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We present a relativistic and model-independent method to derive structure-dependent electromagnetic
finite-size effects. This is a systematic procedure, particularly well-suited for automation, which works at
arbitrarily high orders in the large-volume expansion. Structure-dependent coefficients appear as zero-
momentum derivatives of physical form factors which can be obtained through experimental measurements
or auxiliary lattice calculations. As an application we derive the electromagnetic finite-size effects on the
pseudoscalar meson mass and leptonic decay amplitude, through orders Oð1=L3Þ and Oð1=L2Þ,
respectively. The structure dependence appears at this order through the meson charge radius and the
real radiative leptonic amplitude, which are known experimentally.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) makes it
possible to perform precision tests of the Standard
Model (SM) using observables for which nonperturbative
physics plays an important role. In recent years, for
example, it has been used to determine hadronic corrections
to the muon anomalous magnetic moment [1] and, in the
flavor physics sector, decay rates needed for the extraction
of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
[2], in particular jVusj and jVudj, including radiative
corrections [3–6].
Among other sources of systematic uncertainty in lattice

QCD calculations, it is important to quantify the role of the
finite volume (FV). This is particularly important when
quantum electrodynamics (QED) is included, since the
long-range nature of the interaction leads to powerlike
rather than exponentially suppressed finite-volume effects
(FVEs), even in simple quantities such as masses and
leptonic decay rates. The powerlike FVEs can be estimated
numerically either by fitting functional forms to simulation

results at various volumes or by deriving the volume
scaling using analytic techniques; see Refs. [7–11].
In order to reach subpercent precision in lattice calcu-

lations, isospin breaking (IB) effects are essential. This
means including strong effects coming from the quark mass
difference mu −md ≠ 0 as well as electromagnetic (EM)
effects by considering QCD coupled to QED. The latter
effects are particularly complicated for several reasons.
Because QED does not have a mass gap, zero-momentum
photon modes lead to new infrared divergences and diffi-
culties in defining charged particles in a FV. The problem
can also be understood via Gauss’ law, which predicts a flux
through a surface containing a charged particle that contra-
dicts naive periodic boundary conditions [7,10,12].
However, it is still possible to define QED in a finite volume
in ways that remove or modify the problematic zero modes.
Many prescriptions have been defined, including QEDL
[12], the most commonly used approach nowadays, but also
QEDC [13–17], QEDM [18,19], QEDTL [20,21], and the
infinite-volume reconstruction method [22–24].
In QEDL the photon zero modes are subtracted on each

energy slice, providing a straightforward regularization of
zero-mode singularities in finite-volume QED. This
approach breaks the locality of the theory but still admits
a transfer matrix, preserving its quantum mechanical
interpretation [7,10]. In this paper, we consider QEDL
on a spacetime with an infinite time direction, but compact,
periodic space directions of length L. We expect that the
formalism developed here can be generalized to different
formulations of finite-volume QED.
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As mentioned above, electromagnetic FVEs are particu-
larly significant as they can scale with inverse powers of the
spatial extent L. These are potentially larger than the
exponentially suppressed effects from QCD alone, so an
analytic knowledge of EM FVEs is of great interest for
precision calculations in lattice QCDþ QED. In a given
hadronic process, the EM FVEs will in principle depend on
the structure of the hadrons involved, although it was
proven [7,9] that, due to gauge invariance, some of the
leading-order coefficients are universal.1 For example, in
the pseudoscalar finite-volume mass shift, the first non-
universal (structure dependent) contribution occurs at order
Oð1=L3Þ [8] and is encoded in the EM charge radius of the
particle as well as a contribution dictated by the branch cut
of the forward Compton amplitude, described below. At
higher orders, other physical quantities appear, e.g. the EM
polarizabilities. For leptonic decays, it is known that
structure dependence occurs at order 1=L2. The pointlike
EM FVEs for these decays were derived through order 1=L
in Ref. [9] and the pointlike limit through order 1=L3 was
also considered in Ref. [25].
In this paper, we develop a relativistic and model-

independent approach to derive EM FVEs beyond the
pointlike approximation. Strongly inspired by pioneering
work on multihadron states in a finite volume [26–28], and
following the general proofs of universality of EM FVEs
[7,9], the main approach here is to relate the 1=L expansion
of amplitudes to momentum singularities of FV Feynman
integrands. The hadronic structure is introduced through
generic, relativistic expansions of the vertex functions into
hadronic form factors. Our method for deriving FVEs is
systematic and well-suited for automation. In this vein,
most of the analytic results presented in this work are
collected in a supplementary Mathematica notebook that
we have also made available [29]. Together with the
notebook FVE_CALCULATION.NB we also provide the pack-
age FVTOOLS.WL that allows the user to compute a variety
of different finite-volume coefficients entering EM FVEs.
This more automated approach differs from similar calcu-
lations, e.g. Ref. [9], where focus is put on separately
studying master integrals specific to a given process. We
demonstrate the efficiency of our approach by computing
the leading structure-dependent EM FVEs on the pseudo-
scalar mass and leptonic decay rate. An important result
herein is the derivation of summation formulaa, which
generalize those of Refs. [8,10,11] by also including
infrared (IR) divergent cases needed for leptonic decays.
In Sec. II we derive the summation formulas which act in

later sections as generic building blocks to calculate EM
FVEs. Following this, in Sec. III we study the finite-volume
effects on pseudoscalar masses up to and including order
Oð1=L3Þ. Next, leptonic decays are studied in Sec. IV.

In particular, we first introduce the structure-dependent
matrix elements needed and derive the finite-size scaling up
to and including orderOð1=L2Þ. After this, we numerically
study the effects in Sec. V. Conclusions and an outlook are
given in Sec. VI. In the Appendix we provide further
mathematical details on summation formulas, and an
exponentially fast method to evaluate FV coefficients
numerically, generalizing the algorithm proposed in
Ref. [10] to the case of IR-divergent coefficients.

II. SUMMATION FORMULAS

In this section we summarize the derivation of the core
mathematical identities used in the calculations of EMFVEs
presented in the next sections. These identities allow one to
compute the asymptotic behavior in the spatial extent L of
general classes of sums over quantizedmomenta, converging
to momentum integrals in the L → þ∞ limit. This asymp-
totic behavior is known to be deeply related to the regularity
of the integrand, and the formulas presented here can be seen
as a direct generalization for IR-divergent integrals of similar
identities presented in Ref. [10].
As derived in the next sections, electromagnetic first-

order corrections to QCDþ QED correlation functions are
related to generic sums/integrals of functions of the form

grðkλ; fpgÞ ¼
fðkλ; fpgÞ
ωλðkÞr

; ð1Þ

where k is the photon 3-momentum to be summed/
integrated, fpg is an arbitrary set of external momenta,
and λ is a photon mass IR regulator. Additionally we
define the 4-vector kλ ¼ ðλ;kÞ and the energy function
ωλðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
. We also consider the spherical coor-

dinates associated with kλ,

jkλj ¼ ωλðkÞ and k̂λ ¼
kλ
jkλj

; ð2aÞ

with the spatial part

k̂λ ¼
k

ωλðkÞ
¼ jkj

ωλðkÞ
k̂: ð2bÞ

In these coordinates, we assume that fðkλ; fpgÞ is analytic
in ωλðkÞ in the vicinity of ωλðkÞ ¼ 0 and nonzero in the
ωλðkÞ → 0 limit. EM FVEs are then given by the sum-
integral difference

Fr½fðkλ; fpgÞ� ¼
�
1

L3

X0

k∈T̂3

−
Z

d3k
ð2πÞ3

�
grðkλ; fpgÞ; ð3Þ

where T̂ 3 is the set of all vectors taking the form k ¼ 2π
L n

where n has integer components, and the “primed” sum
means that the null vector 0 is excluded, implementing the
QEDL [10,12] prescription. For later use we introduce the
shorthand notation

1Universal is understood as independent of the hadron’s
structure, i.e. equivalent with the pointlike limit.
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Δ0
k ¼ 1

L3

X0

k∈T̂3

−
Z

d3k
ð2πÞ3 : ð4Þ

We next define the limit

fðk; fpgÞ ¼ lim
λ→0

fðkλ; fpgÞ; ð5Þ

which is uniformly convergent in the vicinity of jkj ¼ 0.
We also write the radial expansions

fðkλ; fpgÞ ¼
Xþ∞

i¼0

fiðk̂λ; fpgÞωλðkÞi and

fðk; fpgÞ ¼
Xþ∞

i¼0

fiðk̂; fpgÞjkji; ð6Þ

in the vicinity of ωλðλÞ ¼ 0 and jkj ¼ 0, respectively.
Because of the analyticity assumption made above, one has

fiðk̂; fpgÞ ¼ lim
λ→0

fiðk̂λ; fpgÞ ð7Þ

uniformly. Substituting the expansion in Eq. (6) into Eq. (3)
and using the substitution k ¼ 2π

L n leads to

Fr½fðkλ; fpgÞ� ¼
X
i

γr−i;iðfpg; ξÞ
ð2πÞr−i

1

L3−rþi : ð8Þ

Here

γj;kðfpg; ξÞ ¼ Δ0
n

�
fkðn̂ξ; fpgÞ
ωξðnÞj

�
; ð9Þ

ξ ¼ Lλ
2π

; nξ ¼
L
2π

kλ ¼ ðξ;nÞ;

ωξðnÞ ¼ jnξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ ξ2

p
; ð10Þ

and Δ0
n is the sum-integral difference operator over n,

Δ0
n ¼

X0

n∈Z3

−
Z

d3n: ð11Þ

In Eq. (9), the sum over n is regulated in the IR by
removing the zero mode. It does not require additional
infrared regularization and can be considered directly at
ξ ¼ 0. The integral is infrared divergent for r − i ≥ 3 and
ξ → 0. Both the sum and the integral are ultraviolet
divergent for r − i ≤ 3. Below, we derive formulas for
arbitrary values of i.

A. Infrared-finite terms

We begin with terms in Eq. (8) with r − i < 3. These
terms can be computed directly at ξ ¼ 0,

γr−i;iðfpgÞ ¼ Δ0
n

�
fiðn̂; fpgÞ

jnjr−i
�
: ð12Þ

One notices that for ξ ¼ 0 the integrand/summand is
factorizable in the spherical coordinates ðjnj; n̂Þ of the
3-vector n, simplifying the evaluation of γr−i;iðfpgÞ for a
given explicit numerator fiðn̂;pÞ.

B. Infrared power divergences

We next consider terms in Eq. (8) with r − i > 3. In that
case both the sum and the integral are ultraviolet finite and
can be evaluated separately. The sum can be evaluated
directly at ξ ¼ 0,

γ̄r−i;iðfpgÞ ¼
X0

n∈Z3

fiðn̂; fpgÞ
jnjr−i : ð13Þ

Regarding the integral, we first express it in spherical
coordinates (n ¼ jnj)
Z

d3n
fiðn̂ξ;fpgÞ
ωξðnÞr−i

¼
Z þ∞

0

dn
Z
S2
d2n̂

n2fiðn̂ξ;fpgÞ
ωξðnÞr−i

; ð14Þ

and then we change the radial integration variable to ξn
obtaining Z

d3n
fiðn̂ξ; fpgÞ
ωξðnÞr−i

¼ ϕr−i;iðfpgÞ
ξr−i−3

; ð15Þ

with

ϕr−i;iðfpgÞ ¼
Z þ∞

0

dn
Z
S2
d2n̂

n2fi
h

1ffiffiffiffiffiffiffiffi
1þn2

p ð1; nn̂Þ; fpg
i

ð1þ n2Þr−i2 :

ð16Þ

Finally we obtain

γr−i;iðfpg; ξÞ ¼ γ̄r−i;iðfpgÞ −
ϕr−i;iðfpgÞ

ξr−i−3
: ð17Þ

Both the sum γ̄r−i;iðfpgÞ and the integral ϕr−i;iðfpgÞ have
to be evaluated explicitly for a given Feyman integrand.
However, they are independent of ξ, whose contribution
appears explicitly in Eq. (17) as a power infrared diver-
gence ξ3þi−r, as expected from power counting.

C. Logarithmic infrared divergences

Finally we turn to the special case of Eq. (8) with
r − i ¼ 3. This case is the most challenging as the integral
is both infrared and ultraviolet divergent. However, from
counting the superficial degree of divergence we know that
the sum and integral each diverge at most logarithmically,

RELATIVISTIC, MODEL-INDEPENDENT DETERMINATION OF … PHYS. REV. D 105, 074509 (2022)

074509-3



so capturing only leading divergences is enough. In the
following we separately consider the sum and integral, and
we regulate them in the ultraviolet by imposing a hard
cutoff R on the norm jnj. As in the previous case, the sum
can safely be evaluated at ξ ¼ 0 and is expected to have the
asymptotic behavior

X0

jnj<R

fiðn̂;fpgÞ
jnj3 ¼

R→þ∞
liðfpgÞlogðRÞþCðSÞ

i ðfpgÞþO
�
1

R

�
:

ð18Þ

Regarding the integral, as in the previous case we can
change the radial integration variable to ξn,

Z
jnj<R

d3n
fiðn̂ξ; fpgÞ
ωξðnÞ3

¼
Z R

ξ

0

dn
Z
S2
d2n̂

n2fi
h

1ffiffiffiffiffiffiffiffi
1þn2

p ð1; nn̂Þ; fpg
i

ð1þ n2Þ32 : ð19Þ

So the integral is only a function of R=ξ, which enters as the
upper bound of the radial integral. The R → þ∞ leading
behavior of the sum, i.e. the coefficient liðfpgÞ, has to be
identical in the case of the integral. In summary the R=ξ →
þ∞ asymptotic behavior of the integral has the form

Z
jnj<R

d3n
fiðn̂ξ; fpgÞ
ωξðnÞ3

¼
R→þ∞

liðfpgÞ log
�
R
ξ

�
þ CðIÞ

i ðfpgÞ:

ð20Þ

Now, defining r ¼ R=ξ, the coefficient liðfpgÞ can be
obtained as the logarithmic derivative in r of Eq. (19) in the
r → þ∞ limit. Let us start by computing the logarithmic
derivative

r
∂
∂r

Z
jnj<R

d3n
fiðn̂ξ; fpgÞ
ωξðnÞ3

¼ r3

ð1þ r2Þ32
Z
S2
d2n̂fi

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p ð1; rn̂Þ; fpg

�
: ð21Þ

Then we have the limit

lim
r→þ∞

r3

ð1þr2Þ32fi
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þr2

p ð1;rn̂Þ;fpg
�
¼fiðn̂;fpgÞ: ð22Þ

Since the remaining integral in Eq. (21) is operating on a
continuous function over a compact manifold, the limit
above can be interchanged with the integral (bounded
convergence theorem) to give liðfpgÞ,

liðfpgÞ ¼ lim
r→þ∞

r
∂
∂r

Z
jnj<R

d3n
fiðn̂ξ; fpgÞ
ωξðnÞ3

¼
Z
S2
d2n̂fiðn̂; fpgÞ: ð23Þ

Then the coefficients CðSÞ
i ðfpgÞ and CðIÞ

i ðfpgÞ are given as
the finite limits

CðSÞ
i ðfpgÞ ¼ lim

R→þ∞

�X0

jnj<R

fiðn̂; fpgÞ
jnj3 − liðfpgÞ logðRÞ

�
;

ð24Þ

CðIÞ
i ðfpgÞ¼ lim

r→þ∞

�Z
r

0

dn
Z
S2
d2n̂

n2fi
h

1ffiffiffiffiffiffiffiffi
1þn2

p ð1;nn̂Þ;fpg
i

ð1þn2Þ32

−liðfpgÞ logðrÞ
�
; ð25Þ

finally yielding

γ3;iðfpg; ξÞ ¼ CðSÞ
i ðfpgÞ − CðIÞ

i ðfpgÞ þ liðfpgÞ logðξÞ:
ð26Þ

The integral limit in Eq. (25) can be put in a somewhat
more convenient form for explicit evaluations. Combining
the identity

Z
r

0

dn
n2

ð1þ n2Þ32 ¼
r→þ∞

logðrÞ þ logð2Þ − 1; ð27Þ

with Eq. (25), one can show

CðIÞ
i ðfpgÞ

¼
Z

∞

0

dn
Z
S2
d2n̂

n2
n
fi
h

1ffiffiffiffiffiffiffiffi
1þn2

p ð1;nn̂Þ;fpg
i
−fiðn̂;fpgÞ

o
ð1þn2Þ32

− ½1− logð2Þ�liðfpgÞ: ð28Þ

These identities will be used in the Appendix for deriving
finite-volume coefficients appearing in the physical calcu-
lations presented below.

