;8n ¼ 40320χBQS
n02 s1s7 þ 40320χBQS

n02 s3s5 þ 6720χBQS
n04 s

3
1s5 þ 10080χBQS

n04 s
2
1s

2
3 þ 336χBQS

n06 s
5
1s3

þ χBQS
n08 s

8
1 þ 40320χBQS

n11 q1s7 þ 40320χBQS
n11 q3s5 þ 40320χBQS

n11 q5s3 þ 40320χBQS
n11 q7s1 þ 20160χBQS

n13 q1s
2
1s5

þ 20160χBQS
n13 q1s1s

2
3 þ 20160χBQS

n13 q3s
2
1s3 þ 6720χBQS

n13 q5s
3
1 þ 1680χBQS

n15 q1s
4
1s3 þþ336χBQS

n15 q3s
5
1 þ 8χBQS

n17 q1s
7
1

þ 40320χBQS
n20 q1q7 þ 40320χBQS

n20 q3q5 þ 20160χBQS
n22 q
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1s1s5 þ 10080χBQS

n22 q
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1s
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3 þ 40320χBQS

n22 q1q3s1s3

þ 20160χBQS
n22 q1q5s
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1 þ 10080χBQS

n22 q
2
3s
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1 þ 3360χBQS

n24 q
2
1s
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1s3 þ 1680χBQS

n24 q1q3s
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þ 20160χBQS
n31 q
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n31 q1q
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1q3s
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1
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1 þ 168χBQS

nþ251q
5
1s1

þ 28χBQS
nþ260q

6
1 þ 6720χBQS

nþ301s5 þ 3360χBQS
nþ303s

2
1s3 þ 56χBQS

nþ305s
5
1 þ 6720χBQS

nþ310q5 þ 6720χBQS
nþ312q1s1s3

þ 3360χBQS
nþ312q3s

2
1 þ 280χBQS

nþ314q1s
4
1 þ 3360χBQS

nþ321q
2
1s3 þ 6720χBQS

nþ321q1q3s1 þ 560χBQS
nþ323q

2
1s

3
1 þ 3360χBQS

nþ330q
2
1q3

þ 560χBQS
nþ332q

3
1s

2
1 þ 280χBQS

nþ341q
4
1s1 þ 56χBQS

nþ350q
5
1 þ 1680χBQS

nþ402s1s3 þ 70χBQS
nþ404s

4
1 þ 1680χBQS

nþ411q1s3

þ 1680χBQS
nþ411q3s1 þ 280χBQS

nþ413q1s
3
1 þ 1680χBQS

nþ420q1q3 þ 420χBQS
nþ422q

2
1s

2
1 þ 280χBQS

nþ431q
3
1s1 þ 70χBQS

nþ440q
4
1

þ 336χBQS
nþ501s3 þ 56χBQS

nþ503s
3
1 þ 336χBQS

nþ510q3 þ 168χBQS
nþ512q1s

2
1 þ 168χBQS

nþ521q
2
1s1 þ 56χBQS

nþ530q
3
1 þ 28χBQS

nþ602s
2
1

þ 56χBQS
nþ611q1s1 þ 28χBQS

nþ620q
2
1 þ 8χBQS

nþ701s1 þ 8χBQS
nþ710q1 þ χBQS

nþ800: ðA1Þ

APPENDIX B: TAYLOR EXPANSION COEFFICIENTS FOR THE χ̄B2
IN THE CASE μQ = 0, nS = 0

In Fig. 10, we show the expansion coefficients χ̄B;k2 for the Taylor series of the second-order cumulant of net-baryon-number
fluctuations in (2þ1)-flavor QCD defined in Eq. (9).

