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Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of
nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to
nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented
via a set of correlated Gaussian wave functions optimized using differentiable programming and via
solution of a generalized eigenvalue problem. This approach is shown to be significantly more efficient
than a stochastic implementation of the variational method based on the same form of correlated Gaussian
wave functions, yielding comparably accurate representations of the ground-state wave functions with an
order of magnitude fewer terms. The efficiency of representation allows such calculations to be extended to
larger systems than in previous work. The method is demonstrated through calculations of the binding
energies of nuclei with atomic number A ∈ f2; 3; 4g in finite volume, matched to lattice QCD calculations
at quark masses corresponding to mπ ¼ 806 MeV, and infinite-volume effective field theory calculations
of A ∈ f2; 3; 4; 5; 6g systems based on this matching.
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I. INTRODUCTION

A central goal of nuclear physics is to make predictions
for the spectra and properties of nuclear systems based on the
underlying degrees of freedom of the Standard Model, most
pertinently quarks and gluons. Since nuclei and other
relevant systems exhibit dynamics at energy scales where
the interactions between quarks and gluons, governed in the
Standard Model by the theory of quantum chromodynamics
(QCD) are nonperturbative, this goal can be addressed
directly only by numerical calculations in the framework
of lattice QCD (LQCD). However, due to computational
limitations, LQCD studies of nuclei have so far been
restricted to systems with atomic number A ≤ 4, with
unphysically large values of the quark masses. Moreover,
to date only proof-of-principle LQCD calculations of nuclei
have been performed [1–16], in which systematic uncer-
tainties such as those from the lattice discretization are
estimated but not fully quantified.
While fully controlled LQCD calculations of light nuclei

will likely be achieved in the near future, the computational
costs of such studies scale exponentially with A in current
approaches, and as such, the restriction to small nuclear
systems is likely to persist until novel algorithms or
other computational breakthroughs render calculations of
larger nuclei tractable. Pionless nuclear effective field
theory (EFT) [17–24] provides a bridge between tractable
LQCD calculations of light nuclei and the broader scope of

low-energy nuclear phenomenology. In nuclear physics, it
is apparent that there is a hierarchy of interactions, in that
two-body interactions are more important in governing
nuclear structure and reactions than three-body inter-
actions, which are in turn more important than four-body
interactions, and so on. Consequently, LQCD calculations
of A ≤ 4 systems can be used to constrain the most relevant
couplings in nuclear EFT which can subsequently be used
to make predictions for larger nuclear systems and for
matrix elements which may not have been directly com-
puted in LQCD. In addition, since the finite volume in
which LQCD calculations are performed produces effects
which are long-distance in nature, they can be captured in
nuclear EFT calculations in appropriately matched finite
volumes [finite volume nuclear EFT (FVEFT)]. With the
couplings of the EFT determined by this matching, the EFT
provides a method to extract infinite volume physics from
finite-volume LQCD spectra and matrix elements.
Existing applications of FVEFT to the matching and

extrapolation of LQCD results for nuclear spectra [25] and
matrix elements [26] have used the stochastic variational
method (SVM) [27] with trial wave functions composed of
shifted correlated Gaussian functions [28]. Because of the
stochastic nature of this approach, a large number of terms
are required to approximate the ground state of each nuclear
system. In this work, a new differentiable programming
(DP) approach is introduced that implements an optimi-
zation of the parameters defining each Gaussian term that is
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included in the trial wave function, as opposed to the
stochastic selection of terms, resulting in much more
efficient representations. Further improvement through
the combination of multiple sets of optimized trial states
can be achieved through solution of a generalized eigen-
value problem (GEVP). The compactness of the resulting
wave function representations makes it feasible to extend
previous calculations to systems of larger A. In this work,
FVEFT predictions are made for the 4He ground state as a
function of volume, and the FVEFT matching of two- and
three-body interactions enables predictions for the infinite-
volume energies of A ∈ f5; 6g systems.
The following section outlines important aspects of

nuclear FVEFT and the differential programming
method used to determine optimal wave functions in the
approach proposed here. Section III presents results of the
optimization procedure for finite-volume systems with
A ∈ f2; 3; 4g, and their matching to LQCD energy deter-
minations. Infinite-volume binding energies are also pre-
sented for A ≤ 6. Section IV provides a summary and
outlook for this approach.

II. METHODOLOGY

A. Hamiltonian for pionless effective field theory

The low-energy interactions of nucleons are described in
pionless EFT (EFTπ) by the Lagrangian [17–24]

L ¼ N†
�
iD0 þ

D2

2MN

�
N −

1

2
½C0ðN†NÞ2 þ C1ðN†σ⃗NÞ2�

−
D0

6
ðN†NÞ3 þ…: ð1Þ

The first, second, and third lines present the leading-order
single-nucleon kinetic operator expanded in the nonrela-
tivistic limit, the two-body interaction, and the three-body
interaction, respectively (the latter is promoted to leading
order to define a valid power-counting scheme). N denotes
the nucleon field, MN the nucleon mass, σ⃗ the vector of
Pauli matrices acting in spin space of a given nucleon, and
fC0; C1g and D0 denote the relevant two- and three-body
low-energy constants (LECs). A common alternate basis
for the two-nucleon interactions yields related LECs

