
Quark-diquark potential and diquark mass from lattice QCD

Kai Watanabe *

Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan

(Received 4 December 2021; accepted 28 February 2022; published 27 April 2022)

We propose a new application of lattice QCD to calculate the quark-diquark potential, diquark mass, and
quark mass required for the diquark model. As a concrete example, we consider theΛc baryon and treat it as
a charm-diquark (c-[ud]) two-body bound state. We extend the HAL QCD method to calculate the charm-
diquark potential, which reproduces the equal-time Nambu-Bethe-Salpeter wave function of the S-wave
state [Λcð12þÞ]. The diquark mass is determined so as to reproduce the difference between the S-wave and

the spin-orbit averaged P-wave energies, i.e., the difference between the Λcð12þÞ level and the average of the
Λcð12−Þ and the Λcð32−Þ levels. Numerical calculations are performed on a 323 × 64 lattice with lattice
spacing of a ≃ 0.0907 fm and the pion mass of mπ ≃ 700 MeV. Our charm-diquark potential is given by
the Coulombþ linear (Cornell) potential, where the long range behavior is consistent with the charm-
anticharm potential, while the Coulomb attraction is considerably smaller. This weakening of the attraction
may be attributed to the diquark size effect. The obtained diquark mass is mD ¼ 1.273ð44Þ GeV. Our
diquark mass lies slightly above the conventional estimates, namely the ρ meson mass and twice the
constituent quark mass 2mN=3.

DOI: 10.1103/PhysRevD.105.074510

I. INTRODUCTION

Understanding hadrons as quark many-body systems is
one of the most important themes in hadron physics.
However, solving many-body problems confronts us with
numerical complexities even for three-quark systems. One
way to reduce the burden is to introduce a composite
particle made of two quarks called the diquark [1–3]. Then,
for instance, a baryon can be considered as a bound state of
a diquark and a quark.
Diquark models [4–6] that reduce the degrees of freedom

in this way have been successful in accounting for a wide
range of problems, e.g., structures and reactions of hadrons
[7–12], exotic hadron levels [13–15], and the Regge
trajectory in the baryon sector [16]. However, the color
confinement imposed by QCD forbids us to conduct direct
experimental investigations on the diquark mass, quark-
diquark interactions, and so on. They are merely inferred
for practical calculations [17].
Lattice QCD (LQCD) Monte Carlo calculation, i.e., the

first-principle calculation ofQCD,makes it possible to study
various properties of diquarks. For instance, Refs. [18,19]

calculated the diquark mass. However, it is still unclear
whether the mass evaluated in these references for an
isolated diquark is valid in a baryon. References [20,21]
calculated the spatial size of the diquark. However, the
interaction between a quark and a diquark is still unclear.
Recently, the HAL QCD Collaboration proposed a

method to calculate hadron-hadron potentials from the
equal-time Nambu-Bethe-Salpeter (NBS) wave function
[22–24] calculated by LQCD. In 2011, Ikeda and Iida
applied the HAL QCD method to the quark-antiquark
(qq̄) system [25]. Their qq̄ potential was shown to behave
as the well-known Cornell (Coulombþ linear) potential
[26–28]. However, Ikeda and Iida set the quark mass to half
of the vector meson mass based on a naive constituent quark
picture. Kawanai and Sasaki proposed a method to deter-
mine the quark mass in 2011 [29,30]. They did so by
imposing a condition on the quarkmass bymaking use of the
spin-spin interaction between the quark and the antiquark.
The quark mass calculated by the Kawanai-Sasaki method
reproduced the mesonic excitation spectrum with a satis-
factory accuracy [30,31]. Theseworks together paved away
to evaluating the quarkmass and theqq̄ interaction potential,
which are applicable to mesons in general.
This paper extends the works on qq̄ to the quark-diquark

system, namely baryons. To be specific, we consider the Λc
baryon as a two-body system consisting of a charm quark
(c) and a [ud] scalar diquark (D). However, the Kawanai-
Sasaki method does not work in its original form for the Λc
baryon. This is because spinless scalar diquark and the
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charm quark do not have spin-spin interaction. Here, we
report a novel method to determine the diquark mass, the
quarkmass, and the quark-diquark interaction potential. The
condition we impose is that the so-determined quark-
diquark potential and the diquarkmass reproduce the energy
difference between S-wave state [Λcð12þÞ] and the spin-orbit
averaged P-wave states [average of Λcð12−Þ and Λcð32−Þ].
This paper is organized as follows. In Sec. II, we consider

the qq̄ system to describe our formalism taking up the
charm-anticharm (cc̄) system as a specific example. In
Sec. III, we apply our formalism to the cD system, where
the diquarkmass is determined by demanding it to reproduce
the P-wave excitation energy of theΛc baryon. In Sec. IV,we
explain the setup of our lattice QCD calculation, i.e., the
quark actions, gauge action, and the LQCD parameters.
Section V shows the numerical results for the cc̄ system,
namely the cc̄ potential and the charm quark mass.
Section VI shows the numerical results for the cD system,
namely the cD potential and the diquark mass. Section VII
compares the cD potential and the cc̄ potential. Finally, we
summarize our work and give some future prospects in
Sec. VIII.

II. FORMALISM FOR qq̄ SECTOR

In this section, we shall present our formalism for the qq̄
system. We focus on the charmonium, which is a two-body
system of a heavy charm quark (c) and an anticharm quark
(c̄). Such a system can be treated in the nonrelativistic
framework so that the interaction between the charm and
anticharm quarks can be expressed by a potential [28,32].
Its application to other heavy quark systems, such as the
bottomium, is straightforward.

A. cc̄ Numbu-Bethe-Salpeter wave function

We start with the definition of the cc̄ equal-time Numbu-
Bethe-Salpeter (NBS) wave function ϕMðrÞ for the meson
state jMi in the rest frame, namely,

ϕMðrÞ≡ X
α;β¼1;2;3;4

h0jc̄c;αðxÞΓM;αβcc;βðyÞjMi; ð1Þ

where j0i is the QCD vacuum and r ¼ x − y is the relative
coordinate. Here, the operator cc;αðxÞ denotes the charm
quark field with color 3 index c and spinor index α. The
composite operator c̄c;αðxÞΓM;αβcc;βðyÞ annihilates the
meson M. Contracting the charm and anticharm quark
operators with the Dirac matrix ΓM;αβ specifies the parity
and the spin of the annihilation operator. The NBS wave
function given by Eq. (1) is gauge dependent since the
quark and the antiquark are located at different positions.
We fix the gauge to the Coulomb gauge in order to obtain
the signal. Representations of the meson M and the
corresponding Dirac matrix ΓM;αβ are summarized in
Table I. For notational simplicity, we omit the spinor
and color indices hereafter unless otherwise noted.

We define the cc̄ potential V̂M by demanding the NBS
wave function to satisfy the following Schrödinger equa-
tion in the region EM < 2MDmeson

, i.e., below the pair
creation threshold of a D meson and a D̄ meson [25,29]:

�
−
∇2

2μ
þ V̂M

�
ϕMðrÞ ¼ EMϕMðrÞ; ð2Þ

where μ ¼ mc=2 is the reduced mass of the cc̄ system and
EM ¼ MM − 2mc is the binding energy, where mc is the
charm quark mass and MM is the meson mass. At this
point,mc is undetermined. This is because the quark cannot
be isolated due to the color confinement prohibiting direct
measurements of mc. Determination of mc will be dis-
cussed in the next subsection. On the other hand, the meson
mass MM is extracted from the temporal meson correlator
where details will be addressed in Sec. V.
It is shown in Refs. [25,29] that the potential operator

V̂M in Eq. (2) is energy-independent and nonlocal, and acts
on the wave function as an integral operator [22,23],

V̂MψMðrÞ ¼
Z

d3r0VMðr; r0ÞψMðr0Þ: ð3Þ

The derivative expansion [22,33] V̂Mðr; r0Þ ¼ VMðr;
∇Þδ3ðr − r0Þ yields

VMðr;∇Þ ¼ V0ðrÞ þ VσðrÞs1 · s2 þ VTNðrÞS12
þ VLSðrÞL · SþOð∇2Þ; ð4Þ

where V0ðrÞ, VσðrÞ, VTNðrÞ, and VLSðrÞ denote the spin-
independent, spin-spin, tensor, and spin-orbit potentials,
respectively. The operators S12 ≡ 4fðr · s1Þðr · s2Þ=r2−
s1 · s2=3g, s1, s2, L≡ −ir × ∇, and S≡ s1 þ s2 denote
the tensor operator, the spin operators for the charm, and
the anticharm quarks, the orbital angular momentum
operator and the total spin operator, respectively. The
higher order term Oð∇2Þ is neglected hereafter.
Recalling Eq. (3), the integral operator V̂M in Eq. (2) is
replaced by VMðr;∇Þ.

