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Studying QCD and other gauge theories on quantum hardware requires the preparation of physically
interesting states. The variational quantum eigensolver provides a way of performing vacuum state
preparation on quantum hardware. In this work, variational quantum eigensolver is applied to pure SU(3)
lattice Yang-Mills on a single plaquette and one dimensional plaquette chains. Bayesian optimization and
gradient descent were investigated for performing the classical optimization. Ansatz states for plaquette
chains are constructed in a scalable manner from smaller systems using domain decomposition and a
stitching procedure analogous to the density matrix renormalization group. Small examples are performed
on IBM’s superconducting Manila processor.
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I. INTRODUCTION

Quantum chromodynamics (QCD) plays an important
role in a number of phenomena ranging from nuclear forces
holding together nuclei to inelastic hadron collisions to the
behavior of matter under extreme conditions (such as in
supernovas and the early Universe). A number of analytic
and numerical tools have been developed to study QCD
since its discovery in the 1970s. One of the most successful
approaches to numerical calculations is lattice QCD [1,2].
High precision calculations of hadronic spectra [3–5];
electroweak matrix elements [6–14]; properties of high-
temperature, low density systems, and some multihadron
systems [15–18] have been performed using lattice QCD
(for recent reviews see Refs. [19,20]). However, lattice
QCD calculations of some important observables of interest
are limited by sign problems present in the stochastic
sampling used. For example, the simulation of QCD at high
densities [21–25], relevant to supernovas and the early
Universe, or with a θ term suffer from sign problems [26]
and are out of the reach of classical computers at scale. The
limitations of classical computers to simulate quantum
physics was recognized by Feynman [27] and Benioff [28]
in the 1980s, and they proposed the use of controlled
quantum systems to perform simulations of quantum
systems of interest.
The recent rapid improvements in the control of quantum

systems in the laboratory have led to the creation of the first
few generations of quantum computers. Many different
platforms have been explored including, but not limited to,

superconducting circuits, trapped ions, and photonic sys-
tems (for recent reviews see Ref. [29–31]). These exper-
imental efforts have been accompanied by a corresponding
growth in the theoretical understanding of how to use
quantum computers to simulate quantum systems.
Algorithms for aspects of quantum simulation such as
state preparation and time evolution have been developed
for application in the future regime of error-corrected
quantum computers and for near term applications on
noisy intermediate quantum (NISQ) computers. To apply
these algorithms, the basis of the theory being studied must
be mapped onto the basis of the quantum computer being
used. The simulation of scalar field theories has been
studied in the eigenbasis of the field operator [32,33], the
basis of the local free-field eigenstates [34–36], the
momentum basis [37] and using single particle digitization
[38]. Relativistic fermionic field theories have been studied
using both the Jordan-Wigner and Bravyi-Kitaev encodings
[39–41]. Nonlinear σ models have been studied using fuzzy
spheres, qubit regularizations, and clock approximations
[42–45]. Aspects of superstring theory have been mapped
onto quantum computers by making use of matrix models
[46]. There have been many approaches made to the
quantum simulation of lattice gauge theories [47–101],
mostly by making use of the Kogut-Susskind Hamiltonian
[102–106]. These different approaches to mapping theories
onto quantum computers are important to explore, as the
optimal choice of basis for a given quantum computer will
likely depend on the details of the hardware.
To use quantum computers to study physical systems of

interest, physical states, such as the vacuum of a quantum
field theory, need to be prepared. The variational quantum
eigensolver (VQE) is a NISQ algorithm that can be used to
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variationally prepare the lowest energy state of a quantum
system [107]. The application of VQE to quantum chem-
istry problems has been studied in great detail [107–120].
Additionally, use of VQE in the preparation of the vacuum
state for various quantum field theories, including the
Abelian Higgs model with a topological θ term [121],
has recently been examined. The VQE algorithm has been
previously applied to find the vacuum state of small lattices
for the Schwinger model [47,48,122]. It has also been used
to prepare hadron states in an SU(2) gauge theory in 1þ 1
dimensions [95] and to model the force between mesons in
the Schwinger model [50]. VQE requires an Ansatz circuit
to prepare the system’s state and a classical optimizer to
determine the angles in the Ansatz circuit. To scale these
calculations to situations with a useful quantum advantage,
it will be necessary to understand how to connect these
small lattice calculations to a calculation on a larger lattice
and how the optimization procedure performs as system
size is increased.
In this work, the application of VQE to pure SU(3) lattice