CT ¼ C0 − 3C1 and CS ¼ C0 þ C1: ð2Þ

The corresponding n particle nonrelativistic Hamiltonian
can be expressed as

H ¼ −
1

2MN

X
i

∇2
i þ

X
i<j

V2ðrijÞ þ
X
i<j<k

V3ðrij; rjkÞ; ð3Þ

where the n particles are labeled by indices i; j; k ∈
f1;…; ng and the Laplacian for particle i is expressed
as ∇2

i . V2ðrijÞ and V3ðrij; rjkÞ denote the two- and

three-particle potentials, which are regulated using
Gaussian smearing, and are functions of the displacements
between particles, defined for particles i and j as rij ¼
ri − rj, where ri ¼ ðrðxÞi ; rðyÞi ; rðzÞi Þ. In particular,

V2ðrijÞ ¼ ðC0 þ C1σ
ðiÞ · σðjÞÞgΛðrijÞ; ð4Þ

and

V3ðrij; rjkÞ ¼ D0

X
cyc

gΛðrijÞgΛðrjkÞ; ð5Þ

where
P

cyc denotes the sum over all cyclic permutations
of fi; j; kg, and the Gaussian regulator in infinite spatial
volume is defined as

gΛðrÞ ¼
Λ3

8π3=2
exp ð−Λ2jrj2=4Þ;

¼ Λ3

8π3=2

Y
α∈fx;y;zg

exp ð−Λ2rðαÞ2=4Þ: ð6Þ

The regulator parameter Λ can be expressed in terms
of a length scale r0 as Λ ¼ ffiffiffi

2
p

=r0. Physical quantities
are independent of this cutoff [26].
In a finite cubic spatial volume with side-length L, the

regulator can be constructed to be periodic by summing
gΛðrÞ over copies translated by multiples of L in each
spatial direction:

gΛðr; LÞ ¼
Λ3

8π3=2

Y
α∈fx;y;zg

×
X∞

qðαÞ¼−∞

exp ð−Λ2ðrðαÞ − LqðαÞÞ2=4Þ: ð7Þ

B. Variational method framework

The variational method provides a systematically
improvable approach to bounding the ground (and excited)
state energies of quantum systems; given any wave function
ansatz ΨhðxÞ for a state h defined over coordinates x, the
ground-state energy Eh is bounded as

Eh ≤ E½Ψh� ¼
R
ΨhðxÞ�HΨhðxÞdxR
ΨhðxÞ�ΨhðxÞdx

: ð8Þ

A wave function ansatz that depends on some number of
free parameters may be varied over those parameters to
determine an optimal bound within that ansatz class.
One approach to the variational method that has been

successfully applied to the study of nuclear systems in a
finite volume within the framework of pionless effective
field theory is the SVM [27]. In this approach, a wave
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function is generated constructively through the iterative
addition of stochastically proposed terms, and a generalized
eigenvalue problem is solved to optimize the linear combi-
nation of the proposed terms. In particular, this approach
has been applied in a finite volume in Refs. [25,26] using a
basis of correlated Gaussian terms. Here, the same wave
function ansatz is considered, but is optimized using an
alternative to the stochastic optimization procedure that is
based on differentiable programming (detailed in Sec. II C).
The Gaussian wave function ansatz used in this work is

based on the approximation that the spatial and spin-isospin
wave functions for nuclear states can be factorized, with
spatial wave functions constructed as linear combinations
of appropriately symmetrized Gaussians.1 As also used in
Refs. [25,26], a trial wave function of this form satisfying
the periodic boundary conditions of a finite spatial volume
can be expressed for some nucleus h as

ΨðNÞ
h ðxÞ ¼

XN
j¼1

cjΨ
sym
L ðAj; Bj;dj;xÞjχhi; ð9Þ

where the sum runs over the N terms included in the trial
wave function, the cj, j ∈ f1;…; Ng, are numerical coef-
ficients, jχhi denotes an appropriately normalized antisym-
metric spin-flavor wave function for the n-body state h,
x ¼ ðr1;…; rnÞ denotes the collected spatial coordinates of
the n nucleons, and the Aj, Bj, and dj denote collected
parameters of the jth spatial wave function Ψsym

L included
in the sum (whose dependence on h is suppressed). To
obtain an optimal representation of the wave function with
a given number of terms, the values of the parameters cj
and those encoded in Aj, Bj, and dj are optimized as
described further in Sec. II C.
Explicitly, the symmetrized spatial wave functionΨsym

L is
constructed from Gaussian components for each Cartesian
direction α:

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ

¼ exp

�
−
1

2
xðαÞTAðαÞxðαÞ

−
1

2
ðxðαÞ − dðαÞÞTBðαÞðxðαÞ − dðαÞÞ

�
; ð10Þ

where the αth Cartesian components of the spatial coor-
dinates of each particle are collected in the n-component
vector xðαÞ. The n × nmatrices AðαÞ and BðαÞ are symmetric,

containing nðn − 1Þ=2 real parameters, and diagonal, with
n real parameters, respectively, and dðαÞ is an n-component
real-valued vector. This wave function can be made
periodic in a cubic volume of finite spatial extent L by
implementing a sum over copies shifted in each Cartesian
direction by integer multiples of L [28]:

ΨðαÞ
L ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ
¼

X
bðαÞ

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞ − bðαÞLÞ; ð11Þ

where bðαÞ is an n-component vector with components

bðαÞk ∈ Z. The finite-volume wave functions for each
Cartesian direction α can be combined to define the
complete three-dimensional finite-volume wave function

ΨLðA;B;d;xÞ ¼
Y

α∈fx;y;zg
ΨðαÞ

L ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ; ð12Þ

where the parameters AðαÞ, BðαÞ, and dðαÞ for each Cartesian
direction are combined into the quantities A, B, and d.
Finally, a finite-volume wave function that is also sym-
metric under particle exchange can be constructed by
explicitly symmetrizing with respect to permutations of
the rows and columns of AðαÞ and BðαÞ and of the rows of
dðαÞ, for all Cartesian components α. Denoting the set of all
such permutations as P, a symmetric wave function ansatz
can thus be expressed as