B. Determination of mc

Since the charm quark mass in Eq. (2) is undetermined,
the qq̄ potential is also undetermined at this point. In place
of the potential, we first define the pre-potential ṼMðrÞ by

TABLE I. List of JPC, spectroscopic notation 2Sþ1LJ, and Dirac
matrix ΓM for the cc̄ meson state M.

M PS V S AV T

JPC 0−þ 1−− 0þþ 1þþ 1þ−

2Sþ1LJ
1S0 3S1-3D1

3P0
3P1

1P1

ΓM γ5 γi I γ5γi γiγj
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ṼMðrÞ ¼ ∇2ϕMðrÞ
ϕMðrÞ : ð5Þ

Recalling Eq. (2), we see that the prepotential is related to
the potential as

ṼMðrÞ≡mcfVMðr;∇Þ − EMg: ð6Þ

Hence, the prepotential is the potential shifted by the
binding energy EM and factorized by mc. Explicit forms
of the prepotential for the PS, V, S, AV, and T states (see
Table I for their representations) are obtained as follows.
First, VMðr;∇Þ in Eq. (6) is replaced by its form given in
Eq. (4). Then, the operators S12, si, L, and S are replaced by
their eigenvalues. The results are

ṼPSðrÞ ¼ mcðV0ðrÞ − ð3=4ÞVσðrÞ − EPSÞ
ṼVðrÞ ≃mcðV0ðrÞ þ ð1=4ÞVσðrÞ − EVÞ
ṼSðrÞ ¼ mcðV0ðrÞ þ ð1=4ÞVσðrÞ − 4VTNðrÞ − 2VLSðrÞ − ESÞ

ṼAVðrÞ ¼ mcðV0ðrÞ þ ð1=4ÞVσðrÞ þ 2VTNðrÞ − VLSðrÞ − EAVÞ
ṼTðrÞ ¼ mcðV0ðrÞ − ð3=4ÞVσðrÞ − ETÞ: ð7Þ

Here, we have neglected the tensor potential in the V state
originating from the small D-wave mixing [31].

1. The Kawanai-Sasaki method for mc

Before moving on, we give a brief review of the
Kawanai-Sasaki method, which is one way to determine
mc. In this method, it is demanded that the spin-spin
interaction potential vanish at long distances, which
leads to

0 ¼ lim
r→∞

mcVσðrÞ
¼ lim

r→∞
ðṼVðrÞ − ṼPSðrÞ −mcΔEhypÞ; ð8Þ

where ΔEhyp ≡ EV − EPS ¼ MV −MPS. As a result, mc is
uniquely determined as

mc ≡ 1

ΔEhyp
lim
r→∞

ðṼVðrÞ − ṼPSðrÞÞ

¼ 1

ΔEhyp
lim
r→∞

�∇2ϕVðrÞ
ϕVðrÞ

−
∇2ϕPSðrÞ
ϕPSðrÞ

�
; ð9Þ

where we have used Eq. (5) to obtain the last line. Note that
the Kawanai-Sasaki method requires the spin-spin inter-
action potential VσðrÞ to be finite at moderate distances.

2. A new method to determine mc

We propose an alternative method to determine mc
without making use of the spin-spin interaction potential.
Our strategy is to determine the value of mc so that the
Schrödinger equation Eq. (2) reproduces the P-wave
excitation energy evaluated using meson masses.
We focus on the spin-singlet sector, i.e., PS and T states,

which are S wave and P wave of our interest. The absence
of the spin-orbit potential and the tensor potential in the T

state makes the determination ofmc simpler compared with
the spin triplet sector (see the Appendix A for details).
Indeed, it is shown from Eq. (7) that the prepotentials for
the PS state and T state are related by

ṼT ¼ ṼPS þ ẼPS;T: ð10Þ
Here, we have introduced the preenergy ẼPS;T ≡
mcðET − EPSÞ. Note that ẼPS;T ¼ mcðMT −MPSÞ follows
from the definition of the binding energies ET and EPS. We
see from Eq. (10) that the only difference between S-wave
and P-wave equations is the centrifugal term in the kinetic
energy. Hence, we get the following radial part Schrödinger
equations:�

−
1

r2
d
dr

�
r2

d
dr

�
þ ṼPSðrÞ

�
ϕPSðrÞ ¼ 0

�
−

1

r2
d
dr

�
r2

d
dr

�
þ 2

r2
þ ṼPSðrÞ

�
ϕTðrÞ ¼ ẼPS;TϕTðrÞ:

ð11Þ
Now, we proceed as follows. First, we calculate the NBS
wave function for the PS state from LQCD using Eq. (1).
Next, we construct the prepotential ṼPSðrÞ from the NBS
wave function using Eq. (5). Then, we calculate the
excitation preenergy ẼPS;T by solving the lower of
Eq. (11). Finally, mc is given by

mc ≡ ẼPS;T

MT −MPS
: ð12Þ

III. FORMALISM FOR
QUARK-DIQUARK SECTOR

Next, we formulate our method for the quark-diquark
sector. To be specific, we focus on the Λc baryon
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considering it as a bound state formed by a charm quark
and a scalar ½ud� diquark (D) whose spin, parity, isospin,
and color representation are JP ¼ 0þ, I ¼ 0 and 3̄, respec-
tively. We focus on the S-wave state [Λcð12þÞ] and the two
P-wave states [Λcð12−Þ and Λcð32−Þ] split by the spin-orbit
interaction. The spectroscopic notations for the Λc states
are summarized in Table II.
The outline of our method is as follows. First, we define

the cD potential by demanding the cD NBS wave function
for the Λcð12þÞ state to satisfy a Schrödinger equation. Next,
the equation is solved to obtain the LS averaged P-wave
excitation energy. Then, the diquark mass is determined by
equating the P-wave excitation energy to the difference
between Λcð12þÞ energy and the spin-orbit average of
Λcð12−Þ and Λcð32−Þ energies.

A. cD NBS wave function

Let us start with the cD NBS wave function ψΛcðJPÞ;αðrÞ
for the ΛcðJPÞ state given by

ψΛcðJPÞ;αðrÞ≡ h0jDcðxÞcc;αðyÞjΛcðJPÞi; ð13Þ

where jΛcðJPÞi denotes the Λc baryon state with its spin-
parity denoted by JP. The composite [ud] scalar-diquark
operator DcðxÞ is defined by

DcðxÞ≡ ϵabcuTaðxÞCγ5dbðxÞ; ð14Þ

where uaðxÞ (dbðxÞ) is the field operator of the u (d) quark
and C≡ iγ2γ0 the charge conjugation matrix. The Levi-
Civita symbol ϵabc is introduced to construct the color 3̄
diquark operator. The cD NBS wave function given by
Eq. (13) is gauge dependent. Thus, we fix the gauge before
calculating the NBS wave function as in the case of the cc̄
system.
We define the cD potential Uðr;∇Þ by demanding the

equal-time NBS wave function to satisfy the following
Schrödinger equation:

�
−

∇2

2μcD
þ Uðr;∇Þ

�
ψΛcðJPÞðrÞ ¼ EΛcðJPÞψΛcðJPÞðrÞ; ð15Þ

where μcD ≡mcmD=ðmc þmDÞ is the reduced mass of the
cD system and EΛcðJPÞ ≡MΛcðJPÞ − ðmc þmDÞ is the
binding energy. Here, mD is the diquark mass to be
determined in the next subsection. The mass MΛcðJPÞ of

ΛcðJPÞ is usually extracted from the corresponding tem-
poral lattice correlator and will be discussed in Sec. VI.
The quark-diquark potential Uðr;∇Þ is expressed in

terms of the derivative expansion,

Uðr;∇Þ ¼ U0ðrÞ þULSðrÞL · s; ð16Þ
where U0ðrÞ and ULSðrÞ denote the central and the spin-
orbit potentials, respectively.

