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An extended two-hadron operator is developed to extract the spectra of irreducible representations
(irreps) in the finite volume. The irreps of the group for the finite volume system are projected using a
coordinate-space operator. The correlation function of this operator is computationally efficient to extract
lattice spectra of the specific irrep. In particular, this new formulation only requires propagators to be
computed from two distinct source locations, at fixed spatial separation. We perform a proof-of-principle
study on a 24> x 48 lattice volume with m, ~ 900 MeV by isolating various spectra of the zz system with
isospin-2 including a range of total momenta and irreps. By applying the Liischer formalism, the phase
shifts of S- and D-wave 7z scattering with isospin-2 are extracted from the spectra, with a tentative look at

the role and influence of the G-wave.
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I. INTRODUCTION

The numerical simulation of quark and gluon fields on a
finite lattice enables a study of the hadron spectrum and
strong interactions of QCD via first principles. Recently,
there has been tremendous progress in lattice QCD calcu-
lations of the hadron spectrum and interactions (see
Refs. [1-3] for recent reviews). From the energy levels
of lattice QCD, there is a clear strategy for how to extract
scattering information for two-body systems, such as the
zzr system [4-8]. In order to map out the energy depend-
ence of the scattering phase shifts various methods have
been developed to access more finite-volume energy levels,
such as the variational analysis for the excited-energy
eigenvalues [9-12], moving systems [4,6], and twisted
boundary conditions [13,14]. An important requirement to
isolate distinct partial waves is the need to distinguish the
energy levels in different irreducible representations
(irreps), such as done in Ref. [6].
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With improved control of orbital motion, there is
potential for lattice QCD to provide insight into the
phenomenology of high-spin systems. For instance,
the relatively narrow dibaryon resonance observed by
WASA at COSY [15,16] suggests significant coupling to
the np G-wave amplitude. There is also potential to shed
light on the nuclear A(y) puzzle [17-19] or the dynamics
underlying Regge trajectories [20-22]. While each of these
objectives will (ultimately) also require advances in many-
body systems on the lattice [23,24], the physics of many-
body channels can often be suppressed at large unphysical
quark masses on the lattice—such as the recent high-J
study of Ref. [25].

The study of high angular momentum systems is an
ongoing challenge in lattice QCD. On the cubic finite volume
of a four-dimensional lattice, the relevant symmetry group is a
subgroup of the octahedral group (O;,)—or the relevant little
group when considering systems at finite momenta.
Importantly, the full SO(3) group of the infinite volume
physical theory is broken, and consequently, numerical
investigations are limited to the discrete symmetry of the
lattice. The issue of partial-wave mixing, and influence on
discrete spectra, has been investigated theoretically and
numerically in previous work, e.g., Refs. [26-41].

In this paper, we introduce a novel operator construction,
designed to provide an efficient method to isolate different

Published by the American Physical Society


https://orcid.org/0000-0003-4583-7691
https://orcid.org/0000-0002-4745-6027
https://orcid.org/0000-0002-0262-5712
https://orcid.org/0000-0002-3936-1597
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.074506&domain=pdf&date_stamp=2022-04-22
https://doi.org/10.1103/PhysRevD.105.074506
https://doi.org/10.1103/PhysRevD.105.074506
https://doi.org/10.1103/PhysRevD.105.074506
https://doi.org/10.1103/PhysRevD.105.074506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

JIA-JUN WU et al.

PHYS. REV. D 105, 074506 (2022)

lattice irreps in a two-hadron system. The method relies
upon constructing an operator that corresponds to a “dumb-
bell” in coordinate space, where the two-body operator is the
product of two single particle operators separated by a fixed
distance. The construction shares similarities with the
“cube” source employed in Ref. [37]. In our case, as will
be shown, we sum over the rotations of the dumbbell at the
sink in order to project correlation functions onto the desired
irrep. The two distinguishing features of this method are that
only the total momentum of the two-hadron system is fixed
and only two point-source Dirac matrix inversions are
required. As an exploratory exercise, we study the iso-
spin-2zz system, for which several alternative methods have
already been explored [5-7]. We demonstrate that we are
able to successfully determine energy levels of the various
representations with different total momenta.

In Sec. II, the two-hadron operator and correlation
functions for specific irreps are constructed. In Sec. III,
a lattice-QCD calculation for isospin-2 7™z~ scattering is
presented with lattice size 24° x 48 and the energy levels
for various irreps with different total momentum are
extracted. These energy levels are then used to a determine
the phase shifts of z#7z~ scattering. Finally, results are
summarized in Sec. IV.

II. FORMALISM

A. Operators in coordinate space

Our goal is to construct extended interpolating operators
which project onto states of both definite momenta and
irreps of the lattice rotation group. To minimize the
numerical cost associated with inversion of Dirac matrices,
we seek a construction which allows our correlation
functions to be constructed from just two conventional
local sources. The projection onto definite Fourier
momenta and rotational irreps are to be performed at the
sink, as depicted in Fig. 1. To construct the appropriate
projections we start from a composite operator of two
hadrons with a separation § between them,

A

e e

FIG. 1. TIlustration of the two-hadron “dumbbell” interpolating
operator. Two hadrons named A and B are shown in the cubic box.

A fixed source location is indicated in the left image with X + & / 2
for particle A and x — & / 2 for particle B. The right panel indicates
that the sink operator is to be rotated by a lattice rotation, R, with a
weight chosen to project onto the corresponding irrep.

®(x.8) = p(x +8/2) (x ~5/2), (1)
where time dependence has been suppressed and the
operator ¢ (or ¢') denotes a conventional, local single-
hadron operator. For example, in the following calculation,
we consider the standard 7~ operator given by

P(x) = ¢ (x) = Zu )ysd’(x (2)

with a sum over the color index a.

We consider the set of operators, {®, }, which are related
by a lattice rotation, Re 0;,. Under such a rotation, the
transformed operators take the form,

(I)R(X,ﬁ) = pk@(x,&)ﬁk—l = @(k_lx,k_lﬁ)

= (R (x+6/2))¢/ (R (x - 8/2)). (3)

as being represented in the right panel of Fig. 1. To
maximally span the space of lattice irreps, we choose to
work with separation vectors satisfying 0 < 6, <, <,

such that RS # & (for R # I). We then have 24 different
operators that are related by a lattice rotation—in the case
of nonidentical particles, there are 48 operators. While the
single-hadron operators must lie on lattice sites, the center
of the composite operator, X, need not be on a lattice site. In
the numerical results presented here, we work with the
choice § = (1,3,5) and x = (1/2,1/2,1/2). We note that
choosing all even values for  would place the origin of the
extended operator on a lattice site and maintain the same
discrete rotational symmetries. In principle, combinations
of even and odd displacements by é would be possible, but
it would lead to a (short distance) modification of the
rotational symmetries discussed here.