Yang-Mills gauge theory is studied. This provides a starting
point for understanding the resources required to simulate
lattice QCD on a quantum computer. We performed a VQE
calculation of the vacuum state for one and two plaquette
systems using superconducting quantum processors. We
also examine how to apply ideas from domain decom-
position in lattice QCD calculations on classical computers
to the construction of Ansatz states for VQE of large lattices
from the vacuum state of smaller lattices.

II. ELECTRIC MULTIPLET BASIS

Quantum simulation of SU(3) Yang-Mills theory on a
lattice can be performed with link variables connecting
neighboring sites of the lattice. The Hamiltonian, first
discussed by Kogut and Susskind [102], is

Ĥ ¼ g2

2ad−2
X
b;links

jÊbj2

þ 1

2a4−dg2
X

plaquettes

ð6 − □̂ðxÞ − □̂
†ðxÞÞ; ð1Þ

where g is the coupling constant, a is the lattice spacing,
and d is the number of spacial dimensions. The plaquette
operator □̂ðxÞ is defined by

□̂ðxÞ ¼ TrðÛðx;xþ aiÞÛðxþ ai;xþ aiþ ajÞ
× Ûðxþ aiþ aj;xþ ajÞÛðxþ aj;xÞÞ; ð2Þ

where Ûðx; yÞ is an SU(3) matrix on the link between sites
x and y and i and j are unit vectors that define the
orientation of the plaquette. This theory can be described in
the electric field basis, where each link’s Hilbert space is
spanned by the state vectors jR; mL;mRi, where R is an

irreducible representation of SU(3), mL labels the compo-
nent of the representation on the left side of the link, andmR
labels the component of the representation on the right side
of the link. Physical states in this Hilbert space are subject
to a constraint from Gauss’s law which requires the wave
function of the links meeting at each vertex to form a singlet
state. In previous work, it was noted that for a lattice
consisting of a chain of plaquettes, the Gauss’s law
constraint can be used to integrate out the irrep state labels
mL and mR on each link [54,66,123]. Integrating out mL
and mR allows basis states to be described by only
specifying R on each link. Figure 1 shows an example
of a plaquette in a chain with the basis labels necessary to
specify its state. For an SU(3) gauge theory, the represen-
tation on each link can be labeled by a pair of non-negative
integers p and q that count the upper and lower tensor
indices. These labels can be mapped onto a quantum
computer in a local basis by using two registers of qubits
on each link to represent p and q in binary. Alternatively,
Gauss’s law can be solved at each vertex on the lattice and
the resulting physical states can be mapped onto the basis
of a quantum computer. This global basis construction is
not scalable to large lattices, but can be used to map small
lattices onto near term devices. The number of states in the
global basis that need to be considered can be reduced by
making use of symmetries to study different sectors of the
theory. For example, SU(3) lattice Yang-Mills theory has a
color parity (CP) symmetry related to the invariance of the
theory under reversal of the direction of the links. The
global and CP invariant bases were studied in detail for one
and two plaquettes in Ref. [66].

III. SINGLE PLAQUETTE

A single plaquette, as shown in Fig. 2, is one of the
simplest systems that can be considered in lattice gauge
theory. In this work, the single plaquette system will be
studied in the electric multiplet basis described in the
previous section. In this formulation, Gauss’s law guaran-
tees that each link in the plaquette will have the same

FIG. 1. An SU(3) plaquette in a 1D chain of plaquettes. The
electric multiplet basis states of the links in this figure are

represented by

����χ
� C1;R2;C2

R1;R3

C3;R4;C4

��
where each Ci and Ri labels the

irrep on the corresponding link.
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representation. Therefore, the basis states of the plaquette
can be specified by jp; qi, where p and q are specified
earlier. In units where the lattice spacing equals one, the
Hamiltonian for a single plaquette is