III. SELF-ENERGY OF PSEUDOSCALAR MESONS

In this section we consider the FVEs in the pseudoscalar
mass at leading order in QED. Most of the results presented
here have been derived previously and already used in
lattice calculations, where they play a crucial role in the
determination of physical quark masses in lattice QCDþ
QED calculations. In particular, we determine the leading
structure-dependent corrections, which starts at order 1=L3,
and establish some of the concepts needed to handle the
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leptonic decays in the next section. One key result
described in detail in this work is the contribution of a
term at 1=L3 dictated by an integral along the branch cut of
the forward Compton amplitude.

A. The electromagnetic self-energy
and its finite-size effects

We consider an interpolating operator ϕ which couples
to a charged, spin-0, stable hadronic state P (e.g. a pion or
kaon) with mass mP in the full QCDþ QED theory. We
define the infinite-volume (IV) and finite-volume (FV)
Euclidean momentum-space two-point functions of ϕ as

C∞
2 ðpÞ ¼

Z
d4x h0jT½ϕðxÞϕ†ð0Þ�j0ie−ipx; ð29Þ

CL
2 ðpÞ ¼

Z
dx0

Z
T3

d3x h0jT½ϕðxÞϕ†ð0Þ�j0iLe−ipx; ð30Þ

where the expectation value is understood to be in QCDþ
QED and in the FV case this is implemented via QEDL. As
indicated, the FV quantity is defined with periodic boun-
dary conditions on the three-torus T 3 and the spatial
integral runs over this domain, whereas the spatial integral
defining C∞

2 ðpÞ runs over R3. We work throughout in a
continuum theory and also take the temporal extent to be
infinite.
While C∞

2 only depends on p2 ¼ p2
0 þ p2, for CL

2

separate dependence on p0 and p is induced by the reduced
symmetry. In this work we consider both the IV and FV
two-point functions in the complex p0 plane, but only in the
neighborhood of the on-shell point, p0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

. In
this region, C∞

2 contains a pole corresponding to P together
with a branch cut, running from this pole up the imaginary
axis and corresponding to multiparticle states involving any
number of photons together with P. Here we are interested
in the pole position, from which one can define the physical
mass mP and the operator-state overlap via

lim
p2→−m2

P

ðp2 þm2
PÞC∞

2 ðpÞ ¼ Z2
P;

ZP ¼ h0jϕð0ÞjP;pi: ð31Þ

Without loss of generality we choose the phase in ϕð0Þ and
the states such that ZP is real and positive. Similarly, the
finite-volume two-point function, CL

2 , contains a tower of
poles along imaginary p0. For p ¼ 0, the lowest lying of
these is denoted by p0 ¼ imPðLÞ where mPðLÞ is referred
to as the FV mass since it satisfies

lim
L→∞

mPðLÞ ¼ mP: ð32Þ

The difference Δm2
PðLÞ ¼ mPðLÞ2 −m2

P is known to
satisfy a series expansion in 1=L to which all positive

integer powers contribute [7]. The main aim of this section
is to review the determination of the 1=L, 1=L2, and 1=L3

terms in QEDL, while setting up the formalism for the next
section. In the following paragraphs we first focus on QED
corrections in the IV theory before returning toCL

2 ðpÞ at the
end of the subsection.

1. Electromagnetic self-energy

Because of the perturbative nature of QED, we will work
at the leading orderOðe2Þ in the elementary electric charge
e. To define this expansion it is necessary to make reference
to QCD-only quantities, which is inherently ambiguous.
We assume a suitable separation scheme has been used to
set the quark mass values mu ≠ md in the theory without
photons, and a review of the schemes used in lattice
QCDþ QED calculations can be found in Ref. [2]. The
two-point function in the QCD-only setup has a shifted
pole position with the location denoted by mP;0, i.e.

lim
p2→−m2

P;0

ðp2 þm2
P;0ÞC∞

2 ðpÞe¼0 ¼ Z2
P;0;

ZP;0 ¼ h0jϕð0ÞjP;pie¼0; ð33Þ

where again we take ZP;0 to be real and positive.
More generally, the QCD-only correlator can be

written as

C∞
2 ðpÞe¼0 ¼

1

p2 þm2
P;0 − ΣQCDðp2Þ ; ð34Þ

where ΣQCDðp2Þ is the renormalized self-energy of P from
the strong interaction. Here we have chosen the convention
of setting ΣQCDð−m2

P;0Þ ¼ 0 such that there is no distinc-
tion between the renormalized mass and the pole mass.
Matching Eqs. (33) and (34) then further gives

Z−2
P;0 ¼ 1 −

∂ΣQCD

∂p2
ð−m2

P;0Þ; ð35Þ

which encodes a second conventional freedom in the
theory; e.g. one can set the derivative to vanish such that
ZP;0 ¼ 1. We choose to keep ZP;0 general to show that it
has no effect on physical quantities. We further find it
convenient to define

−Σ0ðp2Þ ¼ −ΣQCDðp2Þ − ðZ−2
P;0 − 1Þðp2 þm2

P;0Þ; ð36Þ

which simply amounts to removing the O½ðp2 þm2
P;0Þ�

term so that Σ0ðp2Þ ¼ O½ðp2 þm2
P;0Þ2� near the pole.

Substituting this into Eq. (34) gives

C∞
2 ðpÞe¼0 ¼ ZP;0 ·D0ðpÞ · ZP;0; ð37Þ

with
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D0ðpÞ ¼
1

p2 þm2
P;0 − Σ0ðp2Þ : ð38Þ

This simple factorization into overlaps and the fully dressed
QCD propagator with unit residue can be represented
diagrammatically as

ð39Þ

where the line is D0ðpÞ and the circles are the two overlap
factors. One can also introduce Z0ðp2Þ as a (trivial)
alternative to Σ0ðp2Þ,

Z0ðp2Þ ¼
�
1 −

Σ0ðp2Þ
p2 þm2

P;0

�
−1
; ð40Þ

such that

D0ðpÞ ¼
Z0ðp2Þ

p2 þm2
P;0

: ð41Þ

Returning to the full QCDþ QED theory, the two-point
function can be represented diagrammatically as

ð42Þ

and expanding to leading order in the elementary charge
squared gives

ð43Þ

We will implicitly neglect relative Oðe4Þ corrections to
observables throughout this work. In Eq. (43), the gray blob
labeled C represents the Compton scattering kernel. In the
limit that the external pseudoscalar legs are on-shell, this
becomes the forward Compton scattering amplitude

ð44Þ

lim
p2→−m2

P

Cμνðp; k;−kÞ

¼
Z

d4x e−ikxhP;pjTfJμðxÞJνð0ÞgjP;pi; ð45Þ

where Jμ is the Euclidean quark electromagnetic current.
We absorbed the electric charge factor e within the current.
Here we have chosen the on-shell point in the full theory,

i.e. m2
P rather than m2

P;0. The difference between these two
choices within the Compton amplitude leads to a Oðe4Þ
effect that is beyond the order we control. In general, the
off-shell continuation of Cμν is ambiguous and depends on
the arbitrary choice of ϕ:

Cμνðp; k; qÞ ¼ Z−2
P;0D0ðpÞ−1D0ðpþ kþ qÞ−1

×
Z

d4x d4y d4z eipzþikxþiqy

× h0jT½ϕð0ÞJμðxÞJνðyÞϕ†ðzÞ�j0i: ð46Þ

However, any such operator dependence must cancel in any
spectral quantity, including mP, mPðLÞ, and, in particular,
any coefficient multiplying a power of 1=L in the latter.
In order to relate the electromagnetic corrections in the

two-point function to those in the mass of P, one must sum
the usual infinite subset of diagrams

ð47Þ
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where the self-contracted kernel defines the Oðe2Þ self-
energy function

ð48Þ

Performing the summation in Eq. (47), one obtains

C∞
2 ðpÞ ¼

Z2
P;0

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þ : ð49Þ

The value of Σð−m2
PÞ and its derivative is specified by the

chosen scheme for defining the e → 0 limit of QCDþ QED.
The full QCDþ QED mass is given by solving

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þjp2¼−m2

P
¼ 0; ð50Þ

which reduces to

Δm2
P ¼ m2

P −m2
P;0 ¼ −Σð−m2

PÞ þOðe4Þ: ð51Þ

Here we have used that Σ0ðp2Þ ¼ O½ðp2 þm2
P;0Þ2� (by

construction) and thus only contributes at Oðe4Þ.
Following Eq. (37) above, we also define

C∞
2 ðpÞ ¼ ZP ·DðpÞ · ZP; ð52Þ

where ZP is already defined in Eq. (31) and

DðpÞ ¼ Zðp2Þ
p2 þm2

P
; ð53Þ

with Zðp2Þ ¼ 1þO½ðp2 þm2
PÞ�. A particularly important

quantity in the following section will be the ratio between
operator overlaps in the QCD-only and full QCDþ QED
theories. We parametrize this via

ZP ¼ ZP;0ð1þ δZP
Þ: ð54Þ

One can readily show

δZP
¼ 1

2
½Σ0

0ð−m2
PÞ þ Σ0ð−m2

PÞ�: ð55Þ

In contrast to the pole shift, both Σ0ðp2Þ and Σðp2Þ
contribute to the overlap at the order we work.

Returning to the finite-volume system, an identical
argument can be applied to reach a finite-volume version
of Eq. (49) in which C∞

2 → CL
2 and the two self-energies on

the right-hand side both receive L dependence. As was
shown in Ref. [30], the finite-volume QCD-only self-
energy, call it ΣL

0 ðp2
0;p ¼ 0Þ, vanishes as e−mP;0L when

evaluated at p2
0 ¼ −m2

P;0. Therefore, the leading finite-
volume effects are given by the difference between the FV
and IV QED contributions:

Δm2
PðLÞ ¼ mPðLÞ2 −m2

P

¼ −½ΣLð−m2
P; 0Þ − Σð−m2

PÞ�; ð56Þ

where the second argument of ΣL indicates that we focus on
P at rest in the FV frame. The rest of this section could be
derived in an arbitrary FV frame as done in Ref. [10];
however, for the sake of simplicity we will only consider
the rest frame.
The powerlike 1=L scaling within ΣLð−m2

P; 0Þ is due
only to the fact that the spatial part of the photon
momentum k is summed over the discrete modes satisfying
the periodic boundary conditions, with k ¼ 0 removed. In
particular, one can take the IV definition of Cμν within ΣL

as the difference from the FV quantity is again exponen-
tially suppressed. One finds

Δm2
PðLÞ¼−

e2

2
lim

p2
0
→−m2

P

Δ0
k

Z
dk0
2π

Cμμðp;k;−kÞ
k2

				
p¼0

; ð57Þ

where Δ0
k is defined in Eq. (4) above. This implies that the

FV effects on the mass, including structure-dependent
contributions, can be related to the physical properties of
the Compton scattering amplitude. In particular, it is clear
that the finite-size effects on the physical mass cannot
depend on the arbitrary choice of the interpolating operator
ϕ, and we expect any term depending on ϕ to cancel in the
final result. To obtain the large-volume expansion of
Eq. (57), one can use the summation formulas derived in
the previous section. This requires one to discuss the
reduction of the Compton kernel which is the purpose of
the next section.

2. Irreducible electromagnetic vertex functions

It is now useful to decompose the Compton kernel in
irreducible diagrams as

ð58Þ
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where the white blobs, labeled Γ1 and Γ2, correspond to Γμ

and Γμν, the P → Pγ� and P → Pγ�γ� irreducible electro-
magnetic vertex functions, respectively,

Cμνðp; k; qÞ ¼ Γμðp; kÞD0ðpþ kÞΓνðpþ k; qÞ
þ Γνðp; qÞD0ðpþ qÞΓμðpþ q; kÞ
þ Γμνðp; k; qÞ: ð59Þ

The subscripts in the diagrammatic notation indicate the
number of photon currents and thus also the number of
Lorentz indices. As the precise definition of the off-shell
Cμνðp; k; qÞ is given in Eq. (46), we only require a
definition of Γμðp; kÞ to give a complete specification.
The latter is defined as

Γμðp; kÞ ¼ Z−2
P;0D0ðpþ kÞ−1D0ðpÞ−1

Z
d4x d4yeipxþiky

× h0jT½ϕð0ÞJμðyÞϕ†ðxÞ�j0i: ð60Þ

Following the conventions of Refs. [31,32], this off-shell
vertex function can be decomposed into form factors

Γμðp; kÞ ¼ ð2pþ kÞμFðk2; ðpþ kÞ2; p2Þ
þ kμGðk2; ðpþ kÞ2; p2Þ: ð61Þ

Through gauge invariance and Eq. (60), one can show that
Γμðp; kÞ must satisfy the Ward-Takahashi identity (WTI)

kμΓμðp; kÞ ¼ D0ðpþ kÞ−1 −D0ðpÞ−1: ð62Þ

This implies relations for the off-shell form factors:

Fð0; p2;−m2
P;0Þ ¼ Fð0;−m2

P;0; p
2Þ ¼ Z0ðp2Þ−1; ð63Þ

Gðk2; ðpþ kÞ2; p2Þ ¼ D0ðpþ kÞ−1 −D0ðpÞ−1
k2

−
�
1þ 2p · k

k2

�
Fðk2; ðpþ kÞ2; p2Þ;

ð64Þ

and these results combine to give a particularly useful form
in the case that p2, within G, is set to its on-shell value

Gðk2; ðpþ kÞ2;−m2
P;0Þ

¼ ðpþ kÞ2 þm2
P;0

k2
½Fð0; ðpþ kÞ2;−m2

P;0Þ
− Fðk2; ðpþ kÞ2;−m2

P;0Þ�: ð65Þ

Analogous identities can be derived for the off-shell two-
photon vertex, Γμν, which is defined through Eq. (59). This
satisfies its own WTI

kμΓμνðp; k; qÞ ¼ Γνðp; qÞ − Γνðpþ k; qÞ; ð66Þ

and, setting q ¼ −k, one can expand the vertex in powers of
kμ to show

Γμνðp;k;−kÞ¼−2δμνFð0;p2;p2Þ−8pμpνFð0;0;1Þð0;p2;p2Þ
þOðkÞ: ð67Þ

To reach this expression one makes use of the fact that
transverse terms, i.e. those not constrained by the WTI, do
not appear at leading order.