B. Determination of mD

As in the previous section, let us first define the
prepotential ŨΛcðJPÞ by

ŨΛcðJPÞðrÞ≡
∇2ψΛcðJPÞðrÞ
ψΛcðJPÞðrÞ

: ð17Þ

Substituting Eq. (16) into Eq. (15) and rearranging with
Eq. (17), we arrive at the following equations for Λcð12þÞ,
Λcð12−Þ, and Λcð32−Þ states:

ð−∇2 þ Ũ0ðrÞÞψΛcð12þÞðrÞ ¼ 0

ð−∇2 þ Ũ0ðrÞ − ŨLSðrÞÞψΛcð12−ÞðrÞ

¼ 2μcD

�
EΛcð12−Þ − EΛcð12þÞ

�
ψΛcð12−ÞðrÞ�

−∇2 þ Ũ0ðrÞ þ
1

2
ŨLSðrÞ

�
ψΛcð32−ÞðrÞ

¼ 2μcD

�
EΛcð32−Þ − EΛcð12þÞ

�
ψΛcð32−ÞðrÞ; ð18Þ

where Ũ0ðrÞ≡ 2μcDðU0ðrÞ − EΛcð12þÞÞ and ŨLSðrÞ≡
2μcDULSðrÞ. Here, the eigenvalues of the L · s operator
are used explicitly, namely 0, −1 and 1=2 for Λcð12þÞ,
Λcð12−Þ and Λcð32−Þ, respectively.
The P-wave pre-energy splits into the following two due

to ŨLSðrÞ:
ẼPW − hŨLSiPW ≃ 2μcDðEΛcð12−Þ − EΛcð12þÞÞ

¼ 2μcDðMΛcð12−Þ −MΛcð12þÞÞ

ẼPW þ 1

2
hŨLSiPW ≃ 2μcDðEΛcð32−Þ − EΛcð12þÞÞ

¼ 2μcDðMΛcð32−Þ −MΛcð12þÞÞ; ð19Þ

where ẼPW is the difference between the preenergy of the
S-wave and the spin-orbit averaged P wave, i.e., the P-wave
eigenvalue of −∇2 þ Ũ0ðrÞ in the first equation of Eq. (18).
The symbol hŨLSiPW denotes the expectation value of
ŨLSðrÞ with respect to the P wave. We have used the
definition of the binding energy EΛcðJPÞ to get the rhs of
each equation in Eq. (19). Solving Eq. (19) with respect to
μcD, we arrive at

TABLE II. Spectrospcopic notations for Λc states as the quark-
diquark two-body bound states.

ΛcðJPÞ Λcð12þÞ Λcð12−Þ Λcð32−Þ
2Sþ1LJ

2S1=2 2P1=2
2P3=2
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μcD ¼ 3

2

ẼPW

MΛcð12−Þ þ 2MΛcð32−Þ − 3MΛcð12þÞ
: ð20Þ

Once μcD is determined, the diquark mass MD is sub-
sequently determined by

MD ¼ μcDmc

mc − μcD
: ð21Þ

IV. LATTICE QCD SETUP

We use a set of QCD configurations generated by the
PACS-CSCollaboration [34] using the Iwasaki gauge action
[35] and the OðaÞ-improved Wilson quark action [36]. The
set has 399 of 2þ 1 flavorQCDconfigurations generated on
a V × T ¼ 323 × 64 lattice at β ¼ 1.90 with the clover
coefficient cSW ¼ 1.715 and the hopping parameters given
by κu;d ¼ 0.13700 for the u quark and the d quark and κs ¼
0.13640 for the s quark [34]. The lattice spacing is
a ≃ 0.0907 fm. The statistical errors are estimated by the
standard Jackknife method throughout this paper.
The Iwasaki action for the gauge field is given by

SIwasaki ≡ 1

g2

�
c0

X
plaquette

Tr½Uplaq� þ c1
X

rectangle

Tr½Urect�
�
:

ð22Þ
Here, Urect denotes the 1 × 2 rectangle loop of the link
variable. The constants are set to c0 ¼ 3.648 and c1 ¼
−0.331 [35]. Such choice of the coefficients mitigates the
discretization errors to ∼Oða4Þ.
The OðaÞ-improved Wilson quark action Squark for the

light dynamical quarks (u, d, s) is given by

Squark ≡
X

q¼u;d;s

X
x

�
q̄ðxÞqðxÞ

− κqcSW
X
μ;ν

i
2
q̄ðxÞσμνFμνðxÞqðxÞ

− κq
X
μ

fq̄ðxÞð1 − γμÞUμðxÞqðxþ μÞ

þ q̄ðxÞð1þ γμÞU†
μðx − μÞqðx − μÞg

�
: ð23Þ

Certain choice of the coefficient cSW reduces the discre-
tization errors to ∼Oða2Þ. The action Eq. (23) is used to
calculate the u quark and d quark propagators.
If we apply the OðaÞ-improved Wilson quark action

designed for light quarks to the heavy charm quark, it yields
systematic errors of order ∼OðamcÞ [37]. Therefore, we
use the relativistic heavy quark action (RHQ) [37,38] with
systematic errors reduced to the same order as the OðaÞ-
improved Wilson quark action. The RHQ action SRHQ is
given by

SRHQ≡
X
x

Q̄ðxÞQðxÞ−κQ
X
x;y

Q̄ðxÞ

×

�X
i

ððrs−νγiÞUiðxÞδxþi;yþðrsþνγiÞU†
i ðxÞδx;yþiÞ

þðrt−νγ4ÞU4̂ðxÞδxþ4̂;yþðrtþνγ4ÞU†
4̂
ðxÞδx;yþ4̂

þcB
X
i;j

FijðxÞσijþcE
X
i

Fi4ðxÞσi4
�
QðyÞ; ð24Þ

where 4̂ denotes the unit vector in the temporal direction
and QðxÞ ¼ cðxÞ denotes the charm quark field. The
parameter rt is set to 1 while other parameters rs, cB,
cE, and ν are taken from Ref. [38] in Table III.
Since we use gauge invariant source and sink

operators, the gauge is fixed to the Coulomb gauge.
This is done by minimizing the functional F½U�≡P

x

P
3
i¼1 fTr½ReUiðxÞ�g [39]. This gauge fixing yields

discretization errors ∼Oða2Þ.

V. NUMERICAL RESULTS FOR cc̄ SYSTEM

A. Meson mass

Let us start with the meson two-point correlator
defined by

CMðtÞ≡ 1

V

X
x

h0jT½OMðx; tsinkÞOM†ðtsrcÞ�j0i; ð25Þ

where V is the lattice volume and t≡ tsink − tsrc. Here,
OM ¼ c̄ΓMc such that OMðx; tsinkÞ denotes the meson
point sink operator and OM†ðtsrcÞ denotes the wall source.
The Dirac matrix ΓM is chosen accordingly from Table I.
The time-reversal symmetry CMðtÞ ¼ CMðT − tÞ is

used to reduce the statistical noise for the meson correlator.
Also, the statistics improves as the data calculated for 16
different source points tsrc ¼ 0; 4; 8;…; 60 are averaged.
Moreover, the signals of the vector and the axial-vector
meson correlators are improved by averaging with respect
to the three-dimensional lattice rotation.
In this work, we employ the periodic boundary condition

with respect to t. Thus, the correlator Eq. (25) acquires the
cosh form. Thus, the effective mass MeffðtÞ is the solution
of the following equation:

CMðtþ 1Þ
CMðtÞ ¼ cosh ðMeffðtÞ · ðtþ 1 − T=2ÞÞ

cosh ðMeffðtÞ · ðt − T=2ÞÞ ; ð26Þ

where T denotes the temporal extension of the lattice.

