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We reconsider the problem of discretizing the worldsheet for the gauge-fixed Green-Schwarz superstring
on a null cusp background, and present a setup which fully preserves its global Uð1Þ × SUð4Þ symmetry.
We discuss divergences by power counting on the lattice, and study renormalizability at one loop with the
example of one-point functions and one bosonic correlator of the worldsheet excitations. In order to remove
UV divergences at one loop, it is necessary to introduce two extra parameters in the action, which need to
be either fine-tuned at tree level or renormalized at one loop.
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I. INTRODUCTION AND DISCUSSION

In the frameworkof theAdS=CFT [1,2] correspondence, the
expectation value of a lightlike cuspedWilson loop inN¼4
super-Yang-Mills theory is equal to the partition function of
an open string propagating in AdS5 × S5 space and ending
on the loop at the AdS boundary. In practice one writes

hWcuspi ¼
Z

DYDΨe−ScuspðXclþY;ΨÞ ≡ e−
fðgÞ
8
V2 ; ð1:1Þ

where Scusp is obtained from the Green-Schwarz AdS5 × S5

superstring action, by parametrizing the fluctuations of the
bosonic degrees of freedom X ¼ Xcl þ Y around the
classical null-cusp solution Xcl [3,4], and by fixing the local
bosonic (diffeo) and fermionic (kappa) symmetries e.g., to
light-cone gauge [5]. The free energy of the open string is
proportional to theworldsheet volumeV2 andwe refer to the
prefactor fðgÞ as the cusp anomaly1 [6,9,10]. The cusp

anomaly is a function of the coupling constant g ¼ R2

4πα0 ¼
ffiffi
λ

p
4π ,

where R is the common radius of AdS5 and S5, α0 is the
squared string scale, while λ is the ’t Hooft coupling on the
gauge side of the AdS=CFT correspondence. The cusp
anomaly has been calculated to next-to-next-to-leading
order in a perturbative expansion in g−1 [8] and in dimen-
sional regularization. Assuming integrability [11,12] and
using the corresponding technology [11,13–15], the cusp
anomaly can be evaluated also at finite coupling.
The Green-Schwarz AdS5 × S5 string is expected to be

defined also at the nonperturbative level. Avalid question is
whether the nonperturbative regime of the σ model, which
describes the AdS5 × S5 string at tree level in string
perturbation theory, is accessible through a lattice discre-
tization of the worldsheet (while target space remains
continuous). This question is motivated by the success
of the lattice as a UV nonperturbative regulator of quantum
chromodynamics. This approach has been pioneered in
[16–19], where a lattice-discretized version of Scusp has
been introduced and also used to perform Monte Carlo
simulations.2

Once a lattice discretization of Scusp and of the path
integral is proposed, one still needs to understand whether
the continuum limit (i.e., the limit in which the lattice
spacing a vanishes) exists for physical observables, and
whether the obtained continuum theory has the desired
defining properties. Notice that the inverse lattice spacing
a−1 is nothing but a uv cutoff, and the question of the
existence of the continuum limit is logically equivalent to
the question of cancellation of uv divergences after
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1In some literature, fðgÞ is called “scaling function.” From the
gauge theory point of view, it governs the logarithmic behavior in
the large spin anomalous dimensions of twist-two operators, and
equals twice the cusp anomalous dimension of lightlike Wilson
loops [6]. The same can been seen [7] at the level of the dual
classical string solutions, respectively [3,4]. The normalization
factor 1=8 in (1.1) also takes into account the conventions of [8].

2Other lattice approaches to AdS=CFT include [20–37], see
also [38] and references therein.
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renormalization: once a discretized action is defined as a
function of a finite number of bare parameters, is it possible
to cancel all uv divergences in on-shell observables with a
redefinition of the bare parameters? The existence of the
continuum limit at the nonperturbative level is a very
complicated issue, both theoretically and numerically.
However, if the lattice regularization makes sense at all,
then one should recover the correct continuum theory also
order by order in the perturbative expansion, i.e., in powers
of g−1. The goal of this paper is precisely to set the stage for
such a perturbative expansion, and to discuss some pecu-
liarities of the lattice regulator.
In Sec. II, we present a new discretization for Scusp.

Contrary to the actions proposed and used in [17,18,39],
the new action is invariant under the full Uð1Þ × SUð4Þ
group of internal symmetries. As usual in QFT, more
symmetries mean less uv divergences. In Sec. III, we
parametrize the fluctuations around the classical solution in
analogy to what is usually done in the continuum [8] and
we calculate the propagators for the lattice discretized
theory.
In Sec. IV we calculate the superficial degree of

divergence of the generic Feynman diagram and we show
that power counting suggests that infinitely many counter-
terms are needed at every order in the perturbative
expansion to cancel all uv divergences.
This result is not so surprising, as the Green-Schwarz

action expanded around a classical background is known to
be formally power-counting nonrenormalizable [40–42].
However in the continuum, when using the regularization
introduced in [17,18] to which we refer as “dimensional
regularization” in what follows, the cusp anomaly turns out
to be finite without any counterterm, at least up to two loops
[8,42]. The cancellation of divergences has been verified
similarly for the two-point functions and the dispersion
relation of excitations near a long spinning string in AdS5 at
one loop [43], and for a “generalized scaling function”
governing the energy of a string spinning both in AdS5 and
in S5 at two loops [44,45].3

In order to understand whether similar cancellations of
uv divergences happen also in the lattice discretized theory,
we calculate the cusp anomaly, the one-point function of
the field ϕ (which parametrizes the radial direction of
AdS5), and the two-point function of x, which parametrizes
the fluctuations of the string at the AdS5 boundary. These
calculations are presented in Sec. V. We will see explicitly
that, in the considered lattice discretization, the situation is
quite more complicated than in dimensional regularization,
and it is related to the presence of power divergences. We
observe the following interesting facts:

(1) The quadratic divergences cancel at one loop in the
one-point function of ϕ and in the two-point
function of x (while they are subtracted by hand
in the cusp anomaly). At one loop, these cancella-
tions seems quite robust in the sense that they will
always happen in any reasonable discretization of
the action.

(2) Linear divergences arise as well, and they generally
do not cancel in all considered observables. These
divergences are very specific of the lattice discreti-
zation, and arise from the particular choice of
forward and backward discrete derivatives. In order
to cure this problem we have introduced two extra
parameters b� in the action that would be naturally
set to 1 at the classical level. In order to remove the
linear divergences at one loop, these parameters
need to be either fine-tuned at tree level or renor-
malized at one loop.

(3) Once the linear divergences are removed by tuning
or renormalization, the logarithmic divergences
cancel in the cusp anomaly and in the two-point
function of x (while they survive in the one-point
function of ϕ in analogy to the continuum). More-
over the continuum limit of the cusp anomaly and of
the dispersion relation of the worldsheet excitation
with the quantum numbers of the field x are the same
as the ones obtained in dimensional regularization.

The extra parameters b� do not seem to have any deep
meaning besides the fact that they make the bare propa-
gators particularly simple. Moreover we do not claim that
the introduction and fine-tuning of these two extra param-
eters is enough to make all physical observables finite at all
orders in perturbation theory, and this is in fact highly
unlikely. Still, one would like to understand whether the
number of parameters needed to achieve finiteness of
physical observables via fine-tuning or renormalization
is finite or not. If infinitely many parameters are necessary,
then the discretized model has no predictivity, and it cannot
be used as a viable nonperturbative definition of the
AdS5 × S5 string in null-cusp background. A complete
one-loop analysis of the divergences of n-point functions
may help shed light on this issue, and we plan to carry it on
in the future, with the technology developed in this paper.
One may also try to find a general mechanism that

prevents linear divergences in the first place. Building on
the idea that odd powers of a must be accompanied by odd
powers of m, one may try to exploit a spurionic symmetry
that involves the replacement m → −m, the reflection of
both worldsheet coordinates and an SOð5Þ rotation, which
is enjoyed by the continuous action. Such spurionic
symmetry is broken by our lattice discretization. Some
preliminary explorations that we do not report here indicate
that it is not completely trivial to preserve this symmetry on
the lattice while avoiding the doubling problem. Different
options in this direction will be explored in the future.