B. Large-volume expansion and cancellation
of off-shell contributions

We now have all required expressions to start reducing
the sum-integral difference in Eq. (57). To do so, one first
substitutes Eq. (59) into Eq. (57), to express the finite-
volume shift to the pseudoscalar mass in terms of the
irreducible vertex functions

Δm2
PðLÞ ¼ −e2 lim

p2→−m2
P;0

Δ0
k

Z
dk0
2π

1

k2

�
1

2
Γμμðp; k;−kÞ

þ Γμðp;−kÞD0ðp − kÞΓνðp − k; kÞ
�
; ð68Þ

where p ¼ 0 is understood. Here we have used the k → −k
invariance of the integrand to combine the two one-particle
reducible terms into one. The next step is to substitute the
decompositions of the single-photon functions in terms of
the form factors F and G to reach

Δm2
PðLÞ ¼ − lim

p2→−m2
P;0

Δ0
k

Z
dk0
2π

1

k2
Iðk; pÞ; ð69Þ

where we have introduced

Iðk; pÞ ¼ 1

2
Γμμðp; k;−kÞ

þ ð2p − kÞ2D0ðp − kÞFðk2; p2; ðp − kÞ2Þ2
þ 2k · ð2p − kÞD0ðp − kÞGðk2; p2; ðp − kÞ2Þ
× Fðk2; p2; ðp − kÞ2Þ
þ k2D0ðp − kÞGðk2; p2; ðp − kÞ2Þ2; ð70Þ

and have used that F is symmetric and G is antisymmetric
with respect to the interchange of the last two arguments.
As known from the summation formulas discussed in
Sec. II, the leading behavior in the 1=L expansion will
be driven by the singularities of the integrand in Eq. (69) for
k → 0. These can be captured by studying the k → 0

behavior of Iðk; pÞ. Sending p2 → −m2
P;0 within Iðk; pÞ

and expanding about k ¼ 0, one obtains
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lim
p2→−m2

P;0

Iðk;pÞ¼−4þ4m2
P;0F

ð0;0;1Þð0;−m2
P;0;−m2

P;0Þ

þ Z0ððp−kÞ2Þ
ðp−kÞ2þm2

P;0
ð2p−kÞ2

þ2
Z0ððp−kÞ2Þ
ðp−kÞ2þm2

P;0
ð2p−kÞ2

× ½ðp−kÞ2þm2
P;0�Fð0;0;1Þð0;−m2

P;0;−m2
P;0Þ

þOðkÞ; ð71Þ

where we have set everywhere Fð0;−m2
P;0;−m2

P;0Þ ¼ 1,
which is just the electric charge of P in units of e. The first
line here arises from the expansion of Γμμ while the second
and third lines follow from the one-particle reducible term
proportional to F2. Though we have set p2 → −m2

P;0 in all
terms, the off-shell form factors still contribute.
To see that all unphysical contributions explicitly cancel,

note that Eq. (63) implies

Fð0;0;1Þð0;−m2
P;0;−m2

P;0Þ¼
∂Z0ðp2Þ−1

∂p2

				
p2¼−m2

P;0

¼ z1: ð72Þ

The last line here is a definition that will be extended to
higher orders in Sec. IV B. Using this last identity and
continuing the expansion in k of Eq. (71), one finally
reaches

lim
p2→−m2

P;0

Iðk; pÞ ¼ −4þ 4m2
P;0z1

þ 1 − z1½ðp − kÞ2 þm2
P;0�

ðp − kÞ2 þm2
P;0

ð2pÞ2

þ 2ð2pÞ2z1 þOðkÞ; ð73Þ

where the first two terms arise from Γμμ and the third and
fourth give the leading self-energy and off-shell form factor
corrections, respectively, from the contribution propor-
tional to F2. The key point is that the z1 factors cancel,
since 4m2

P;0z1 − z1ð2pÞ2 þ 2ð2pÞ2z1 ¼ 0 for p2 ¼ −m2
P;0,

and the result is therefore independent from the choice
for ϕ.
Now using Eq. (73) and performing the k0 integral in

Eq. (69) gives

Δm2
PðLÞ ¼ e2Δ0

k

�
mP

jkj2 þ
1

jkj þOð1Þ
�
: ð74Þ

Using the summation formula Eq. (8) then directly leads
to the well-known [7–10] universal FVEs to the EM
self-energy

Δm2
PðLÞ ¼ e2

�
mPc2
4π2L

þ c1
2πL2

þO
�
1

L3

��
; ð75Þ

where we have used the zero velocity IR-finite finite-size
coefficients for j < 3,

cj ¼ Δ0
n

1

jnjj : ð76Þ

As is shown in the Appendix, the numerical values of
the two appearing above are c1 ≃ −2.83730 and
c2 ¼ πc1 ≃ −8.91363.
Demonstrating the explicit cancellation of unphysical

contributions in Δm2
PðLÞ for the leading universal FVEs

was the main aim of this subsection. These contributions are
expected to cancel at all orders since the EM self-energy
cannot possibly depend on the choice of interpolating
operator. In fact, one also expects the FVand IV self-energies
to be individually independent from it. Therefore in order to
work to higher orders in 1=Lmore easily, we turn now to an
alternative approach where the decomposition of the
Compton amplitude from the start does not depend on the
choice of the pseudoscalar interpolating operator.

C. Manifestly on-shell derivation and
structure-dependent finite-size effects

We now demonstrate how one can use freedom in the
decomposition of Cμν, in order to remove all off-shell
dependence at the beginning of the calculation. To achieve
this we first define the forward, on-shell Compton ampli-
tude, with vector indices contracted,

Tðk2; k · pÞ ¼ lim
p2→−m2

P

Cμμðp; k;−kÞ: ð77Þ

The key idea then, is to define an alternative decomposition
to Eq. (59) in which D0ðpÞ is replaced with the simple
1=ðp2 þm2

P;0Þ factor and all off-shellness is absorbed into
redefinitions of the Γ functions. We write

Tðk2; k · pÞ ¼ Γon
μ ðp; kÞΓon

μ ðpþ k;−kÞ
ðpþ kÞ2 þm2

P

þ Γon
μ ðp;−kÞΓon

μ ðp − k; kÞ
ðp − kÞ2 þm2

P

þ Γon
μμðp; k;−kÞ; ð78Þ

where the four-vector pμ is understood to be on-shell but,
for now, at generic spatial momentum pμ ¼ ðiωPðpÞ;pÞ
with ωPðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

P

p
. Here we have also replaced

mP;0 withmP as the difference enters the mass atOðe4Þ, i.e.
beyond the order we control.
Next decompose Γon

μ in direct analog to Eq. (61) above, as

Γon
μ ðp;kÞ¼ð2pþkÞμFðk2ÞþkμGonðk2;ðpþkÞ2;p2Þ; ð79Þ

where here Fðk2Þ is the physical, on-shell electromagnetic
form factor of P,
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hP;pþ kjJμð0ÞjP;pi ¼ ð2pμ þ kμÞFðk2Þ: ð80Þ

The second form factor, Gon, is defined by

Gonðk2; ðpþ kÞ2; p2Þ ¼ ðpþ kÞ2 − p2

k2
½1 − Fðk2Þ�; ð81Þ

where we used Fð0Þ ¼ 1, which completes the specification
of Γon

μ and, through Eq. (78), the definition of Γon
μν as well.

This decomposition leads to a new, manifestly
on-shell expression for the finite-volume mass shift
Δm2

PðLÞ:

Δm2
PðLÞ ¼ −e2Δ0

k

Z
dk0
2π

1

k2

�
1

2
Γon
μμðp; k;−kÞ þ

ð2p − kÞ2
ðp − kÞ2 þm2

P
Fðk2Þ2 − 2k · ð2p − kÞ

ðp − kÞ2 þm2
P

ðp − kÞ2 − p2

k2
Fðk2Þ½1 − Fðk2Þ�

þ k2

ðp − kÞ2 þm2
P

½ðp − kÞ2 − p2�2
k4

½1 − Fðk2Þ�2
�
; ð82Þ

now with pμ ¼ ðimP; 0Þ and kμ ¼ ðk0;kÞ. Here the origin
of the terms can easily be read off from the dependence on
Fðk2Þ. We stress that this result holds to all orders in 1=L.
See also Ref. [17] for similar expressions in the context of
finite-volume QED with C⋆ boundary conditions.
To complete the derivation one evaluates the k0 integral

by closing in the upper half of the complex plane. Doing so
leads to three terms, as illustrated in Fig. 1. This first arises
from encircling the pole at k0 ¼ ijkj, call it Δm2

ppðLÞ,
where pp stands for photon pole. The second term
arises from encircling the pseudoscalar pole at
ðp − kÞ2 þm2

P ¼ 0, equivalently at k0 ¼ imP þ iωPðkÞ
where ωPðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

P

p
. Refer to this contribution as

Δm2
pspðLÞ, where psp stands for pseudoscalar pole. The

final term then arises from the remaining analytic structure,
in the upper half of the complex k0 plane, and is denoted by
Δm2

cutðLÞ. In short,

Δm2
PðLÞ ¼ Δm2

ppðLÞ þ Δm2
pspðLÞ þ Δm2

cutðLÞ: ð83Þ

Beginning with the photon pole, the integral readily
evaluates to

Δm2
ppðLÞ

¼e2Δ0
k

1

2jkj
�
4þ4m2

P−4mPjkj
2mPjkj

þ4jkjmPF0ð0ÞþOðk2Þ
�
:

ð84Þ

Here the zero momentum derivative of the EM form factor
F0ð0Þ appears due to the term proportional to Fð0Þ − Fðk2Þ,
ultimately arising from the contribution linear in Gon. It is
through this term that the finite-volume mass shift inherits
its first structure-dependent piece, proportional to the
squared charge radius hr2Pi of the meson P, via the standard
definition

F0ð0Þ ¼ −
hr2Pi
6

: ð85Þ

The result simplifies to

Δm2
ppðLÞ¼e2

�
mP

4π2L
c2þ

1

2πL2
c1−

mPhr2Pi
3L3

c0þO
�
1

L4

��
;

ð86Þ

where c0 ¼ Δ0
nð1Þ ¼ −1. Note that the structure-dependent

1=L3 term derived here within a relativistic approach is the
sameas in nonrelativistic scalarQED[8]. It is satisfying to see
the same quantity arises in the general model-independent
context of this work, via the constraints of the Ward-
Takahashi identity. As expected, the pointlike and universal
contributions agree with the previous section. The numerical
effect of the structure-dependent term in Eq. (87) is inves-
tigated in Sec. V.
Continuing the exercise, one can show that for the p ¼ 0

case considered here, the pseudoscalar-pole term contrib-
utes beyond the order we keep: Δm2

pspðLÞ ¼ Oð1=L4Þ,
although it is known to contribute at Oð1=L3Þ when P has
nonzero spatial momentum in the FV frame [10]. It
therefore remains only to consider the contribution from
all additional analytic structures within the integrand.

FIG. 1. Analytic structure of the integrand defining Δm2
PðLÞ.

Closing the k0 integral in the upper-half plane leads to three
contributions: the photon pole (pp), the pseudoscalar pole (psp),
and the remaining contribution including both the branch cut and
the arc at infinity (cut).
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This, in fact, leads to an additional 1=L3 term, expressed as
an integral of the discontinuity across the branch cut within
Tðk2; k · pÞ, as we describe in the next subsection.
The branch-cut term will prove challenging to predict in

practice, meaning that the primarily useful terms in the
mass shift have already been identified. We therefore
summarize the full result here, before moving to the details
of the final contribution,

Δm2
PðLÞ ¼ e2m2

P

�
c2

4π2mPL
þ c1
2πðmPLÞ2

þ hr2Pi
3mPL3

þ C
ðmPLÞ3

þO
�

1

ðmPLÞ4
��

; ð87Þ

where

C ¼ lim
L→∞

L3
mP

e2
Δm2

cutðLÞ ð88Þ

is the Oð1=L3Þ contribution from the branch cut. This
structure-dependent term is only present in the 1=L
expansion because of the spatial nonlocality of the
QEDL theory. It is contained in the residual Oð1=L3Þ
FV effect Eq. (S35) of Ref. [7], and is also described in
Eq. (2.13) of Ref. [25]. The focus in the next subsection is
to describe more precisely this contribution from the
physical properties of the Compton amplitude.

D. Branch-cut contribution to the finite-size effects

To describe the contribution to Δm2
PðLÞ arising from the

branch cut, it is most straightforward to revert to an
expression similar to Eq. (57), in which the decomposition
into vertex functions has not been performed,

Δm2
cutðLÞ ¼ −

e2

2
Δ0

k

Z
cut

dk0
2π

Tðk2; k · pÞ
k2

				
p¼0

; ð89Þ

where the label cut can be understood, for now, as the
original k0 integral with the contours around the photon and
pseudoscalar poles removed. After k0 integration, this
contribution contains only non-negative powers of jkj,
and thus the only contribution at 1=L3 arises from the
subtracted zero mode. Applying the definition of C in
Eq. (88), one finds

C ¼ mP

2

Z
cut

dk0
2π

Tðk20; imPk0Þ
k20

: ð90Þ

In Fig. 1, we illustrate the analytic structure of
Tðk20; imPk0Þ=k20 in the complex plane and highlight the
integration contour leading to this contribution.
Physically, the cut corresponds to all multihadron states

formed when the pseudoscalar at rest collides with an off-
shell photon, with zero spatial momentum, and with energy

Eγ where k0 ¼ iEγ. The contribution from a multiparticle
state with energy

ffiffiffi
s

p
starts at Eγ ¼

ffiffiffi
s

p
−mP and, since the

lowest lying coupled state has energy
ffiffiffi
s

p ¼ mP þ 2mπ,
the cut runs from k0 ¼ 2imπ. As indicated in the figure, the
pole at k0 ¼ 2imP, has already been considered above as
Δm2

pspðLÞ and is therefore not included here.
We now prove that C ≥ 0. This is significant as it implies

that the radius term in Eq. (87) contributes with the same
sign as the branch-cut term and thus that (a) they cannot
cancel and (b) subtracting the former will reduce the
volume effects. First substitute the definition of the forward
Compton amplitude, Tðk20; imPk0Þ, to write

C ¼ mP

2

Z
cut

dk0
2π

1

k20

Z
dx0 e−ik0x0

× hP; 0jTfJ̃μðx0; 0ÞJμð0ÞgjP; 0i; ð91Þ
where J̃μðx0; 0Þ ¼

R
d3x JμðxÞ.