A Fourier transform with respect to the coordinate x
project onto states of definite momenta,

(@(P.6)] = (Q) e ™ d(x.5). (4)

In just the same way that the Fourier transform projects
onto states of definite momenta, particular linear combi-
nations of operators related by lattice rotations, Eq. (3), will
project onto particular irreducible representations. In par-
ticular, for (|p|L/27)> =0, 1, 2, and 3, operators are
constructed to project onto the irreps of the groups
commonly denoted O, C,,, C,, and Cs,, respectively
(see for instance, Ref. [42]). The projection onto these
irreps has been discussed in a number of previous works
[4,31,33,34,43]. For completeness and to set our notation,
we briefly summarize the relevant features here.

The states |®5(t;x,8)) where R belong to the corre-
sponding group will transform as vectors of the regular
representation as follows:
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Py|®p(x,0))

= Y [0 (x.8))(BR))prp: (5)

R'eGP

where (B(R))pr g = g - and GP denotes the rotation
group for specific total momentum p (see Table VI).
The regular representation of any nontrivial group is
reducible. Thus, B can be made block diagonal according
to the irreps of the symmetry group via a unitary trans-
formation matrix S. For example, in the O, group,

S'B(R)S = 1A7(R) @ 145 (R) @ 2E*(R) @ 3TF(R)

@ 375 (R) = A(R), (6)

where I'(R) denotes the representation matrix of R in the
irrep T, and the number before T indicates the number of
occurrences of I' in the regular representation. Using
(i,T,n) to label the nth vector of the ith occurrence of
an irrep I, the matrix A takes the block diagonal form,

AantT’ ’( ) 5 5F’Frn n (R) (7)

With the unitary transformation matrix S, one can
construct the states [} ) as

an Z|(I) SR iln>s (8)

which will satisfy

Pqu)zl"n

D10 VAR ip e (9)

'\’

Correspondingly, a new type of two-hadron operator can be
defined as in Eq. (A6) as

lrn Z¢ SR il'n- (10)

B. Correlation function

The elementary two-point correlation function is con-
structed from @ (7; x, §) at the source and sink as follows:
|

Gp-13(t;p:x,0)
(y-x)ez?

<
<

(b) (©) (@)

FIG. 2. Diagrams for Wick contractions. Thick and thin lines
are to distinguish d and u propagators, respectively.

Z =P (y=x)

(y—x)ez?

x (T(®y(1;y,8), D}, (0;%,6))),

Gkﬁ/(t;p;x,(‘)‘) =

where the angle brackets denote the ensemble average
across gauge ensembles and T the time-ordered product of
field operators. While this generally involves the full set of
rotations at source and sink, we can exploit the translational
and rotational symmetry of this correlator to obtain,

Gpp(1:p;X.0) =Gy j(1:p;X.0) VYRR eGP. (11)

The projection of the correlation function onto definite
irreps of the lattice rotation group is then given by

Gr(tp:x.8) = Y el Z<T(d>lrn<r y.6),
(y-x)ez3
x @], (0;x,8))) (12)
= 1hGri(t:p:x. ). (13)
R

where ;(Ig is the character number of element R of the group
in the irrep I'. See Appendix A for an in depth discussion.

A demonstration of the technique introduced here is
performed in the 7=z~ system. The individual contribu-
tions, G- 3, to the target correlation functions are given in
terms of the Wick contractions shown in Fig. 2, given
explicitly by

= > ePOITI[Sy(vg. %) Sk (Vr: £ X7 O] TH[Sy (v £:X 7. 0) Si(vk. £:X 7, 0)]

+Te[Sy(yk. X7, 0)Si(yk. X7, 0)Te[Sy(yg. £; X, 0)Si(yz, £: X, 0)]
— Tr[Sy(yg, 1: X7, 0)Si (¥, 1: X7, 0)Su(yx, X7, 0)Si(yz, :x*, 0)]
— Tr[S4(vi, :X7, 0)Sk(¥z, £: X7)Sa(¥r, X, 0)Sk(yi, 1:xF, 0)]}). (14)
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Here we have made use of the notation

j[:2)(:&6 n 2y + R

X 2 . yR: 2 s

(15)

and S,(y. #: x, 0) denotes a conventional point-to-all propa-
gator. The quark flavors, ¢ = u or d, are shown explicitly,
however in the following numerical calculation we assume
isospin symmetry, S, = S,.

Given the form of the correlator construction, we note
that the correlation function can be efficiently calculated by
only performing Dirac matrix inversions from two distinct
sites x*. Furthermore, in the moving frame, the same
spectra are extracted from the set of Gl—(t; p; x,d) with the
same |p|. One can therefore sum over each direction to
reduce the statistical variance, i.e.,

Z ZJ(R ri(tpix.6),  (16)

p.[p|=P ReGP

G (t; P;x,0)

where, as above, GP denotes the rotation group for specific
total momentum p.

In the following section we present numerical results for
the determination of the ground states in each of the
considered irreps up to P? =3P}, where P, defines the
basic momentum unit in the box Py =2x/L.

III. NUMERICAL RESULTS

A. Lattice setup

Following the prescription given by Egs. (14) and (16)
and Tables V and VI, the correlation functions of the z~z~
system are analyzed for various total momenta and irreps
of the lattice rotation group. The present calculation
is performed on an ensemble with two flavors of dynamical
O(a)-improved Wilson fermions with =529, «=
0.13550 on a 243 x 48 volume, corresponding to a =
0.071 fm and m,~900 MeV, from the QCDSF
Collaboration [44].

Results are collected from 376 configurations using 16
different randomized source locations, totalling O(6, 000)
measurements. With two distinct propagators required for
each source, the comparative computational cost of the
present calculation is O(12,000) measurements.

B. Spectra

In this study, we consider correlation functions with total
momentum up to three lattice units |p| < v/3P,. The
correlation functions for each irrep are fit with a para-
metrization taking the form,

G(t) :A(e—Et +e—E(T—t)) +B(6—AEt +e—AE(T—t))’ (17)

where the fit parameters A and E correspond to the
amplitude and two-point energy of interest. The term

involving B is provided to isolate the leading contribution
arising from thermal states, as is familiar in studies of
multihadron correlators [6,45-50]. For the present study,
this corresponds to one pion propagating forwards and the
other backwards in Euclidean time. The value of the
exponent in the thermal contribution is held fixed to
AE =E,(p-Kk)—-E,(k), for single-pion energies E,,
and k chosen to correspond to the lightest single pion
state contributing to the given correlator. At large temporal
extent, the coefficient B should scale according to e=Z=(*)7
While we don’t have numerical results at different 7, we
see that the fitted values of B are always suppressed by this
order of magnitude compared to A.