3The classical worldsheet theory of the long spinning string in
AdS5 is equivalent, via an analytic continuation and a global
conformal transformation, to that of the lightlike cusp solution
which is of interest here, see footnote 1.
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II. Uð1Þ × SUð4Þ INVARIANT DISCRETIZATION

In the continuum, the AdS5 × S5 superstring action in a AdS-lightcone gauge-fixing describing quantum fluctuations
around the null-cusp background reads [8]

Scontcusp ¼ g
Z

dtds

�����∂txþ
m
2
x

����2 þ 1

z4

����∂sx −
m
2
x

����2 þ �
∂tzM þm

2
zM þ i

z2
zNηiðρMNÞijηj

�
2

þ 1

z4

�
∂szM −

m
2
zM

�
2

þ iðθi∂tθi þ ηi∂tηi þ θi∂tθ
i þ ηi∂tη

iÞ − 1

z2
ðηiηiÞ2

þ 2i

�
1

z3
zMηiðρMÞij

�
∂sθ

j −
m
2
θj −

i
z
ηj
�
∂sx −

m
2
x

��
þ 1

z3
zMηiðρM†Þij

�
∂sθj −

m
2
θj þ

i
z
ηj

�
∂sx −

m
2
x

����	
; ð2:1Þ

where
(i) x is a complex bosonic field whose real and

imaginary part parametrize the fluctuations of the
string (in light-cone gauge) at the boundary of AdS5.

(ii) zM are six real bosonic fields, i.e.,M ¼ 1;…; 6; z ¼ffiffiffiffiffiffiffiffiffiffiffi
zMzM

p
is the radial coordinate of the AdS5 space,

while uM ¼ zM=z identifies points on S5.
(iii) The Graßmann-odd fields θi ¼ ðθiÞ†, ηi ¼ ðηiÞ†,

i ¼ 1, 2, 3, 4 are complex anticommuting variables
(no Lorentz spinor indices appear).

(iv) The matrices ðρMNÞij ¼ ðρ½Mρ†N�Þij are the SOð6Þ
generators; ρMij

4 are the (traceless) off-diagonal
blocks of SOð6Þ Dirac matrices γM in chiral repre-
sentation, see Appendix A.

The massive parameter m keeps track of the (dimen-
sionful) light-cone momentum Pþ, set to one in [8]. The
action (2.1) is invariant under a Uð1Þ × SUð4Þ global
symmetry defined by

zM →AdðUÞMNzN; θi →Ui
jθ

j; ηi →Ui
jη

j; ð2:2Þ

x → eiαx; θi → eiα=2θi; ηi → e−iα=2ηj; ð2:3Þ

whereU is an element of SUð4Þ and its representative in the
adjoint, AdðUÞ, is an element of SOð6Þ. While the original
Green-Schwarz AdS5 × S5 string action is invariant under
diffeomorphisms and κ symmetry, these local symmetries
have been fixed by the choice of light-cone gauge in
Eq. (2.1). Notice that the action is not invariant under
worldsheet rotations, parity (s → −s), or time reversal
(t → −t).
In order to define the lattice-discretized theory we need

to provide a discretized action, but also an explicit
expression for the measure. We choose to use a flat measure
for the fields, but we keep in mind that this choice is quite
arbitrary as it is not invariant under reparametrization of the
target AdS5 × S5 target space. Given a generic observable
A, expectation values in the lattice discretized theory are
defined by

hAi ¼ 1

Zcusp

Z
dxdx�d6zd4θd4θ†d4ηd4η†e−ScuspA; ð2:4Þ

where df ≡Q
s;t dfðs; tÞ, as usual the partition function

Zcusp is fixed by the requirement h1i ¼ 1, and Scusp refers
now to the discretised action, that we choose to be

Scusp ¼ g
X
s;t

a2
�����bþ∂̂txþ

m
2
x

����2 þ 1

z4

����b−∂̂sx −
m
2
x

����2 þ�
bþ∂̂tzM þm

2
zM þ i

z2
zNηiðρMNÞijηj

�
2

þ 1

z4

�
∂̂szM∂̂szM þm2

4
z2
�
þ 2iðθi∂̂tθi þ ηi∂̂tηiÞ −

1

z2
ðηiηiÞ2

þ 2i

�
1

z3
zMηiðρMÞij

�
bþ∂̄sθ

j −
m
2
θj −

i
z
ηj
�
b−∂̂sx −

m
2
x

��
þ 1

z3
zMηiðρM†Þij

�
bþ∂̄sθj −

m
2
θj þ

i
z
ηj

�
b−∂̂sx� −

m
2
x�
���	

: ð2:5Þ

4By convention, we will write the indices of ρ as down and those of ρ† as up.
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The action is written in terms of the forward and backward
discrete derivatives

∂̂μfðσÞ≡ fðσ þ aeμÞ − fðσÞ
a

;

∂̄μfðσÞ≡ fðσÞ − fðσ − aeμÞ
a

ð2:6Þ

where eμ is the unit vector in the direction μ ¼ 0, 1, and σ is
a shorthand notation for ðs; tÞ.
Notice that the proposed discretized action (2.5) depends

on four parameters: g, m, and the auxiliary parameters b�.
It is straightforward to see that the discretized action Scusp
reduces to the desired continuum action Scontcusp in the naive
a → 0 limit, if b� → 1. However, as we will discuss in
detail, the naive choice b� ¼ 1 produces undesired uv
divergences at one loop. The values of b� need to be tuned
in such a way that these uv divergences cancel. This is a
sign of the fact that the lattice regulator does not manage to
reproduce the cancellation of uv divergences that occurs in
dimensional regularization.
An important feature of the proposed discretized

action and measure is that they are invariant under the full
Uð1Þ × SUð4Þ internal symmetry group. This is in contrast
to the discretization previously presented in [18]. The key
ingredient is the use of forward and backward discrete
derivatives for both the bosonic and the fermionic part of
the action. This is normally avoided for fields that satisfy
first-order equations of motion (usually fermions), since it
breaks parity and time reversal. In our case, this is not an
issue because these symmetries are already broken in the
continuum action. In [18], instead, the symmetric derivative
was used and, as in lattice QCD, a Wilson-like term was
included to cure the resulting doubling problem, while
breaking either the Uð1Þ or the SUð4Þ symmetry.

III. PERTURBATIVE EXPANSION

On the lattice as in the continuum, the perturbative series
is obtained by expanding the action around one of its
minima. The SUð4Þ symmetric point (all fields vanish in
this point) is a singularity for the action because of the
terms proportional to inverse powers of the radial coor-
dinate z. As a consequence the minimum of the action must
spontaneously break the internal symmetry. In the con-
tinuum an absolute minimum of the action is given by
x ¼ x� ¼ 0 and zM ¼ δM6, and any other absolute

minimum is obtained by acting with the SUð4Þ symmetry.
One can easily check that these minima are also relative
minima for the discretized action. We parametrize the
fluctuations around the chosen minimum which is the
same way as it is done in the continuum [8]

z¼ eϕ; za ¼ eϕ
ya

1þ 1
4
y2
;

z6¼ eϕ
1− 1

4
y2

1þ 1
4
y2
; y2 ¼

X5
a¼1

ðyaÞ2; a¼ 1;…;5: ð3:1Þ

In terms of the new variables ϕ and ya, the path-integral
measure over the zM fields reads

Y6
M¼1

dzM ¼ e
P

s;t
f6ϕþ5 log ð1þy2

4
Þgdϕ

Y5
a¼1

dya: ð3:2Þ

The contribution of the Jacobian determinant above can be
conveniently included in the effective action

Seff ¼ Scusp −
X
s;t

�
6ϕþ 5 log

�
1þ y2

4

�	
; ð3:3Þ

in terms of which expectation values of observables read

hAi ¼ 1

Zeff

Z
dxdx�dϕd5yd4θd4θ†d4ηd4η†e−SeffA: ð3:4Þ

Notice that the sum in the contribution to the effective
action of the Jacobian determinant does not come with the
corresponding a2 factor, which means that in the naive
continuum limit it diverges like a−2. This should not be
surprising: in the continuum this term would be propor-
tional to δ2ð0Þ which yields a quadratic divergence in a
hard-cutoff regularization (but it is set to zero in dimen-
sional regularization).
The perturbative expansion, i.e., the expansion in powers

of g−1, is obtained by splitting the action Seff ¼ S0 þ Sint,
where S0 contains all quadratic terms in the fields with a
coefficient proportional to g, andSint contains all other terms.
Notice that Sint also contains g-independent quadratic terms
which come from the expansion of the Jacobian determinant.
We focus here on the leading-order quadratic action