Separating the two time orderings and inserting a
complete set of states between the currents, one finds

C ¼ mP

2

Z
cut

dk0
2π

1

k20

Z
∞

2mπþmP

dω
ρðωÞ
2ω

×

�Z
∞

0

dx0 e−ik0x0−Mαx0þmPx0

þ
Z

0

−∞
dx0 e−ik0x0þMαx0−mPx0

�
; ð92Þ

where we have introduced

ρðωÞ ¼
X
μ

Z
dα δðω −MαÞ

× hP; 0jJμð0Þjα; 0ihα; 0jJμð0ÞjP; 0i ð93Þ

¼
Z

dαδðω−MαÞ

×

�
jhα;0jJ0ð0ÞjP;0ij2−

X
k

jhα;0jJkð0ÞjP;0ij2
�
:

ð94Þ
Here the integral over α runs over all internal degrees of
freedom.2 In the first line we have used the momentum

2This can be made explicit as follows (though these details are
not required for the derivation):Z

dα ¼
X
i

1

Si

Z
d3ki

1

ð2πÞ32ωi1ðki
1Þ
� � � d3ki

Ni

ð2πÞ32ωiNi
ðki

Ni
Þ ð2πÞ

3

× δ3ðki
1 þ � � � þ ki

Ni
Þ; ð95Þ

where the sum over i runs over all multiparticle channels with the
relevant quantum numbers. Here Si is the channel’s symmetry
factor, Ni is the number of particles, and ωinðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

in þ k2
p

is
the relativistic energy for the nth particle in channel i.
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projection on the current to project to zero momentum on
the inserted states, and we have introduced Mα as the
center-of-mass energy of the state α. In the second line we
use that J0ð0Þ ¼ J0ð0Þ† and Jkð0Þ ¼ −Jkð0Þ†. Next note
that J0ð0Þ is proportional to the charge operator when
sandwiched between zero-momentum states and, since we
only require ρðωÞ for ω > mP þ 2mπ, this leads to
hα; 0jJ0ð0ÞjP; 0i ∝ hα; 0jP; 0i ¼ 0 and thus

ρðωÞ ¼ −
X
k

Z
dα δðω −MαÞjhα; 0jJkð0ÞjP; 0ij2: ð96Þ

The key point is that ρðωÞ is nonpositive. Finally, evalu-
ating the x0 and k0 integrals in Eq. (92), we reach

C ¼ −
mP

2

Z
∞

2mπþmP

dω
1

ðω −mPÞ2
ρðωÞ
2ω

≥ 0: ð97Þ

This concludes the demonstration that C ≥ 0.
Giving detailed predictions of this term is challenging

considering it depends on all possible hadronic scales
coupling to P via scattering with a virtual photon. This
fact in principle appears as a limitation of QEDL for
quantitative predictions compared to local approaches,
since Oð1=L3Þ FVEs will in general be very challenging
to predict because of the systematic presence of such
nonlocal effects. However, it is not clear if this is an issue
in practice. Indeed, current lattice simulations are generally
performed with mPL≳ 4. On the one hand, for small
volumes in that range O½1=ðmPLÞ3� corrections may well
be of a comparable size to unknown exponentially sup-
pressed finite-size effects, and, on the other hand, for larger
volumesO½1=ðmPLÞ3� corrections are expected to be at the
percent level where higher-order QED contributions
become relevant. Finally, this term can also be determined
by directly fitting lattice data across several volumes.
This completes our discussion of the finite-volume mass

shift in QEDL and we turn now to the main focus of this
work, the 1=L expansion of the finite-volume matrix
elements defining the leptonic decay rate.

IV. PSEUDOSCALAR MESONS LEPTONIC
DECAY RATE

In this section we compute the EM finite-volume effects
on radiative corrections to meson leptonic decay rates.
These decays are of the form P− → l−ν̄l (as well as the
conjugated decay) for a given pseudoscalar meson P,
lepton l, and corresponding neutrino νl. Theoretical
knowledge of these amplitudes allows one to extract
CKM matrix elements by comparing to the experimentally
measured decay rates. In the isospin symmetric limit, the
lepton-neutrino pair contribution factorizes and leptonic
decay rates can simply be expressed in terms of the meson
decay constant fP. In the case of light mesons, decay

constants are now predicted from lattice QCD to subpercent
accuracy [2], and the inclusion of isospin breaking effects is
necessary. Once electromagnetic interactions are present,
the lepton can interact with the meson and the factorization
of the amplitude is not possible anymore. A method to
overcome this issue was developed and successfully
applied in a lattice calculation in Refs. [3–6,9].
Beyond precision considerations, EM finite-size correc-

tions on radiative corrections to leptonic decays are
particularly important as the volume acts as an IR regulator
for the virtual amplitude. In this section we focus on
predicting higher-order IR finite and structure-dependent
contributions which will allow one to reduce the systematic
uncertainty associated with finite-volume effects for a given
set of numerical data.
We restrict attention to the case that P− has zero spatial

momentum in the finite-volume frame and denote by ml
and pl the mass and the momentum of the lepton l−,
respectively. With p and pl the 4-momenta of P− and l−,
respectively, the neutrino has momentum pνl ¼ p − pl.

We also define the lepton energy ωl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ pl
2

q
, the

lepton velocity vl ¼ pl=ωl, and the ratio rl ¼ ml=mP.
Using momentum and energy conservation, one then
obtains the useful kinematical relations

jplj ¼
mP

2
ð1 − r2lÞ; ð98Þ

ωl ¼ mP

2
ð1þ r2lÞ; ð99Þ

jvlj ¼
1 − r2l
1þ r2l

: ð100Þ

A. General strategy

The purely virtual OðαÞ-corrected leptonic decay rate
Γ0 ¼ ΓðP− → l−νlÞ is IR divergent. However, in a stan-
dard fashion these divergences can be canceled by studying
instead the inclusive decay rate

ΓðP− → l−νl½γ�Þ ¼ Γ0 þ Γ1ðΔEγÞ; ð101Þ

whereΔEγ is an upper limit on the photon energy in the real
radiative decay rate Γ1ðΔEγÞ ¼ ΓðP− → l−νlγÞ. The sub-
scripts here refer to the number of photons in the final state
and the quantity in Eq. (101) is IR finite.
In a finite volume, both terms in Eq. (101) acquire

dependence on L. A strategy to calculate these EM-
corrected quantities on the lattice was first laid out in
Ref. [3], which eventually leads to the calculation of Γ0 in
Ref. [4] and Γ1ðΔEγÞ in Ref. [5]. As the cancellation of IR
divergences has to occur numerically, it was realized in
Ref. [3] that one may add and subtract the universal FV
decay rate. To explain this in some detail we temporarily
work with two IR regulators: both the QEDL volume
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regulator and a photon mass λ. We then denote the doubly
regulated zero-photon rate, in the pointlike approximation,
by Γuni

0 ðL; λÞ. This can be calculated in perturbation theory
and has the same IR divergences as the full zero-photon
rate Γ0ðL; λÞ. The universal rate will therefore also addi-
tively cancel the divergence in the real-emission rate
Γ1ðL; λ;ΔEγÞ. As a consequence, one can split the right-
hand side of Eq. (101) into

Γ0 þ Γ1ðΔEγÞ ¼ lim
λ→0

lim
L→∞

½Γ0ðL; λÞ − Γuni
0 ðL; λÞ�

þ lim
λ→0

lim
L→∞

½Γuni
0 ðL; λÞ þ Γ1ðL; λ;ΔEγÞ�;

ð102Þ

where now each of the two bracketed terms is separately IR
finite. Note that the L → ∞ and λ → 0 limits commute in
this case, since each parameter regulates the IR divergences
in isolation.
At Oðe2Þ in QED, the photon only appears in the real

radiative decay as an external state and therefore
Γ1ðL; λ;ΔEγÞ is purely a QCD matrix element without
photon loops. In addition, if Γ1ðL; λ;ΔEγÞ is calculated
within a pointlike approximation as suggested in Ref. [3],
then the second term in brackets can be evaluated com-
pletely analytically and both limits can be taken. In practice
one analytically calculates Γuni

0 ð∞; λÞ and Γ1ð∞; λ;ΔEγÞ
separately, and then evaluates the λ → 0 limit of the sum.
By contrast, in the first term in brackets in Eq. (102), one
works at λ ¼ 0 for each of the individual contributions and
then aims to numerically extrapolate or otherwise estimate
the limit L → ∞.3 Putting this all together, the strategy is
summarized as follows:

Γ0þΓ1ðΔEγÞ¼ lim
L→∞

½Γ0ðL;0Þ−Γuni
0 ðL;0Þ�

þ lim
λ→0

½Γuni
0 ð∞;λÞþΓ1ð∞;λ;ΔEγÞ�: ð103Þ

This work is focused on improving the L → ∞ approach of
the first term. In the following we will drop the redundant
λ ¼ 0 label, abbreviating Γ0ðL; 0Þ and Γuni

0 ðL; 0Þ as Γ0ðLÞ
and Γuni

0 ðLÞ, respectively.
As was shown in Ref. [9], the universal decay rate

Γuni
0 ðLÞ only includes FV corrections up to Oð1=LÞ. The

difference Γ0ðLÞ − Γuni
0 ðLÞ scales then as 1=L2, but at this

level the pointlike approximation is no longer valid and the
structure of the decaying meson starts playing a role.
Our goal is to extend the formalism from the previous
section to systematically compute the finite-size scaling
in Γ0ðLÞ − Γuni

0 ðLÞ order by order in 1=L, including

structure-dependent corrections. We therefore generalize

Eq. (103) by subtracting ΓðnÞ
0 ðLÞ defined through

ΓðnÞ
0 ðLÞ ¼ Γuni

0 ðLÞ þ
Xn
j¼2

ΔΓðjÞ
0 ðLÞ: ð104Þ

Here ΔΓðjÞ
0 ðLÞ are the effects of order 1=Lj with j ≥ 2. As

the latter extra terms vanish in the infinite-volume limit,
Eq. (103) can be rewritten as

Γ0 þ Γ1ðΔEγÞ ¼ lim
L→∞

½Γ0ðLÞ − ΓðnÞ
0 ðLÞ�

þ lim
λ→0

½Γuni
0 ðλÞ þ Γ1ðλ;ΔEγÞ�; ð105Þ

now with residual higher-order FVEs starting from

Γ0ðLÞ − ΓðnÞ
0 ðLÞ ∼O

�
1

Lnþ1

�
: ð106Þ

By next writing the tree-level decay rate as

Γtree
0 ¼ G2

F

8π
jVijj2f2PmPm2

lð1 − r2lÞ2; ð107Þ

where Vij is the CKM matrix element relevant for P−, mP

and ml the physical masses of meson and lepton, respec-
tively, and fP the QCD decay constant, we may write

ΓðnÞ
0 ðLÞ as

ΓðnÞ
0 ðLÞ ¼ Γtree

0

�
1þ 2

α

4π
YðnÞðLÞ

�
þO

�
1

Lnþ1

�
: ð108Þ

The above equation, together with Eq. (104), defines
YðnÞðLÞ. In the following our aim is to derive Yð2ÞðLÞ in
Eq. (108), but our method in principle allows one to
determine YðnÞðLÞ to an arbitrarily high order in 1=L.
An important check will be to reproduce the pointlike
results from Refs. [9,25]. Note that in Eq. (107) we choose
fP to be the decay constant of the meson in QCD, i.e.
including the SUð2Þ-breaking corrections and assuming a
suitable separation scheme has been chosen to separate
such effects from the electromagnetic corrections. In
principle, one could similarly choose Γtree

0 to be defined

in terms of the decay constant fð0ÞP computed in the isospin-
symmetric theory; however, this does not have any impact
on the final result for the FV effects when working at first
order in the isospin-breaking corrections.
The inclusion of QED corrections at OðαÞ also generates

new UV divergences. These are removed in the infinite
volume by using the W-regularization scheme to define the
Fermi constant GF [33]. In this paper we are interested in
computing FV corrections to the decay rate that, as explained
in Sec. II, appear from the 1=L expansion of sum-integral
differences which are UV finite. TheW-regularization of the

3One can alternatively choose to keep λ nonzero and also
include the photon zero mode. This then defines the QEDM
approach described in Refs. [18,19].
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IV integrals will not be discussed here, and we refer to
Refs. [3,9] for further details.
In the following we assume that the lepton mass ml has

been renormalized perturbatively following a usual on-shell
scheme introducing an appropriate counterterm in the
infinite-volume QCDþ QED Lagrangian. Moreover, since
the lepton self-energy contribution can be factorized and
treated analytically in infinite volume, we will not consider
it in the FV calculation. We will assume in the rest of the
section that the Euclidean lepton propagator is given by

SlðplÞ ¼
ml − ipl

p2
l þm2

l
: ð109Þ

B. Electromagnetic corrections to the decay width

In this section we perform the analytic calculation of the
FVEs on leptonic decay rates. We start by defining the
kernels of interest, and then proceed to the separation into
irreducible vertices and discuss their structure, both point-
like and structure dependent. Finally, we present and
discuss the result for Yð2ÞðLÞ.

1. Formal description of the leptonic decay amplitude

As in the previous discussion of pseudoscalar mesons
EM self-energy, we will use Euclidean spacetime. For the
specific process of leptonic decays, Euclidean amplitudes
can be trivially continued to the Minkowski ones through a
multiplicative factor of i. In the following we study the
Euclidean correlation function

Crs
Wðp; plÞ

¼
Z

d4z eipzhl−;pl; r; νl;pνl ; sjT½OWð0Þϕ†ðzÞ�j0i;

ð110Þ

where r and s are the polarizations of the lepton and
neutrino, respectively, and OWð0Þ is the four-fermion
operator entering the effective weak Hamiltonian density
responsible for the decay P → lν̄, i.e.