After subtracting the contributions from thermal states,
Fig. 3 displays the effective mass for different total
momenta and irreducible representation. We see a clear
separation of the energy levels in distinct irreps. As
expected, the low-lying A, irreps are generally cleaner
statistically, whereas the signal quality degrades for the
irreps corresponding to the resolution of higher-spin
partial waves.

The results for the extracted energy levels are shown by
the black circles in Fig. 4. For comparison, the low-lying
noninteracting energy levels in each system are displayed
by the grey lines. Each of the energy levels isolated are
consistent with some degree of weak repulsion, as expected
for the I = 2 state. For most of the states considered, the
first excited state is expected to be clearly separated, and
hence the ground-state isolation should be reliable (to
within the statistical uncertainties of this work).
However, there are three particular channels where multiple
low-lying states are anticipated, arising from the clustering
of noninteracting two-particle energy levels. These include

4.0 T T T T 0
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3.0-.'-.""J'le'l‘T2 E ---::::i..l; EI EI Bi]
oL Bl
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FIG. 3. The effective energies for different total momenta P (in

multiples of 2z/L), and different irreps. The bands display the
two-pion energies fitted to Eq. (17). The horizontal width of the
bands indicates the corresponding fit window.
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FIG. 4. The energy levels of the various systems with different
total momenta and irreps. The black points show the extracted
center-of-momentum (CM) energies. The grey lines display the
locations of the corresponding noninteracting energies. The red
lines show the fitted energies according to fit (iii), as described in
Table II, and the blue lines display further predicted eigenvalues
based upon this fit.

Ay at P? = 2P}, 3P} and B, at P? = 2P3. In these cases,
we do not expect that our correlation functions are
dominated by a single ground-state energy and hence the
fitted parameters are not representative of eigenenergies of
the system.

Within the operator construction presented, only the total
momentum is specified, whereas the momentum of each
pion is not. In contrast to Refs. [7,37], which involve
momentum-projected hadrons at the sink, we use the same
operators at both the source and sink. While staying within
the paradigm of local sources, this method then lends itself
to a variational analysis [11,51,52], where the operator
basis can be extended by varying |6

C. Phase shifts

We use the following Liischer formula [5,26,31], assum-
ing that exponentially-suppressed corrections can be
neglected, to extract phase shifts from finite-volume
spectra,

det[M,?,/(q(T)) = 87 #3, 0 cOt3,(q(T))] = 0. (18)

The matrix Ml;’nlf o has been discussed extensively in the
literature, see e.g., Refs. [28,31,34]. For completeness, we
provide detail relevant to the present investigation in the
Appendix B.

As encoded by Eq. (18), each energy level determined on
the lattice is constrained by multiple partial waves—see
Table I. This necessitates the use of a parametrization of the
energy dependence of the phase shifts in order to isolate the
individual partial waves. For the purpose of this inves-
tigation, we consider the parametrization of the Z-wave
phase shifts by the effective range expansion,

TABLE 1. The relationship between angular momentum and
irrep in the various momentum. The total angular momentum
quantum number for exact spherical symmetry are only quoted up
to £ =4.

Group IpL/2x|? r £
0, 0 Af 0, 4
A >4
E* 2,4
Ty 4
T} 2,4
Cu 1 A 0,24
A, >4
B, 2,4
B, 2,4
E 2,4
Co 2 Ay 0,2,4
A, 2,4
B, 2,4
B, 2,4
Cs, 3 A 0,2, 4
A, >4
E 2,4

1 1
g*lcotd, = —+ = rpq°, (19)

ayp 2

for parameters a, and r,—for £ = 0 these are familiarly
recognized as the scattering length and effective range,
respectively. Such a parametrization should be reasonable
for the weakly-repulsive interactions anticipated in / = 2
scattering.

As described above, we do not expect that our extracted
energy levelsin A; at P> = 2P}, 3P}, or B, at P> = 2P} are
meaningful representations of an energy eigenstate, and
hence these are excluded from any fits. This leaves up to ten
data points for constraining the phase shift parametrization.
We summarize the various fit forms and corresponding
results in Tables II and III, respectively. In the following we
provide a description of each scenario considered:

TABLE II. Summary of the various fit strategies that have been
included, as detailed in the text. The first column indicates the
presence of the isolated eigenstate for the E irrep at P> = 3P},
The second column denotes a truncation of the dataset at center-
of-mass energies of 3m. The corresponding number of data points
is given by N g,,. To the right of the vertical divide line, we show
the included fit parameters from Eq. (19).

Fit  {3;}
I
IT
I
v
\%

{E*/m > 3} Ndata a

10

=)
o
IS
-
~
=)
~
NS

VI

N X X X X N

> X NSNS

~N 3 O © O

NSSNSSNNNs

R 3NN N NN

x X % \ % %

X X N\ X X X
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TABLEIII. Best fit parameters for different fits, as described in the text and summarized in Table II. The final two columns indicate the

total and reduced y? values, respectively.

Fit ag ro a, ry x 100 a, 7 Ve

I —0.690(53) —0.0111(84) —0.0200(41) 36.2 52

I —0.691(65) —0.0092(64) —0.0208(43) 15.5 2.6

11 —0.65(11) 0.7(19) —0.0091(90) —0.0208(67) 15.4 3.1

v —0.691(53) —0.0092(96) 0.5(51) —0.0208(67) 15.5 3.9

\% —0.683(65) —0.0602(58) —0.0118(48) 7.2 1.8

VI —0.678(47) —0.0871(26) 9.6 1.9

Fit (i) We include all 10 viable data points with a simple ~ Fit (vi) This is the same as Fit (v), but with just two
leading-order parameter a, in each partial wave. parameters, a ,. Evidently, the removal of a, does

Fit (ii) In Fit (i), we find that the E representation at P> = not appreciably degrade the fit quality.
3Pj is incompatible with the fit form, as shown in ~ We consider that Fits (v) and (vi) are equally good fits of
Table III, and hence we drop this point from this  the lattice spectra. We show the parametrizations from each
and subsequent fits. Dropping this one point  of these fits in the two panels of Fig. 5. Considering the
improves the reduced y? (y2) significantly, yet  negligible difference in the quality of the corresponding y?,
still suggests some tension with the data. there is no clear signal for an interaction in the G-wave

Fit (iii) This is as in Fit (i), with an ry parameter also  channel. However, it is interesting to note that the extracted
included. The parameter r( is poorly determined, ¢ = 2 interaction, by way of the parameter a,, is sensitive
and the reduced »* increases significantly. to the inclusion or not of the £ = 4 partial wave.