S0 ¼ ga2
X
s;t

�����bþ∂̂txþ
m
2
x

����2 þ ����b−∂̂sx −
m
2
x

����2 þ b2þð∂̂tyaÞ2 þmbþya∂̂tya þ ð∂̂syaÞ2

þ b2þð∂̂tϕÞ2 þmbþϕ∂̂tϕþ ð∂̂sϕÞ2 þm2ϕ2 þ 2iðθi∂̂tθi þ ηi∂̂tηiÞ

þ 2iηiðρ6Þij
�
bþ∂̄sθ

j −
m
2
θj
�
þ 2iηiðρ6†Þij

�
bþ∂̄sθj −

m
2
θj

�	
: ð3:5Þ
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The propagators are conveniently constructed by
going in momentum space. Given a function fðs; tÞ in
coordinate space, we denote by f̃ðp0; p1Þ the correspond-
ing function in momentum space. On the lattice, the two are
related by

fðs; tÞ ¼
Z

π=a

−π=a

d2p
ð2πÞ2 e

ip0tþip1sf̃ðp0; p1Þ;

f̃ðp0; p1Þ ¼
X
s;t

a2e−ip0t−ip1sfðs; tÞ: ð3:6Þ

The function f̃ðp0; p1Þ is periodic in both components with
period 2π=a, and momentum integrals are always restricted
to −π=a < pk < π=awhich shows explicitly that the lattice
effectively enforces a hard cutoff in momentum space. As
in the continuum, discrete derivatives are diagonalized in
Fourier space, and read

ĝ∂μfðp0; p1Þ ¼ ip̂μf̃ðp0; p1Þ;ḡ∂μfðp0; p1Þ ¼ ip̂�
μf̃ðp0; p1Þ ð3:7Þ

where we have defined

p̂μ ¼ ei
apμ
2
2

a
sin

apμ

2
: ð3:8Þ

Introducing the collective bosonic and fermionic fields

Φ ¼ ðRex; Imx; y1;…; y5;ϕÞt;
Ψ ¼ ðθ1;…; θ4; θ1;…; θ4; η1;…; η4; η1;…; η4Þ; ð3:9Þ

the free action (3.5) can be written in momentum space as

S0 ¼ g
Z

π=a

−π=a

d2p
ð2πÞ2 fΦ̃

tð−pÞKBðpÞΦ̃ðpÞ

þ Ψ̃tð−pÞKFðpÞΨ̃ðpÞg; ð3:10Þ
where KBðpÞ is an 8 × 8 diagonal matrix for which the
nonvanishing components given by

Kðn;nÞ
B ðpÞ ¼

8>><>>:
cþjp̂0j2 þ c−jp̂1j2 þ m2

2
if n ¼ 1; 2

cþjp̂0j2 þ jp̂1j2 if n ¼ 3;…; 7

cþjp̂0j2 þ jp̂1j2 þm2 if n ¼ 8

;

ð3:11Þ
where we have defined the combinations

c� ¼ b2� ∓ amb�
2

; ð3:12Þ

and KFðpÞ is an 16 × 16 matrix given by

KFðpÞ ¼

0BBBBB@
0 −p̂�

0I4×4 −ρ6ðbþp̂1 − im
2
Þ 0

−p̂0I4×4 0 0 ρ6ðbþp̂1 − im
2
Þ

ρ6ðbþp̂�
1 þ im

2
Þ 0 0 −p̂�

0I4×4

0 −ρ6ðbþp̂�
1 þ im

2
Þ −p̂0I4×4 0

1CCCCCA; ð3:13Þ

where we have used the identities ρ6 ¼ ðρ6Þ� ¼ −ðρ6Þt ¼
−ρ6† which are valid in the chosen representation (see
Appendix A). The two matrices satisfy Kt

BðpÞ ¼ KBð−pÞ
and Kt

FðpÞ ¼ −KFð−pÞ.
Propagators in momentum space are defined by the

entries of the inverse of these matrices up to trivial
prefactors. The matrix KBðpÞ is diagonal and therefore
easily inverted, while the matrix KFðpÞ is inverted by
observing that

KFðpÞ2 ¼
�
jp̂0j2 þ cþjp̂1j2 þ

m2

4

�
I16×16: ð3:14Þ

The propagators are then easily calculated:

X
σ

a2e−ipσhxðσÞx�ð0Þi0¼
1

g
1

cþjp̂0j2þc−jp̂1j2þm2

2

; ð3:15Þ

X
σ

a2e−ipσhyaðσÞybð0Þi0 ¼
1

2g
δab

cþjp̂0j2 þ c−jp̂1j2
; ð3:16Þ

X
σ

a2e−ipσhϕðσÞϕð0Þi0¼
1

2g
1

cþjp̂0j2þjp̂1j2þm2
; ð3:17Þ

X
σ

a2e−ipσhθiðσÞθjð0Þi0 ¼ −
1

2g
p̂�
0δ

j
i

jp̂0j2 þ cþjp̂1j2 þ m2

4

;

ð3:18Þ

X
σ

a2e−ipσhηiðσÞηjð0Þi0 ¼ −
1

2g
p̂�
0δ

j
i

jp̂0j2 þ cþjp̂1j2 þ m2

4

;

ð3:19Þ
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X
σ

a2e−ipσhθiðσÞηjð0Þi0 ¼ −
1

2g

ρ6ijðbþp̂1 − im
2
Þ

jp̂0j2 þ cþjp̂1j2 þ m2

4

;

ð3:20Þ
X
σ

a2e−ipσhθiðσÞηjð0Þi0 ¼ −
1

2g

ðρ6†Þijðbþp̂1 − im
2
Þ

jp̂0j2 þ cþjp̂1j2 þ m2

4

;

ð3:21Þ

where σ is a shorthand notation for ðs; tÞ. All other two-
point functions vanish. The denominators in the propaga-
tors reduce to a particular simple form if we choose c� ¼ 1,
which is obtained for b� ¼ b̄� with

b̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
am
4

�
2

s
� am

4
: ð3:22Þ

As we will see in the following sections, this choice is also
the correct one to reproduce continuum results for the
observables we consider in this paper.
Let us turn now to the interaction vertices. The expansion

of Seff in powers of the fields x, ϕ, y, θ, and η is fairly trivial
except for terms involving the forward derivative of zM. We
observe that

∂̂kzMðxÞ ¼
eϕðxþaekÞuMðxþ aekÞ − eϕðxÞuMðxÞ

a

¼ eϕðxÞþa∂̂kϕðxÞ½uMðxÞ þ a∂̂kuMðxÞ� − eϕðxÞuMðxÞ
a

¼ eϕðxÞ
�
∂̂kϕðxÞuMðxÞ þ ∂̂kuMðxÞ

þ ea∂̂kϕðxÞ − 1 − a∂̂kϕðxÞ
a

uMðxÞ
	
: ð3:23Þ

The first two terms in the last expression survive in the naive
a → 0 limit, while the third term takes into account the
violation of the Leibniz and chain rules at finite lattice
spacing. By expanding the exponentials, one obtains
terms that have an arbitrary number of powers of ∂̂kϕðxÞ
multiplied by explicit powers ofa. The number of derivatives
and the number of factors of a are related by dimensional
analysis. Analogously one finds the following formulas:

∂̂ku6ðxÞ ¼
−2ycðxÞ∂̂kycðxÞ − a½∂̂kycðxÞ�2

2f1þ 1
4
½ycðxÞ þ a∂̂kycðxÞ�2gf1þ 1

4
yðxÞ2g ;

ð3:24Þ

∂̂kubðxÞ¼
−2ycðxÞ∂̂kycðxÞ−a½∂̂kycðxÞ�2

4f1þ 1
4
½ycðxÞþa∂̂kycðxÞ�2gf1þ 1

4
yðxÞ2gy

bðxÞ:

ð3:25Þ

Again, by expanding these expressions in y, one obtains
terms an arbitrary number of powers of ∂̂kycðxÞ multiplied
by explicit powers of a. The number of derivatives
and the number of factors of a are related by dimensional
analysis.
By inspecting all terms one sees that, at each order in the

perturbative expansion, the interaction Lagrangian density
in x is a polynomial of the fields ΦðxÞ, ΨðxÞ, their first
derivatives ∂̂ΦðxÞ, ∂̂ΨðxÞ, ∂̄ΨðxÞ, the lattice spacing a,
and the mass m. We will not write all vertices explicitly;
however, the following observations will be useful
later on.