HW ¼ GFffiffiffi
2

p VijOW

¼ GFffiffiffi
2

p Vij½q̄1γρð1 − γ5Þq2�½l̄γρð1 − γ5Þνl�: ð111Þ

The correlation function Crs
Wðp; plÞ is understood to be in

the full QCDþ QED theory. The polarized matrix element
Mrs of the P− → l−ν̄l decay is then given by the reduction
formula

Mrs ¼ lim
p2→−m2

P

Z−1
P DðpÞ−1Crs

Wðp; plÞ; ð112Þ

with ZP and DðpÞ defined in Eqs. (31) and (53), respec-
tively, and assuming the external lepton and neutrino
propagators to be already amputated. The matrix element
Mrs can be written in terms of external state spinors ūrl ¼
ūrðplÞ and vsν ¼ vsðpνlÞ as follows:

Mrs ¼ ūrlfMvsν; ð113Þ

where now fM is a 4 × 4 spin matrix. The full correlator
Crs
Wðp; plÞ in Eq. (112) can then be expressed in the

diagrammatic language defined in Sec. III as

ð114Þ

Up to order Oðe4Þ corrections, it can be expanded as

ð115Þ

where the correlation functions Crs
W;0ðp; plÞ and

Crs
W;1ðp; plÞ can be obtained from the one in Eq. (114) as

Crs
W;0ðp; plÞ ¼ Crs

Wðp; plÞje¼0 ð116Þ

and

Crs
W;1ðp; plÞ ¼

e2

2

∂2

∂e2 C
rs
Wðp; plÞ

			
e¼0

: ð117Þ

The QCD correlation function Crs
W;0ðp; plÞ takes the form

ð118Þ

where

Lrs
ρ ðp; plÞ ¼ ūrðplÞγρð1 − γ5ÞvsðpνlÞ; ð119Þ

and Cρ
W;0ðpÞ corresponds to the correlation function
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Cρ
WðpÞ ¼

Z
d4z eipzh0jT½JρWð0Þϕ†ðzÞ�j0i; ð120Þ

evaluated at e ¼ 0, i.e. Cρ
W;0ðpÞ ¼ ½Cρ

WðpÞ�e¼0. Here J
ρ
W ¼

q̄1γρð1 − γ5Þq2 is the V − A quark current entering the
weak Hamiltonian of Eq. (111). The QCDþ QED corre-
lator Cρ

WðpÞ has the following spectral decomposition in
the vicinity of p2 ¼ −m2

P:

Cρ
WðpÞ ¼ ZPDðpÞWρðpÞ; ð121Þ

and through Lorentz covariance we can define the weak
vertex as

WρðpÞ ¼ −pρFWðp2Þ; ð122Þ

where the generic off-shell function FWðp2Þ is such that in
QCD one gets FWð−m2

P;0Þ ¼ fP.
The reducible Oðe2Þ kernel W in Eq. (115) can be

decomposed as follows:

ð123Þ

where the Compton kernel C and electromagnetic kernel Γ1

have been introduced in Sec. III, while W1 and W2 are two
new weak irreducible kernels for P− → l−ν̄lγ

� and P− →
l−ν̄lγ

�γ� decays, respectively.4 Finally, once the photon
lines are contracted in Eq. (123), the last diagram in the
expansion of W becomes the self-energy of the charged
lepton that, as discussed above, we do not consider in this
calculation. The multiplicity from photon crossings of each
diagram in Eq. (123) is understood. From the decompo-
sition of the kernel W in Eq. (123) it is clear that the
correlation function Crs

W;1 takes the form

Crs
W;1ðp; plÞ ¼ Crs

W;Pðp; plÞ þ Crs
W;lðp; plÞ; ð124Þ

where Crs
W;Pðp; plÞ includes contributions where a

photon is emitted and reabsorbed by the meson P, while
Crs
W;lðp; plÞ denotes the correlation function where a

photon is exchanged between the meson and the
lepton. We will refer to these as factorizable and non-
factorizable contributions, respectively. The correlation
functions defined in Eq. (124) can be represented diagram-
matically as5

ð125Þ

ð126Þ

Let us now turn to the Oðe2Þ contributions to the reduction formula Eq. (112) and define

4Note that this decomposition generalizes the pointlike one studied in Ref. [3].
5It is interesting to note that Crs

W;P corresponds to the sum of diagrams in Figs. 5(a), 5(b), 5(c) and Figs. 6(a), 6(b),
6(d), 6(e) of Ref. [3], and Crs

W;l to Figs. 5(e),5(f) and Fig. 6(c) of the same reference.
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Mrs ¼ Mrs
0 þMrs

1 þOðe4Þ: ð127Þ

We consider first the contribution to Mrs
1 coming from

the meson self-energy, namely Mrs
self. This is given by

picking from the correction Crs
W;Pðp; plÞ only the contri-

bution Crs
W;selfðp; plÞ given by the Compton kernel C.

Adding Crs
W;selfðp; plÞ to the tree-level correlation function

we get

ð128Þ

where Σðp2Þ is defined in terms of the Compton amplitude
Cμμðp; k;−kÞ in Eq. (45) as

Σðp2Þ ¼ 1

2

Z
d4k
ð2πÞ4

Cμμðp; k;−kÞ
k2

: ð129Þ

Inserting Eq. (128) into the reduction formula of Eq. (112)
requires the evaluation about the on-shell point p2 ¼ −m2

P
of the following quantity:

Z−1
P DðpÞ−1 · ZP;0D0ðpÞ½1þ Σðp2ÞD0ðpÞ�FWðp2Þ: ð130Þ

The leptonic tensor −pρLrs
ρ ðp; plÞ in Eq. (128) is factor-

ized here to simplify the discussion. By rewriting ZP;0 ¼
ZPð1 − δZP

Þ and m2
P;0 ¼ m2

P − Δm2, the evaluation of
Eq. (130) at Oðe2Þ and at the on-shell point p2 ¼ −m2

P
gives

fP½1þ ð2z1 − f1ÞΔm2
P − δZP

þ Σ0ð−m2
PÞ�; ð131Þ

where the quantities z1 and f1 are unphysical off-shell
contributions related to the meson propagator and to the
weak vertex function, respectively, as

zn ¼
∂nZ0ðp2Þ−1
∂ðp2Þn

				
p2¼−m2

P;0

;

fn ¼
1

fP

∂nFWðp2Þ
∂ðp2Þn

				
p2¼−m2

P;0

; ð132Þ

matching the notation of Ref. [9]. The overlap shift δZP

entering Eq. (131) was obtained in Eq. (55) and depends on
Σ0
0ð−m2

PÞ. This quantity can be rewritten in terms of zn and
the mass shift Δm2

P by using the relation

Σ0
0ð−m2

PÞ ¼ −Δm2
PΣ00

0ð−m2
P;0Þ þ � � � ; ð133Þ

and by solving

Z0ðp2Þ−1 ¼ 1 −
Σ0ðp2Þ

p2 þm2
P;0

ð134Þ

for Σ0ðp2Þ. Together with the definition of the zn in
Eq. (132) one then finds the overlap shift

δZP
¼ z1Δm2

P þ 1

2

∂Σðp2Þ
∂p2

				
p2¼−m2

P

: ð135Þ

Combining all previous equations we get the following
correction to the matrix element:

ð136Þ

where δ̄ZP
¼ δZP

− f1Δm2
P and the (on-shell) tree-level

matrix element is given by

ð137Þ

Note that in Ref. [9] the proof of the universality of FVEs
up to Oð1=LÞ relies on the cancellation of the unphysical
terms f1 and z1. However, similar to what was discussed in
Sec. III B, the final result for physical observables cannot

depend on such terms since they are related to the meson
interpolating operator ϕðxÞ. Therefore, zn and fn must
cancel at all orders in 1=L. One could in principle perform
the whole calculation that follows with the simplification
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zn ¼ fn ¼ 0 without loss of generality. However, we found
that keeping those terms and expecting their cancellation is
a useful way of controlling the correctness of the final
result.
All the Oðe2Þ corrections other than the self-energy are

simply obtained by amputating the P− propagator and wave
function in Eq. (115) from the correlation function
Crs
W;1ðp; plÞ − Crs

W;selfðp; plÞ. In summary, all the ampli-
tudes to consider are listed in Fig. 2, using a notation
matching Ref. [9].
Let us conclude this part by relating all the diagrams to

the FV decay width ΓðnÞ
0 ðLÞ in Eq. (104). The decay

rate is related to the squared matrix element

jMj2 ¼
X
r;s

jMrsj2

¼
X
r;s

jMrs
0 j2 þ

X
r;s

½Mrs
1 ðMrs

0 Þ† þH:c:� þOðe4Þ

¼ jðaÞj2 þ 2½ðbÞ þ ðcÞ þ ðdÞ þ ðeÞ þ ðfÞ þ ðgÞ�× ðaÞ†
þOðe4Þ; ð138Þ

and therefore the electromagnetic finite-size effects ΔjMj2
are given by the following sum-integral differences:

ΔjMj2¼2Δ½ðbÞþðcÞþðdÞþðeÞþðfÞþðgÞ�×ðaÞ†: ð139Þ

Finally, the quantity YðnÞðLÞ defined in Eq. (108) can be
obtained by adding the universal IV contribution evaluated
in the pointlike theory to the FV corrections computed up to
terms of Oð1=LnÞ, namely

YðnÞðLÞ ¼ ΔYðnÞðL; λÞ þ Yuni
IV ðλÞ: ð140Þ

The infinite volume contribution Yuni
IV ðλÞ computed in the

W-regularization scheme can be found in Ref. [9] and is
reported in Eq. (180) below. Here λ plays the role of a
photon mass to regulate in the IR the IV integrals.
The quantity Yuni

IV ðλÞ cancels the dependence on λ in
ΔYðnÞðL; λÞ, thus leaving the size L as the IR regulator
of the FV quantity YðnÞðLÞ. The FV correction ΔYðnÞðL; λÞ
can then be expressed in terms of ΔjMj2 as

ΔYðnÞðL; λÞ ¼
�
2
α

4π

�
−1 ΔjMj2

jM0j2
; ð141Þ

with jM0j2 ¼
P

r;s jMrs
0 j2 ¼ 4m2

lm
2
Pð1 − r2lÞf2P.

2. The irreducible weak vertex functions

We must now discuss the various irreducible vertex
functions entering into the calculation extending what was
done in Sec. III A 2, which follows a procedure similar to
the one outlined in the appendix of Ref. [9]. Here we extend
the calculation by including higher order terms in the
photon momentum k that are relevant for the 1=L2 FV
corrections.
(a) Electromagnetic vertices: Here we use the general

off-shell definition for the electromagnetic vertex Γμðp; kÞ
introduced above in Eq. (61). Applying simple power-
counting arguments to the diagram ðbÞ þ ðcÞ, where the
vertex Γμνðp; k;−kÞ appears, we deduce that only terms of
Oð1Þ in the photon momentum contribute to the FV
corrections at Oð1=L2Þ. Therefore we can use directly
the expression in Eq. (67) obtained from the WTI up
to OðkÞ.
(b) Weak vertex: The off-shell weak vertex WρðpÞ for a

pseudoscalar of incoming momentum p has been intro-
duced in Eq. (122) above. It is obtained from the ampu-
tation of the correlation function Cρ

WðpÞ in Eq. (121),
namely

WρðpÞ ¼ Z−1
P DðpÞ−1Cρ

WðpÞ ¼ −pρFWðp2Þ: ð142Þ

In QCD and on-shell it reduces toWρðpÞ ¼ −pρfP, as in a
pointlike theory.
(c) Weak vertexþ onephoton: The irreducible kernel

W1 in Eq. (123), for a pseudoscalar and photon of incoming
respective momenta p and k, is defined in terms of the
correlation function

Cρμ
W ðp; kÞ ¼ i

Z
d4z d4x eipzþikx

× h0jT½JρWð0ÞJμðxÞϕ†ðzÞ�j0i: ð143Þ

When evaluated on-shell, this is strictly related to the
amplitude of radiative decays P → lνγ� that was studied in
e.g. Refs. [5,34]. The weak vertex can be defined by

FIG. 2. The various diagrams contributing to the leptonic decay width at order Oðe2Þ. The labeling (a)–(g) of the diagrams has been
chosen to match the one used in Ref. [9].

RELATIVISTIC, MODEL-INDEPENDENT DETERMINATION OF … PHYS. REV. D 105, 074509 (2022)

074509-17



amputating Cρμ
W ðp; kÞ and removing the pole associated

with the so-called “inner bremsstrahlung”

Wρμðp; kÞ ¼ Z−1
P DðpÞ−1Cρμ

W ðp; kÞ
− Γμðp; kÞDðpþ kÞWρðpþ kÞ: ð144Þ

This procedure to define W1 is equivalent to how Γ2 was
defined as the regular part of C above. This leads to the
expression of the irreducible vertex function W1 from the
contraction with γρð1 − γ5Þ

ð145Þ

The vertex Wρμðp; kÞ satisfies the following WTI:

kμWρμðp; kÞ ¼ WρðpÞ −Wρðpþ kÞ ð146Þ

that can be exploited to determine the functional form of the
vertex up to transverse terms. The W1 kernel enters
diagrams (e) and (f) in Fig. 2 and, by applying again
finite-volume power-counting arguments, one can show
that in order to extract the FVEs at Oð1=L2Þ it is sufficient
to know the vertex Wρμðp; kÞ at OðkÞ. Therefore, by
expanding Eq. (146) at Oðk2Þ we get

Wρμðp;kÞ¼ δρμFWðp2Þþ ½2kρpμþkμpρþ2pμpρ�F0
Wðp2Þ

þ2ðp ·kÞpρpμF00
Wðp2Þ

−
V1ðk2;ðpþkÞ2Þ

mP
εμραβkαpβ

þA1ðk2;ðpþkÞ2Þ
mP

½δρμðp ·kÞ−kρpμ�

þOðk2Þ; ð147Þ

where the form factors V1ðk2;ðpþkÞ2Þ and A1ðk2;ðpþkÞ2Þ
are not constrained by the WTI in Eq. (146). Some
comments can be made here. The form factors relevant
for the Oð1=L2Þ FVEs are those entering real decays with
on-shell photons, i.e. Aðp2Þ ¼ A1ð0; p2Þ and Vðp2Þ ¼
V1ð0; p2Þ. When evaluated on-shell, these quantities reduce
to FP

A ¼ Að−m2
PÞ and FP

V ¼ Vð−m2
PÞ for P → lνγ decays.