Ĥ ¼ 2g2
X
b

jÊbj2 þ 1

2g2
ð6 − □̂ − □̂

†Þ; ð3Þ

where
P

b jÊbj2 is the Casimir for the chromoelectric field
representation given by

X
b

jÊbj2jp; qi ¼ p2 þ q2 þ pqþ 3pþ 3q
3

jp; qi; ð4Þ

and the plaquette operator □̂ acts on the basis states by

□̂jp; qi ¼ jpþ 1; qi þ jp − 1; qþ 1i þ jp; q − 1i: ð5Þ

While the exponential decay of correlations in gapped
quantum systems is known to allow for state preparation
using circuits localized in position space [124], the depth of
the circuits needed to prepare the local color-space degrees
of freedom has not been studied in as much detail. Due to
Gauss’s law guaranteeing every link in a single plaquette
has the same chromoelectric flux, the single plaquette
system can be used to study state preparation of the local
color space while avoiding the complications of spacial
correlations.

A. Vacuum preparation

1. Initialization

VQE is a hybrid quantum algorithm that can improve the
overlap of an initial state with the vacuum state. The
performance of VQE has a strong dependence on the initial
state used [107,108,110]. In applications of VQE to
electronic structure problems, Hartree-Fock states and
unitary coupled cluster states computed on classical

computers have been used as initial starting points for
VQE. However, lattice gauge theory does not have com-
parable classical calculations in the Hamiltonian formu-
lation available. As an alternative, the Lanczos algorithm
can used to initialize VQE for a single plaquette.1 The
Lanczos algorithm works by constructing the Krylov sub-
space spanned by fjψi; Ĥjψi;…; Ĥnjψig for some integer
n and initial state jψi and diagonalizing the Hamiltonian in
this subspace [125]. Quantum variations of the Lanczos
algorithm have also been proposed for use in the study of
state preparation [126]. The result of applying the Lanczos
algorithm to a single plaquette using the electric vacuum as
the initial state is shown in Fig. 3.2 For a fixed coupling, the
overlap with the true vacuum is shown to scale asymptoti-
cally as a Gaussian with the Krylov dimension used in the
Lanczos algorithm. The dimension of the Krylov subspace
needed to reach a fixed accuracy scales as 1

g. This behavior
can be seen to follow from the structure of the single
plaquette vacuum wave function. The vacuum wave func-
tion is asymptotically Gaussian in the chromoelectric field
with a width inversely proportional to g. Each time Ĥ is
applied to increase the dimension of the Krylov subspace,
the maximum p and q included in the Krylov subspace is
increased by 1. Therefore, the size of the vacuum wave
function components added by increasing the Krylov
dimension fall off asymptotically as a Gaussian, and the

FIG. 2. A single SU(3) plaquette. p and q label the chromo-
electric flux on each link.
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FIG. 3. This figure shows the dimension of the Krylov subspace
required for the overlap of the state prepared by the Lanczos
algorithm, jψi, with the true vacuum, jVaci, to satisfy
jhψ jjVacij2 ≥ 0.999999. The inset panel shows the overlap with
the true vacuum as a function of Krylov dimension for g ¼ 0.5.

1This application of Krylov subspaces to quantum simulation
was developed in collaboration with other members of IQuS
during the spring of 2020.