(i) Possible vertices are constrained by dimensional
analysis: the boson fields have mass dimension 0,
the fermion fields have mass dimension 1=2, the
discrete derivatives and m have mass dimension 1,
and the lattice spacing has mass dimension −1,
while vertices must have dimension 2.

(ii) The considered action generates only terms that are
proportional to m0, m1, or m2.

(iii) Vertices exist only with 0, 2, or 4 fermion fields.
(iv) The considered action generates only terms that are

proportional to ap with p ≥ −2. In particular terms
proportional to a−2 are generated by the Jacobian
determinant in Eq. (3.3).

IV. SUPERFICIAL DEGREE OF DIVERGENCE

The goal of this section is to show that the lattice-
discretized theory is nonrenormalizable by power counting.
To this end, we need to calculate the superficial degree of
divergence of the generic Feynman diagram.
Feynman integrands on the lattice are periodic functions

in each component of the momenta, with period 2π=a. In
particular they are not rational functions as in the con-
tinuum, but rational trigonometric functions of the
momenta. As a consequence, the problem of establishing
an appropriate power counting on the lattice is subtler than
in the continuum, and it was solved completely by by Reisz
[46] (see also e.g., Refs. [47,48]). Following Reisz, given a
function F of the loop momenta qi¼1;…;L, of the external
momenta pi¼1;…;E, and of the lattice spacing a, the super-
ficial degree of divergence degF of the function F is
defined by means from its asymptotic behavior

Fðλq; p;m; a=λÞ ¼λ→∞
CFλ

degF þOðλdegF−1Þ; ð4:1Þ

where CF ≠ 0. It is straightforward to show that
degðFGÞ ¼ degF þ degG and degðF−1Þ ¼ − degF. As
in the continuum, each loop integral contributes with a
superficial degree of divergence 2.
Denote by Θ̃αðpÞ the generic (bosonic or fermionic) field

in momentum space. We consider here the connected
n-point function in momentum space
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hΘ̃α1ðp1Þ � � � Θ̃αEðpEÞic

¼ GαðpÞð2πÞ2
X
n⃗∈Z2

δ2
�
2π

a
n⃗ −

XE
i¼1

pi

�
: ð4:2Þ

In this formula, we have used the fact that momentum
conservation on the lattice takes the form of a delta comb
which accounts for the 2π=a periodicity in momentum
space. As in the continuum, the perturbative expansion of
GαðpÞ has a representation in terms of a sum of Feynman
integrals. We introduce the amputated n-point function

Gamp
α1;…;αEðp1;…; pEÞ

¼
X

β1;…;βE

Gβ1;…;βEðp1;…; pEÞ
YE
e¼1

½D−1ðpeÞ�αeβe ; ð4:3Þ

where DðpÞ is the propagator matrix. Gamp
α ðpÞ has a

representation in terms of a sum of Feynman integrals in
which the external lines have been amputated, and we will
refer to them as external legs.
Since lines that do not belong to any loop do not

contribute to the superficial degree of divergence, we can
restrict our analysis to diagrams that do not have such lines,
i.e., one-particle irreducible diagrams. Therefore consider
the generic one-particle irreducible Feynman diagram con-
tributing to Gamp

α ðpÞ, and let A be the corresponding
Feynman integral. Wewill denote byEB andEF the number
of external bosonic and fermionic legs respectively, and by
IB and IF the number of internal bosonic and fermionic lines
respectively. Let li¼1;…;I be themomentum flowing in the ith
internal line (with I ¼ IB þ IF), and let pe¼1;…;E be the
momentum flowing in the eth external leg (with
E ¼ EB þ EF). The Feynman integral has the general form

A ¼
Z π

a

−π
a

d2q1
ð2πÞ2 � � �

Z π
a

−π
a

d2qL
ð2πÞ2Wðp̂; l̂;m; aÞ

YI
i¼1

Diðl̂i;m; aÞ;

ð4:4Þ

whereDi is the propagator associated to the ith internal line,
W is the product of all vertices, andL is the number of loops.
The internal momentum li can always be written as

li ¼ Pi þQi where Pi is a linear combination of external
momenta, and Qi is a linear combination of loop momenta.
Also, because of one-particle irreducibility, every internal
line belongs to a loop, so Qi is not identically zero. The
propagators are functions of l̂i, whose degree of divergence
is determined by looking at the asymptotic behavior

l̂i ¼ ei
aðPiþQiÞ

2
2

a
sin

aðPiþQiÞ
2

⟶
q→λq
a→a=λ

ei
aðPiþλQiÞ

2λ
2λ

a
sin

aðPiþλQiÞ
2λ

¼ λQ̂iþOðλ0Þ: ð4:5Þ

It follows easily that the degree of divergence of
bosonic and fermionic propagators are the same as in
the continuum, i.e.,

degDi ¼
�−2 if i is a bosonic line

−1 if i is a fermionic line
: ð4:6Þ

The contribution to the degree of divergence of the
Feynman integral of all propagators is simply

deg
Y
i

Di ¼
X
i

degDi ¼ −2IB − IF: ð4:7Þ

Each vertex contributes to the function W with
(i) some integer power of a and m, coming from the

explicit dependence on these two parameters of the
interaction Lagrangian, as discussed in Sec. III;

(ii) a product of some p̂e where pe is the momentum
flowing in the eth amputated external leg, coming
from the discrete derivatives acting on fields in
vertices which are Wick-contracted to external
fields;

(iii) a product of some l̂i where li is the momentum
flowing in the ith internal line, coming from the
discrete derivatives acting on fields in vertices which
are Wick-contracted to fields in other vertices or
possibly the same vertex.

Notice that the degree of divergence of p̂e is determined by
the asymptotic behavior

p̂e ¼ ei
ape
2
2

a
sin

ape

2
⟶
q→λq
a→a=λ

ei
ape
2λ
2λ

a
sin

ape

2λ

¼ λ0pe þOðλ−1Þ: ð4:8Þ

Let Pa and Pm be the total number of a and m factors
respectively, and let DE and DI be the total number of
discrete derivative acting on external and internal lines
respectively. Using Eqs. (4.5) and (4.8) one derives the
asymptotic behavior