Fit (iv) This is as in Fit (ii), with an r, parameter included. It is interesting to examine the individual point-by-point
Similar to Fit (iii), r, is poorly determined, and the ~ extractions of the phase shifts. In particular, if we neglect
reduced y? increases significantly. the £ >4 interactions, we have a simple one-to-one

Fit (v) We further restrict the fits to only consider the =~ mapping between most of the lattice eigenstates and the
lowest-lying center-of-mass energies, where both  corresponding phase shifts. In the left panel of Fig. 5, the
the effective range expansion, and truncation of  black data points indicate these direct phase shift extrac-
partial waves in the quantization condition are  tions, under the assumption of negligible £ =4 inter-
expected to be most reliable. Specifically, we  actions. The A, irrep at |P|*> = Pj mixes # =0 and 2,
choose Ecy < 3m, and fit the three parameters  as seen in Table I, and hence the eigenvalue equation
aopp4- The fit quality is reasonable, although still  ultimately provides a single constraint between the two
may point to some mild tension with the under-  corresponding phase shifts. The data points displayed,
lying lattice results. shown in open pink symbols, indicate the extraction of

(O [ #
-10 L
8 -2 X . !
(@] * A
g ol _ ]
(2=} A B
-40 : |P%=2 /Ii2 i
<« |Pi=2 B, (b) 1
-50 N 1 N 1 N 1 1 1 1
0.0 0.3 0.6 09 00 0.3 0.6 0.9
Gom/m,
FIG. 5. The phase shifts from Fits (vi) and (v) are illustrated in (a) and (b), respectively. The solid black, dashed red, and dash-dotted

blue curves are for the S-, D-, and G-wave phase shifts. Each of the black data points display the phase shifts directly solved for from the
individual energy levels, where the G-wave is taken to vanish (a) or given by the corresponding parametrization of Fit (v) (b).
Furthermore, the open pink points are the phase shifts of S- and D-wave for A, irrep of |P|*> = P(% which are determined using the
corresponding fit for 5, and §,, respectively.
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dp (0,) using the parametrization for 6, (§y) from Fit (vi).
The right panel of Fig. 5 shows a similar pointwise
extraction of the phase shifts, where ¢y, are presented
under the assumption of §, from Fit (v). We see that the
S-wave (being at lower energies) is completely insensitive
to the presence of J,, however the §, phase shifts do exhibit
a small realignment.

The sensitivity of the £ = 2 phase shifts to the presence
of £ =4 is therefore revealed in both the global para-
metrizations and the pointwise analysis. While evident that
the £ =2 partial wave is dominating the quantization
condition, it is interesting to note that the systematic
uncertainty in 8, from the partial wave truncation is
dominant over the corresponding statistical uncertainty.

Finally, we note that the a, parameter is quite small in
Fits (i) to (iv), in exchange for a relatively large a4. Given
that the corresponding fits appear to be a poor representa-
tion of the corresponding energy eigenstates, we do not
attempt an interpretation of these small a, values.

D. Discussion

We compare the statistical precision obtained with other
calculations of the isospin-2zz system in lattice QCD. The
level of statistics span a broad range, and the needs can vary
dramatically depending on the complexity of the target
observables. For reference on the scale of the computations,
we compare (O(4,500) fermion-matrix inversions by
NPLQCD to extract the S-wave scattering length [53];
0(290,000) by NPLQCD [54] for the energy-dependent
S-wave phase shifts [7]; and O(270, 000) by Dudek et al. to
isolate S- and D-wave phase shifts [6]. To provide guidance
on the relative precision, we note that our relative error of
scattering length of S-wave is around 10%, while it is ~2%
in Ref. [6], thus the accuracy could be considered compa-
rable after accounting for a factor of O(20) difference in
counting statistics. We caution taking too much from this
comparison. Systematic effects can evolve as statistical
precision increases, and certainly the calculation of Dudek
et al. was set up to consider systems at different isospin,
which are not available in the present work.

We note that the present method could be extended to
consider systems involving quark propagators from one
time slice back onto itself, such as required for / = 0 and
1 zz scattering. While the present dumbbell formulation is
envisaged for application in baryon-baryon scattering,
where such diagrams are not present, it could be interesting
to apply this to more general systems, where loop propa-
gators present unique challenges.

In the context of baryon-baryon systems, we note that a
key feature of the construction is that one can make use of
variational techniques—something that is unavailable with
more standard point-to-Fourier correlators. Extending the
operator basis to span a greater range of ¢ values does
require having more single-site inversions at each source
time slice. In principle, this does come at additional cost in

terms of the number of propagators calculated. In the
present study, we accumulated statistics with 16 random
sources on each configuration, corresponding to 32
single-site inversions. If all these inversions were to be
done from a single time slice, one could design the
locations appropriately to span a range of delta values
without any significant increase in the overall computa-
tional cost. Thus, in future work, there is the possibility
to exploit the combinatorial gain in having (up to)
N(N —1)/2 pairwise separations for N inversion sites.

IV. SUMMARY AND OUTLOOK

In this paper, we introduce a new extended operator to
extract the spectra of irreducible representations at rest and
in moving systems. In coordinate space, the two-particle
operator projects onto an irrep by summing appropriately
over a spherical shell. The method is straightforward to
implement as a generalization of conventional point
sources, and hence offers an alternative for cases where
stochastic momentum sources are impractical.

For the numerical investigation in this work, we studied
the isospin-2zz system at a range of total momenta, on a
243 x 48 volume with a lattice spacing of a = 0.071 fm
and m, ~ 900 MeV. The correlation functions of various
irreps with a total momentum-squared ranging from 0 to 3
have been studied, with 13 plateaus—10 of which were
considered as viable ground-state candidates. These dis-
crete finite volume spectra have then been analyzed with
the Liischer quantization condition. Using a simple effec-
tive range expansion of the phase shifts, we identify S- and
D-wave interactions, and a tentative first look at G-wave
contributions.

In the future, this method can also be readily extended to
particles with spin, particularly for the two baryon system.
Including a basis of operators at different hadronic sepa-
rations would allow for a variational analysis to be
performed, and thereby allow for a determination of the
excited energy levels on the lattice. This would correspond
to an analog of mapping out the quantum mechanical
coordinate space-wave function.
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APPENDIX A: OCTAHEDRAL GROUP
(O) AND ITS LITTLE GROUPS

1. The 48 elements of O;, group

The cubic group (O) has 24 elements indicated as R;
(i = 1-24) which correspond to 24 rotations, R; as listed in
Table TV. Starting with one vector 6, = (¢, ¢», g3), one can
then construct 23 vectors via f%i (i =2-24) (fil is the
identity operator) as follows:

8; = Ri6y, (A1)

In Table IV, the 24 vectors §; are all listed. The O, group
can be recognized as the product of the O group and the
C, = {e, 6} group, ie., O, = O ® C,. Then the other 24
operators belonging to O;, group rather than O group will
be R;,»4 = 6R;, and correspondingly, 8;,,4 = —6;.

TABLE IV. For the O group, 24 vectors §; and operators R; (i = 1-24) are listed. 6? =

R; includes the rotation axis and angle.