Additionally, the derivatives of these form factors have
been estimated in chiral perturbation theory (ChPT) and
measured in experiment [35], but they only contribute to
higher orders thanOð1=L2Þ, together with additional form
factors. Notice that at OðαÞ the derivatives F0

Wðp2Þ and
F00
Wðp2Þ reduce, respectively, to f1 and f2 defined in

Eq. (132) when evaluated on-shell. However, we stress
that it is important to define the vertex Wρμðp; kÞ in terms

of the off-shell form factor FWðp2Þ (and its derivatives)
and to take the on-shell limit only after computing the
diagrams.
(d)Weak vertexþ twophotons: The irreducible vertex

functionW2 is in an analogous fashion formally defined as
the regular part of a correlation function Cρμν

W ðp; k; qÞ
related to the decay P → lνγ�γ�,

Cρμν
W ðp; k; qÞ ¼ −

Z
d4z d4x d4y eipzþikxþiqy

× h0jT½JρWð0ÞJμðxÞJνðyÞϕ†ðzÞ�j0i:
ð148Þ

Here the pseudoscalar and two photons are incoming,
with momenta p, k, and q, respectively. We may thus
write

ð149Þ

with

Wρμνðp; k; qÞ ¼ Z−1
P DðpÞ−1Cρμν

W ðp; k; qÞ
−Cμνðp; k; qÞDðpþ kþ qÞWρðpþ kþ qÞ
− Γμðp;kÞDðpþ kÞWνρðpþ k; qÞ
− Γνðp;qÞDðpþ qÞWμρðpþ q; kÞ ð150Þ

and Cμνðp; k; qÞ defined above in Eq. (59).
From the Ward-Takahashi identity

kμWρμνðp; k; qÞ ¼ Wρνðp; qÞ −Wρνðpþ k; qÞ; ð151Þ

one can deduce the form of the vertex as done for
Wρμðp; kÞ. Through power counting applied to diagram
(g) of Fig. 2 we see that only Oð1Þ terms in Wρμνðp; k; qÞ
contribute at order 1=L2 and no Oð1=LÞ corrections are
produced. Therefore, by inserting Eq. (148) into Eq. (151)
and expanding at OðkÞ we get

Wρμνðp; k; qÞ ¼ −2ðδρνpμ þ δρμpν þ δμνpρÞF0
Wðp2Þ

− 4pρpμpνF00
Wðp2Þ þOðk; qÞ; ð152Þ

which respects the crossing symmetry Wρμνðp; k; qÞ ¼
Wρνμðp; q; kÞ, as expected. Moreover, we notice that only
unphysical off-shell terms contribute to this diagram.
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3. Final expressions for individual Feynman diagrams

Having defined the irreducible vertex functions contributing at order α, we may now write down the integrals for the
diagrams in Fig. 2. The respective diagrams, evaluated choosing the Feynman gauge for the photon propagator and in units
of e2, are

ðaÞ∶ WρðpÞLrs
ρ ðp; plÞ;

ðbÞ þ ðcÞ∶
�
ðz1 − f1ÞΔm2

P þ 1

2

∂Σðp2Þ
∂p2

				
p2¼−m2

P

�
WρðpÞLrs

ρ ðp; plÞ;

ðdÞ∶
Z

d4k
ð2πÞ4

1

k2
Γμðp; kÞD0ðpþ kÞWρðpþ kÞLrs

ρμðp; pl; kÞ;

ðeÞ∶
Z

d4k
ð2πÞ4

1

k2
Wρμðp; kÞLrs

ρμðp; pl; kÞ;

ðfÞ∶
Z

d4k
ð2πÞ4

1

k2
Γμðp; kÞD0ðpþ kÞWρμðpþ k;−kÞLrs

ρ ðp; plÞ;

ðgÞ∶
Z

d4k
ð2πÞ4

1

k2
1

2
Wρμμðp; k;−kÞLrs

ρ ðp; plÞ; ð153Þ

where the leptonic tensor Lrs
ρ ðp; plÞ is defined in Eq. (119)

and Lrs
ρμðp; pl; kÞ is given by

Lrs
ρμðp; pl; kÞ ¼ iūrðplÞγμSlðpl þ kÞγρð1 − γ5ÞvsðpνlÞ:

ð154Þ

Note that due to the appearance of three propagators in
diagrams (d) and ðbÞ þ ðcÞ, arising from the derivative in
the latter case, we will have here IR-divergent finite-size
coefficients containing logarithms of L, as explained in
Sec. II and the Appendix. Having defined all the diagrams,
we next turn to the calculation of the FVEs in Yð2ÞðLÞ.

C. Electromagnetic finite-size effects

Here we consider the diagrams ðbÞ þ ðcÞ, (d), (e), (f), and
(g) in turn to obtain the finite-volume effects to the square
matrix element ΔjMj2 defined in Eq. (139). The contrac-
tion with diagram ðaÞ† in Eq. (139) and the sum over the
final-state spins require the completeness relations for
spinors in Euclidean space. These are straightforward
to derive from the Euclidean Dirac equation and are
given by

X
r;r0

ur
0 ðplÞūrðplÞ ¼ −ipl þml; ð155Þ

X
s;s0

vsðpνÞv̄s0 ðpνÞ ¼ −ipν; ð156Þ

and can be used to compute the following spinor traces
entering Eq. (153):

Tρðp; plÞ ¼
X

r;s;r0;s0
Lrs
ρ ðMr0s0

0 Þ†

¼ imlfPTr½ð−ipl þmlÞγρð1 − γ5Þ
× ð−ipνÞð1þ γ5Þ�; ð157Þ

Tρμðp; pl; kÞ ¼
X

r;s;r0;s0
Lrs
ρμðMr0s0

0 Þ†

¼ −mlfPTr½ð−ipl þmlÞγμSlðpl þ kÞ
× γρð1 − γ5Þð−ipνÞð1þ γ5Þ�; ð158Þ

where we have used the equations of motion for the leptons
ūrðplÞpl ¼ imlūrðplÞ and pνvsðpνÞ ¼ 0.
Letting (i) refer to any of the diagrams in Fig. 2 [i.e.

ðiÞ ∈ fðaÞ; ðbÞ; ðcÞ; ðdÞ; ðeÞ; ðfÞ; ðgÞg], denote the inte-
grand of the corresponding expression in Eq. (153) as
IrsðiÞðkÞ. Then the associated FV correction to ΔjMj2 is

obtained according to Eq. (139) by computing the follow-
ing sum-integral difference:

Δ½ðiÞ� × ðaÞ† ¼
X

r;s;r0;s0
Δ0

k

Z
dk0
2π

IrsðiÞðk0;kÞðMr0s0
0 Þ†; ð159Þ

with Δ0
k the sum-integral difference operator defined in

Sec. III. In the following sections we use the shorthand:

ðiÞ∶ 2Δ½ðiÞ� × ðaÞ†: ð160Þ

The FVEs will be expressed in terms of physical quantities
and finite volume coefficients, and some of them depend on
the velocity vl ¼ pl=ωl of the lepton in the rest frame of
the pseudoscalar meson. These will be discussed case by
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case below using the notation defined in the Appendix. For
their calculation we make use of an accelerated numerical
algorithm presented in the Appendix.

1. Diagram ððbÞ+ ðcÞÞ
The contribution of this diagram to the FV correction

ΔjMj2, with the inclusion of the off-shell terms zn and fn,
is obtained from

ðbÞ þ ðcÞ∶
�
2ðz1 − f1ÞΔm2

PðLÞ þ
∂

∂p2
ΔΣðp2Þ

				
p2¼−m2

�
×WρðpÞTρðp; plÞ; ð161Þ

where Δm2
PðLÞ is the FV correction to the squared mass of

the meson obtained in Eq. (87) and ΔΣðp2Þ is given by

ΔΣðp2Þ ¼ Δ0
k

Z
dk0
2π

1

k2

�
Γμðp; kÞD0ðpþ kÞΓμðpþ k;−kÞ

þ 1

2
Γμμðp; k;−kÞ

�
; ð162Þ

with Γμðp; kÞ and Γμνðp; k;−kÞ defined above in Eqs. (61)
and (67), respectively. Note that the calculation of the
derivative is simplified in the rest frame of the meson
p ¼ ðp0; 0Þ, namely

∂
∂p2

ΔΣðp2Þ
				
p2¼−m2

P

¼ 1

2p0

∂
∂p0

ΔΣðp2Þ
				
p0¼imP

: ð163Þ

By using the procedure outlined above, together with
Eq. (141), we obtain the following FV correction to Yð2ÞðLÞ:

ΔYð2Þ
ðbÞþðcÞðL; λÞ ¼

b3
2π

−
1

L
½4mPf1c2�

þ 1

L2

�
−
2π

3
hr2Pic1 − 8πf1c1

�
; ð164Þ

where the IR divergent coefficient b3 is given by

b3 ¼ c3 þ 4π

�
log

�
Lλ
2π

�
− log 2þ 1

�
; ð165Þ

as obtained in the Appendix together with the coefficients cj.
Here we see the logarithmic dependence on L and the
structure dependence appears via the charge radius hr2Pi.
Moreover, we notice that the term 2z1Δm2

PðLÞ in Eq. (161) is
canceled exactly by equal and opposite terms obtained from
the derivative of ΔΣðp2Þ, at both Oð1=LÞ and Oð1=L2Þ.

2. Diagram (d)

The contribution to ΔjMj2 from this diagram is given by

ðdÞ∶ 2Δ0
k

Z
dk0
2π

1

k2
Γμðp; kÞD0ðpþ kÞWρðpþ kÞ

× Tρμðp; pl; kÞ; ð166Þ

which yields the following correction to Yð2ÞðLÞ∶

ΔYð2Þ
ðdÞðL; λÞ ¼ −

b3ðvlÞ
π

þ 1

L

�ð1þ r2lÞð1 − 3r2lÞc2 þ 4c2ðvlÞ
mPð1 − r4lÞ

− 4mPf1c2ðvlÞ
�

þ 1

L2

�
−
2πc1
m2

P
þ 2π

3
hr2Pic1 − 8πm2

Pf2c1ðvlÞ þ
4πf1½ð1þ r2lÞð1 − 3r2lÞc1 þ 4c1ðvlÞ�

1 − r4l

�
: ð167Þ

Here the IR divergence is encoded in the FV coefficient

b3ðvlÞ ¼ c3ðvlÞ þ 4πA1ðvlÞ log
�
Lλ
2π

�
− B1ðvlÞ ð168Þ

that depends this time on the velocity of the lepton vl. The
functions A1ðvlÞ and B1ðvlÞ are defined in the Appendix,
together with the finite volume coefficients cjðvlÞ. Notice
that there is no contribution of zn terms in this diagram and
the structure dependence, appearing at Oð1=L2Þ, is com-
pletely determined by the charge radius of the meson hr2Pi.

3. Diagram (e)

The contribution toΔjMj2 from this diagram is obtained
from

ðeÞ∶ 2Δ0
k

Z
dk0
2π

1

k2
Wρμðp; kÞTρμðp; pl; kÞ: ð169Þ

The finite-size effects contributing to Yð2ÞðLÞ starts at
Oð1=LÞ and are given by

ΔYð2Þ
ðeÞðLÞ

¼ 1

L

�
−

4c2ðvlÞ
mPð1þ r2lÞ

þ 4mPf1c2ðvlÞ
�

þ 1

L2

�
8π½ð1þ r2lÞc1 − 2c1ðvlÞ�

m2
Pð1 − r4lÞ

−
FP
A

fP

4π½ð1þ r2lÞ2c1 − 4r2lc1ðvlÞ�
mPð1 − r4lÞ

þ 8πm2
Pf2c1ðvlÞ

−
4πf1½ð1þ r2lÞð1 − 3r2lÞc1 þ 4c1ðvlÞ�

1 − r4l

�
: ð170Þ
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Here the structure dependence comes at Oð1=L2Þ from the
axial form factor FP

A. The vector form factor FP
V, instead,

does not contribute because of the antisymmetric properties
of the Levi-Civita tensor inWρμðp; kÞ; see Eq. (148). As in
the case of diagram (d), here we have FV coefficients
cjðvlÞ that depend on the lepton velocity, and we observe
that the dependence on zn is absent also in this case.

4. Diagram (f)

For this diagram we have to compute

ðfÞ∶ 2Δ0
k

Z
dk0
2π

1

k2
Γμðp; kÞD0ðpþ kÞWρμðpþ k;−kÞ

× Tρðp; plÞ: ð171Þ
This leads to

ΔYð2Þ
ðfÞ ðLÞ ¼

1

L

�
−
2c2
mP

þ 4mPf1c2

�

þ 1

L2

�
2πc1
m2

P
− 16πf1c1 þ 8πm2

Pf2c1

�
: ð172Þ

As for diagram (e), here the FV corrections start atOð1=LÞ,
but no physical structure-dependent terms contribute in this
case. The FVEs depend on the coefficients cj defined in the
Appendix.

5. Diagram (g)

Finally, for diagram (g) we need to compute

ðgÞ∶ Δ0
k

Z
dk0
2π

1

k2
Wρμμðp; k;−kÞTρðp; plÞ: ð173Þ

This diagram starts contributing at Oð1=L2Þ, and the FV
correction to Yð2ÞðLÞ only depends on the off-shell quan-
tities fn, as expected from the definition of the vertex
Wρμνðp; k; qÞ in Eq. (152). We obtain

ΔYð2Þ
ðgÞðLÞ ¼

1

L2
½24πf1c1 − 8πm2

Pf2c2�: ð174Þ

6. Total finite-size effects

Herewe present our final result for the finite-size effects in
Yð2ÞðLÞ up to and including order 1=L2 terms for the leptonic

decay of a pseudoscalar meson P−. This is obtained by
summing the contributions from all the diagrams above.
Rewriting the FV correction ΔYð2ÞðL; λÞ as

ΔYð2ÞðL; λÞ ¼ Y log log
Lλ
2π

þ Y0 þ
1

L
Y1 þ

1

L2
Y2; ð175Þ

we get

Y log ¼ 2ð1 − 2A1ðvlÞÞ; ð176Þ

Y0 ¼
c3 − 2ðc3ðvlÞ − B1ðvlÞÞ

2π
þ 2ð1 − log 2Þ; ð177Þ

Y1 ¼ −
ð1þ r2lÞ2c2 − 4r2lc2ðvlÞ

mPð1 − r4lÞ
; ð178Þ

Y2 ¼ −
FP
A

fP

4π½ð1þ r2lÞ2c1 − 4r2lc1ðvlÞ�
mPð1 − r4lÞ

þ 8π½ð1þ r2lÞc1 − 2c1ðvlÞ�
m2

Pð1 − r4lÞ
: ð179Þ

As discussed at the end of Sec. IV B 1, in order to compute
Yð2ÞðLÞ we also need the infinite volume contribution
Yuni
IV ðλÞ computed in the pointlike approximation. This

can be found in Ref. [9] and reads

Yuni
IV ðλÞ ¼ −

5

4
þ 2 log

�
m2

l

m2
W

�
þ log

�
m2

W

λ2

�

− A1ðvlÞ
�
log

�
m2

l

λ2

�
þ log

�
m2

P

λ2

�
− 2

�
; ð180Þ

where we have used the relations

jvlj ¼
1 − r2l
1þ r2l

;

A1ðvlÞ ¼
arctanhðjvljÞ

jvlj
¼ −

1þ r2l
1 − r2l

logðr2lÞ
2

: ð181Þ

It is easy to show that the coefficient of logðλÞ in Eq. (180)
is equal and opposite to Y log, and therefore the FV quantity
Yð2ÞðLÞ only depends on the IR regulator L. We obtain

Yð2ÞðLÞ ¼ 3

4
þ 4 log

�
ml

mW

�
þ 2 log

�
mWL
4π

�
þ c3 − 2ðc3ðvlÞ − B1ðvlÞÞ

2π

− 2A1ðvlÞ
�
log

�
mPL
2π

�
þ log

�
mlL
2π

�
− 1

�
−

1

mPL

�ð1þ r2lÞ2c2 − 4r2lc2ðvlÞ
1 − r4l

�

þ 1

ðmPLÞ2
�
−
FP
A

fP

4πmP½ð1þ r2lÞ2c1 − 4r2lc1ðvlÞ�
1 − r4l

þ 8π½ð1þ r2lÞc1 − 2c1ðvlÞ�
ð1 − r4lÞ

�
: ð182Þ
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Several comments can be made here. We observe the
expected and complete cancellation of off-shell contribu-
tions proportional to zn and fn. This property must be true
at all orders, and the calculation could have been done
assuming zn ¼ fn ¼ 0, although conserving these terms is
a practical way to detect mistakes in the construction of the
final result. These terms arise from the skeleton expansion
of the full QCDþ QED correlator Crs

Wðp; plÞ of Eq. (110)
into one-particle irreducible (1PI) subdiagrams up toOðe2Þ
corrections. Although such a separation is arbitrary, it is
likely possible to redefine vertex functions to achieve a
manifestly on-shell derivation of the FVEs similar to what
was done for the simpler self-energy case in Sec. III C. It is
interesting to notice that there is a perfect cancellation of
off-shell terms separately in the factorizable correlation
function Crs

W;Pðp; plÞ [diagrams (b)+(c), (f), and (g)] and in
the nonfactorizable correlation function Crs

W;lðp; plÞ [dia-
grams (d) and (e)] where the photon is attached to the
external charged lepton. This can also be expected on
general grounds, as the factorizable correction is the Oðe2qÞ
correction to the leptonic decay amplitude where eq is the
quark elementary charge, and the nonfactorizable correc-
tion is the OðeqelÞ correction where el is the lepton
elementary charge. Although in nature eq¼el¼e, in
practice both charges are independent parameters of the
QCDþ QEDLagrangian, and therefore the factorizable and
nonfactorizable corrections are both physical amplitudes
which must be independent from off-shell contributions.
It is also interesting to notice that the structure dependence

inYð2ÞðLÞ is only given by the axial form factorFP
A, while the

charge radius contribution cancels in the final result. This is
related to the conservation of the electric charge in the
process P → lνl. In fact, by keeping the meson and lepton
charge factors explicit in diagrams (b) + (c) and (d), where
hr2Pi contributes, we find that hr2Pi gets multiplied by
the factor ePðeP − elÞ, which vanishes if the charge is
conserved.
The knowledge of Yð2ÞðLÞ in Eq. (182) allows one to

control the systematic FVEs in lattice calculations of
Γ0ðLÞ. In Sec. V we make a brief study of the size of
the FVEs, in particular by seeing how large structure-
dependent effects are. However, before that we compare
our results with those obtained in the pointlike approxi-
mation in Refs. [9,25].