Ψsym
L ðA; B;d;xÞ ¼

X
P

ΨLðAP ; BP;dP ;xÞ; ð13Þ

where AP , BP , and dP are the permuted forms of the
relevant matrices and vectors.
A particular advantage of this class of trial wave

functions is that the integrals needed to compute the
normalization and Hamiltonian matrix elements that
appear in the ground-state energy bound of Eq. (8) can
be performed analytically, as detailed in Ref. [26]. As also
discussed in Ref. [26], these Gaussian-based wave func-
tions are able to represent finite-volume “scattering states,”
i.e., eigenstates above the two-particle threshold, for N ¼ 2
systems, and the method does not rely on deeply bound
infinite volume states. The only restrictions on its appli-
cability are that states that are integrated out of the pionless
EFT, such as those involving pions, Δ resonances,
and particle-antiparticle excitations, are not representable.
These restrictions are similar to those in the Lüscher
quantization condition approach [29] where the partial-
wave expansion of scattering amplitudes must be truncated
and the presence of inelastic thresholds limits applicability.

1Although the factorization of the spatial and spin wave
functions is a crude approximation for larger nuclei, the goal
of the present work is to explore the effectiveness of the
differentiable programming approach in representing nuclear
states in comparison to the stochastic variational method. As
such, the same approximation is used as in Ref. [26].
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C. Variational optimization by differentiable
programming

To achieve effective bounds on the ground-state energies
Eh of various nuclear systems, h, the trial wave function

ΨðNÞ
h ðxÞ defined in Eq. (9) is optimized using a differ-

entiable programming approach combined with solution of
a GEVP. Differentiable programming is a programming
paradigm in which the computational flow of a program
can be explicitly differentiated with respect to its param-
eters, thereby allowing gradient-descent optimization of
those parameters. The approach is widely used as a back-
bone of machine learning tools [30] and has been applied
to variational problems in quantum many-body physics
[31–34] and quantum technology [35–37].
In the current application, the differentiable program-

ming approach is applied to ground-state energy minimi-
zation through a two-stage procedure:
(1) DP block: optimization of N0-element wave func-

tions with fixed LECs:
(i) Values of the LECs C0, C1, and (for n ≥ 3 body

states) D0 are chosen;
(ii) The free parameters cj, and those encoded in

Aj, Bj, and dj, for j ∈ f1;…N0g for a N0-term

Gaussian wave function ΨðN0Þ
h ðxÞ are initialized

randomly (details of the choice of initialization
for the numerical study detailed in Sec. III are
provided in Appendix B);

(iii) The gradient of the ground-state energy bound
provided by the trial wave function with respect
to the free parameters is computed, and the
minimum is approached via gradient descent to
optimize cj and the parameters in Aj, Bj, and dj

(details of the gradient computation and descent
method are presented in Appendices A and B).

(2) GEVP block: N-element wave function construction:
(i) A set of αN0-element wave functions, possibly

optimized using different LECs C0, C1, D0,
and different initializations, but defined for the
same quantum numbers (number of particles
and spin-flavor structure) and finite spatial
extent, L, are constructed through α indepen-
dent DP blocks;

(ii) For a fixed choice of LECs, the linear combi-
nation of the optimized Gaussian wave function
components (i.e., the N ¼ αN0 Gaussians with
each optimized choice of A, B, d) is optimized
by solving the GEVP

Hc ¼ λNc; ð14Þ

for the eigenvalues λ1 ≤ λ2 ≤ … ≤ λN and ei-
genvectors c ¼ ðc1;…; cNÞT which contain the
coefficients in Eq. (9). The matrices H and N
have matrix elements

½N�ij ≡
Z

ΨiðxÞ�ΨjðxÞdx; ð15Þ

½H�ij ≡
Z

ΨiðxÞ�hχhjHjχhiΨjðxÞdx; ð16Þ

using the compressed notation ΨjðxÞ≡
Ψsym

L ðAj; Bj;dj;xÞ.
(iii) The lowest eigenvalue, λ1, of the GEVP solved

for a given set of LECs, C0, C1, D0, corre-
sponds to an upper bound E0

h on the ground
state energy Eh for the given system with
quantum numbers defined by h.

This approach, illustrated graphically in Fig. 1, has
several advantages. First, the use of direct optimization
as opposed to stochastic selection of Gaussian basis
elements enables wave function representations of compa-
rable quality to be obtained with far fewer terms, as
demonstrated in numerical experiments detailed in
Sec. III A. Second, this particular (sequential) optimization
approach enables the efficient construction of N-term wave
functions by combining the Gaussian basis elements
obtained by optimizing systems with fewer terms; this is
computationally efficient since the cost of directly opti-
mizing an N-term wave function grows quadratically
with N.2 Simultaneously, by combining wave functions
optimized for different choices of LECs, this approach
enables the construction of a combined set of Gaussian
terms that can provide efficient wave function representa-
tions across a range of values of the LECs. With such a
basis defined, constraining the LECs to match the FVEFT
to LQCD calculations of nuclear states in the same finite
volume is straightforward; computing the energy bound as
a function of the LECs simply amounts to repeating the
GEVP for choices of the LECs within a range of interest
(involving no additional differentiable programming
optimization).