2. The classes and irreps of O; group

There are 48 elements in the O, group and they can
be partitioned into ten different classes. There are ten
irreps, AT (1), A$(1), EX(2), T{(3), and T5 (3), where the
numbers in the parentheses are the dimensions of these
irreps. The character table of the cubic group is shown in
Table V.

3. Regular representation

Using the O, group, a scalar function (&) can be
extended to 48 functions as follows:

Pr(8) = Prp(8) = p(R™'9). (A2)
Under the group action, they should transform as
Propr (6 Z¢R" Drir = = PrPrp(6)
R//
= Prrd(8) = G(R™'R™'8) = e (5).

Here E(i?) is the representation matrix of R for the regular
representation. The dimension of the regular representation
is the same as the order of the group.

(¢1.42.q3) and R; = E which is the identity.

Class R; Axis-angle Euler angle 6]

E R, Any 0° (0°,0°,0° (91 92- q3)

8C§ R, (1, 1, 1) —120° (90°,90° 180°) (92: 93 91)
R, (1,1, 1) +120° (0°,90°,90°) (9391 92)
R, (=1,1,1)=120° (180°,90°,90°) (—43. =41, 92)
R (—=1,1,1)4+120° (90°,90°,0°) (=92, 93.—q1)
Re (-1,- 1,1) 120° (—90°,90°,0°) (42.—4q3.—41)
R, (=1,=1,1)+120° (180°,90°, —90°) (—43.91.—42)
Rg (1,-1,1) = 120° (0°,90°, —90°) (g3.— ql,—qz)
Ry (1,=1,1)4120° (—90°,90°, 180°) (—4». ‘137%)

6C, Ry (1, 0, 0) —90° (90°,90°, =90°) (q1.93.—
Ry (1, 0, 0) +90° (=90°,90°,90°) (1. —a5. ‘12)
R, 0, 1, 0) =90° (180°,90°, 180°) (=93, 2. q1)
Ry 0, 1, 0) +90° (0°,90°,0°) (3. 42.—q1)
Ry 0, 0, 1) =90° (—90°,0°,0°) (42, 5ha‘]3)
Ris 0, 0, 1) +90° (90°,0°,0°) (—492.91.93)

6C R 0, 1, 1) —180° (90°,90°,90°) (—491.95-92)
Ry (0,—1,1)—180° (=90°,90°, -90°) (=q1.—q3.—42)
Ry (1, 1, 0) —180° (—90°,180°,0°) (92,91, —43)
R (1,-1,0)—180° (90°, 180°,0°) (=92.—491.—45)
Ry (1, 0, 1) —180° (0°,90°, 180°) (43.—q2.q1)
Ry, (—=1,0,1) — 180° (180°,90°,0°) (—=43.—42.—41)

32 Ry (1, 0, 0) —180° (180°, 180°,0°) (41, —42, —q3)
Ry (0, 1, 0) —180° (0°,180°,0°) (—4q1- 92, —43)
Ry, (0, 0, 1) —180° (180°,0°,0°) (=41, —92-93)
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TABLE V. Character table of O, Cy,, C,, and Cs, for [pL/2z|> =0, 1, 2, and 3, respectively.

0, I'/Class I 8C% 6C, 6C) 3C3 7 8C, x 7 6C, X # 6C), x # 3CE x &
Af 1 1 1 1 1 +1 +1 +1 +1 +1
A5 1 1 -1 -1 1 +1 +1 Fl Fl +1
E* 2 -1 0 0 2 +2 Fl1 0 0 +2
Tt 3 0 -1 1 -1 +3 0 Fl +1 Fl
Ts 3 0 1 -1 -1 +3 0 +1 F1 Fl
Cy, I'/Class 1 2C, 2C, x & 2C, X 7t C,
A, 1 1 1 1 1
A, 1 1 -1 -1 1
B, 1 -1 -1 1 1
B, 1 -1 1 -1 1
E 2 0 0 0 -2
Cy, I'/Class I (o Cyx Cy X 7
A, 1 1 1 1
A, 1 1 -1 -1
B, 1 -1 1 -1
B, 1 -1 -1 1
Cs, I'/Class 1 2C; 3C, x 7t
A, 1 1 1
A, 1 1 -1
E 2 -1 0

4. From regular representation to irreps

The regular representation of any nontrivial group is
reducible. So B can be made block diagonal according to
the irreps of O, via a unitary transformation matrix S as
follows:

The number before the irrep indicates the occurrence
of that irrep. At last you will find 48 = 2(12 4+ 12 4+ 22 +
3% +32). And the matrix A can be written as
Aan i'T'n ’( ) 6 (SF’Fan (R)’ (A4)
where I" is the name of the irrep, and i shows how many
times it appears, for example i = 1, 2, 3 for 75 and 75, and
i=1,2forE,and i = 1 for Af and AT and n indicates the
order of the irrep I'. The matrix ['(R) is the matrix
representation of element R in the irrep I'. Because O,
is a finite group, the matrices I" can be chosen to be unitary.
As shown in Eq. (A3), the matrices B(R) show the
rotations of 48 scalar functions ¢. Then matrices A also
have 48 scalar functions satisfying,

Z‘Dz’r” )(A( ))i’F’n’,iFn'

lr//

(AS)

1Fn

The transformation matrix S can connect ® and @, -, as
follows:

ZQ’)RSR iT'n-

The row index of S is the name of the elements of the cubic
group, and the column index is the same as the indices of
D, (i,T,n).

On the other hand, from Eqgs. (A3), (AS), and (A6), we
have

(A6)

an

ﬁRQi,F n Zq)lrn’rnn ZZ¢R'SR’an'an )
= Py Z GrSkitn = Z¢RR’SR’,iFn’ (A7)
R R
Then we have
Z Z ¢R’ SR’tFn’Fn n Z¢RR’ SR’ Jiln» A8)
S'R,il"n = Zcirmfm,n (R_l (A9)
CiFm = S'[,il"m‘ (AIO)

The C;,, satisfy the orthogonality relations,
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!
Lo, = Zc,.rmc;r,rm, (A11)

m m' thl"m iTm'? (AIZ)

where G and /1 are the orders of O; group and irrep I,
respectively.