D. Comparing to known pointlike results

The finite-size effects in Yð1ÞðLÞ, i.e. up to and including
order 1=L terms, were studied in Refs. [9,25] assuming the
decaying meson to be a pointlike particle. The method used
by the authors of Ref. [9] to calculate the FV effects is
fundamentally different from ours. In fact, in the pointlike
approximation, only diagrams (b), (d), (e), and (f) contribute
and their evaluation reduces to the calculation of five master
integrals. The master integrals give rise to finite-size

coefficients Kij and KP, defined as integrals of Jacobi
theta functions. Our result in Eq. (182) is expressed in terms
of the FV coefficients cj and cjðvlÞ, and of the known
functions A1ðvlÞ and B1ðvlÞ (see the Appendix). Clearly,
the result for Yð1ÞðLÞ must coincide in the two cases, and it
is therefore possible to derive useful relations between the
two sets of finite-size coefficients. The FV corrections to
Yð1ÞðLÞ in Ref. [9] are obtained as

ΔYð1Þ ¼ 16π2
�
ΔX1 þ ΔX2 þ ΔX3 þ

ΔXP

2

�
; ð183Þ

where

16π2ΔX1 ¼
4

3
þ 2ðK31 þ K32Þð1þ r2lÞ

− 2A1ðvlÞ
�
γE þ log π þ 2 log

�
Lλ
2π

��

þ 1

mPL

�
2ðK21 þ K22Þ

1 − r2l
−
4πð1þ rl þ r2lÞ

rlð1 − r4lÞ

þ πðK11 þ K12 − 3Þð1 − 3r2lÞ
1 − r2l

�
; ð184Þ

16π2ΔX2 ¼
2π

mPL
½3 − K11 − K12�; ð185Þ

16π2ΔX3 ¼ −2ðK21 þ K22Þ þ
4πð1þ rl þ r2lÞ

rlð1þ r2lÞ
; ð186Þ

16π2ΔXP ¼ −KP þ 4 logðLλÞ: ð187Þ

Note the presence of the finite-size coefficients Kij and KP,
and γE as the Euler-Mascheroni constant. Above we have
used the relations in Eq. (181) to better match these
expressions with our results. The correspondence between
the above finite-size effects and the ones calculated in the
previous section is then

16π2ΔX1 ¼ ΔYð1Þ
ðdÞ; ð188Þ

16π2ΔX2 ¼ ΔYð1Þ
ðfÞ ; ð189Þ

16π2ΔX3 ¼ ΔYð1Þ
ðeÞ ; ð190Þ

16π2ΔXP ¼ 2ΔYð1Þ
ðbÞ: ð191Þ

Using these matching conditions we obtain the following
relations among the various FV coefficients:

c2 ¼ πðK11 þ K12 − 3Þ; ð192Þ

c3 ¼ −πð4þ KP − 4 log 4πÞ; ð193Þ
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c2ðvlÞ¼
1

2
ðK21þK22Þð1þ r2lÞ−

πð1þ rlþ r2lÞ
rl

; ð194Þ

c3ðvlÞ ¼ −
4π

3
− 2πðK31 þ K32Þð1þ r2lÞ

þ 2πA1ðvlÞðγE þ log πÞ þ B1ðvlÞ: ð195Þ

By using the results in Table I of the Appendix for the zero-
velocity FV coefficients cj together with the results of
K11 ≃ 0.0765331, K12 ≃ 0.0861695, and KP ≃ 4.90754
from Ref. [9] we find a full agreement between the two
calculations. Moreover, using mP¼mπ¼139.57018MeV,
ml¼mμ¼105.65837MeV, and jplj¼jpμj¼29.792MeV
we get

c2ðvπlÞ ¼ −9.14489;
c3ðvπlÞ ¼ 3.91764;

for v̂πl ¼ ð1; 1; 1Þ= ffiffiffi
3

p
; ð196Þ

and

c2ðvπlÞ ¼ −9.13932;
c3ðvπlÞ ¼ 3.92388;

for v̂πl ¼ ð0; 0; 1Þ: ð197Þ

Taking the values of K2j and K3j evaluated at the same
physical point from Ref. [9] and using A1ðvlÞ and B1ðvlÞ
evaluated as in the Appendix, we find an excellent agree-
ment also for these velocity-dependent FV coefficients.
In Ref. [25] the pointlike decay rate was considered up to

order 1=L3, but using a different representation based on
generalized ζ-functions for the sum-integral differences.
We compare also to these results. We find the following
matching conditions:

c1¼ 4πζA; c1ðvlÞ¼ 4πζPlB ðvlÞ;
c2¼ 4π2ζA; c2ðvlÞ¼ 16π2ζBðvlÞ;
c3¼−4πð1−2π2ζC− log4πÞ;

c3ðvlÞ¼ 8π3ζCðvlÞþ4π logð2πÞA1ðvlÞþB1ðvlÞ; ð198Þ

and observe a complete numerical agreement for both the
FV coefficients as well as for the pointlike FV corrections
to the decay rate at Oð1=LÞ and Oð1=L2Þ. The numerical
values for c1ðvlÞ at the physical point are

c1ðvπlÞ ¼ −2.91210 for v̂πl ¼ ð1; 1; 1Þ=
ffiffiffi
3

p
;

c1ðvπlÞ ¼ −2.90736 for v̂πl ¼ ð0; 0; 1Þ: ð199Þ

The Oð1=L3Þ correction to the pointlike decay rate takes a
particularly simple form. Denoting the coefficient of the
1=ðmPLÞ3 term in the expansion by d3, we obtain

d3 ¼ −
4ð2þ r2lÞ
ð1þ r2lÞ3

: ð200Þ

This matches the corrected result of Ref. [25], which
removes a typo, discovered with the help of this cross-
check, from a previous version.

V. NUMERICAL RESULTS

In this section we discuss numerically the FVEs derived
in Secs. III and IV and estimate the size of the structure-
dependent effects.

FIG. 3. The finite-size scaling in the self-energies of (1) pions and (2) kaons, respectively. The two curves show the pointlike result as
well as the structure-dependent (SD) one.
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A. Self-energy

Here we consider the FVEs in Eq. (87) for the masses of
both pions and kaons. However, since at present we have no
numerical estimate for the branch-cut contribution C, we
have here explicitly put it to zero. As explained in Sec. III,
the branch-cut contribution is symptomatic of the non-
locality of QEDL and will require more investigation in the
future. The numerical values needed are the meson masses
mP and the charge radii hr2Pi ¼ 6F0ð0Þ. The charge radius is
a structure-dependent quantity and can e.g. be measured in

experiments [36], calculated with the help of dispersion
theory (see e.g. Refs. [37,38]), or computed on the lattice
[2]. Here we use the following experimental values from
the PDG [36]: namely

mπ− ¼ 0.13957039ð18Þ GeV;
hr2πi ¼ 11.19ð0.15Þ GeV−2;

mK− ¼ 0.493677ð16Þ GeV;
hr2Ki ¼ 8.08ð1.13Þ GeV−2: ð201Þ

FIG. 4. The FV scaling of the indicated diagrams for pions, and this is in comparison to the purely pointlike ΔXi defined in Ref. [9].
Included is also the full 1=L2-contribution derived herein. Note that fn ¼ zn ¼ 0 here.
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In Fig. 3 we show the FVEs to pion and kaon self-energies
as functions of ðmπLÞ−1 using only the experimental central
values above and values for the finite-size coefficients
obtained as in the Appendix. We notice that adding the
structure-dependent 1=L3-term (with C ¼ 0) only generates
percent-level deviations from the result through order 1=L2.
These effects are expected to be of the same order of
magnitude as the neglected exponential effectsOðe−mπLÞ in
typical lattice calculations with mπL ≃ 4.

B. Leptonic decays

Here we numerically study the FVEs derived in Sec. IV
for the leptonic decay rates of pions and kaons in the muon
channel, i.e. P− → μ−ν̄μ. We make a cross-check of our
pointlike results with the previous calculation in Ref. [9],
and in addition compare the relative sizes of Yð2ÞðLÞ and
Yð1ÞðLÞ for pions and kaons. As an example, we choose the
velocity orientation of the lepton to be v̂l ¼ ð1; 1; 1Þ= ffiffiffi

3
p

,
but this does not affect the overall conclusions.

1. Pion decays

We here compute the FVEs on pion decays using the data
from the PDG [36] in Eq. (201) together with

mμ ¼ 0.1056583745ð031Þ GeV;
fπ− ¼ 0.1307ð37Þ GeV;
Fπ
A ¼ 0.0119ð1Þ: ð202Þ

The value of the form factor Fπ
A is taken from experimental

measurements, and it is in good agreement with ChPT and

lattice values [5,35]. Uncertainties on these quantities are
sufficiently small to be safely neglected here.
We first perform a cross-check by comparing our results

to Ref. [9]. In particular, we start by comparing the finite-
size scaling in L of the quantities ΔXi in Eqs. (184)–(187)
with our ΔYð1Þ

ðiÞ using the matching in Eqs. (188)–(191) and
setting fn ¼ zn ¼ 0. The results are reported in Fig. 4 and
show a complete agreement. One can notice that the
Oð1=L2Þ term gives sizable contributions already at
mπL ∼ 4. Moreover, for diagrams (d) and (ðbÞ þ ðcÞ)
one clearly sees the presence of the infrared divergence
for mπL → ∞.
In Fig. 5(1) we plot Yð2ÞðLÞ and Yð1ÞðLÞ. In addition, we

include the pointlike limit Yð2Þ
pt ðLÞ setting Fπ

A ¼ 0, and
notice that the structure-dependent contribution atOð1=L2Þ
is negligible with respect to the pointlike one. In total, there
is a large effect from the 1=L2 contributions already at
mπL ∼ 4. Again, the infrared divergence is clearly seen. In
Fig. 5(2) we look at the relative size of the 1=L2 correction
to that at order 1=L, defined in terms of the measure

δP2 ¼
				Yð2ÞðLÞ − Yð1ÞðLÞ

Yð1ÞðLÞ

				: ð203Þ

It is clear that the terms at 1=L2 are essential already for
moderately sized mπL.

2. Kaon decays

We next consider kaon decays. The additional data taken
from the PDG [36] are

FIG. 5. A comparison of the 1=L2-corrections to those through order 1=L for pions: (1) The structure-dependent function Yð2ÞðLÞ
compared to the purely pointlike Yð1ÞðLÞ. (2) The relative correction δπ2 .

RELATIVISTIC, MODEL-INDEPENDENT DETERMINATION OF … PHYS. REV. D 105, 074509 (2022)

074509-25



fK− ¼ 0.1550ð19Þ GeV;
FK
A;ChPT ¼ 0.034;

jFK
A;Exp þ FK

V;Expj ¼ 0.165ð13Þ;
jFK

A;Exp − FK
V;Expj ¼ −0.153ð33Þ: ð204Þ

The value FK
A;ChPT is the ChPT prediction at order Oðp6Þ.

The two combinations FK
A;Exp � FK

V;Exp are instead the
PDG averages of measurements in muon experiments,
and solving for FK

A;Exp we find

FK
A;Exp ¼ 0.0060ð177Þ: ð205Þ

Note that this disagrees with the ChPT prediction [36]. The
form factors FK

A and FK
V have also recently been calculated

for the first time on the lattice [5], and the result for FK
A is

FK
A;Latt ¼ 0.0370ð88Þ: ð206Þ

Again there is a discrepancy between theory and experi-
ment. This is thoroughly discussed in Ref. [6], with the
conclusion that future experimental and theoretical efforts
are needed to study the apparent tension. However,
although there are higher order corrections to the ChPT
prediction, the practical prospects of improving the value

FIG. 6. The FV scaling of the indicated diagrams for kaons.
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from ChPT are very limited, mainly due to the lack of
knowledge of the many low-energy constants at order
Oðp8Þ [39–42]. In the following, we study Yð2ÞðLÞ using all
the three values for FK

A quoted above and compare the
respective impacts on the FVEs.
We start by considering the contributions from the

various diagrams in Fig. 6, using here FK
A;ChPT. Note that

we set zn ¼ fn ¼ 0 since these are unknown, unphysical
quantities that cancel in the end in the sum of diagrams. We
see that for diagrams (d) and ðbÞ þ ðcÞ the logarithmic
terms are completely dominating, whereas for diagrams (e)
and (f) the 1=L2 terms are sizable.
The total FVEs through order 1=L2 are shown in

Fig. 7(1) where we compare Yð2ÞðLÞ to the pointlike
Yð1ÞðLÞ. Here we use the central values of FK

A;ChPT,
FK
A;Exp, and FK

A;Latt as well as FK
A ¼ 0. Just as for pions,

we see that setting FK
A ¼ 0 does not change the result and

neither does a variation within errors for FK
A;ChPT, F

K
A;Exp,

and FK
A;Latt. Comparing to the decays of pions, the effect of

the 1=L2 correction is here milder. The relative size of the
1=L2 term in Yð2ÞðLÞ to Yð1ÞðLÞ is shown in Fig. 7(2) in
terms of δK2 , again for different values of F

K
A . The size of the

FK
A -dependent term in Yð2ÞðLÞ is found to be around the

percent level formπL ∼ 2, and it decreases for smallermπL.