2The icons in the corners of the plots in this text were
introduced in Ref. [127] and are available at iqus.uw.edu/
resources/icons/. The pink icons indicate the calculations
in the figure were performed on a classical computer and the blue
icons indicate the calculations in the figure were performed on a
quantum computer.
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Krylov dimension needed to reach a desired accuracy ϵ

scales as logð1ϵÞ
g . It should be noted that an exponential

convergence with field truncation has also been observed in
the simulation of scalar field theories [36] and U(1) gauge
theories [128], and has been proven to be a rather generic
property of theories involving bosonic modes [129].
The Lanczos algorithm provides approximate wave

function components of the vacuum state that must be
mapped into a quantum circuit to be useful for state
preparation. The state prepared by using a d-dimensional
Krylov subspace potentially spans all basis states with
p; q < d. Therefore, a state with nontrivial support on d2

basis states must be prepared, which can be done using a
circuit of length Oðd2Þ using standard state preparation
procedures [130]. Using the previous result on the Krylov
dimension required to reach an accuracy ϵ, a quantum
circuit of size

S ¼ O

��
logð1ϵÞ
g

�
2
�
; ð6Þ

can be used to prepare the vacuum of a single plaquette with
coupling g on a quantum computer within an accuracy of ϵ.

2. Optimization

The VQE algorithm makes use of a classical optimizer to
improve the overlap of the Ansatz state with the actual
vacuum. In previous work, Bayesian optimizers have been
used in the VQE algorithm to prepare the ground state of
the Schwinger model [47] and to prepare hadron states in
an SU(2) gauge theory [95] on small lattices. Bayesian
optimization minimizes an objective function by iteratively
constructing an interpolator, usually a Gaussian process,
from existing data and optimizing the interpolator. It is
ideal for optimizations where the number of available
evaluations of the objective function is limited (typically
to a few hundred evaluations), the objective function is
continuous, and the dimensionality of the domain is no
more than 20 [131]. On existing hardware that only has a
handful of qubits available, circuits that can prepare a
generic Ansatz state can be implemented with fewer than 20
parameters. However, as quantum computers grow in qubit
count and coherence time, this will no longer be true. To
reach a quantum advantage, it will be important to under-
stand when Bayesian optimization breaks down. To test the
performance of a Bayesian optimizer for lattice gauge
theory, VQE was simulated without noise on a classical
computer for a single SU(3) plaquette with a truncation of
p, q ≤ 3. This system can be represented using 4 qubits on
a quantum processor. The vacuum state of this system lies
in a 10-dimensional CP-invariant subspace which can be
parametrized in spherical coordinates with 9 degrees of
freedom. The details of how the Bayesian optimization was
performed are available in Appendix B.

The results of the simulation of VQE with a Bayesian
optimizer are shown in Fig. 4. In these calculations, the
Gaussian process used to model the energy function being
minimized suffered from multicollinearity. This was miti-
gated with Tikohonov regularization, which in this context
is equivalent to adding a small constant term λ to the
covariance matrix of the energies [132]. As this figure
shows, the convergence of the Bayesian optimizer has a
dependence on the regulator λ. The energy that the
Bayesian optimizer converges to cannot be made arbitrarily
close to the vacuum energy because at sufficiently small
values of λ, multicollinearity returns and the covariance
matrix cannot be inverted, causing the Bayesian optimizer
to fail. The lower panels in Fig. 4 show the dependence of
the Bayesian optimizer’s convergence on the dimension of
the Krylov subspace used to initialize the calculation. For
certain initializations, the Bayesian optimizer is not able to
improve upon the initial state’s overlap with the actual
vacuum. Even for this modest system size, Bayesian
optimization has limitations in how close it can get to
the vacuum state.
Gradient descent is an alternative classical optimizer that

can be used in VQE. Gradient descent evaluates the
gradient of the energy, ∇fðxÞ, at the current step’s
Ansatz parametrization xi, then selects the next step’s
Ansatz parametrization xiþ1 according to