5. The inner product of ®; and @,

We use the Dirac symbol for the inner product of @ and
® ;). The normalization is given by

Srr = (Pr|Pr), (A13)
5i,i’ 5r,r' Ot :<q)i,F,n |q)i’,l"’,n’>’ (A14)
If we have some operator, H, which is invariant under the

rotation, such as the Hamiltonian operator, through
Egs. (A6), (A9), and (A12), we have

Z<(I)i.r.n|ﬁ|q)if’ ') = Z Z SR tFn ¢R|ﬁ1|¢R’>3R’,iF’n’

i i RFR

= Z Z Z Clrmr‘j;z n R 1)<¢R’ 'R|H|¢1> ir'm ’fin’,n’ (R,_l)

i R.R mm

- Z Z Z ClFijn n

i RR mm

IR, 1)<¢ |H|¢l> ir’'m ’I?/m’,n’(R,_l)

= Z Z ¢R‘H|¢l ZCsz il"’m’zg5n,n’51",1"’51,1n’f;1,1(1-‘)_1)

m,m’

= Z Z ZCsz itm' 7~
i R m,m’
= 6F.F/6n,n’z < Z Z ClFm'F /

- 5F1"’5nnz< Z m m' Fm’,m(R)) <¢1~€‘H|¢1>

m, m'

51" l"’én n l—‘m m(R)

RIC, ) sl

= 5111_/5"’”,2()(1" R ¢R|H|¢1> (AIS)
R
I
At last, we find to keep the surviving rotations and do the same procedure
as that in the rest frame. All the rotations for different
Z< el | ®, ) = 5FF’5nn§ :;T Vel Hb,). momentum with [p| = 1, 2, 3 are listed in Table VI.
(A16) APPENDIX B: LUSCHER’S QUANTIZATION

where ){11; is the charter of element R in the I irrep. The
character tables for O,, group and the little group are listed
in Table V.

6. The rotation operator in the little group

The O, group is discussed in detail in the above sections,
and it is the symmetry group in the rest frame, i.e., p = 0.
In the nonzero momentum system, the symmetry group
becomes the subgroup of O, named as the little group. In
each little group, the rotations satisfying Rp = p will
survive. Therefore, for the moving system, one just needs

CONDITION

The Liischer formalism provides a model-independent
relationship between the phase shifts and the energy
levels, assuming exponentially-suppressed finite-volume
effects can be safely neglected. In this section we
give the relationship between the spectra of irreps consid-
ered in this work and the phase shifts up to £ =4. We
have confirmed that the partial waves £ =0 and £ =2
agree with previous results reported in Ref. [31]. The
general quantization condition equation is summarized by

det[M,,",, ((T)) = 8,45, 0 cot5,(¢(T))] =0, (BI)
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TABLE VI. The rotation for the each class in the O, group, Cy,, C,,, and Cs, for [p| =0, 1, 2, and 3, respectively.
0, p/Class I 8C, 6C, 6C, 3¢C3 7 8Cyxz  6Cyxr  6C,x7 3C;x#
0,0, 0) R Ry Rio_is Risas Rysy  Ros Ryg_3 Ry s Ryo_us Rys_ss
Cy, p/Class 1 2C, 20, x 7 20, x 7 C,
(0,0,£1) 1:?1 1:314 15 1:342.43 1?46‘47 1:324
(0,£1,0) Ry Rpgs Rygas Ryg 48 Ry
(£1,0,0) Ry Ry Ryp 41 Ry7.43 Ry
C,, p/Class 1 C, Cyx & Cy X7t
(£1,+£1,0) R, Ryg Ry3 Ry
(£1,0, 1) R Ry Rys Ry
(0,£1, 1) R, Ry Ry Rys
(0.£1,%1) R, Ry Ry Rys
(£1.F1,0) R Ry Ry Ry
(£1,0,F1) R, Ryg Ry Ryg
C;, p/Class 1 2C, 3C, x 7
(£L£L+1) R Rys Ry 4345
(£1.£L,F1) R, Rg7 Ryo 4344
(£L,F1,£1) R, Rg o Ryo 4245
(F 1, £1,£1) Ry Rys Ryt 40,44

where T', p, [(I'), and n(n’) indicate the irrep, total
momentum, angular momentum, and the nth I appearing
in the representation of this angular momentum, respec-
tively. ¢(T") is the on-shell momentum of the energy level of
irrep I in the center of mass (c.m.) system.

The matrix M is calculated from

ln [/ ,(('I( )) = ZC{I’:”*C}—; Zln M?m I'm r(C](F)), (Bz)
I+ J ol
M?m,l’m’(‘]( Z Z il 2j + 160 =pL/2x
j=|1=U| s==j
X (é == q(F>L/2ﬂ)Clm,jS,l/m/ﬂ <B3)
a 1 Z"is(l’ Q)_l

”3/2 2]+1 },Z]j+1 ’

where a runs from 1 to the dimension of I'. y is the Lorentz
factor

w V P’ + E%Z.M.

where Ec . = 21/ q* + m2 is the energy level in the c.m.
system.
The factor Cy, js e 1s related to the Wigner 3 —j

symbols as follows:

™ =+ /(20 + 1) (25 + 1) (20 4 1)
(1 i )(1 j 1/)
X .

m s —m 0 0 O

Now we only need to know the coefficients CF " in
Eq. (B2). We give these values in Table VII for the movmg
system, while for the rest frame, the matrices M’ i (q(T))
can be read from Ref. [26]. It is worth mentioning that in
our calculation we average over all momenta with fixed |p|.
Since the spectra of them are the same, we choose one case
to list each C!"*"_ Finally, Eq. (B1) for each case are listed

lm
in the following.

Clm,js,/’m’ = (_

(B6)

pu— pr— B . .
4 Ecnt Eca ’ (BS) For the A, irrep in the rest frame, d = pL/27z =0
|
—cotdy + oy 6\4_ gy
0 = det 6\/— 324 80 560 ..d (B7)
a)40 —cotdy + wOO +i5 a)4() +1 wﬁ() + 123 @30