VI. CONCLUSION

In this work we have developed a relativistic and
model-independent approach for the determination of
electromagnetic finite-size effects. In particular, the
method presented here can go beyond the pointlike

approximation, which until now has proven to be a major
stumbling block for more complicated observables such as
leptonic decay rates. The defining strategy of the present
approach is to decompose the scattering kernel of interest
into irreducible vertex functions depending only on on-
shell form factors. Similar methods were used in
Refs. [7,9,17] to demonstrate the universality of the
two leading orders in the 1=L expansion of EM FVEs
for scalar and fermion masses and the leptonic decay
width. In Ref. [17] the authors also considered the higher-
order structure-dependent contributions to masses in the
QEDC formulation.
In the expressions presented in this article, the structure

dependence enters via physical quantities such as electro-
magnetic charge radii, polarizabilities and other form
factors generally measurable in experiments or on the
lattice. We also identify a branch-cut-induced Oð1=L3Þ
effect for the pseudoscalar mass that can be expressed as a
physical spectral integral of the pseudoscalar’s Compton
amplitude. This contribution is generated directly by the
nonlocality of QEDL, and analogous terms are expected to
contribute to any observable at Oð1=L3Þ. In the case of the
pseudoscalar mass, the Compton amplitude contribution
appears together with a second term at Oð1=L3Þ, propor-
tional to the charge radius of the hadron that exactly
matches previous determinations using nonrelativistic
effective field theories [8,43]. Regarding leptonic decays,
we find that the leading Oð1=L2Þ structure-dependent
effect is proportional to the constant FA from real radiative
decays which can be determined directly in lattice
QCD calculations as demonstrated in Ref. [5] and also
experimentally.

FIG. 7. A comparison of the 1=L2 corrections to those at 1=L for kaons: (1) The structure-dependent function Yð2ÞðLÞ compared to the
purely pointlike Yð1ÞðLÞ. For Yð2ÞðLÞ we have used values for FK

A from ChPT, experiments, and the lattice as well as put it to zero.
(2) The relative correction δK2 , again for four different values of FK

A .
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In Sec. V, we have estimated the sizes of these correc-
tions using experimental and phenomenological inputs for
the structure dependence and typical lattice volumes. In the
case of the pseudoscalar mass, the radius correction is
found to be mild for light pseudoscalars. A similar situation
occurs for the structure-dependent effects in leptonic
decays of physical pions and kaons into muons.
Nevertheless, we expect that for other lattice QCDþ
QED observables structure dependence might play an
important role. The finite-size effects presented here are
generally expressed in terms of finite-volume coefficients
cj, depending on the velocities involved in a given
amplitude, which are similar to generalized zeta functions
used in finite-volume scattering. We have extended the
definition of these coefficients from Ref. [10] to infrared-
divergent finite-volume sums, and provided a numerically
efficient algorithm to evaluate them.
Beyond pseudoscalar masses and leptonic decay rates,

our method is general and systematic and can be applied to
more complicated observables. The method is also par-
ticularly well-suited for automation using a computer
algebra system. We have illustrated this point by releasing
a Mathematica notebook [29] containing most of the
analytic results presented here. Possible future applications
include the self-energy of baryons, radiative corrections to
pseudoscalar meson semileptonic decay rates, and correc-
tions to multihadron scattering.
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APPENDIX: FINITE-VOLUME COEFFICIENTS

What we define as finite-volume coefficients is a class of
special cases of γj;kðfpg; ξÞ in Eq. (9) which appear
frequently while computing the finite-size effect for typical
Feynman integrands. The IR regulator ξ ¼ λL=ð2πÞ with λ
being a photon mass. More specifically, these coefficients
are a special case of Eq. (9) with

fkðn̂ξ; fpgÞ ¼ dðn̂ξ; fvgÞ ¼
Y
fvg

1

1 − v · n̂ξ
; ðA1Þ

where fvg is the set of velocities associated with the
external momenta fpg and n̂ξ is the spatial part of n̂ξ
defined in Eq. (10),

n̂ξ ¼
n

ωξðnÞ
¼ jnj

ωξðnÞ
n̂: ðA2Þ

We denote these coefficients bjðfvg; ξÞ,

bjðfvg; ξÞ ¼ Δ0
n

�
dðn̂ξ; fvgÞ
ωξðnÞj

�
; ðA3Þ

and we additionally define cjðfvgÞ to be the finite part in
the ξ → 0 limit. This last definition is ambiguous in the
case of logðξÞ divergences, and we make in this section an
explicit choice for it. In the special case where the set fvg is
defined by k copies of the same velocity v, we denote the
associated coefficients bj;kðv; ξÞ and cj;kðvÞ.

1. Infrared-finite coefficients

These are the coefficients with j < 3. As discussed in
Sec. II these coefficients can be evaluated directly at ξ ¼ 0,
giving

bjðfvg; ξ ¼ 0Þ ¼ cjðfvgÞ ¼ Δ0
n

�
dðn̂; fvgÞ

jnjj
�
: ðA4Þ

These are the coefficients discussed in detail in Ref. [10].

2. Coefficients with power infrared divergences

These are the coefficients with j > 3. Here the finite part
cjðfvgÞ is simply given by the finite sum in Eq. (13),

cjðfvgÞ ¼
X0

n∈Z3

dðn̂; fvgÞ
jnjj ; ðA5Þ

which will need to be evaluated numerically, and one also
needs to compute the integral in Eq. (16),
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ϕjðfvgÞ ¼
Z þ∞

0

dn
Z
S2
d2n̂

n2

ð1þ n2Þj2
d

�
nffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p n̂; fvg

�
:

ðA6Þ

Let us look explicitly at the case where fvg is containing k
copies of the same velocity v. Under this assumption and
using the definition of dðn̂; fvgÞ in Eq. (A1) the integral
above becomes

ϕj;kðvÞ ¼
Z þ∞

0

dn
Z
S2
d2n̂

n2

ð1þ n2Þj2
1�

1 − nffiffiffiffiffiffiffiffi
1þn2

p n̂ · v

�
k :

ðA7Þ

Here we may freely rotate so that v lies along the z-axis of
the spherical coordinates to obtain

ϕj;kðvÞ¼ 2π

Z þ∞

0

dn
Z

1

−1
dc

n2

ð1þn2Þj2
1�

1− nffiffiffiffiffiffiffiffi
1þn2

p cjvj
�

k :

ðA8Þ

Let us follow with the change of variables x ¼ nffiffiffiffiffiffiffiffi
1þn2

p ,

ϕj;kðvÞ ¼ 2π

Z
1

0

dx
Z

1

−1
dc

x2ð1 − x2Þj−52
ð1 − xcjvjÞk ; ðA9Þ

which can be explicitly evaluated to give

ϕj;kðvÞ ¼ π
3
2

Γðj−3
2
Þ

Γðj
2
Þ 2F1

�
k
2
;
kþ 1

2
;
j
2
; v2

�
; ðA10Þ

where 2F1 is a hypergeometric function defined in the usual
way. Putting everything together,

bj;kðv; ξÞ ¼ cj;kðvÞ −
π

3
2

ξj−3

Γ
�

j−3
2

�

Γ
�

j
2

�
2F1

�
k
2
;
kþ 1

2
;
j
2
; v2

�
:

ðA11Þ

3. Coefficients with logarithmic infrared divergences

These are the coefficients with j ¼ 3. Reusing the form
Eq. (26), we define b3ðfvgÞ as

b3ðfvg;ξÞ¼ c3ðfvgÞþ4πAðfvgÞ logðξÞ−BðfvgÞ; ðA12Þ

with

AðfvgÞ ¼ 1

4π

Z
S2
d2n̂dðn̂; fvgÞ; ðA13Þ

BðfvgÞ¼
Z þ∞

0

dn
Z
S2
d2n̂

n2
h
d



nffiffiffiffiffiffiffiffi
1þn2

p n̂;fvg
�
−dðn̂;fvgÞ

i
ð1þn2Þ32

− ½1− logð2Þ�AðfvgÞ; ðA14Þ

c3ðfvgÞ ¼ lim
R→þ∞

�X0

jnj<R

dðn̂; fvgÞ
jnj3 − 4πAðfvgÞ logðRÞ

�
:

ðA15Þ

In the case where fvg is containing k copies of the same
velocity v, one can evaluate explicitly AkðvÞ ¼ AðfvgÞ and
BkðvÞ ¼ BðfvgÞ. Let us start by AkðvÞ

AkðvÞ¼
1

4π

Z
S2
d2n̂

1

ð1− n̂ ·vÞk

¼ 1

2jvjðk−1Þ
��

1

1− jvj
�

k−1
−
�

1

1þjvj
�

k−1
�
; ðA16Þ

which in the k → 1 limit takes the form

A1ðvÞ ¼
arctanhðjvjÞ

jvj : ðA17Þ

Again letting v̂ be along the z-axis one finds that the
constant term BkðvÞ is given by

BkðvÞ ¼ 2π

Z þ∞

0

dn
Z

1

−1
dc

n2
h


1 − nffiffiffiffiffiffiffiffi
1þn2

p cjvj
�
−k

− ð1 − cjvjÞ−k
i

ð1þ n2Þ32 − ½1 − logð2Þ�4πAkðvÞ: ðA18Þ

The change of variables x ¼ nffiffiffiffiffiffiffiffi
1þn2

p can be used again to obtain

BkðvÞ ¼ 2π

Z
1

0

dx
Z

1

−1
dc

x2½ð1 − cjvjxÞ−k − ð1 − cjvjÞ−k�
1 − x2

− ½1 − logð2Þ�4πAkðvÞ; ðA19Þ
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which can be explicitly evaluated

BkðvÞ ¼
π

ð1 − kÞjvj
�
ðð1 − jvjÞ1−k − ð1þ jvjÞ1−kÞ

�
Hk−1 þ

2k
1 − k

þ logð2jvjÞ
�

− ð1 − jvjÞ1−k logð1 − jvjÞ þ ð1þ jvjÞ1−k logð1þ jvjÞ þ e−iπkð1 − jvjÞ1−kB
�jvj − 1

2jvj ; k; 1 − k

�

þ ð1þ jvjÞ1−k
�
iπ − e−iπkB

�
1þ jvj
2jvj ; k; 1 − k

���
; ðA20Þ

where Bðz;a; bÞ is the incomplete β-function

Bðz; a; bÞ ¼
Z

z

0

du ua−1ð1 − uÞb−1; ðA21Þ

andHk ¼
P

k
n¼1 1=n is the kth harmonic number. Note that the imaginary terms related to the branch cut of the β-functions

always cancel in the end in numerical evaluations. In the k → 1 limit the last equation becomes

B1ðvÞ ¼
π

jvj
�
Li2

�
2jvj

jvj − 1

�
− Li2

�
2jvj

jvj þ 1

�
þ 4 logð2ÞjvjA1ðvÞ

�
; ðA22Þ

where Li2ðxÞ is the dilogarithm function. Note that no
imaginary terms appear here. In the zero-momentum limit
of B1ðvÞ one finds

lim
jvj→0

B1ðvÞ ¼ −4πð1 − log 2Þ: ðA23Þ

4. Numerical evaluation

In Ref. [10], a method was developed to compute the cj
coefficients for j < 3 by evaluating sums with a doubly
exponential rate of convergence. In this section we show
that this technique generalizes to j ≥ 3 coefficients. We
define the acceleration function

fðnÞ ¼ 1 −


tanhfsinh½jnjdðn̂; fvgÞ 1

jþ2�g
�
jþ2

: ðA24Þ

For j < 3, as demonstrated in Ref. [10], one has the
relationship

cjðfvgÞ ¼
X0

n

fðηnÞ
jnjj dðn̂; fvgÞ

− 4πηj−3RjA 5
jþ2
ðfvgÞ; ðA25Þ

up to corrections which vanish exponentially for η → 0,
and where

Rj ¼
Z þ∞

0

dr
1 − tanh½sinhðrÞ�jþ2

rj−2
: ðA26Þ

Equation (A25) is very efficient to evaluate numerically cj
at high precision. The sum converges with a double
exponential rate, and the integral Rj is trivial to evaluate
through standard quadrature methods.
Let us consider j ¼ 3 in detail. The definition of c3ðfvgÞ

in Eq. (A15) can be rewritten as

c3ðfvgÞ ¼ lim
R→∞

�X0

jnj<R

dðn̂; fvgÞ½1 − fðηnÞ þ fðηnÞ�
jnj3

− 4πA1ðfvgÞ logðRÞ
�
: ðA27Þ

We can further separate this expression into

c3ðfvgÞ ¼
X0

jnj

dðn̂; fvgÞfðηnÞ
jnj3

þ lim
R→∞

�X0

jnj<R

dðn̂; fvgÞ½1 − fðηnÞ�
jnj3

− 4πA1ðfvgÞ logðRÞ
�
: ðA28Þ

The first term on the right-hand side is separately UV-finite
so the sum is left unconstrained. Next observe that the
properties of fðηnÞ allow us to exchange the UV-regulated
sum with 1 − fðηnÞ in the numerator for a UV-regulated
and IR-finite integral up to exponentially small corrections.
We thus obtain
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c3ðfvgÞ ¼
X0

jnj

dðn̂; fvgÞfðηnÞ
jnj3

þ lim
R→∞

�Z
jnj<R

dðn̂; fvgÞ½1 − fðηnÞ�
jnj3

− 4πA1ðfvgÞ logðRÞ
�
: ðA29Þ

Finally, since the limit over R is arbitrary we may switch
R → R=η and perform a change of variables in the integral
to give

c3ðfvgÞ ¼
X0

jnj

dðn̂; fvgÞfðηnÞ
jnj3 þ 4πA1ðfvgÞ logðηÞ

þ lim
R=η→∞

�Z
jnj<R

dðn̂; fvgÞ½1 − fðnÞ�
jnj3

− 4πA1ðfvgÞ logðRÞ
�

¼
X0

jnj

dðn̂; fvgÞfðηnÞ
jnj3

þ 4πA1ðfvgÞ logðηÞ þQ3ðfvgÞ: ðA30Þ

We here defined

Q3ðfvgÞ ¼ lim
R=η→∞

�Z
jnj<R

dðn̂; fvgÞ½1 − fðnÞ�
jnj3

− 4πA1ðfvgÞ logðRÞ
�
; ðA31Þ

and the expression again holds up to exponential correc-
tions in η.
For j > 3, the same reasoning as above leads to the

formula

cjðv1;…; vNÞ ¼
X0

n

fðηnÞ
jnjj dðn̂; v1;…; vNÞ

þ 4πηj−3R̄jA 5
jþ2
ðv1;…; vNÞ; ðA32Þ

up to exponential corrections in η, and with

R̄j ¼
Z þ∞

0

dr
tanh½sinhðrÞ�jþ2

rj−2
: ðA33Þ

Using the method described above, we plot in Fig. 8 the
values of the rest-frame coefficients cj for −7 ≤ j ≤ 7. The
singularity at j ¼ 3 is clearly visible. We give in Table I
explicit values of some of the rest frame coefficients and the
constants in Eqs. (A26), (A31), and (A33) at zero velocity.
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