TABLE III. Summary of the parameters used for the RHQ
action for the charm quark. The values are taken from Ref. [38].

κc ν rs cB cE

0.10959947 1.1450511 1.1881607 1.9849139 1.7819512
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Figure 1 plots the meson effective massMeffðtÞ for PS, V,
S, AV, and T states. Then, the meson mass is extracted by
fitting the correlator to ffitðtÞ≡ A coshðMðt − T=2ÞÞ in
each plateau region. The fit is adequately carried out for
each channel as shown in the figure with chi-square
χ2=Nd:o:f: < 1.0, where Nd:o:f: is the number of degrees
of freedom in the fit. The meson masses are summarized in
Table IV. From the obtained meson masses, we get the
hyperfine splitting ΔEhyp ¼ MV −MPS ¼ 0.118ð1Þ GeV

and the P-wave excitation energy for the spin singlet sector
EPS;T ¼ MT −MPS ¼ 0.628ð16Þ GeV.
For Eq. (2) to be valid, the energy of the cc̄ state must be

below 2MD-meson. To check this condition, we apply the
same procedure to the D meson. The result is
MD-meson ¼ 1.998ð1Þ GeV; thus, each cc̄ states in
Table IV are bound. For use in Sec. VI, we also calculate
the ρ meson and the pion mass. The results are Mρ ¼
1.098ð5Þ GeV and Mπ ¼ 0.700ð1Þ GeV.

B. cc̄ NBS wave function

Next, we consider the cc̄ four-point correlator [25,29–
31] in the rest frame,

CMðr; tÞ≡ 1

V

X
Δ
h0jT½c̄cðrþ Δ; tsinkÞ

× ΓMccðΔ; tsinkÞ ×OM†ðtsrcÞ�j0i: ð27Þ
Specifically, we calculate the correlator for the PS and V
states, i.e., for ΓM ¼ γ5 and ΓM ¼ γi. Here, the signal of
the V state NBS wave function is improved by averaging
the vector components symmetric with respect to the three-
dimensional lattice rotation.
Without loss of generality, we restrict ourselves to the

t > 0 region. The four-point function CMðr; tÞ is spectrally
decomposed as

CMðr; tÞ ¼
X
n

anϕ
ðnÞ
M ðrÞe−Mnt; ð28Þ

where ϕðnÞ
M ðrÞ, En, and an ≡ hnjOM†ð0Þj0i denote the

equal-time NBS wave function, the energy, and the overlap
for the nth excited state jni, respectively. The energy and
the NBS wave function for n ¼ 0 correspond to the mass
and the wave function of the meson state (ηc for PS and
J=ψ for V), respectively. In the large t region, the ground

state j0i becomes dominant as CMðr; tÞ ∼ a0e−M0tϕð0Þ
MðrÞ.

From now on, we focus on such a region.
Next, we project the NBS wave function to the A1

representation [40] as

ϕMðrÞ ¼ 1

48

X
g∈Oh

ϕð0Þ
Mðg−1rÞ; ð29Þ

where Oh denotes the cubic group which has 48 elements
(see Appendix B). This ϕMðrÞ approximately represents
the S-wave. However, there are small contributions from
the states with angular momentum L ≥ 4 that are not
removed by the A1 projection [25,41,42].
Figure 2 shows the NBS wave function for the PS state

and that for the V state in several representative time slices.
We see that the NBS wave functions for t=a ¼ 15, 16, 17
fall on top of each other. This indicates that the wave
function in each time slice has attained its limit ϕMðrÞ.
We focus on the wave function at t=a ¼ 16 since the wave
functions all coincide in the time region t=a ≥ 15.

FIG. 1. Effective mass plots for the spin singlet (top) and triplet
(bottom) sectors. The solid lines denote the average of the meson
mass MM over the fit range. The shaded areas denote the
statistical errors estimated by the jackknife method.

TABLE IV. cc̄ meson masses. The fit ranges are shown in the
last column.

States Mass [GeV] Fit range

PS 3.023 (1) 16 ≤ t=a ≤ 23
V 3.141 (1) 16 ≤ t=a ≤ 23
S 3.546 (11) 16 ≤ t=a ≤ 23
AV 3.611 (14) 16 ≤ t=a ≤ 22
T 3.651 (16) 16 ≤ t=a ≤ 23

KAI WATANABE PHYS. REV. D 105, 074510 (2022)

074510-6



Moreover, we focus on the region 0 ≤ r ≤ 1.0 fm since the
NBS wave function is essentially zero beyond 1.0 fm. Note
that the NBS wave function has slight rotational symmetry
breaking in the short range region. Indeed, the wave
function is slightly “jagged” near origin, as shown in
Fig. 2, which is an indication of the breaking.
This symmetry breaking is due to the discretization

errors. Possible sources of errors are the quark actions, the
gauge action, and the gauge fixing. Since the discretization
errors of the gauge action are reduced by an optimal choice
of the coefficients, the quark action, and the Coulomb
gauge fixing will remain to be the main sources of the
rotational symmetry breaking.

C. Prepotential for cc̄

Next, the prepotential is evaluated from the NBS wave
function according to Eq. (5). Here, the Laplacian is
numerically evaluated by the standard nearest-neighbor
differentiation,

∇2ϕMðrÞ ¼
X

μ̂¼îx;îy;îz

fϕMðrþ μ̂Þ þ ϕMðr − μ̂Þg − 6ϕMðrÞ;

ð30Þ

where μ̂ denotes the unit vector in the positive μ direction
and îx, îy, and îz denote the unit vectors in x, y, and z
directions, respectively.
Figure 3 shows the PS prepotential and the V prepo-

tential. These prepotentials behave roughly as the well-
known Coulombþ linear (Cornell) potential as expected.
However, we see in Fig. 3 that the prepotential is jagged in
the short range region due to the broken rotational
symmetry passed on from the NBS wave function.
Next, we fit the prepotential. Using Eq. (7), the pre-

potential is separated into the spin-independent part Ṽ0ðrÞ
and the spin-spin part ṼσðrÞ as

Ṽ0ðrÞ ¼ mqfV0ðrÞ − Ē1Sg ¼ 3

4
ṼVðrÞ þ

1

4
ṼPSðrÞ

ṼσðrÞ ¼ mqfVσðrÞ − ΔEhypg ¼ ṼVðrÞ − ṼPSðrÞ; ð31Þ

where Ē1S ¼ 3
4
EV þ 1

4
EPS. We fit the spin-independent part

to the Cornellþ log function Vfit
0 ðrÞ given by

Vfit
0 ðrÞ ¼ −A=rþ Brþ C logðr=aÞ þ v0: ð32Þ

Here, the Cornell term is expected both phenomenologi-
cally [28] and theoretically [26] for heavy quark systems.
The logarithmic term C logðr=aÞ is a correction from the
finite quark mass [32,43,44], where the lattice spacing a is
introduced to set the argument dimensionless. The spin-
spin part is fit to the two-Gaussian function Vfit

σ ðrÞ given by

FIG. 2. NBS function for the PS (top) and V (bottom)
states in 15 ≥ t=a ≥ 17. The NBS wave function is normalized
as

P
r∈V r

2ϕ2
MðrÞ ¼ 1.

FIG. 3. The prepotentials for the PS (blue dots) and V (red
triangles) states.
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Vfit
σ ðrÞ ¼ A1 expð−B1r2Þ þ A2 expð−B2r2Þ þ vσ: ð33Þ

First, we fit the spin-independent part of the prepotential
to the Cornellþ log function. We fit in the range 1 ≤ r=a ≤
11 (0.09 ⪅ r ⪅ 1.0 fm) since the curve is singular at the
origin r ¼ 0. The upper limit is set to rmax=a ¼ 11 beyond
which the amplitude of the NBS wave function is essen-
tially zero. Hence, the data for the prepotential become
meaningless beyond it. Moreover, taking into account the
cubic symmetry, we restrict our selves to x, y, z ≥ 0. The
left panel of Fig. 4 shows the fit result where we see that
most of the points lie close to the curve. However, χ2=Nd:o:f:
is considerably large, being of the order of ≃1690. Let us
refer to this fit result as “ALL” and label χ2=Nd:o:f: for this
as ½χ2=Nd:o:f �ALL in order to distinguish it from other fits
which will be presented in the following paragraphs.
One reason for the large χ2=Nd:o:f: is the large deviation

of the points near origin, namely those at r=a ¼ 1;
ffiffiffi
2

p
;

ffiffiffi
3

p
.