III. RESULTS

The differentiable programming approach described in
Sec. II C is applied to the determination of ground-state
energies of A ∈ f2; 3; 4; 5; 6g nuclear systems, via opti-
mization of spatial nuclear wave functions with the relevant
LECs tuned to match the results of LQCD calculations for
A ∈ f2; 3g. As was previously investigated in the SVM in
Refs. [25,26], the differentiable programming method
can be used to extrapolate existing LQCD results for light
nuclei to infinite volume. However, the more efficient
representation provided by the DP wave functions also

2In particular, the cost of optimization of an n-body state with
N terms scales as OðN2n!n3Þ. While this complete optimization
would in principle outperform the sequential approach used here
for a fixed number of terms, the sequential approach is superior
for a fixed computational budget, scaling as OðαN02n!n3Þ.
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allows the extrapolation of the LQCD results to systems
with larger A.

A. Illustration of differentiable programming
optimization

This section provides a numerical illustration of the
differentiable programming approach of Sec. II C. The
following examples demonstrate each step of the method,
while discussion of several more technical aspects of the
approach such as the initialization of the free parameters,
the schedule of optimization (“training”), and the conver-
gence criteria used in the applications in the following
sections, are left to Appendix B.
As discussed in Sec. II C, the differentiable program-

ming optimization procedure proceeds via DP blocks
and GEVP blocks. The DP block step yields an optimized
N0-term wave function at fixed LECs; Fig. 2 provides an
example of the convergence of this optimization with N0. In
particular, the figure illustrates the bound on the binding
energy of the A ¼ 2 deuteron (h ¼ d) system achieved
through a DP block optimization (i.e., ΔEd ≡ Ed − 2Ep,
with Ed ¼ EDP

d ) for a fixed choice of the relevant LEC
CS ¼ −132 MeV · fm3, and spatial volume L ¼ 4.5 fm
(these parameters are approximately in the center of the

ranges that are used in the application of the method in
the following sections). Clearly, an improved bound on the
binding energy is achieved with increasing N0, although
this improvement need not be monotonic since the opti-
mization is performed from a new initialization for
each N0.3 Different initialization seeds typically yield
consistent results for N0 ≳ 4. The figure also shows the
result of the SVM optimization method from Ref. [26],
demonstrating that the DP optimization procedure provides
a far more efficient description of the ground state in terms
of the number of parameters that are required; for most
initialization seeds, the DP wave functions with N0 ≳ 4
outperform the N0 ¼ 100 term wave function of Ref. [26].
The second step of optimization combines α sets of N0

Gaussian functions determined in independent DP blocks
through a GEVP block to determine the optimal linear
combination of all N ¼ αN0 Gaussian functions. As α
increases, the bound on the ground-state energy of the

GEVP

DP Block

DP Block

Initial Parameters

LECs

Initial Parameters

LECs LECs

Energy bound

FIG. 1. Diagrammatic representation of the wave function optimization procedure used in this work. (a) Differentiable programming
block: for fixed LECs and a random initialization, automatic differentiation (defined in the figure, where η denotes the self-adaptive
learning rate) is used to optimize the parameters of an N0-term Gaussian wave function ansatz. (b) GEVP block: basis elements obtained
from differentiable programming blocks constructed with different initializations and/or LECs are combined to form a larger basis; the
GEVP as defined in Eq. (14) is solved to determine the optimal energy bound E0

h, the smallest eigenvalue, for a given set of LECs.

3An alternate approach in which an optimized N0 −M term
wave function is used to build an N0 term wave function by only
optimizing the parameters associated with the M new Gaussian
functions (through DP) and the linear coefficients (through
GEVP) could also be applied, and would be monotonic by
construction.
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system necessarily improves. Figure 3 shows the binding
energy of the deuteron with CS ¼ −132 MeV · fm3 and
L ¼ 4.5 fm obtained from GEVP-optimized combinations
of α ∈ f1;…; 16g sets of N0 ¼ 4 Gaussian functions.
Results are shown for 25 different initializations. For
α ≥ 8, all seeds yield values within 0.1% of the minimum
energy achieved with α ¼ 16 groups of Gaussians
(with any seed), and at α ¼ 8, more than half of the seeds
yield results within 0.05% of that minimum.
While Fig. 3 illustrates the results of a GEVP block

combining wave functions from several DP blocks

optimized at the same set of LECs, a potentially useful
alternative is to combine sets of Gaussian functions from
DP blocks optimized at different choices of LECs. This
produces a set of functions that should be better able to
represent the eigenstates of the Hamiltonian across a range
of values of the LECs, allowing energy bounds to be
evaluated as a function of the LECs without additional DP
optimizations. For α sets of N0 Gaussian wave functions
optimized in DP blocks, the quantity

δα;N
0

h ¼ ΔE½N0�
h − ΔE½α×N0�

h

jΔE½α×N0�
h j

ð17Þ

can be defined to quantify the relative improvement of the
combined α × N0-term wave function (yielding a bound

ΔE½α×N0�
h on the binding energy) over the N0 term wave

function (yielding the bound ΔE½N0�
h ) at a given LEC value.

Figure 4 shows this quantity for the deuteron at
L ¼ 4.5 fm, where sets of N0 ¼ 4 Gaussian functions
optimized at four choices of CS are combined in a
GEVP block. By construction, GEVP optimization of
the superset of 16 Gaussians provides a tighter bound on
the binding energy across all LECs in the relevant range,
improving the bound by ≲0.1% even at the LEC values
where the individual DP blocks were optimized.