Wðp̂; l̂;m; aÞ⟶
q→λq
a→a=λ

Wðλ0p; λq̂;m; a=λÞ
�
1þO

�
1

λ

��
¼ λDI−PaWðp; q̂;m; aÞ

�
1þO

�
1

λ

��
; ð4:9Þ

which implies

degW ¼ DI − Pa: ð4:10Þ

The superficial degree of divergence of the considered
Feynman integral is given by
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degA ¼ −2Lþ degW þ
X
i

degDi

¼ 2LþDI − Pa − 2IB − IF: ð4:11Þ

It is also interesting to calculate the mass dimension of
the Feynman integral. Notice that

dimDi ¼
�−2 if i is a bosonic line

−1 if i is a fermionic line
; ð4:12Þ

dimW ¼ Pm − Pa þDI þDE; ð4:13Þ

which yields

dimA ¼ 2Lþ dimW þ
X
i

dimDi

¼ 2Lþ Pm − Pa þDI þDE − 2IB − IF: ð4:14Þ

On the other hand, A is a term in the perturbative expansion
of Gamp

α ðpÞ. The mass dimension of the amputated n-point
function is calculated by observing that the mass dimension
of a bosonic field in Fourier space is −2, the mass
dimension of a fermionic field in Fourier space is −3=2,
and the mass dimension of the momentum-conservation
delta is −2. Using Eqs. (4.2) and (4.3), one obtains

dimA¼ dimGamp

¼ dimGþ2EBþEF ¼−2EB−
3

2
EFþ2þ2EBþEF

¼ 2−
1

2
EF: ð4:15Þ

Combining with Eqs. (4.11) and (4.14) we get our final
formula for the degree of divergence of A:

degA ¼ 2 −
1

2
EF − Pm −DE: ð4:16Þ

This formula shows that the degree of divergence of one-
particle irreducible diagrams cannot be larger than two.
However, since the degree of divergence does not depend
on the number of external bosonic legs, at any loop order
the number of divergent diagrams is infinite. This implies
that one needs infinitely many counterterms at any loop
order to cancel the UV divergences. Without extra con-
straints on the counterterms one would conclude that the
theory is nonrenormalizable.
Since the Feynman diagrams with Pa ¼ 0 are the same

ones that appear in a continuum regularization, the same
conclusion holds in this case. However it is known that, in
dimensional regularization, nontrivial cancellations of uv
divergences happen, effectively showing that the uv counter-
terms are highly constrained. Even though some general
argument exists for the uv finiteness of the Green-Schwarz

AdS5 × S5 string before any gauge fixing, we are not aware
of a complete derivation of such constraints in the gauge-
fixed theory, parametrized around the null-cusp background.
The question of whether a similar cancellation of UV

divergences happens in the lattice discretization is a
legitimate one. We will see with a couple of examples
that unfortunately this does not work as well as in dimen-
sional regularization: a certain amount of fine-tuning is
needed in order to reproduce the continuum results.

V. SOME CALCULATIONS

A. Cusp anomaly

The partition function of the lattice-discretized theory is
given by

Zcusp ¼
Z

dΦdΨe−Seff ð5:1Þ

in terms of the collective fields Φ and Ψ that are defined in
Eq. (3.9) and of the effective action Seff is defined in
Eq. (3.3). Since the logarithm of the partition function is
extensive, a complete calculation is performed by consid-
ering a finite worldsheet with area V2. At this point the
integral defining the partition function is finite and can be
analytically calculated order by order in the perturbative
expansion. Finally one can define the free energy density in
the infinite-volume limit, i.e.,

ρðg;m; aÞ ¼ − lim
V2→∞

1

V2

logZcuspðg;m; a; V2Þ: ð5:2Þ

As in every statistical system, the free energy is defined up
to an additive constant and only free-energy differences
have physical meaning. It is also interesting to notice that
rescaling the integration measure in each lattice point
dΦðs; tÞdΨðs; tÞ → βdΦðs; tÞdΨðs; tÞ is equivalent to

rescaling Zcusp → β
V2
a2Zcusp, i.e., to redefining ρ →

ρ − a−2 log β. This shows that quadratic divergences in
the free energy are immaterial and can be removed by
rescaling the integration measure. We propose to identify
the following derivative of the free-energy density with the
cusp anomalous dimension

fðg;m; aÞ ¼ 4

m
∂
∂m ρðg;m; aÞ: ð5:3Þ

It is straightforward to show that this derivative coincides
with the standard definition in dimensional regularization,
and it is also free from the normalization ambiguity.5

5Notice that in Eq. (1.1) the parameterm is set equal to 1. In the
continuum, the m dependence can be reintroduced by simple
dimensional analysis, yieldingZcusp ¼ e−

fðgÞ
8
m2V2 and consequently

ρ ¼ fðgÞ
8
m2, which is indeed consistent with the definition (5.3).
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At leading order the path integral defining the partition function reduces to a Gaussian integral, which yields

ρðg;m; aÞ ¼ g
m2

2
−

4

a2
logð2πÞ þ 1

2

Z
π=a

−π=a

d2q
ð2πÞ2 log

�
detKBðqÞ
detKFðqÞ

�
þOðg−1Þ: ð5:4Þ

The determinants are calculated from the explicit expressions of KB and KF given in Sec. III, yielding

detKBðqÞ
detKFðqÞ

¼ ðcþjq̂0j2 þ c−jq̂1j2 þ m2

2
Þ2ðcþjq̂0j2 þ jq̂1j2Þ5ðcþjq̂0j2 þ jq̂1j2 þm2Þ

ðjq̂0j2 þ cþjq̂1j2 þ m2

4
Þ8 : ð5:5Þ

The calculation of ρ and its small-a expansion can be
reduced to the following general integral:Z

π=a

−π=a

d2q
ð2πÞ2 log a

2

�X
i

ð1þ aδiÞjp̂ij2 þM2

	
¼ 1

a2
Ið0;0Þ−2 þ δ1 þ δ2

2a
−
δ21 þ δ22

4
þ ðδ1 − δ2Þ2

4π

−
M2

4π
logðaMÞ2 þM2Ið0;0Þ0 þOða log aÞ; ð5:6Þ

where Ið0;0Þ−2 ≃ 1.166 and Ið0;0Þ0 ≃ 0.355 are numerical con-
stants. The derivation of the above asymptotic expansion
and the precise definition of the constants are given in
Appendix B 1. By using the above asymptotic expansion,
with the convention c� ¼ 1þ amδc�, after a lengthy but
straightforward calculation, one gets

ρðg;m;aÞ ¼ g
m2

2
−
4 logð2πÞ

a2
þmδc−

2a
−
3m2 log2

8π
−
m2δc2−

4

þm2δc−ðδc− − 2δcþÞ
4π

þOða logaÞ þOðg−1Þ;
ð5:7Þ

and, correspondingly, for the cusp anomaly:

fðg;m;aÞ¼ 4gþ δc−
2am

−
3 log2
π

−2δc2−þ
2δc−ðδc− −2δcþÞ

π

þOða logaÞþOðg−1Þ: ð5:8Þ

Notice that with the naive choice b� ¼ 1, which corre-
sponds to δc� ¼∓1=2, the cusp anomaly contains a linear

divergence. On the other hand, with the special choice
b� ¼ b̄� which corresponds to c� ¼ 1 and δc� ¼ 0, the
linear divergence is canceled, and we obtain the same result
as in dimensional regularization:

fðg;m; 0Þ ¼ 4g −
3 log 2

π
þOðg−1Þ: ð5:9Þ

B. One-point functions

Let us turn to the one-point functions of the perturbative
fields. Notice that hxi ¼ 0 because of the Uð1Þ symmetry,
and hyai ¼ 0 because of the SOð5Þ ⊂ SOð6Þ ≃ SUð4Þ
which leaves the perturbative vacuum invariant. ϕ is the
only field with a nonvanishing one-point function, which
has been calculated in dimensional regularization [8,43,49].
This one-point function, as well as any n-point function of
bare fields, is not expected to be uv finite. In fact it is known
that hϕi is uv divergent in dimensional regularization, and
we will see that it turns out to be uv divergent also in the
lattice regularization. The interest in this one-point function
lies in the fact that it appears as a subdiagram in any other
n-point function, and ultimately its uv divergence contrib-
utes to any physical observable. We will give an example of
this mechanism in the next subsection.
There are two classes of vertices contributing to the one-

point function of ϕ: single-field vertices coming from the
measure

Sϕ ¼ −6
X
s;t

ϕ; ð5:10Þ

and three-field vertices coming from the action

Sϕ•• ¼ g
X
s;t

a2
�
−4ϕ

����b−∂̂sx −
m
2
x

����2 þ cþ∂̂tϕ∂̂tðϕ2Þ þ ∂̂sϕ∂̂sϕ
2 − 4ϕð∂̂sϕÞ2

þ 2cþ∂̂tya∂̂tðϕyaÞ − cþ∂̂tϕ∂̂tðy2Þ þ 2∂̂sya∂̂sðϕyaÞ − ∂̂sϕ∂̂sðy2Þ − 4ϕð∂̂syaÞ2

− 4iϕ

�
ηiðρ6Þij

�
bþ∂̄sθ

j −
m
2
θj
�
þ ηiðρ6†Þij

�
bþ∂̄sθj −

m
2
θj

��	
: ð5:11Þ
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Notice that the insertion of Sϕ produces a tree-level
diagram, while the insertion of Sϕ•• produces a one-loop
diagram. However, because of the mismatch in the power of
g in Sϕ and Sϕ••, all these diagrams contribute to the same
order in g, yielding