This is because they are computed by the discretized
Laplacian containing the data at the origin, which should
make sense only in the continuum field theory. Therefore,
the data points at and near the origin deviate from the
theoretical curve. These points contribute significantly to
the large value of χ2=Nd:o:f:, the sum being estimated to
be ≃1460.
The remaining χ2=Nd:o:f: ≃ 230 may be attributed to the

direction dependence due to RSB. In order to see this point,
we fit the spin-independent part for the following three
representative directions: series I [r ¼ ðn; 0; 0Þ], series II
[r ¼ ðn; n; 0Þ], and series III [r ¼ ðn; n; nÞ] with
n ¼ 0; 1; 2; 3 � � �. There are residual directions with longer
periods such as ðn; 2n; 0Þ, but these contributions are less
important. In this case, the minimum of the fit range rmin
needs to be determined carefully in order to fit the data
adequately. Otherwise, the fit yields unphysical results,

e.g., negative Coulomb coefficients. We set rmin such that
χ2=Nd:o:f: is reasonably small and the fit parameters become
stationary. These considerations lead us to the fit range
rmin=a ¼ 4 (rmin ≃ 0.36 fm). The right panel of Fig. 4
shows the spin-independent part of the prepotential for the
three series using the Cornellþ log function in this way.
Indeed, the fit yields reasonable chi-squares χ2=Nd:o:f:≃
1.5, 1.5, and 0.7 for series I, series II, and series III,
respectively. We observe that series I overestimates the
Coulomb attraction near origin, thus separating out clearly
from the other two towards the origin.
Now we evaluate the contribution of each series to

½χ2=Nd:o:f:�ALL. Let us define the chi-square for the three
series by

½χ2=Nd:o:f �α ≡ N−1
d:o:f

X
i

�ðyαi − fALLðrÞÞ2
ðδyαi Þ2

�
: ð34Þ

Here, yαi denote the ith data point in α (¼ series I, series II,
and series III) direction and δyαi denotes the statistical error
of the data. ½χ2=Nd:o:f:�α is approximated by

½χ2=Nd:o:f:�α ≃ cα

Z
11a

r0

dr
ðfαðrÞ − fALLðrÞÞ2

ðδfαðrÞÞ2
; ð35Þ

where fαðrÞ is given by Vfit
0 ðrÞ fit to series α. The weight cα

is given by cα ¼ 3
a ;

3ffiffi
2

p
a
and 1ffiffi

3
p

a
for series I, II, and III,

respectively, considering the density of the data points
along each direction. We set the minimum of the integral
r0 ¼ ð1.5Þa; ð1.5Þ ffiffiffi

2
p

a; ð1.5Þ ffiffiffi
3

p
a such that the data points

at the tips of the first cubes (r ¼ a;
ffiffiffi
2

p
a;

ffiffiffi
3

p
a) are excluded

from the integral. Note that this approximation assumes
each data point is rigorously on the fit curve. On the other
hand, the denominator δfαðrÞ is the statistical error for each

FIG. 4. Spin-independent part of the pre-potential (dots) fit to the Cornellþ log function (solid line). Left: Fit to ALL and (right) fit to
series I, II, and III. The shaded area around each line denotes statistical errors.
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curve. The error is expressed in terms of the errors of the
parameters as

δfαðrÞ≃
��

δA
r

�
2

þðδBrÞ2þðδC logðrÞÞ2þδv20

�1
2

: ð36Þ

The results are ½χ2=Nd:o:f:�α ≃ 278, ≃1.2, and ≃0.17, for
series I, series II, and series III, respectively. The sum ≃279
is not far from the expected value 230.
Thus, we see that the large value of ½χ2=Nd:o:f:�ALL for

ALL stems from 2 factors. One is due to the singularity near
the origin. The other is due to the direction dependence
caused by the RSB. The approach to the continuum limit as
a → 0 may then be surmised as follows. The data at the

origin approach negative infinity as a becomes smaller.
Since the major error due to the discretized Laplacian is
limited to the points (r ¼ a;

ffiffiffi
2

p
a;

ffiffiffi
3

p
a), it tends to dimin-

ish in this limit. Also, importantly, the direction depend-
ence is expected to become smaller by the power ∼Oða2Þ
as a goes to 0. Thus, the fit curve for ALL and those for the
three directions approach each other. Overall, the data
points will fit to one well-defined curve in the con-
tinuum limit.
Next, we fit the spin-spin part of the prepotential to the

two-Gaussian function in the range 1 ≤ r=a ≤ 10. Figure 5
shows the fit result. We see that most of the points lye on
the curve, and χ2=Nd:o:f: ≃ 50.0. The fit result reproduces
the NBS wave function reasonably well, as will be shown
in the following subsection. We refrain from separating the
spin-spin part into the three directions because, otherwise,
there are too few points that can be used for the fit analysis.
Fortunately, the symmetry breaking in the spin-pin part
seems to be marginal. This may be because the symmetry
breaking in the PS state NBS wave function offsets that in
the V state NBS wave function.

D. Eigenvalue problem and the charm quark mass

We put the fit result of the prepotential Ṽfit
PSðrÞ¼Ṽfit

0 ðrÞ−
3
4
Ṽfit
σ ðrÞ so-obtained into the radial part Schödinger equa-

tion Eq. (11),

�
−

1

r2
d
dr

�
r2

d
dr

�
þ fṼfit

PSðrÞ − Ẽlg þ
lðlþ 1Þ

r2

�
ϕlðrÞ ¼ 0:

ð37Þ

Note that ϕ0ðrÞ ¼ ϕPSðrÞ, Ẽ0 ¼ 0, ϕ1ðrÞ ¼ ϕTðrÞ, and
Ẽ1ðrÞ ¼ ẼT follow from Eq. (7). The discretized variable

FIG. 5. Spin-spin part of the prepotential fit to two-Gaussian
function (solid line). The black circles denote the prepotential
LQCD data. The flat part of the prepotential lies below 0 by the
amount equal to mcΔEhyp.

FIG. 6. Numerical solutions for S wave (S) and P wave (P) compared with the LQCD data (black dots). Left: from ALL and (right)
from series I, II, and III. Each shaded area denotes the statistical error.
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representation (DVR) method [45,46] is employed to
numerically solve Eq. (37).
We solve the eigenvalue problem using the fit result from

ALL. The left panel of Fig. 6 compares the numerical result
for ALL and the NBS wave function LQCD data. We see
that the LQCD data lie close to the numerical solution
except at the first two points near origin as expected from
the discussions in the previous subsection.
We next use the fit from series I, series II, and series III to

estimate the direction dependence. The right panel of Fig. 6
compares the numerical solution for each series to the
LQCD data. The figure shows that the solutions differ in the
short range region. According to Ref. [41], it is not
surprising that series I differs the most from the S wave.1

On the other hand, we cannot determine definitively or
convincingly which is the better, series II or series III
within the bounds of numerical precision. For instance,
consider the residual sum of squares (RSS) δRSS ≡P

r fϕnumðrÞ − ϕNBSðrÞg2 between the S-wave numerical
solution and the NBS wave function. Then,ffiffiffiffiffiffiffiffiffi
δRSS

p
≃ 8 × 10−2, 2 × 10−2, 3 × 10−2, and 5 × 10−2 for

series I, series II, series III, and ALL, respectively. The last
three are of the same order of the numerical precision of the
normalization ≃10−2. See footnote 1 for the marked
difference of series I. The P wave, on the other hand, is
weakly affected by the direction dependence near origin,
and thus, the solutions for the series coincide.