B. Finite-volume calculation of two-body
and three-body systems

In order to determine the two and three-body LECs in the
FVEFT Hamiltonian, C0 and C1 (or equivalently, CS and
CT) and D0, wave function optimizations are performed

FIG. 2. The bounds on the binding energy of the deuteron
obtained from DP blocks as a function of the number of Gaussian
functions, N0, included in the optimization. Three different
random initializations are used (corresponding to the solid blue,
dashed orange, and dotted green curves) for fixed values of
the relevant two-body LEC CS ¼ −132 MeV · fm3, and for
L ¼ 4.5 fm. In the upper panel (a), the results are compared
with the SVM results of Ref. [26] evaluated at the same CS and L,
shown as a function of the number of Gaussian functions (solid
gray line). The lower panel (b) shows the DP results with a
different scale. As detailed in the text, an independent optimi-
zation is performed for each value of N0, so the behavior need not
be monotonic. The dashed horizontal line in both panels shows
the best result obtained with the SVM method with N0 ¼ 100.

FIG. 3. Bounds on the binding energy of the deuteron at
CS ¼ −132 MeV · fm3 and L ¼ 4.5 fm as a function of the
number of groups of N0 ¼ 4 Gaussian wave functions that are
combined through a GEVP block. Each of the 25 curves shows
bounds obtained using a different random sampling of groups of
four Gaussians from a total of 36 groups, each optimized from a
different random initialization. The dashed gray line shows the
tightest bound on the binding energy achieved by any of the
optimizations.
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using the approach of Sec. II C for the deuteron, dineutron,
and 3He systems in each of three spatial volumes where
LQCD calculations have been performed [4]. In this work,
a single EFT cutoff corresponding to r0 ¼ 0.2 fm is used,
as Refs. [25,26] have previously demonstrated the cutoff
independence of the ground-state energies.
Figure 5 shows the binding energy of the deuteron as a

function of the LEC CS for L ∈ f3.4; 4.5; 6.7g fm. The
dependence of the binding energy in each volume on CS is
obtained by solving the GEVP using a 32-dimensional
basis of Gaussians, with α ¼ 8 sets of N0 ¼ 4 Gaussians,
two optimized from different initializations at each CS ∈
f−134;−129;−124;−119g MeV · fm3. These choices of
N0 and α achieve a balance between representational
flexibility and computational cost and are motivated by
the observations illustrated in Sec. III A. In particular,
taking N0 > 4 typically does not improve the bound
achieved by a single DP block, and the combination of
α ¼ 8 DP blocks with N0 ¼ 4 yields results within a
fraction of a percent of the best result obtained by
continuing to increase the number of blocks included; this
difference is negligible in comparison with the uncertainties
of the LQCD results used to match the LECs. The
optimization procedure and convergence criteria are
detailed in Appendix B. The same optimizations give
the dependence of the dineutron binding energy on the
LEC CT ; CS and CT can thus be obtained by χ2 mini-
mization of the difference between the optimized binding
energies and the LQCD results of Ref. [4] for the deuteron
and dineutron, respectively. Fit results are shown in Table I
and are consistent within uncertainties with those obtained
in Ref. [26] using the SVM approach to wave function
optimization, matched to the same LQCD results.

Having determined the two-body couplings, the analo-
gous procedure can be applied to determine the three-body
interaction coefficient,D0. The GEVP is solved using a 32-
dimensional basis of three-body Gaussians with α ¼ 8 sets
of N0 ¼ 4 Gaussians, two optimized from different initi-
alizations at each D0∈f17.8;18.8;19.7;20.6gMeV·fm6,
with the optimized value of C3He ¼ C0 − C1 fixed. The
three-body binding energy is shown as a function of D0 in
Fig. 6 and the value of the coupling determined by χ2

minimization of results at all three volumes is presented in
Table I.

C. Finite-volume calculation of 4He

With all of the leading-order couplings in the EFT
Lagrangian determined, the DP approach can be used to

FIG. 4. Fractional difference between the binding energy of the
deuteron at L ¼ 4.5 fm computed via GEVP from α ¼ 4 DP
blocks optimized at CS∈f−134;−129;−124;−119gMeV·fm3

with N0 ¼ 4, and the results of GEVP using each block
separately. Each curve corresponds to δ4;4d [Eq. (17)] computed
based on the DP block optimized at the value of CS indicated by
the color-matched vertical dotted line).

FIG. 5. Binding energy of the deuteron as a function of the two-
body LEC CS. Each curve is obtained by solving the GEVP with
various CS values using a 32-dimensional set of Gaussian wave
functions optimized for each volume. Each set is composed
of α ¼ 8 sets of N0 ¼ 4 DP blocks, with two blocks optimized
from different initalizations for each CS ∈ f−134;−129;−124;
−119g MeV · fm3. The horizontal bands show the binding
energies determined in each volume in the LQCD calculations
of Ref. [4]. The intersection of each curve with the horizontal
band of the same color constrains the allowed values of CS

through χ2 minimization.

TABLE I. LECs in the EFT Lagrangian for a cutoff
r0 ¼ 0.2 fm. CS;T;0;1 and D0 are quoted in units of MeV · fm3

and MeV · fm6, respectively. The second column provides a
comparison with the results obtained in Ref. [26] using the SVM,
while the third column presents the results of this work obtained
via the DP approach.