hϕi ¼ 3

gm2a2
þ 2

gm2

Z
π=a

−π=a

d2q
ð2πÞ2

c−jq̂1j2 þ m2

4

cþjq̂0j2 þ c−jq̂1j2 þ m2

2

−
1

2gm2

Z
π=a

−π=a

d2q
ð2πÞ2

cþjq̂0j2 − jq̂1j2
cþjq̂0j2 þ jq̂1j2 þm2

−
5

2gm2

Z
π=a

−π=a

d2q
ð2πÞ2

cþjq̂0j2 − jq̂1j2
cþjq̂0j2 þ jq̂1j2

−
8

gm2

Z
π=a

−π=a

d2q
ð2πÞ2

cþjq̂1j2 þ m2

4

jq̂0j2 þ cþjq̂1j2 þ m2

4

þOðg−2Þ: ð5:12Þ

With the special choice b� ¼ b̄�, i.e., c� ¼ 1, one can
use the symmetry of the integrals under p0 ↔ p1 exchange
to simplify

hϕi ¼ −
1

g

Z
π=a

−π=a

d2q
ð2πÞ2

1

jq̂j2 þ m2

4

þOðg−2Þ

¼ 1

g

�
1

4π
log

ðamÞ2
4

þ 1

4π
− Ið0;0Þ0 þOða logaÞ

	
þOðg−2Þ; ð5:13Þ

which is logarithmically divergent, as one can explicitly see
by using the asymptotic expansion given in Appendix B 2.

The definition of the numerical constant Ið0;0Þ0 ≃ 0.355 is
given in Appendix B 1. Notice that the measure, fermion-
loop and x-loop contributions are separately quadratically
divergent, and the cancellation of these divergences is
highly nontrivial.
In the general case c�¼1þðamÞδc�where δc�¼Oða0Þ,

one can again use the asymptotic expansions given in
Appendix B 2, and after a lengthy calculation one gets

hϕi ¼ 1

g

�
−8δcþ þ δc−

πa
þ 1

4π
log

ðamÞ2
4

þ 1

4π
− Ið0;0Þ0 þ 8δc2þ − δc2−

2π
þOða log aÞ

	
þOðg−2Þ: ð5:14Þ

Notice that the naive choice b� ¼ 1 corresponds to the
choice δc� ¼∓1=2 which yields indeed a linear divergence
for hϕi:

hϕi ¼ 1

g

�
9

2πa
þOðlogaÞ

	
þOðg−2Þ: ð5:15Þ

C. Two-point function

We turn now to the two-point function of the field x,
which we calculate at one loop. We will use the two-point
function to extract the dispersion relation of the x particle
propagating on the worldsheet. In dimensional regulariza-
tion and at one loop [43], both the two-point function and
the dispersion relation turn out to be uv finite without any
need of renormalization. We will see that this is true also at
one loop in lattice perturbation theory, provided that one
has chosen c� ¼ 1. The naive choice b� ¼ 1 generates uv
divergences in the dispersion relation. Whether these
divergences can be eliminated with a renormalization
procedure is a valid question.
There are two classes of vertices contributing to the two-

point function of x at one loop: three-field vertices

Sxx�• ¼ g
X
s;t

a2
�
−4ϕ

����b−∂̂sx −
m
2
x

����2
þ 2ηiρ6ijη

j

�
b−∂̂sx −

m
2
x

�
− 2ηiðρ6†Þijηj

�
b−∂̂sx� −

m
2
x�
�	

; ð5:16Þ

and four-field vertices

Sxx�•• ¼ 8g
X
s;t

a2ϕ2

����b−∂̂sx −
m
2
x

����2; ð5:17Þ

combined to give Feynman diagrams with the three differ-
ent topologies illustrated in Fig. 1. Notice that the tadpole
contribution will be proportional to hϕi.
On general grounds one sees that the two-point function

has the following form:

hx̃ðpÞx�ð0Þi ¼ 1

g

�
cþjp̂0j2 þ c−jp̂1j2 þ

m2

2

þ 1

g

�
c−jp̂1j2 þ

m2

4

�
ΠaðpÞ þOðg−2Þ

	
−1
:

ð5:18Þ

FIG. 1. Topologies of diagrams contributing to the two-point
function at one loop.
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The factor ðc−jp̂1j2 þ m2

4
Þ comes from the fact that, in all interaction vertices, x always appears in the combination

ðb−∂̂sx − m
2
xÞ or its complex conjugate. The function ΠaðpÞ has a representation in terms of amputated Feynman diagrams

and it is explicitly given by

ΠaðpÞ ¼ −4ghϕi þ 4

Z
π=a

−π=a

d2q
ð2πÞ2

1

cþjq̂0j2 þ jq̂1j2 þm2

− 8

Z
π=a

−π=a

d2q
ð2πÞ2

c−jq̂1j2 þ m2

4

cþjq̂0j2 þ c−jq̂1j2 þ m2

2

1

cþj dpþ q0j2 þ j dpþ q1j2 þm2

− 8

Z
π=a

−π=a

d2q
ð2πÞ2

q̂0
jq̂0j2 þ cþjq̂1j2 þ m2

4

dpþ q�0
j dpþ q0j2 þ cþj dpþ q1j2 þ m2

4

: ð5:19Þ

All integrals in the above formula are logarithmically divergent, while the term proportional to hϕi contains in general a
linear divergence. Up to terms that vanish in the a → 0 limit, one can replace c� ¼ 1 in the above integrals, obtaining the
simpler expression

ΠaðpÞ ¼ −4ghϕi þ 4

Z
π=a

−π=a

d2q
ð2πÞ2

1

jq̂j2 þm2
− 8

Z
π=a

−π=a

d2q
ð2πÞ2

jq̂1j2 þ m2

4

jq̂j2 þ m2

2

1

j dpþ qj2 þm2

− 8

Z
π=a

−π=a

d2q
ð2πÞ2

q̂0
jq̂j2 þ m2

4

dpþ q�0
j dpþ qj2 þ m2

4

þOða logaÞ: ð5:20Þ

As in the continuum, the leading divergence of the above
integrals does not depend on the external momentum;
therefore, the subtracted quantity ΔΠaðpÞ ¼ ΠaðpÞ −
Πað0Þ has a finite a → 0 limit given by the corresponding
continuum integrals, i.e.,

ΔΠ0ðpÞ¼−8
Z

∞

−∞

d2q
ð2πÞ2

q21þm2

4

q2þm2

2

�
1

ðpþqÞ2þm2
−

1

q2þm2

	
−8

Z
∞

−∞

d2q
ð2πÞ2

q0
jq̂j2þm2

4

�
p0þq0

ðpþqÞ2þm2

4

−
q0

q2þm2

4

	
þOðalogaÞ; ð5:21Þ

while all the divergences are contained in

Πað0Þ ¼ −4ghϕi − 4

Z
π=a

−π=a

d2q
ð2πÞ2

1

jq̂j2 þ m2

4

þ 1

π

þOða log aÞ; ð5:22Þ

where we have used the symmetry of the integrals under
p0 ↔ p1 exchange to simplify them.
With the choice c� ¼ 1, using Eq. (5.13) one immedi-

ately sees that all divergences cancel andΠ0ð0Þ ¼ 1=π. The
two-point function is finite in the continuum limit and

lim
a→0

hx̃ðpÞx�ð0Þi

¼ 1

g

�
p2 þm2

2
þ 1

g

�
p2
1 þ

m2

4

�
Π0ðpÞ þOðg−2Þ

	−1
:

ð5:23Þ

The two-point function has poles at p0 ¼ �iEðp1Þ for
every value of p1, where Eðp1Þ is the energy of a single
excitation with the quantum numbers of the field x,
propagating on the worldsheet with momentum p1. In
the continuum limit this is found to be