FIG. 10. Taylor expansion coefficients χ̄B;k2 of the second-order cumulant of net-baryon-number fluctuations in (2þ 1)-flavor QCD.
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APPENDIX C: LOCATION OF REAL AND
IMAGINARY POLES IN THE PARAMETER

SPACE (c6;2;c8;2)

We discuss here the occurrence of complex and real
poles in the plane of the two real expansion parameters
appearing in the Taylor series for the pressure, (c6;2; c8;2),
and characterize the location of [4, 4] Padé approximants
constructed from the eighth-order Taylor series of the
pressure in (2þ 1)-flavor QCD.
As discussed in Sec. III, there is a triangular-shaped

region in this parameter space, bounded by lines c�8;2 given
in Eq. (23), in which all four poles of the [4, 4] Padé are
complex with nonvanishing real and imaginary parts.
Outside this region, poles of the [4, 4] Padé are either real
or purely imaginary. For z� > 0, there exists a pair of real
poles in terms of μ̂B; for z� < 0, one has a pair of purely
imaginary poles. In the parameter space (c6;2; c8;2), one can
have two pairs of purely imaginary poles (ii), two pairs of
real poles (rr), or a pair of each of these types, (ir) or (ri).
In the latter case, we use the convention that the first letter
corresponds to that pair of poles that is closest to the origin.
The parameters (c6;2; c8;2) for which these different types of
poles appear are shown in Fig. 11.
In the following, we give some further details on the

boundaries for the different regions in parameter space: We
rewrite Eq. (22) as

z� ¼ c8;2 − c6;2
2ðc8;2 − c26;2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc8;2 − c6;2Þ2 þ 4ðc8;2 − c26;2Þð1 − c6;2Þ

q
2ðc8;2 − c26;2Þ

: ðC1Þ

The zeros zþ and z− are related to each other through

zþz− ¼ 1 − c6;2
c26;2 − c8;2

: ðC2Þ

Outside the region bounded by c�8;2, both zeros have the
same sign, if zþz− > 0, i.e., if the numerator and denom-
inator in Eq. (C2) have the same sign, which is the case for

either c6;2 > 1 and c8;2 > c26;2 ðC3Þ

or c6;2 < 1 and c8;2 < c26;2: ðC4Þ

In the first case, it is obvious that c8;2 > c26;2 > c6;2 holds.
It, thus, is evident from Eq. (C1) that zþ > 0 and the region
defined in Eq. (C3) corresponds to a region with two real
poles in the complex μ̂B plane. For all other regions with
c6;2 > 1, a pair of real and a pair of purely imaginary poles
exists. However, only for c8;2 < c6;2 is it the imaginary pair
of poles that is closest to the origin.
In the second case [Eq. (C4)], we obtain from

Eq. (23)

c26;2 − cþ8;2 ¼ ð1 − c6;2Þð2 − c6;2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c6;2

p Þ > 0: ðC5Þ

It, thus, is evident from Eq. (C1) that zþ < 0 for c6;2 < 0. In
the range cþ8;2 < c8;2 < c26;2, one thus finds two pairs of
purely imaginary poles in the complex μ̂B plane. On the
other hand, for 0 < c6;2 < 1, one finds in the same c8;2
interval that z− > 0. In this case, one thus has two pairs of
real poles in the complex μ̂B plane. Finally, there is a
second region for purely real poles, which is allowed
by Eq. (C4). This is the case of c8;2 < c−8;2, as also in
this case one finds z− > 0. In all other cases, one finds a
pair of real and a pair of complex poles. These different
parameter regions in the ðc6;2; c8;2Þ plane are shown
in Fig. 11.

FIG. 11. Location of poles in the complex μ̂B plane as a
function of the couplings c6;2 and c8;2. In the yellow area, the four
poles are complex (cc) with ReμB ≠ 0 and ImμB ≠ 0. In the other
regions, they come as pairs of two purely real (r) or purely
imaginary (i) poles. The notation xy in the legend of the figure
indicates that there is a pair of poles of type x and another pair of
type y where the poles of type x are closest to the origin.
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Dimopoulos, F. Di Renzo, S. Singh, and K. Zambello,
Acta Phys. Pol. B Proc. Suppl. 14, 241 (2021).

[23] H. T. Ding et al. (HotQCD Collaboration), Phys. Rev. Lett.
123, 062002 (2019).

[24] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A.
Stephanov, and J. J. M. Verbaarschot, Phys. Rev. D 58,
096007 (1998).