xiþ1 ¼ xi − η∇fðxiÞ; ð7Þ

where η is a learning rate that controls the convergence of
the gradient descent. Convergence to a local minimum can
be guaranteed by the use of backtracking, where η is
steadily decreased during the course of the calculation
[133]. Alternatively, the step size can be selected by using
Bayesian optimization to perform a line search [134]. In
applications to VQE, the gradient can be computed on a
quantum processor by making use of parameter shift
formulas which give the gradient without discretization
errors due to large shift size [135]. The use of gradient
descent as the classical optimizer in VQE will require the
energy of the state to be calculated on the quantum
processor a number of times equal to two times the number
of parameters in the circuit Ansatz per step in the opti-
mization. For comparison, Bayesian optimization only
requires the energy to be computed once per step. The
increase in quantum resources per step in the optimization
may be offset by a faster rate of convergence and ability to
converge to the actual vacuum state. As an optimizer,
gradient descent also requires fewer classical resources per
step than Bayesian optimization. This is because, with
gradient descent, the classical computer only needs to
perform subtraction during gradient descent. Bayesian
optimization, on the other hand, requires the computations
of determinants and inverses of a matrix whose dimension
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is equal to the number of times the energy was previously
evaluated.
Figure 5 compares, for a single plaquette truncated at p,

q ≤ 3, and with g ¼ 0.5, the results of using Bayesian
optimization for the classical optimizer to those of using
numerically computed gradient descent. The Bayesian
optimizer shown in this plot was run with λ ¼ 10−12.
Both optimizers were initialized with the vacuum obtained

using the Lanczos algorithm with a Krylov dimension of 5.
As this plot shows, the Bayesian optimizer converges above
the vacuum energy, while VQE using gradient descent with
a sufficiently small η is limited only by the number of steps
performed in the optimization. To understand if VQE can
offer a quantum advantage, it is helpful to know how many
steps in the optimizer must be performed to reach a certain
level of accuracy. Figure 6 shows the number of steps
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FIG. 4. The relative error in the estimation of the vacuum energy obtained by performing a classical simulation of VQE using Bayesian
optimization for a single plaquette with p, q ≤ 3. The left panel is for g ¼ 0.8 and the right panel is for g ¼ 0.5. The top panel shows the
results of Bayesian optimization as a function of the number of iterations of the optimization for different values of the regulator λ. Each
of the calculations in the top panel was initialized with the vacuum states obtained from the Lanczos algorithm with subspace of Krylov
dimension equal to 5. The bottom panel shows the result of Bayesian optimization using λ ¼ 0.0009 with different maximum Krylov
dimensions.
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FIG. 5. The relative error in the estimation of the vacuum energy obtained by performing a classical simulation of VQE for a single
plaquette with p, q ≤ 3. The coupling is g ¼ 0.5 and the initial state was obtained from the Lanczos algorithm using a Krylov dimension
of 5. The left panel shows a comparison of the results obtained by performing VQE using a Bayesian optimizer to those obtained by
performing VQE using a numerical gradient descent for different learning rates η. The right panel shows the results of 250 iterations of
gradient descent with η ¼ 0.1.
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needed for a backtracking gradient descent to converge for
a single plaquette with a truncation of p, q ≤ 31. This
truncation was chosen so that the relative error in the mass
gap and the vacuum expectation of the plaquette operator
due to field truncation was ≤ 1% for each coupling studied.
The left panel shows that, as g is decreased, the number of
steps needed by the gradient descent algorithm to start from
the electric vacuum and reach a state jψi with
jhVacuumjjψij2 ≥ 0.999 scales as Oðg−4Þ. The number
of steps needed to reach this level of accuracy can be
decreased by beginning the optimization at a state closer to
the vacuum, such as a state obtained from the Lanczos
algorithm. The right panel in Fig. 6 shows the number of
steps needed by a backtracking gradient descent to con-
verge to jhVacuumjjψij2 ≥ 0.999 for a coupling g ¼ 0.1 as
a function of the dimension of the Krylov subspace used in
the Lanczos algorithm to initialize the starting state. From
the fit in the right panel, it appears that the number of steps
required for the gradient descent to converge scales
asymptotically as a Gaussian as a function of the Krylov
dimension used. This is expected, as the discussion in the
previous section showed that the error in the state obtained
from the Lanczos algorithm falls off asymptotically as a
Gaussian as a function of the Krylov dimension. By
beginning in a state obtained from the Lanczos algorithm
and performing the optimization step using gradient
descent, classical simulations of the VQE algorithm are
able to reach the vacuum state of a single plaquette at weak
couplings that are beyond the reach of Bayesian optimi-
zation. Based on these results, Bayesian optimization will
not be a practical optimizer for VQE calculations at scale,
while gradient based methods have a chance of reaching the
vacuum state at scale.