Eðp1Þ2 ¼p2
1þ

m2

2
þ1

g

�
p2
1þ

m2

4

�
Π0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þ

m2

2

r
;p1

�
þOðg−2Þ

¼p2
1þ

m2

2
−

1

gm2

�
p2
1þ

m2

4

�
2

þOðg−2Þ; ð5:24Þ

where we have used the on-shell value of Π0 (B29). The
obtained dispersion relation coincides6 with the result
in [43].
However in the general case c� ¼ 1þ ðamÞδc� where

δc� ¼ Oða0Þ, Πað0Þ and Eðp1Þ inherit the linear diver-
gence from hϕi. Using Eq. (5.14) one obtains

6To compare with [43], notice that one has to redefine the
worldsheet coordinates, resulting in square masses of the fluc-
tuations rescaled with a factor of 4.
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Πað0Þ ¼
32δcþ − 4δc−

πa
þ 1 − 16δc2þ þ 2δc2−

π

þOða log aÞ: ð5:25Þ

For instance, for the naive choice b� ¼ 1, which corre-
sponds to δc� ¼∓1=2, one obtains for the dispersion
relation

Eðp1Þ2 ¼ p2
1 þ

m2

2
þ 1

g

�
p2
1 þ

m2

4

��
−
18

πa
þOðlog aÞ

�
þOðg−2Þ: ð5:26Þ

It is interesting to notice that, once we have set b� ¼ 1, the
divergence in the dispersion relation cannot be eliminated
by renormalizing the remaining available parameters, i.e., g
and m. In other words, the choice b� ¼ 1 is not stable
under renormalization. On the other hand, if one allows the
coefficients b� to be renormalized along withm and g, then
the divergences in the dispersion relation are eliminated
e.g., by choosing

bþ ¼ 1þ 1

gR

amR
8

2þ amR
2

�
Πað0Þ −

1

π

�
; ð5:27Þ

b− ¼ 1 −
1

gR

1þ 5amR
8

2þ amR
2

�
Πað0Þ −

1

π

�
; ð5:28Þ

m2 ¼ m2
R

�
1þ 1

2gR

�
Πað0Þ −

1

π

��
; ð5:29Þ

g ¼ gR½1þOðg−1Þ�: ð5:30Þ

This choice yields a dispersion relation in the continuum
limit of the same form as Eq. (5.24), except that the massm
needs to be replaced by its renormalized counterpart mR.
One could also see that the one-loop renormalization of the
coupling constant can be chosen in such a way that the cusp
anomaly be finite. With this discussion we do not want to
imply that the chosen lattice theory is renormalizable (we
do not know this). However we conclude that, if the lattice
theory is renormalizable, then it is not sufficient to renorm-
alizem and g, one also needs to introduce extra coefficients
in the action and either fine-tune their tree-level values, or
renormalize them.
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APPENDIX A: ρ MATRICES

In the action (2.5) the matrices ρM appear, which are off-
diagonal blocks of the six-dimensional Dirac matrices in
chiral representation

γM ≡
�

0 ρM†

ρM 0

�
¼

�
0 ðρMÞij

ðρMÞij 0

�
; ðA1Þ

ρMij ¼ −ρMji ; ðρM†ÞilρNlj þ ðρN†ÞilρMlj ¼ 2δMNδij: ðA2Þ

The two off-diagonal blocks, carrying upper and lower
indices respectively, are related by ðρMÞij ¼ −ðρMij Þ� ≡
ðρMji Þ�, so that the block with upper indices, ðρM†Þij, is
the conjugate transpose of the block with lower indices.
A possible explicit representation is

ρ1ij ¼

0BBB@
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1CCCA; ρ2ij ¼

0BBB@
0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

1CCCA;

ρ3ij ¼

0BBB@
0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1CCCA;

ρ4ij ¼

0BBB@
0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

1CCCA; ρ5ij ¼

0BBB@
0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

1CCCA;

ρ6ij ¼

0BBB@
0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1CCCA: ðA3Þ

The SOð6Þ generators are built out of the ρ matrices via

ρMNi
j ≡ 1

2
½ðρM†ÞilρNlj − ðρN†ÞilρMlj �: ðA4Þ

BLIARD, COSTA, FORINI, and PATELLA PHYS. REV. D 105, 074507 (2022)

074507-12



APPENDIX B: ASYMPTOTIC EXPANSIONS
OF RELEVANT INTEGRALS

1. Cusp anomaly

We want to calculate the small-a expansion of the
following integral:

FðaÞ ¼
Z

π=a

−π=a

d2q
ð2πÞ2 log

�
a2
�X

i

αijp̂ij2 þM2

�	
¼ 1

a2
logðaMÞ2 þ

Z
π=a

−π=a

d2q
ð2πÞ2 log

P
iαijp̂ij2 þM2

M2
:

ðB1Þ
Using the Schwinger-time representation of the logarithm,
i.e.,

log

P
iαijp̂ij2 þM2

M2

¼ −
Z

∞

0

ds
s
fe−s½a2

P
i
αijq̂ij2þðaMÞ2� − e−sðaMÞ2g; ðB2Þ

and the change of variable z ¼ aq, we obtain

FðaÞ ¼ 1

a2
logðaMÞ2

−
1

a2

Z
∞

0

ds
s
e−sðaMÞ2fKðα1sÞKðα2sÞ − 1g; ðB3Þ

with the definition

KðsÞ ¼
Z

π

−π

dz
2π

e−4ssin
2z
2 ¼ 1ffiffiffiffiffiffiffiffi

4πs
p þOðs−2Þ: ðB4Þ

The function KðsÞ is infinitely differentiable in ½0;∞Þ, and
its large-s asymptotic behavior is obtained by means of a
standard saddle-point analysis. We split the integral in
Eq. (B3) in two regions, and we write

FðaÞ¼ 1

a2
logðaMÞ2− 1

a2

Z
1

0

dse−sðaMÞ2 Kðα1sÞKðα2sÞ−1

s

−
1

a2

Z
∞

1

ds
s
e−sðaMÞ2Kðα1sÞKðα2sÞ

þ 1

a2
Γð0;ðaMÞ2Þ: ðB5Þ

We also introduce the auxiliary function

GðsÞ ¼
Z

∞

s

dσ
σ
Kðα1σÞKðα2σÞ

¼ 1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p
s
þOðs−1Þ: ðB6Þ

Thanks to the asymptotic behavior (B4), the above integral
is finite and its large-s asymptotic behaviour easily follows.

In terms of the auxiliary function, and after integration by
parts, the integral in the large-s region in Eq. (B5) reads

−
1

a2

Z
∞

1

ds
s
e−sðaMÞ2Kðα1sÞKðα2sÞ

¼ 1

a2

Z
∞

1

dse−sðaMÞ2G0ðsÞ

¼ −
1

a2
Gð1Þ þM2

Z
∞

1

dse−sðaMÞ2GðsÞ

¼ −
e−ðaMÞ2

a2
Gð1Þ þ M2

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p Γð0; ðaMÞ2Þ

þM2

Z
∞

1

dse−sðaMÞ2
�
GðsÞ − 1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p
s

	
: ðB7Þ

In the last step we have added and subtracted the leading
asymptotic behavior (B6). Bringing together Eqs. (B5) and
(B7), and expanding for small a, we obtain

FðaÞ ¼ 1

a2
I−2ðαÞ −

M2

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p logðaMÞ2 þM2I0ðαÞ

þOða2 logaÞ; ðB8Þ

with the definitions

I−2ðαÞ ¼ −γ −
Z

1

0

ds
Kðα1sÞKðα2sÞ − 1

s
−Gð1Þ; ðB9Þ

I0ðαÞ ¼ −
γ

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p þ
Z

1

0

dsKðα1sÞKðα2sÞ þGð1Þ

þ
Z

∞

1

ds

�
GðsÞ − 1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p
s

	
: ðB10Þ

By using the definition of GðsÞ and after some straightfor-
ward algebra, one also obtains the representation