For the E irrep in the rest frame, d = 0,
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TABLE VIL The relationship between angular momentum and irrep at momenta up to P> = 3P3.
p l n r a )
(0, 0, 1) 0 1 A, 1 0,0)
2 1 A, 1 2, 0)
1 B, 1 5 (12,-2) +12.2))
1 B, 1 7 (12.-2) - |2 2))
1 E 1 (2. -1) = i2,1))
2 (2, - >+ll2»1>)
4 1 A, 1 1(|4,—4) + v2/4,0) + |4.4))
2 A 1 L(|4,-4) = v2]|4.0) + |4.4))
1 A 1 75 (14 —4) +14.4))
1 B, 1 7 (14.-2) +14.2))
1 B, 1 5 (=14,-2) + 14,2))
1 E 1 L (—[4,-3) + |4, —1) = i[4,1) = i[4,3))
2 3([4,=3) + |4, -1) +i[4.1) - i[4,3))
2 E 1 1L (14,-3) + [4,-1) = i]4,1) + il4,3))
2 (=14, =3) + |4, 1) + |4, 1) + i[4,3))
(1, 1, 0) 0 1 A, 1 |0,0)
2 1 A, 1 12,0)
2 A 1 7(2.-2) - |2 2))
1 Ay 1 7 (2.-1) 1)
1 B, 1 o5 (12,-1) +z|2 1))
1 B 1 \/%( -2) +12,2))
4 1 A, 1 1(|4,-4) — |4, -2) + |4, 2) + [4,4))
2 A, 1 1(14,-4) + |4, -2) — 4,2) + |4, 4))
3 A, 1 .
1 A, 1 3(14,=3) +14,=1) = il4, 1) +i[4,3))
2 Ay 1 3(|4,=3) = [4,-1) + |4 1)+ |4 3))
1 B, 1 3(14,-3) +14,-1) +il4,1) - i[4,3))
2 B, 1 %(\4 -3) - \4 —1> —z|4 1> —z|4 3))
2 B, 1 %(\4,—4) + \4, —2) + \4, 2) - |4, 4))
(1,1, 1) 0 1 A 1 0,0)
2 1 A, 1 e (12,-2) + (1= D)2, =) + (1 + )2, 1) = [2,2))
1 E 1 1(2.-2) +2,2))
2 —[2,0)
2 E 1 L(|2 -1y —i2,1))
2 Lf(—(l—z)p 2)—z|2 —1)+|2 1)+ (1-10)[2,2))
4 1 A, 1
2 A 1 %(_\@4 ~3) + =154, -2) + ;f|4 0 %|4, D+5214.2) + i\@|4,3>)
3 A4 L(=s14.-4) - 4=1) =iy i) + Sl 3Rk )
1 E 1 %( l\/_|4 -3) —1)+i4,1) ,3))
E 2 5(%4,-3) +3 g 2) 4, —1) - L4, 1) + 4014 2) —i\/§|4,4>)
2 E 1 75 (14,-2) + |4.2))
2 (\/|4—4 \/\40+\/|44)
3B Jr (-l —4) =714, -3) - 4“;” —1>+ T D) 3+ (4 4)
2 “’ (|4 -3) 4,-1) 1) —i4,3))
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d | 18 d 120/3 - d _ 303 d
—C0L6; + @y + 7 iy —7 @i ~ I P60

0 = det 1203 30\/_ d 324 . d _ 64 392 .d (BS)
— 2P ol ~ w§y  —cotdy + why + i @l — 1 @ + 135 0§
For the T, irrep in the rest frame, d = 0,
0—det| ~ cotd, + wfy — F o 6%\7[ @l — %wgo (B9)
60\/_ oYy — 4(1\1/— Wy —cotdy + wfy — 17672 oYy + %(1) o)
For the A, irrep in the moving frame with |pL/2z| = 1, we choose d = pL/2z = (0,0, 1),
—cot &y + o, —V504, by +30f,  —Fof+ 30,
—V508,  —cotd, + MY, Mi M)%
0 = det 3 d AP ’ ’ AP Al’,p ’ (B10)
5 @y T+ 30, M4 —cotdy + My M4
Al Al Al
— oy + 3w, M1 M1 —cotdy + My
where
10 18
Ay,
M21],gl = 6080 + 70’30 + 70)201
3v10 125 15 30v10 15v10
M?ll’gl =- %y + \/_a)ﬂ4 - wf, — oy — o
' 7 11 11 77 22
3v10 125 15 30v10 5v10
M?llllt)z =+ gy + \/_wg4 W§y + o 0y + 5,
' 7 11 11 77 22
20 1296 8 497 162\/§ 12\/
A /5 /5
M411£1 +wgo_ﬁw(2io+ 1001 40"’11 +286 go"‘WwL_ ‘0 0’84 +21 286 a’sgv
120 162 12 483 5
Al /
M41],4]1)2 = _W“)go 7001 a’go - ﬁ“)do 286 6080 +21 f%wgs’
20 1296 8 497 162\/§ 12\/
MAl~p — d _ = _d d d 21
440 = TWg 77 Wy + S5 1001 40 +57 11 +286 807 143 ia Pas T \/ bp) 84 + \/28 a)SS
For the B, irrep in the moving frame with |pL/2z| = 1, we choose d = pL/2z = (0,0, 1),
—cotd, + wd —10pd 4 34d +6\/Ewd mBp
0 — det 2 00 ~ 7 @oo T 7 P40 14044 2141 ’ (B11)
Myh —cotd, + My

where

5V3 4 90V3 4, 5V3 o, 6V210 4 5V42

7 Wy + 77 Wy — 11 5060 77 WDgq =7 11 a)64’

Bip _
M21,4l -

B,. 40 81 196 243 6\/14 42 14
M411,41¥)l - +6080 + ﬁwgo 91 20)60 T 143 d + 143 24 + 11 a)g4 + B ngﬁl

For the B, irrep in the moving frame with |pL/2z| = 1, we choose d = pL/2z = (0,0, 1),
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—cotd, +wd —10gd 4 3,d _3V70 d MmEP
0 — det 2 00 =7 Boo 7040 =77 Way 21,41 ) (B12)
My —cotdy + My
where
5V3 90v/3 5V3 61210 5v/42
M3 =+ @9y = oy + @) 0l ——— o,
’ 7 77 11 77 11
40 81 196 243 /10 6v14 42 /14
B,
My = +af, + ﬁw 0791 ? — 20§, + mwgo 143 70’24 11 g, 13 ﬁwg4-
For the E irrep in the moving frame with |pL/2z| = 1, we choose d = pL/2z = (0,0, 1),
—cot &, + vy + 305 — Zaf, Mfipm Mg{[,)zu
0 = det Mgil,)m —cot &y + My;" 41 My . (B13)
E. E, E.
lel,)41 M41?42 —cotd, + M411,)41
where
5v3 153 10v3 3v30 106
Mgipm == fwgo_ \fwgo+ fwgo—i—wi‘—i—\/_a)&,
’ 7 77 11 11 11
25 486 8 224
E.
M5 = +ofy + ﬁwgo - ngo + ﬁwgo - mw‘sio’
w0 1215 00 168, SIVIO L 3V2 84 /2 o
p Z
4142 77 %o 1001 40 711 P60 T 743% 143 i 11 Wos = "3 Dsa-
For the A, irrep in the moving frame with [pL/2z| = /2, we choose d = pL/2z = (1,1,0),
—cotdy +wf —V505, V1003,  3(af+of) 3(wf—aof,) 3y
Al Al AL Al A,
_\/§ng _C0t52+M211,§1 lel,gz MQII,All)l lel,zlt’l lel,z%
Al Al Al Al Al
0= det —V10w9, M55, M35, —cotd, Moy -My Myl (B14)
= Al Al Al Al Al
3(wly — o) MY M3 M%) —coté, My, My
Al Al Al Al Al
3(6024 +60212) M21],4ll)1 _Mzzl,gl M41|,4l1)2 M41],zlt)1 —Cotdy M41‘,§3
Al Al Al Al Al
30, My My My Myl M3 —cotd,
where
10 18
Ay,
M58 = o, + 76"30 + 7“’207
ap  10V2 o 330
M5, = Ta)zz 7 ‘042»
A 5V/10 245 , 2210 12v5 , 15
MY — — a) (1) (l) — Wy — - Wey,
21,41 7 22 77 42 T 11 62 11 44 11 64
MAP 6‘/§wd _60\/§wd _I_Swd
21,43 77 20 77 40 11 60°
10 3 5
A
Mzzlgz —6080 7 60‘210 +§a)ﬂo—6 ﬁwiﬂ,
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sf _4sv6 o 5V6 4 5VT 0 6VI05 \/” 6V105 , S5v21 , 15
a)