B. Hardware implementation

The discussion in the previous section suggests that VQE
should be capable of preparing the vacuum state for a single

plaquette. However, existing quantum hardware suffers
from the effects of noise and imperfect gate implementa-
tions. This will have an impact on how VQE performs in
practice. To understand how near-term hardware will
perform in the simulation of SU(3) lattice Yang-Mills
theory, IBM’s Manila superconducting quantum proces-
sor was used to perform a VQE calculation for a single
plaquette [136].
The SU(3) lattice Yang-Mills Hamiltonian possesses a

CP symmetry that guarantees that the amplitude of a given
representation in the vacuum wave function will be the
same as the amplitude of the conjugate representation. In
principle, this symmetry can be used to restrict the state
preparation circuit used in VQE which will reduce the
number of free parameters. However, in the presence of
noise and imperfect gate implementations, attempting to
explicitly enforce the symmetry may prevent the actual
state prepared on the quantum processor from respecting
the symmetry. This would be the case if, hypothetically, the
rotations in the circuit suffered from a constant offset error
that was not corrected for. To understand if this is an issue
on existing hardware, a single plaquette was simulated in
the global basis truncated at a representation of 8. The
Hamiltonian is given by Eq. (14) of Ref. [66]. AVQE state
preparation procedure described in Appendix Awas used to
prepare the vacuum state starting from the electric vacuum
and to optimize the angles using gradient descent. VQE
was performed both by enforcing CP symmetry in the
rotation angles in the circuit Ansatz and by allowing all
three of the angles to vary freely. The results of both
calculations are displayed in Fig. 7. As this figure shows,
explicitly enforcing the CP symmetry in the VQE calcu-
lation does not break the symmetry in the vacuum state
prepared using VQE on this hardware. The ability to
explicitly enforce CP symmetry in the Ansatz circuit will
be helpful when performing VQE calculations on larger
systems where the number of free parameters is much
greater.
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FIG. 6. The left panel shows the number of steps needed for VQE using a backtracking gradient descent to converge to the true vacuum
with an accuracy of 0.999 as a function of coupling for a single plaquette with p, q ≤ 31. The right panel shows the number of steps
needed for a backtracking gradient descent to converge to the true vacuum with an accuracy of 0.999 for g ¼ 0.1 as a function of the
dimension of the Krylov subspace used to obtain the initial state.
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As discussed in Sec. III A 1, the Lanczos algorithm can
be used to obtain an initial Ansatz for the VQE algorithm.
At a coupling of g ¼ 1, the vacuum state obtained using a
two-dimensional Krylov subspace has an overlap with the
true vacuum within experimental errors on the Manila
chip [136]. To accurately reproduce physics at a lower
coupling, more electric field representations must be
included. This can be done without increasing the qubit
count by performing a calculation in the color parity basis.
Using two qubits, the color parity basis allows the 6 and 6̄
representations to be included, which is sufficient to
accurately describe a plaquette with a coupling of
g ¼ 0.8. Figure 8 shows the results of performing VQE

for a single plaquette with g ¼ 0.8 in the color parity basis,
beginning both at the electric vacuum and the vacuum
obtained using a Krylov subspace of dimension two. As
this figure shows, pre-conditioning with the vacuum
obtained using the Lanczos algorithm allows one to begin
closer to the actual vacuum and to converge to the true
vacuum faster. Note that in both Figs. 7 and 8, the energy
computed fluctuates at late steps in the gradient descent
instead of converging. This is because the gradient is
computed on the Manila chip with both statistical and
systematic errors. As the optimizer approaches the vacuum
state, the magnitude of the gradient vector decreases. Once
the size of the gradient vector is comparable to the device
errors, it can no longer be reliably computed and the
updates to the circuit parameters are random noise which
leads to the displayed fluctuations. This is a generic feature
of having uncertainties in the computation of the gradient
and will have to be considered when devising stopping
criterion for VQE calculations of larger systems.