Using the excitation preenergy ẼPS;T, the charm quark

mass is given by mc ¼ ẼPS;T

MT−MPS
. Table V summarizes mc

where we see that each mass lies between 1.9 GeV and
1.7 GeV. The difference of ∼200 MeV is the systematic
error due to the RSB. Figure 7 compares the charm quark
mass for ALL, series I, series II, and series III with that
obtained from the Kawanai-Sasaki method mc ¼
1.933ð17Þ GeV. In the figure, we see that our result and
the value from the Kawanai-Sasaki method roughly agree.
The slight difference comes from the fact that our method
uses the P-wave excitation energy while the Kawanai-
Sasaki method uses the hyperfine splitting. Following the
convention, we use the charm quark mass obtained from
ALL hereafter for necessary conversions since there is no
definitive choice among the three directions within the
bounds of numerical precision.
Using the charm quark mass mc ¼ 1.686ð44Þ GeV

and the prepotential, the potential is given by
V0ðrÞ ¼ 1

mc
Ṽ0ðrÞ þ Ē1S. Table VI summarizes the result

of the coefficients of the Cornellþ log function FðrÞ ¼
− A

r þ Brþ C logðr=aÞ þ v0 fit to ALL and series I, II, and
III. The Coulomb coefficient A depends strongly on the
direction because it is determined in the short range region
as noted before. On the other hand, the coefficients B, C,
and v0 have smaller direction dependence since they are
determined from the long range region.
The spin-spin potential is given by VσðrÞ ¼

1
mc
ṼσðrÞ þ ΔEhyp. The parameters of the two-Gauss

function Eq. (33) fit to the spin-spin potential are
A1 ¼ 0.135ð4Þ GeV, B1 ¼ 19.34ð38Þ fm−2, A2 ¼
1.540ð41Þ GeV, B2 ¼ 104.7ð4Þ fm−2, and vσ ¼
−0.0170ð38Þ GeV.

VI. NUMERICAL RESULTS FOR cD SYSTEM

A. Λc mass

Let us start with the Λcð12Þ baryon correlator C
1
2

αβðtÞ
given by

FIG. 7. Charm quark mass from ALL and series I, II, III
compared to that of the Kawanai-Sasaki method.

TABLE VI. Summary of the parameters for the Cornellþ log
function fit to the spin-independent part of the cc̄ potential.

Direction A [GeV · fm] B [GeV=fm] C [GeV] v0 [GeV]

ALL 0.080(2) 0.748(26) 0.328(14) −0.964ð70Þ
Series I 0.118(4) 0.647(28) 0.331(11) −0.856ð74Þ
Series II 0.098(4) 0.695(37) 0.312(11) −0.867ð74Þ
Series III 0.089(9) 0.737(60) 0.300(16) −0.880ð75Þ

TABLE V. Summary of the charm quark mass.

Directions ALL Series I Series II Series III

mc [GeV] 1.686 (44) 1.936 (53) 1.771 (48) 1.699 (73)

1Ishizuka [41] argues that the NBS wave function in the A1

representation of the cubic group equals S wave up to angular
momentum l ≥ 4; hence, it is of the form av0ðrÞ þ
bv4ðrÞY40ðθ;ϕÞ þ � � � where a and b are constants. Thus, the
wave function deviates from the S wave most on the principal
axes X, Y, and Z of the cube if the residue is negligible. In the
present context, this means that series I is expected to differ most
from the S wave.
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C
1
2

αβðtÞ≡ 1

V

X
x

h0jT½Bαðx; tsinkÞB̄βðtsrcÞ�j0i; ð38Þ

where Bα ¼ ½uTCγ5d�cα such that Bαðx; tsinkÞ denotes the
Λcð12Þ point sink operator and B̄αðtsrcÞ denotes the wall
source operator. The operator Bαðx; tÞ couples to both
positive parity and negative parity states. Therefore, the
correlator has components corresponding to the propaga-
tion between the opposite parity states as well as between
the same parity states. To eliminate the propagation
between the opposite parity states, we act the projection

operator P�
αβ ¼ ½1�γ0

2
�αβ to C

1
2

αβðtÞ as

C
1
2
�ðtÞ ¼

X
α;β

P�
αβC

1
2

αβðtÞ; ð39Þ

where C
1
2
þðtÞ is the correlator of the positive-to-positive

propagation and C
1
2
−ðtÞ that of the negative-to-negative

parity propagation. On the other hand, the Λcð32Þ baryon
two-point correlator is given by

C
3
2
�ðtÞ ¼

X
α;β

P�
αβ

X
i;j

X
α0

Cα0β;ijðtÞPji
3
2
∶αα0 ; ð40Þ

where Cαβ;ijðtÞ is defined as

Cαβ;ijðtÞ≡ 1

V

X
x

h0jT½Rα;iðx; tsinkÞR̄β;jðtsrcÞ�j0i: ð41Þ

Here, with Rα;i ¼ ½uTCγ5γid�ðγ5Þαα0cα0 being the Rarita-
Schwinger vector-spinor operator [47], Rα;iðx; tsinkÞ is the
sink operator and R̄α;iðtsrcÞ is the wall source operator. The
labels i and j denote the vector indices. The operator

Pij
3
2
∶αβ ¼ δij1αβ − 1

3
ðγiγjÞαβ in Eq. (40) represents the

projection to the spin 3=2 state in the rest frame [48]
whereby the spin 1=2 components are eliminated from
Cαβ;ijðtÞ [47,49–51]. Note that the statistical noises of the
correlators are reduced by making use of an iden-
tity CJ�ðtÞ ¼ −CJ∓ðT − tÞ.
The effective mass of the baryon is given by

MeffðtÞ ¼ logð CJP ðtÞ
CJP ðtþ1ÞÞ. The baryon mass is extracted by

fitting A expð−MtÞ to the correlator in the plateau region.
Figure 8 shows the effective mass plot and the baryon mass
extracted by the fitting analysis. The fitting is adequately
carried out as shown in the figure with the values of the chi-
square χ2=Nd:o:f: < 1.0 for all the states of our interest.
Table VII summarizes the values of the baryon mass. We
obtain the LS average M̄p ¼ 1

3
ð2Mð3−=2Þ þMð1−=2ÞÞ ¼

1.447ð3Þ GeV and the P-wave excitation energy ΔEs;p ¼
0.457ð7Þ GeV using the Λc masses.
The same analysis is applied to the Σcð12þÞ baryon and

the nucleon. The mass values are MΣc
¼ 2.794ð3Þ GeV

and MN ¼ 1.574ð18Þ GeV. All the Λc baryon states are
bellow Σc þ π threshold and are thus bound.

B. cD NBS wave function and the prepotential

In order to extract the NBS wave function, we begin with
the definition of the cD four-point correlator GcD;αβðr; tÞ
given by

GcD;αβðr; tÞ≡ 1

V

X
Δ
h0jT½Daðrþ Δ; tsinkÞca;αðΔ; tsinkÞ

· B̄βðtsrcÞ�j0i; ð42Þ

where a denotes the color index. We focus on the
degenerated components ðα; βÞ ¼ ð1; 1Þ; ð2; 2Þ, which re-
present the positive-to-positive parity propagation, and
omit the spinor indices hereafter. The degenerated compo-
nents are later averaged over to reduce the statistical error.
As demonstrated for the cc̄ four-point correlator in

Sec. V B, the cD four-point correlator is spectrally decom-
posed as

GcDðr; tÞ ¼
X
n

ψ ðnÞ
cDðrÞane−Mnt; ð43Þ

where ψ ðnÞ
cDðrÞ, an ¼ hnjB̄ð0Þj0i, and Mn denote the NBS

wave function, the overlap, and the mass of the nth excited
FIG. 8. Effective mass plots for Λcð12þÞ (blue diamond), Λcð12−Þ
(red circle), and Λcð32−Þ (green triangle).

TABLE VII. Values of the Λc baryon masses. The last row
shows the fit range.