I−2ðαÞ ¼ −γ −
Z

1

0

ds
Kðα1sÞKðα2sÞ − 1

s

−
Z

∞

1

ds
s
Kðα1sÞKðα2sÞ; ðB11Þ

I0ðαÞ ¼
1 − γ

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p þ
Z

1

0

dsKðα1sÞKðα2sÞ

þ
Z

∞

1

ds

�
Kðα1sÞKðα2sÞ −

1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p
s

	
: ðB12Þ

We are interested in Eq. (B8) with the special choice
αi ¼ 1þ aδi. By Taylor expanding Eq. (B8) in aδi, we
obtain
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FðaÞ¼ 1

a2
Ið0;0Þ−2 þδ1þδ2

a
Ið1;0Þ−2 þδ21þδ22

2
Ið2;0Þ−2 þδ1δ2I

ð1;1Þ
−2

−
M2

4π
logðaMÞ2þM2I0ð1;1ÞþOða logaÞ; ðB13Þ

with the definitions

Ið0;0Þ−2 ¼ I−2ð1; 1Þ

¼ −γ −
Z

1

0

ds
½KðsÞ�2 − 1

s
−
Z

∞

1

ds
s
½KðsÞ�2; ðB14Þ

Ið1;0Þ−2 ¼ ∂I−2
∂α1 ð1; 1Þ ¼ −

Z
∞

0

dsK0ðsÞKðsÞ

¼ −
1

2

Z
∞

0

ds
d
ds

½KðsÞ�2 ¼ 1

2
; ðB15Þ

Ið1;1Þ−2 ¼ ∂2I−2
∂α1∂α2 ð1;1Þ¼−

Z
∞

0

dss½K0ðsÞ�2¼−
1

2π
; ðB16Þ

Ið2;0Þ−2 ¼ ∂2I−2
∂α21 ð1; 1Þ ¼ −

Z
∞

0

dssK00ðsÞKðsÞ

¼
Z

∞

0

dsK0ðsÞ d
ds

½sKðsÞ�

¼
Z

∞

0

ds½K0ðsÞ�2 þ
Z

∞

0

dsK0ðsÞKðsÞ

¼ 1

2π
−
1

2
; ðB17Þ

Ið0;0Þ0 ¼ I0ð1; 1Þ

¼ 1 − γ

4π
þ
Z

1

0

ds½KðsÞ�2

þ
Z

∞

1

ds

�
½KðsÞ�2 − 1

4πs

	
: ðB18Þ

The unknown integrals can be calculated numerically,

yielding Ið0;0Þ−2 ≃ 1.166 and Ið0;0Þ0 ≃ 0.355.

2. One-point function

By taking the derivative with respect toM2 of both sides
of Eq. (B8), and by using the definition (B1), we obtainZ

π=a

−π=a

d2q
ð2πÞ2

1P
i αijp̂ij2 þM2

¼ −
1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p logðaMÞ2

−
1

4π
ffiffiffiffiffiffiffiffiffiffi
α1α2

p þ I0ðαÞ þOða2 log aÞ: ðB19Þ

Specializing to αi ¼ 1þ aδi and Taylor-expanding in aδi,
we obtainZ

π=a

−π=a

d2q
ð2πÞ2

1P
ið1þ aδiÞjp̂ij2 þM2

¼ −
1

4π
logðaMÞ2 − 1

4π
þ Ið0;0Þ0 þOða log aÞ: ðB20Þ

By applying the differential operator
P

i βi
∂
∂αi to both sides

of Eq. (B8), and by using the definition (B1), we obtainZ
π=a

−π=a

d2q
ð2πÞ2

P
i βijp̂ij2P

i αijp̂ij2 þM2

¼ 1

a2
X
i

βi
∂I−2
∂αi ðαÞ þ

M2ðβ1α2 þ β2α1Þ
8πðα1α2Þ3=2

logðaMÞ2

þM2
X
i

βi
∂I0
∂αi ðαÞ þOða2 log aÞ: ðB21Þ

Specializing to αi ¼ 1þ aδi and Taylor-expanding in aδi,
we obtain

Z
π=a

−π=a

d2q
ð2πÞ2

P
i βijp̂ij2P

ið1þ aδiÞjp̂ij2 þM2
¼ β1 þ β2

a2
Ið1;0Þ−2 þ β1δ1 þ β2δ2

a
Ið2;0Þ−2 þ β1δ2 þ β2δ1

a
Ið1;1Þ−2 þ β1δ

2
1 þ β2δ

2
2

2
Ið3;0Þ−2

þ β1δ
2
2 þ β2δ

2
1 þ 2ðβ1 þ β2Þδ1δ2

2
Ið2;1Þ−2 þM2ðβ1 þ β2Þ

8π
logðaMÞ2

þM2ðβ1 þ β2ÞIð1;0Þ0 þOða log aÞ; ðB22Þ

with the following definitions:

Ið2;1Þ−2 ðαÞ ¼ ∂3I−2
∂α21∂α2 ð1; 1Þ ¼ −

Z
∞

0

dss2K00ðsÞK0ðsÞ ¼ −
1

2

Z
∞

0

dss2
d
ds

½K0ðsÞ�2 ¼
Z

∞

0

dss½K0ðsÞ�2 ¼ 1

2π
; ðB23Þ
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Ið3;0Þ−2 ðαÞ¼ ∂3I−2
∂α21 ð1;1Þ¼−

Z
∞

0

dss2K000ðsÞKðsÞ¼
Z

∞

0

dsK00ðsÞ d
ds

½s2KðsÞ� ¼ 2

Z
∞

0

dssK00ðsÞKðsÞþ
Z

∞

0

dss2K00ðsÞK0ðsÞ

¼−2
Z

∞

0

dsK0ðsÞ d
ds

½sKðsÞ�− 1

2π
¼−2

Z
∞

0

dsK0ðsÞKðsÞ−2

Z
∞

0

dss½K0ðsÞ�2− 1

2π
¼ 1−

3

2π
; ðB24Þ

Ið1;0Þ0 ¼ −
1 − γ

8π
þ
Z

1

0

ds sK0ðsÞKðsÞ þ
Z

∞

1

ds

�
sK0ðsÞKðsÞ þ 1

8πs

	
¼ −

1 − γ

8π
þ 1

2

Z
1

0

ds s
d
ds

½KðsÞ�2 þ 1

2

Z
∞

1

ds s
d
ds

�
½KðsÞ�2 − 1

4πs

	
¼ γ

8π
−
1

2

Z
1

0

ds½KðsÞ�2 − 1

2

Z
∞

1

ds

�
½KðsÞ�2 − 1

4πs

	
¼ −

1

2
Ið0;0Þ0 þ 1

8π
; ðB25Þ

in addition to the definitions given in the previous subsection.

3. Calculation of ΔΠ0

The finite, continuum integral defined in the main text for the two-point function in Eq. (5.21) can be rewritten as the
dimensionless integral

ΔΠ0ðpÞ ¼ −8
Z

d2q
ð2πÞ2

�
q21 þ 1

ðq2 þ 2Þððp̃þ qÞ2 þ 4Þ −
1

2

1

q2 þ 4

�
− 8

Z
d2q
ð2πÞ2

�
q20 þ p̃0q0

ðq2 þ 1Þððp̃þ qÞ2 þ 1Þ −
1

2

1

q2 þ 1

�
−
1

π
ðB26Þ

by rescaling the momenta p̃ ¼ m
2
p and manipulating the integrals. Using standard Feynman parametrization, this can be

recast as the integral

ΔΠ0ðpÞ ¼
−1
π

Z
1

0

dx

�ðp2
0 − p2

1Þx2 þ 2p̃2
1x − ðp̃2 þ 1Þ

1þ p̃2xð1 − xÞ þ ðp̃2
1 − p̃2

0Þð1 − xÞ2
4 − 2xþ p̃2xð1 − xÞ

�
−
1

π
: ðB27Þ

Reverting to p ¼ 2
m p̃ and evaluating this at the on-shell value, we obtain

ΔΠ0

�
p;p2 ¼ m2

2

�
¼ −1

m2

�
p2
1 þ

m2

4

�
−
1

π
: ðB28Þ

Notice that for the choice c� ¼ 1 where Π0ð0Þ ¼ 1
π, we recover the continuum limit found in [43],

Π0

�
p;p2 ¼ m2

2

�����
c�¼1

¼ −1
m2

�
p2
1 þ

m2

4

�
: ðB29Þ
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