Ref. [26] (SVM) This work (DP)

C0 −131ð2Þ −131.0ð21Þ
C1 −2ð1Þ −1.7ð8Þ
CS −133ð2Þ −132.7ð27Þ
CT −126ð2Þ −125.8ð20Þ
D0 17(2) 20.0(24)
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compute the ground-state energies of larger systems. In
particular, an upper bound on the ground-state energy of
4He is computed; with the LECs fixed, α ¼ 8 N0 ¼ 4 DP
blocks optimized from different initializations are com-
bined via a GEVP block in each of the three spatial volumes
in which LQCD calculations have been performed. After
optimization, the uncertainties in the two- and three-body
LECs are propagated into the estimate of the 4He binding
energy by solving the GEVP for each optimized set of
Gaussian wave functions with the LECs varied within their
uncertainty ranges. Table II shows a comparison between
the resulting 4He binding energy and LQCD results for
the binding in each finite volume. Clearly, the EFT with
fixed coefficients produces estimates of the 4He binding
energy that are consistent with the LQCD calculations.
Having verified the consistency, an alternative strategy is to
use the full set of h ∈ fd; nn; 3He; 4Heg binding energies
from LQCD to further constrain the two and three-body
LECs. However, given the large uncertainties on the LQCD
determinations of the 4He energy, χ2 optimization leads to
values of the two- and three-body LECs that are identical
to those determined from the two- and three-body sys-
tems alone.
In principle, the DP method can be used to determine

finite-volume energies of still larger nuclei. However, there
are currently no LQCD results to compare to for larger
systems, and the scaling of the approach with A at finite
volume is sufficiently poor that such calculations are
numerically demanding. Instead, it is natural to consider

the infinite-volume binding energies of larger nuclei, as
detailed in the next subsection.

D. Volume dependence and infinite-volume calculation

Having performed the finite-volume matching to deter-
mine the LECs of the EFT, the DP approach can be used to
study the volume dependence of the binding energies for
h ∈ fd; nn; 3He; 4Heg, as well as to determine the infinite-
volume binding energies of these and other nuclear states.
Figure 7 shows the volume dependence of the binding
energies of the four systems, with optimizations based on
α ¼ 8 sets ofN0 ¼ 4Gaussian wave functions performed for
L ∈ f2; 3.4; 4; 4.5; 6.7; 12g fm, and also at infinite volume.
The infinite-volume results are compiled in Table III.
Since the DP approach is more efficiently able to

represent ground-state wave functions than the SVM
method, it is feasible to extend calculations to larger nuclei

FIG. 6. Binding energy of 3He as a function of the three-body
LEC D0, with the relevant two-body coupling fixed to
C3He ¼ C0 − C1 ¼ 129ð2Þ MeV · fm3. The curves are obtained
by solving the GEVP for a 32-dimensional set of Gaussian wave
functions optimized for each volume. Each set is composed
of α ¼ 8 N0 ¼ 4 DP blocks, with two blocks optimized
from different initalizations for each D0 ∈ f16.9; 18.1; 19.4;
20.6g MeV · fm6. The shaded region for each curve is propagated
from the uncertainty in C3He. The horizontal bands show the
binding energies determined in each volume in the LQCD
calculations of Ref. [4].

TABLE II. Finite-volume binding energy for 4He obtained for
three different volumes as described in the text, with LECs C0, C1

andD0 determined by matching to the two- and three-body finite-
volume LQCD results of Ref. [4]. The second column lists the
LQCD results for ΔE4He computed in the same reference for
comparison.

L [fm] LQCD [4] [MeV] This work [MeV]

3.4 115(23) 114(13)
4.5 107(25) 109(15)
6.7 107(24) 108(15)

FIG. 7. Binding energies of h ∈ fnn; d; 3He; 4Heg states in
different volumes (open circles) and in infinite volume (open
triangles). For each state at each of the volumes indicated by the
open circles, α ¼ 8 sets of N0 ¼ 4 Gaussian wave functions are
generated and optimized from different initializations at the best
fit values of the LECs C0;1 and D0 (the colored lines are linear
interpolations to guide the eye). The bands result from propa-
gation of the uncertainties in the LECs. The gray squares show
the results of the LQCD calculations of Ref. [4].
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in infinite volume. In particular, calculations have been
performed for 5

ΛHe (J ¼ 1=2) and 6
ΛΛHe (J ¼ 0) in which

the spin-flavor structure is such that the simplest con-
figuration has spatial and spin-flavor wave functions
factorizing as in Eq. (9). Note that at the SUð3Þf-
symmetric quark masses used in the LQCD calculations
of Ref. [4] to which the FVEFT calculation is matched,
the Λ baryon is degenerate with the proton and neutron
but is not Pauli blocked from being at zero orbital
angular momentum. For this proof-of-principle study, it
is assumed that the two- and three-body interactions
between nucleons and Λ baryons are the same.
Figure 8 and Table III summarize the results of this work
as well as previous EFT matching calculations from
Refs. [25,26,38]. The A ¼ 4 EFT calculations are post-
dictions of the infinite-volume-extrapolated LQCD results
of Ref. [4], while the A ∈ f5; 6g results are predictions
that could be tested by future LQCD calculations.