Mass [GeV] Fit range

Λcð12þÞ 2.691 (5) 17 ≤ t=a ≤ 24

Λcð12−Þ 3.060 (9) 9 ≤ t=a ≤ 16

Λcð32−Þ 3.192 (8) 11 ≤ t=a ≤ 15
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state, respectively. In the large time region, the excited
states are suppressed and the ground state Λcð12þÞ becomes

dominant. For this reason, we denote ψ ð0Þ
cDðr; tÞ as ψΛc

ðr; tÞ.
To proceed, we project the wave function to the S wave by
the A1 projection Eq. (29).
Figure 9 shows the cD NBS wave functions in several

representative time slices. As in the case of cc̄, we focus on
the wave function at t ¼ 17 here as the representative one
from now on.
Note that the cD NBS wave function is spatially

extensive and experiences reflection at the boundary.
Then, the wave function is deformed from the S wave
especially in the long range region [41]. Our observation is
corroborated by the growing systematic uncertainty at

r=a ≃ 10 (r ∼ 0.91 fm) due to the reflection. In order to
avoid this undesirable effect, we limit the range to r=a ≤
9 (r ⪅ 0.82 fm).

C. Eigenvalue problem and the diquark mass

We construct the cD prepotential in the same way as for
the cc̄ prepotential in Sec. V. Then, we first fit to ALL in the
range 1 ≤ r=a ≤ 9 (0.1 ⪅ r ⪅ 0.82 fm) to the Cornell
function fðrÞ ¼ −A=rþ Brþ C without the log term.
As the left panel of Fig. 10 shows, most of the data points
lie close to the curve. Thus, this fitting is adequate. Note
that the fit yields relatively large chi-square of χ2=Nd:o:f ≃
23 as in the case of cc̄ system due to the singularity near
origin and the direction dependence. Next, we fit the data
points for the three series separately as before by setting
the fit range appropriately to 3 ≤ r=a ≤ 9 (0.27 ⪅ r ⪅
0.82 fm). The fit is adequate as shown in the right panel
of Fig. 10, yielding χ2=Nd:o:f:; χ2=Nd:o:f: ≃ 2.7, 0.47, for
0.24 for series I, II, and III, respectively.
Substituting the fit result into Eq. (37), we solve the

eigenvalue problem for the S wave and the P wave. The left
panel of Fig. 11 shows the solution for ALL whereas the
right panel shows the numerical solutions of the three
series. In contrast to the cc̄ system, the fit to ALL happens
to reproduce the NBS wave function very well. We see in
the right panel of Fig. 11 that the numerical result for the
series and the LQCD data roughly agree. The wave
functions of ALL and III almost coincide. As was discussed
in Sec. V D in the context of the spherical harmonic
expansion, series I is known to be the farthest from the
S wave. Series III reproduces the NBS wave function
seemingly the best. The values of the RSS areffiffiffiffiffiffiffiffiffi
δRSS

p
≃ 1 × 10−2, 8 × 10−2, 4 × 10−2, and 9 × 10−3 for

ALL, series I, series II, and series III, respectively. The P
wave, on the other hand, is weakly affected by the direction

FIG. 9. cD NBS functions for the Λcð12þÞ state at
16 ≤ t=a ≤ 18. Each wave function is normalized
as

P
r∈V r

2ψ2
Λc
ðrÞ ¼ 1.

FIG. 10. Cornell function fit to the cD prepotential (black dots). Left panel shows the fit to ALL, and right shows the fit to series I, II,
and III.
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dependence near origin, and thus, the solutions for the
series are indistinguishable.
The reduced mass μcD is obtained by Eq. (20) using ẼPW

and the Λc mass obtained in Sec. VI A. Then, the diquark
mass is obtained by substituting the charm quark mass mc
into Eq. (21). Table VIII summarizes the diquark mass
obtained from each series. The value of the diquark mass is
roughly consistent with naive expectations from the

constituent quark picture, i.e., the ρ meson mass Mρ ¼
1.098ð5Þ GeV and twice the constituent mass
2
3
MN ¼ 1.049ð12Þ GeV. We see in the table that the

diquark mass obtained from ALL, series II, and series
III are close to each other while that from series I is larger
than the others. This becomes more evident when we plot
the mass as shown in Fig. 12. For the sake of consistency
with the cc̄ system, let us use the diquark mass from ALL
hereafter for necessary conversions.
Now, the cD potential is given by U0ðrÞ ¼ 1

2μcD
Ũ0ðrÞþ

EΛcð12þÞ. Table IX shows the coefficients of the Cornell
function fit to the cD potential. We see that the direction
dependence of the Coulomb coefficient is large compared
to that of the string tension. This is because the Coulomb
term is determined in the short range region where the
discretization errors are large. It should also be noted that
the string tension has some direction dependence as
Table IX shows. One reason for this is that the string
tension is affected by the direction dependence of the
Coulomb coefficient because the region where the linear
part is overwhelmingly dominant is not reached. Moreover,
the reflected waves cause systematic errors to the linear part
of the cD potential, making it difficult to reach the desired
asymptotic region. It is necessary to calculate with a larger

FIG. 11. Numerical solution from (left) ALL and (right) series I, II, and III. The LQCD data of the NBS wave function (black circles)
is shown for comparison.

FIG. 12. Direction dependence of the diquark mass.

TABLE VIII. Summary of the diquark quark mass.

Directions ALL Series I Series II Series III

mD [GeV] 1.273 (44) 1.470 (57) 1.335 (77) 1.264 (49)

TABLE IX. Summary of the Cornell function fit to the cD
potential.

Direction A [GeV · fm] B [GeV=fm] C [GeV]

ALL 0.065(2) 1.315(24) −0.889ð34Þ
Series I 0.107(7) 1.157(53) −0.728ð52Þ
Series II 0.089(16) 1.195(78) −0.778ð82Þ
Series III 0.066(11) 1.300(71) −0.876ð68Þ
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lattice as well as to obtain information from excited state
wave functions with greater spatial extents. In this way, the
string tension may be determined with higher precision.

VII. COMPARING cD POTENTIAL
AND cc̄ POTENTIAL

Figure 13 compares the cD potential U0ðrÞ and the spin-
independent part of the cc̄ potential V0ðrÞ. It shows that
their data points are almost parallel in the region
r ≥ 0.4 fm. The difference between the two sets is essen-
tially a constant as shown on a magnified scale in the right
panel of Fig. 13. Thus, the linearly rising part of U0ðrÞ and
V0ðrÞ cancel each other. This behavior can be understood
as follows. First, the anticharm quark and the diquark are in

the same color representation 3̄. Thus, the cc̄ potential and
the cD potential are identical in principle if it were not
for the internal structures of the diquark. Though the
diquark is not pointlike [20], diquark structure is less
important at long distances, and the color representation
governs the potential. Indeed, it is reported in the earlier
LQCD works [52–54] that the diquark limit of the static
three quark potential (QQQ potential) and the static QQ̄
potential coincide.
At short distances, on the other hand, the magnitude of

the Coulomb attraction of the cD potential is smaller than
that of the cc̄ potential. This mitigation of the Coulomb
attraction is most likely caused by the internal structure of
the diquark, namely its spatial extent. In fact, the references
[10,11] shows that the Coulomb attraction is suppressed
when the diquark has a finite spatial extent. Note that the
diquark limit in the QQQ system realizes a pointlike
diquark. Thus, the Coulomb attraction of the QQQ poten-
tial in the diquark limit is not weakened by the finite size
effect of the diquark. Hence, it stands to reason that the
attraction of our cD potential is different from the diquark
limit of the QQQ potential.
Figure 14 compares the Cornell function fit to U0ðrÞ and

V0ðrÞ. Table X summarizes the fitting parameters where we
immediately see that the values of the string tension are
roughly the same as expected from Fig. 13.

FIG. 13. Left: cD potentialU0ðrÞ compared with the spin-independent part of the cc̄ potential V0ðrÞ. Right: Difference betweenU0ðrÞ
and V0ðrÞ.

FIG. 14. Cornell function fit to the cD potential and to the spin-
independent part of the cc̄ potential. We also show the Cornellþ
log type function fit to the cc̄ potential for a reference.