MAlsp — _ _ d ,
nar =t 1 4 77 Wy + ” 60 + 7 YT Ty () 22 77 Wy 11 Wey \/ﬁa)“
T _\/1060d 90\/660d B 10\ﬁw(l
22,43 7 22 77 42 11 62°
A 50 243 13 203 243 |5 3v14 42 |7 5
Miid) = @i = 555 + ngo - ﬁa)go + 278660%0 13 %%~ T @6 13\ ke + 21 %wQS’
90 2025 9 243 / 1 21 243 |5
Mﬁll ’411)2 = gO + 55 40 + 60 d \/' 22 42 62 + \/_ + _wgél
’ 77 2002 11 286 7 143 143 143V 14
3\/ 17 /3 /2 /5
+— 64’ 2 84 +4 w66 143 w86 +21 286 wSS’
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For the A, irrep in moving frame with |pL /27| = v/2, we choose d = pL/2z = (1, 1,0),

Ay p Ay p Ay.p
—cotdy + Myi5, M1, —Myi'i
0 = det M5P —cotd, + M, MY, , (B15)
Ay,p Ay, Ay p
—M>i'i My, —cotd, + Myi'y

where

5 12 30
A, RV,
My = o +§a)‘210 _70)20 + IT(\/gwgz + 2\/50)22),

5v3 15 10v/3 5 15 9 4
M?lz.’éll)l:_ \/_a) \/_ o+ \/_ng+ \/_( i+ V7)o 22+ _<5_i_) h— \/—(l‘f' f)”sz

7 0 77 11 14 V7
3v/30 10V6
M TR R Tt

25 4 486 , 8
7772071001 %0 T 11Y0 T 143

A42~/35 .21 ) /3
+lw&)g2—l Ha)gﬁ—ll4 Fa)gé,

60 4 1215 , O , 168 , f 81v/10 VIS
3VT-i5 i3 —6—iVT)at
=77 To0r i T Tk (\f T (VT 3o BT

42f , 8110 V2 84 [2 21 13
143( —ivVT)od, +i 13 a)44+t a)g4—lﬁ Ha)g4—l Ha)g(,—llél mw&.

For the B, irrep in the moving frame with |pL/2z| = /2, we choose d = pL/2z = (1,1,0),

g 224 . 25V6 24310 4 V105

TR @Wso 1 77 Wy Tl 1001 Wy 1—11 We)

Ay, p
M41 41 +a’00+

Ayp _
M41.42

By.p By.,p By,p
—cotdy + Myi 5, My, —M;; 4
_ B.p B.p B.p
0 = det My —cotdy + My, My , (B16)
B,.p B.p B,.p
—M;; 4 Misn —cotdy + My 'y
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where
5 12 V30
B .
M211§l go "‘5(‘)‘210 _7“"20 - ’T(\/gw(zlz "‘2\/5(022)7
B 5V3 15V3 4 10V3 ,  5V2 15 .9 45
Myh =~ 7 %) — 77 oy + 1 w§y + 14 (i +VT)w 22Jr 12 5+1W 0 ——— 1 (1-ivV7)ad,
.3v/30 10v6
— I I Y
25 486 8 224 2516 243+/10 V105 42+/35
Mfll 411)1 = +a)00 +5 (2]0 go wgo — 7 Ws — 1 \/_wgz —i wgz —i a’gz - i—\/_w(slz
77 1001 11 143 77 1001 11 143
\/ a)66+114\/14 a)86,
B, 1215 168 5v6 811/10 V15
M%, = 77 go 1001 40+11 60+143 0§y + 77 (3\/_+l5)“’22+ 1001 ( \/_+l3)w4z+ ( —6+iV7)wl,
42/5 8110 3[ / 21 /3
+—143 (2+i \/_) —i 143 wg4—’ o}, 84+ w66+ll4 143 a)86

For the B, irrep in the moving frame with |pL /27|

—cotdy + MzBf,’gl

0 = det M5
B,,
M212,4lt)1
where
10 3 5
B
My 3, = oy — 7 — 5 "‘70’40 "‘6\/ 6044,
5 45 5 5
; 14 7 77 22 V7
50 243 13 203
By,
Miis = +of _ﬁwgo + mwgo 11 oy + 5o 286
90 2025 9
By,
M412,4ll)2 = +ﬁw(210 - 2002 wg() 11 60 + 286 80 +

= /2, we choose d = pL/2z = (1,1,0),

Mlzglzllt)l Mlzglz.}lt)l
—cotd, + My, Myh ; (B17)
M4B12,’£2 —cotdy + M41 41
6vV105 4 V10 4 6V105 , 5V21 4 15
+ 77 Wy — b%) Wgy + 77 w44_Tw64_\/——w66’
243 /5
0+143 14 o+ 0 11 g“ \/ 2 ks 21\/28 s
243 5 4 21[ 243 [5
22 42 1 Yer T 4 + w44
7 143 143 143

3v14 42 |7 /3 /2 /5

For the A, irrep in the moving frame with |pL/2x]|

= /3, we choose d = pL/2z = (1,1,1),

—cot Sy + V30wd, 621 4y 3v3(1 — i),
A AL
0 — det —V/3009, —cotd, + M21 21 My % M5i% (B18)
- 6V21  d JYAL: MY _cots MAP ’
7 @40 21.41 41,41 — COLOy 4142
3V3(-1 - i), M?f,}lt)z Mgll;lt’z Mﬁzl,?lt)z —cotdy
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where
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For the E irrep in the moving frame with |pL/2z| = v/3, we choose d = pL/2z = (1,1, 1),

—cotd, + M 1251’1,)21 M gil.)zz M 51'?41 M fil,)4z M 125{?43
M gil,)zz —coté, + M 1252’1,)22 M 52?41 M 52?42 M gil.)43
0 = det Minl,)41 Mgi?u —cotdy + Mfiliu Mfil,)42 Mfil,)43 ;
M gil.)42 M gz’l.)n My o —cotdy + M 4Eil,’42 M fz’l,)zts
M gil,)43 M 52?43 My 13 M3y —cotdy + My

where

Ep _ a4 , 18 4
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