IV. SUMMARY AND OUTLOOK

In this work, differentiable programming and a gener-
alized eigenvalue problem have been used to optimize the
ground state wave functions of nuclei in FVEFTmatched to
LQCD binding energies. Using sets of correlated Gaussian
wave functions representing A-nucleon states for 2≤A≤6
in both finite and infinite volumes, it was shown that this
approach provides a considerably more efficient represen-
tation of these states than that obtained in previous work
using the stochastic variational method and is able to scale
to larger system size for fixed computational resources.
Ongoing work to extend this approach by coupling

spatial and spin wave functions used for the nuclear states
will allow more physical systems to be addressed including
p-shell nuclei and hypernuclei. Since these approaches can
also provide accurate representations of finite-volume
excited states, a more detailed matching to the low energy
excitation spectra of two-nucleon systems in LQCD, for
example those presented in Ref. [39], will also allow more
precise constraints on the LECs of the nuclear EFT,
including those that occur at next-to- and next-to-next-
to-leading order in the EFT power counting.
Pionless EFT is particularly powerful at the large quark

masses used in existing LQCD calculations of nuclei.
However, as the masses used in such calculations become
closer to the physical light-quark masses, extensions of the
finite-volume matching approach presented here to chiral
EFTs that include explicit pionic degrees of freedom will
likely be important. Alternative finite-volume many-body
methods such as the quantum Monte Carlo method [40,41]
and nuclear lattice EFT [42,43] are promising approaches.
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APPENDIX A: INTEGRAL DEFINITIONS AND
AUTOMATIC DIFFERENTIATION

This section presents explicit analytic formulae for the
matrix elements required to compute variational energy
bounds with Gaussian wave functions, and provides details
of the computation of the derivatives of those matrix
elements as required for the DP optimization procedure.
The normalization matrix N [defined in Eq. (15)], with

elements labeled by the ith and the jth terms of wave
functions, can be computed as

½N�ij ≡
Z

Ψsym
L ðAi; Bi;di;xÞ�Ψsym

L ðAj; Bj;dj;xÞdx;

¼
X
P;P0

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ΩðαÞ

iP;jP0

�
;

ðA1Þ

where P and P0 denote permutations over the n bodies in

each wave function and ΩðαÞ
iP;jP0 and CðαÞ

iP;jP0 are quantities
defined in Ref. [26] that depend on the parameters of the
wave functions. The finite-volume sum is controlled by the
integer cutoff b̃.
The matrix representation of the Hamiltonian H

[Eq. (16)] can be broken up into three parts as

H ¼ Kþ V2 þ V3; ðA2Þ

where K, V2, and V3 denote the kinetic energy, the two-
body potential, and the three-body potential, respectively.
These are given by

½V2�ij ≡ C
Xn
a<b

Z
Ψsym

L ðAi; Bi;di;xÞ�gΛðxa − xb; LÞΨsym
L ðAj; Bj;dj;xÞdx;

¼ C
Λ3

8π3=2

X
P;P0

Xn
a<b

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃ðαÞ
iP;jP0

C̃ðαÞ
iP;jP0 þ 2ρ

vuut XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ΩðαÞ

iP;jP0

�

×
X̃q

qðαÞ¼−q̃

exp

�
−

ρC̃ðαÞ
iP;jP0

C̃ðαÞ
iP;jP0 þ 2ρ

ð½ðCðαÞ
iP;jP0 Þ−1 · ΞðαÞ�a − ½ðCðαÞ

iP;jP0 Þ−1 · ΞðαÞ�b − LqðαÞÞ2
�
; ðA3Þ

where C ¼ 1
2
nðn − 1ÞC0 þ 2ðShðSh þ 1Þ − 3

4
nÞC1 for an n-body nucleus of spin Sh,

½V3�ij ≡D0

Xcyc
a≠b≠c

Z
Ψsym

L ðAi; Bi;di;xÞ�gΛðxa − xb; LÞgΛðxb − xc; LÞΨsym
L ðAj; Bj;dj;xÞdx;

¼ D0

�
Λ3

8π3=2

�
2X
P;P0

Xcyc
a≠b≠c

Y
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½ĈðαÞ
iP;jP0 �

vuut exp

�
−
1

2
ðdðαÞ

iP · BðαÞ
iP · dðαÞ

iP þ dðαÞ
jP0 · B

ðαÞ
jP0 · d

ðαÞ
jP0 Þ

�

×
XjbðαÞj≤b̃

bðαÞ
exp

�
−
1

2
ððLbðαÞÞ · ðAðαÞ

iP þ BðαÞ
iP Þ · ðLbðαÞÞ þ 2dðαÞ

iP · BðαÞ
iP · ðLbðαÞÞ − ΞðαÞ · ½ĈðαÞ

iP;jP0 �−1 · ΞðαÞÞ
�

×
X̃q

qðαÞ¼−q̃

exp

�
−
L2

r20
qðαÞ2 þ qðαÞ2L2

2r40
P½a;b�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v þ qðαÞL
r20

ΞðαÞ · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v

�

×
X̃q

tðαÞ¼−q̃

exp

�
−
L2

r20
tðαÞ2 þ tðαÞ2L2

2r40
P½b;c�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½b;c�

v þ tðαÞL
r20

ΞðαÞ · ½ĈðαÞ
iP;jP0 �−1 ·P½b;c�

v

�

× exp

�
tðαÞqðαÞL2

r40
P½b;c�

v · ½ĈðαÞ
iP;jP0 �−1 ·P½a;b�

v Þ
�
; ðA4Þ
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½K�ij ≡ −
1

2MN

Xn
a¼1

Z
Ψsym

L ðAi; Bi;di;xÞ�∇2
aΨ

sym
L ðAj; Bj;dj;xÞdx;

¼ 1

2MN

X
P;P0

X
α∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðαÞ
iP;jP0 �

vuut XjbðαÞj≤b̃

bðαÞ
ΘðαÞ

iP;jP0 exp

�
−
1

2
ΩðαÞ

iP;jP0

� Yβ≠α
β∈fx;y;zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn

Det½CðβÞ
iP;jP0 �

vuut XjbðβÞj≤b̃

bðβÞ
exp

�
−
1

2
ΩðβÞ

iP;jP0

�
;