TABLE X. Comparison of the cD potential and the cc̄ potential
fit to the Cornell function for ALL in the range 1 ≤ r=a ≤ 9.

A [GeV · fm] B [GeV=fm] C [GeV]

cD 0.065(2) 1.315(24) −0.889ð34Þ
cc̄ 0.124(3) 1.247(24) −0.576ð80Þ
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VIII. CONCLUSIONS

We have reported on the novel and consistent method
which we developed to evaluate the charm-diquark inter-
action potential, the diquark mass, and the charm quark
mass. Specifically, we applied our method by considering
theΛc baryon as a bound state of a charm quark and a scalar
diquark. The diquark mass obtained from our method
was mD ¼ 1.273ð44Þ GeV which does not contradict the
conventional estimates; our diquark mass is slightly above
the ρ meson mass mρ ¼ 1.098ð5Þ GeV and twice the
constituent quark mass 2mN=3 ¼ 1.049ð12Þ GeV. When
applied to the charmonium, our method yielded mc ¼
1.686ð44Þ GeV for the charm quark mass. This is
∼250 MeV smaller than the value mc ¼ 1.933ð17Þ GeV
obtained by the Kawanai-Sasaki method. Our charm-
diquark potential is given by the well-known Cornell
potential where the Coulomb attraction was found consid-
erably weaker than that of the cc̄ potential. The weakening
is most likely due to the structure of the diquark, namely its
spatial extent. These quantities allow us to construct a
QCD-based quark-diquark model that can be used to
investigate the hadron levels and structures.
In this work, we observed that there are three major

systematic uncertainties in our cD potential and cc̄ poten-
tial. One is in the short range region cased by the discretized
Laplacian, and the second is the discretized lattice actions
and the gauge fixing. The last is from the reflection from
the boundaries. The first two errors may be reduced by
calculating with finer lattice and with improved actions and
gauge fixing procedure. Lattice setups with larger spatial
extent is desirable for the third.
Thequark-diquarkpotential anddiquarkmass in this study

are obtained from lattice setup with mπ ≃ 700 MeV.
However, this is not the value at the physical point where
the pion mass is mπ ≃ 140 MeV. In order to construct a
diquark model which outputs observables that can be
compared with experimental results, it is necessary to
calculate the quark-diquark potential and the diquark mass
at the physical point. This is achieved by extrapolating to the
physical point. For example, we may calculate using avail-
able PACS-CS configurations corresponding to mπ≃
540 MeV,mπ ≃ 410 MeV,etc., andextrapolate theobtained
results to the physical point. Physical observables such as
levels of baryon and exotic candidates calculated using the
diquark model are comparable to experimental results.
Moreover, it is presumed that pseudoscalar, vector, and

axial-vector diquarks may play crucial roles in a general
context of hadron physics. Straightforward extension of our
method to the above mentioned diquarks seems to be an
interesting step to pursue.
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APPENDIX A: mq DETERMINATION USING THE
SPIN TRIPLET SECTOR

To obtain the charm quark mass using the spin triplet
sector, we start with replacing Ṽfit

PSðrÞ in the Schrödinger
equation Eq. (37) by Ṽfit

V ðrÞ ¼ Ṽfit
0 ðrÞ þ 1

4
Ṽfit
σ ðrÞ.

We use the prepotential fit to series II in Sec. V. Then the
spin-orbit averaged P-wave excitation preenergy is
obtained by incorporating the centrifugal potential as
was demonstrated in Eq. (11) for the spin singlet sector.
Figure 15 compares the V channel numerical solutions to
the NBS wave function, where we find a good agreement.
Next, we replace MT −MPS by 2MAV −MS −MV in

Eq. (12), where we have neglected the small contribution
from the tensor interaction. Then, by substituting the
P-wave preexcitation energy into Eq. (12), we get charm
quark mass 1.604(76) GeV, which is consistent with that
from the singlet sector within the statistical error. Note that
for better precision, the energy level of 2þþ state (χc2
meson) needs to be taken into account to offset the effect of
the tensor interaction.

FIG. 15. Numerical solutions for S wave (S) and P wave (P).
Black circles denote the NBS wave function data.
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APPENDIX B: CUBIC GROUP
TRANSFORMATIONS

The cubic group has 48 elements, each being products of
three π

2
-rotations about x, y, and z axes and the parity

transformation. The elements are representable by the
parity inversion and the matrices Cx, Cy, and Cz given by

Cx¼

0
B@
1 0 0

0 0 −1
0 1 0

1
CA; Cy¼

0
B@

0 0 1

0 1 0

−1 0 0

1
CA; Cz¼

0
B@
0 −1 0

1 0 0

0 0 1

1
CA:

ðB1Þ Table XI summarizes the 24 proper rotations. Combining
these and the parity-inversion, we get 48 elements of Oh.
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[7] G. Galatà and E. Santopinto, Phys. Rev. C 86, 045202

(2012).
[8] M. Oettel, G. Hellstern, R. Alkofer, and H. Reinhardt, Phys.

Rev. C 58, 2459 (1998).
[9] J. Segovia, C. D. Roberts, and S. M. Schmidt, Phys. Lett. B

750, 100 (2015).
[10] D. Jido and M. Sakashita, Prog. Theor. Exp. Phys. 2016,

083D02 (2016).
[11] K. Kumakawa and D. Jido, Prog. Theor. Exp. Phys. 2017,

123D01 (2017).
[12] C. Chen, B. El-Bennich, C. D. Roberts, S. M. Schmidt, J.

Segovia, and S. Wan, Phys. Rev. D 97, 034016 (2018).
[13] L. Maiani, A. Polosa, and V. Riquer, Phys. Lett. B 749, 289

(2015).
[14] F. Giannuzzi, Phys. Rev. D 99, 094006 (2019).
[15] J. F. Giron and R. F. Lebed, Phys. Rev. D 102, 074003

(2020).
[16] K. Johnson and C. B. Thorn, Phys. Rev. D 13, 1934 (1976).
[17] M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and

D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993).
[18] M. Hess, F. Karsch, E. Laermann, and I. Wetzorke, Phys.

Rev. D 58, 111502(R) (1998).
[19] Y. Bi, H. Cai, Y. Chen, M. Gong, Z. Liu, H.-X. Qiao, and

Y.-B. Yang, Chin. Phys. C 40, 073106 (2016).
[20] C. Alexandrou, P. de Forcrand, and B. Lucini, Phys. Rev.

Lett. 97, 222002 (2006).
[21] A. Francis, P. de Forcrand, R. Lewis, and K. Maltman,

arXiv:2106.09080.

[22] S. Aoki and T. Doi, Front. Phys. 8, 307 (2020).
[23] N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99,

022001 (2007).
[24] T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda,

T. Inoue, N. Ishii, H. Nemura, and K. Sasaki (HAL QCD
Collaboration), Phys. Rev. D 99, 014514 (2019).

[25] Y. Ikeda and H. Iida, Prog. Theor. Phys. 128, 941 (2012).
[26] G. S. Bali, H. Neff, T. Düssel, T. Lippert, and K. Schilling

(SESAM Collaboration), Phys. Rev. D 71, 114513 (2005).
[27] G. S. Bali, Phys. Rep. 343, 1 (2001).
[28] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane,

and T. M. Yan, Phys. Rev. Lett. 34, 369 (1975).
[29] T. Kawanai and S. Sasaki, Phys. Rev. Lett. 107, 091601

(2011).
[30] T. Kawanai and S. Sasaki, Phys. Rev. D 92, 094503 (2015).
[31] K. Nochi, T. Kawanai, and S. Sasaki, Phys. Rev. D 94,

114514 (2016).
[32] Y. Koma and M. Koma, Few-Body Syst. 54 (2013).
[33] T. Sugiura, K. Murano, N. Ishii, and M. Oka, Proc. Sci.,

LATTICE2016 (2016) 122 [arXiv:1703.09936].
[34] S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh,

K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y.
Taniguchi, A. Ukawa, N. Ukita, and T. Yoshié (PACS-CS
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