[25] R. V. Gavai and S. Gupta, Phys. Rev. D 78, 114503 (2008).
[26] S. Datta, R. V. Gavai, and S. Gupta, Phys. Rev. D 95,

054512 (2017).
[27] V. Vovchenko, J. Steinheimer, O. Philipsen, and H.

Stoecker, Phys. Rev. D 97, 114030 (2018).
[28] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P.

Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 126, 232001 (2021).

[29] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, P. Parotto, A.
Pasztor, C. Ratti, and K. K. Szabo, arXiv:2202.05574.

[30] G. Basar, G. Dunne, and Z. Yin, arXiv:2112.14269.
[31] A. Bazavov et al. (HotQCD Collaboration), Phys. Lett. B

795, 15 (2019).
[32] A. Bazavov et al., Phys. Rev. D 101, 074502 (2020).
[33] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S.

Mukherjee, P. Petreczky, C. Schmidt, and P. Scior (HotQCD
Collaboration), Phys. Rev. D 104, 074512 (2021).

[34] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. Lepage,
J. Shigemitsu, H. Trottier, and K. Wong (HPQCD, UKQCD
Collaborations), Phys. Rev. D 75, 054502 (2007).

[35] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017).
[36] P. M. Lo, B. Friman, M. Marczenko, K. Redlich, and C.

Sasaki, Phys. Rev. C 96, 015207 (2017).
[37] V. Vovchenko, M. I. Gorenstein, and H. Stoecker, Phys.

Rev. Lett. 118, 182301 (2017).
[38] M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98, 051601

(2007).
[39] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 82,

074501 (2010).
[40] L. Altenkort, D. Bollweg, D. A. Clarke, O. Kaczmarek, L.

Mazur, C. Schmidt, P. Scior, and H.-T. Shu, Proc. Sci.
LATTICE2021 (2022) 196.

[41] G. N. Mercer and A. J. Roberts, SIAM J. Appl. Math. 50,
1547 (1990).

[42] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S.
Mukherjee, P. Petreczky, C. Schmidt, and P. Scior, 10.4119/
unibi/2962427 (2022).

TAYLOR EXPANSIONS AND PADÉ APPROXIMANTS FOR … PHYS. REV. D 105, 074511 (2022)

074511-15

https://doi.org/10.1103/PhysRevD.71.114014
https://doi.org/10.1103/PhysRevD.71.114014
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1016/j.physletb.2015.11.011
https://doi.org/10.1016/j.physletb.2015.11.011
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1142/S0218301315300076
https://doi.org/10.1016/j.nuclphysa.2018.10.042
https://doi.org/10.1016/j.physletb.2011.03.013
https://doi.org/10.1016/j.nuclphysa.2017.05.044
https://doi.org/10.1016/j.nuclphysa.2017.05.044
https://doi.org/10.1103/PhysRevD.98.054510
https://doi.org/10.1103/PhysRevD.83.071502
https://doi.org/10.1103/PhysRevD.83.071502
https://doi.org/10.1103/PhysRevD.73.094508
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevLett.127.171603
https://doi.org/10.1103/PhysRevD.105.014026
https://doi.org/10.1103/PhysRevD.105.014026
https://doi.org/10.1016/j.physletb.2019.04.040
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevD.103.L071501
https://doi.org/10.1103/PhysRevD.103.L071501
https://doi.org/10.1103/PhysRevD.105.034513
https://doi.org/10.5506/APhysPolBSupp.14.241
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.95.054512
https://doi.org/10.1103/PhysRevD.95.054512
https://doi.org/10.1103/PhysRevD.97.114030
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevLett.126.232001
https://arXiv.org/abs/2202.05574
https://arXiv.org/abs/2112.14269
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevD.101.074502
https://doi.org/10.1103/PhysRevD.104.074512
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevC.96.015207
https://doi.org/10.1103/PhysRevLett.118.182301
https://doi.org/10.1103/PhysRevLett.118.182301
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevD.82.074501
https://doi.org/10.1103/PhysRevD.82.074501
https://doi.org/10.1137/0150091
https://doi.org/10.1137/0150091
https://doi.org/10.4119/unibi/2962427
https://doi.org/10.4119/unibi/2962427