ðA5Þ

where ℏ ¼ 1 is used,
Pcyc

a≠b≠c indicates a sum over cyclic
permutations of particles a, b, and c, and the integer cutoff
q̃ governs finite-volume effects in the interaction terms.
The (wave-function-parameter dependent) quantities

ΞðαÞ
iP;jP0 , C̃

ðαÞ
iP;jP0 , Ĉ

ðαÞ
iP;jP0 and ΘðαÞ

iP;jP0 , as well as the projection

operators P½a;b�
v and P½a;b�

m , are defined in Ref. [26].
The variational function E to be minimized [Eq. (8)] can

be represented in terms of these matrices as

E½ΨðNÞ
h ðθÞ� ¼ c · ðKþ V2 þ V3Þ · c

c · N · c
; ðA6Þ

where c ¼ ðc1;…; cNÞT collects the numerical coefficients

[ci of Eq. (A6)] parametrizing ΨðNÞ
h ðθÞ as a linear combi-

nation of the Gaussian wave function terms Ψsym
L ðAi;

Bi;di;xÞ, and θ¼ffAi;Bi;di;cig, i ∈ f1;…Ngg. Storing
the computational graph for Eq. (A6) and its gradients with
respect to the parameters θ requires a large amount of
memory. To reduce the memory usage, the chain rule is
applied manually to compute the gradient of E as

∇θE ¼ −
c · ðKþ V2 þ V3Þ · c

ðc · N · cÞ2 ∇θðc · N · cÞ

þ 1

c · N · c
ð∇θðc · K · cÞ þ∇θðc · V2 · cÞ

þ∇θðc · V3 · cÞÞ: ðA7Þ

The computation of ∇θðc ·X · cÞ for X ∈ fN;K;V2;V3g
can be further broken up into a sum involving the gradient
of each matrix element

∇θðc ·X · cÞ ¼
X
i;j

ð∇θðcicjÞ½X�ij þ cicj∇θ½X�ijÞ: ðA8Þ

Due to the permutation symmetry in this system, there
are only n!nðn − 1Þ independent terms in the summation
over permutations P and P0 in V2 [Eq. (A3)] and
n!nðn − 1Þðn − 2Þ terms in V3 [Eq. (A4)]. Their gradients
can be written as a sum of gradients on each independent
term whose computational graph is discarded after its
gradient is computed.

APPENDIX B: NUMERICAL IMPLEMENTATION
DETAILS

A key component of the calculations presented here is the
evaluation of the matrix elements Nij and Hij that enter both
the DP and GEVP blocks. The numerical accuracy of these
matrix elements is controlled by the integer cutoffs b̃ and q̃
used in the summations in Eqs. (A1)–(A5); for small values
of these cutoffs, numerical instabilities appear with N
potentially becoming non-positive-definite. Since the goal
of the DP block is simply to produce trial wave functions, the
accuracy criteria on matrix elements in the DP block is
somewhat milder than in the GEVP block where a rigorous
energy bound is sought. Consequently, b̃ ¼ 15 and q̃ ¼ 6

are used during automatic differentiation and b̃ ¼ 30 and
q̃ ¼ 12 are chosen for the solution of the GEVP. These
values avoid numerical stability issues but allow evaluation
of the matrix elements for N ∈ f2; 3g-body systems at finite
volume. For the optimization and the solution of GEVP of
four-body system binding energies b̃ ¼ 8 and q̃ ¼ 3 are
chosen due to computational limitations.
The DP process depends on the initialization of the

wave function parameters θ. As in Ref. [28], the
matrices A and B are generated from single-particle
Gaussian widths da and two-body Gaussian widths dab.
The particle displacement vectors d have components di
and the weights of each wave function are written as
cj ¼ tan ĉj to ensure both positive and negative values are
accessed. The parameters da, dab, di, and ĉj are drawn
from a normal distribution Nð1; 0.01Þ, which in practice
leads to stable results.
In the optimization step in the DP block, a self-adaptive

gradient descent method with a stepping clip is applied. For
each step, the learning rate is increased by 20% if the
energy decreases but is decreased by 60% if the energy
increases. Steps in which the energy increases are rejected.
In addition, a maximum allowed step size is implemented
for each parameter. The step in parameter θi ∈ θ is −η∂θiE
if its absolute value is smaller than fðηÞ. Otherwise, the
change in θi is −sgnð∂θiEÞfðηÞ, where

fðηÞ ¼
8<
:

10−2; η > 0.2

10−3; 0.001 < η ≤ 0.2

10−4; η ≤ 0.001:

ðB1Þ
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Since the uncertainties of the LQCD results increase
with A, the precision necessary in the variational optimi-
zation for optimization uncertainties to be subdominant
relative to the LQCD uncertainties, or to the uncertainties
propagated from the matching of the two and three-body
LECs, decreases with A. For two- and three-body systems,
the training process is iterated until the relative change of
the energy over the last ten iterations is less than 10−5.
Under this condition, the relative differences between the
upper bounds obtained using different seeds and the same

set of LECs are less than 0.5% for all of the results
presented in Secs. III B–III D. For the four-body system,
the relative changes in the last ten steps of optimization are
less than 10−4 and the variations between initializations are
less than 1%. For the infinite volume calculations, the same
convergence bounds hold for the two-, three-, and four-
body systems. For five- and six-body systems, the relative
changes over the last ten steps are less than 10−3, and the
relative differences between results obtained with different
initializations are less than 2%.
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