IV. MULTIPLE PLAQUETTES

The single plaquette calculations in Sec. III provide
insight into the requirements of state preparation in a simple
system. To perform calculations at scale, these insights
need to be combined with features that only occur on larger
lattices, such as Gauss’s law constraints that can’t be solved
exactly without sacrificing locality. The Lanczos algorithm
provides a good starting Ansatz for VQE on a single
plaquette, but it is inefficient on larger lattices. This can be
seen by using the electric vacuum as the initial state for a
chain of L plaquettes with periodic boundary conditions
(PBCs) as shown in Fig. 9. When a Krylov subspace with
dimension d is used, every basis state with d plaquettes
excited to have a loop of electric fields in the 3 represen-
tation will occur with equal amplitude. There are ðLdÞ of
these states and their superposition requires nonlocal
circuits to capture the nonlocal correlations in the state.
This leads to the circuit required to prepare the state given
by the Lanczos algorithm growing exponentially in size
with the Krylov dimension, and therefore no quantum
advantage. An alternative approach is to use a form of
domain decomposition.
In lattice QCD calculations on classical computers, a large

amount of time is spent solving discretized versions of the
Dirac equation. These calculations have been accelerated by
making use of a domain decomposition [137–139]. Domain
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single plaquette truncated at 8 with g ¼ 1 run on the Manila
quantum processor. The blue points show the results of gradient
descent with CP symmetry enforced in the rotation angles in the
Ansatz circuit and the purple points show the result of not
explicitly enforcing CP symmetry in the state. The data in this
figure is available in Table II.
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FIG. 8. Variational state preparation of the vacuum state for a
single plaquette truncated at 6þ in the color parity basis with
g ¼ 0.8 run on the Manila quantum processor. The blue points
show the result of gradient descent beginning at the electric
vacuum and the green points begin at the state obtained using the
Lanczos algorithm with a Krylov dimension of two. The data in
this figure is available in Table III. FIG. 9. A lattice composed of a chain of plaquettes.
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decomposition accelerates the calculation by solving the
Dirac equation in separate subregions and then stitching the
solutions together. Similar to solving the Dirac equation,
directly preparing the vacuum state for a theory on a large
lattice is difficult because the Hilbert space associated with
the entire lattice is too large to efficiently work with. The
ideas behind domain decomposition can be applied in a VQE
calculation by splitting the lattice into separate disconnected
subregions and preparing each subregion in its vacuum state
(note that there will be links between these regions that will
remain unexcited). The vacuum state of each subregion can
be computed classically or in another VQE calculation. The
VQE algorithm can then be used to excite links in between
the subregions and stitch together the subregions to form the
vacuum state for the entire lattice. SU(3) Yang-Mills is a
theory with spatial correlations that decay exponentially fast
with distance, so it is anticipated that the domain decom-
positionAnsatz should converge exponentially fast to the true
vacuum as the domain size is increased.
Conceptually, this approach to vacuum state preparation

is similar to the density matrix renormalization group
(DMRG) algorithm on classical computers [140]. In
DMRG, the vacuum state of a lattice is prepared, and
the density matrix of a subregion is diagonalized. The
eigenstates of the density matrix with largest weight are
then used as the local basis for a calculation on a larger
lattice. In this manner, DMRG constructs the vacuum state
for a large lattice from the vacuum state for smaller regions.
This is analogous to beginning the VQE optimization in a
domain-decomposed vacuum, except the calculation on the
quantum computer has no need to extract eigenstates of the
density matrix for subregions. Once the desired lattice
length is achieved, DMRG optimizes the approximation to
the vacuum state by decomposing the system into left and
right blocks and using the eigenstates of the density matrix
of the subregions to generate a new basis for the regions. By
growing and shrinking the size of the left and right blocks,
DMRG is able to converge to the true vacuum state. The
process of growing and shrinking the blocks used is
analogous to the stitching procedure described in this work
to improve the overlap with the true vacuum, except, once
again, the quantum calculation does not require the
diagonalization of density matrices.
While this stitching procedure will be explicitly demon-

strated for a quasi-one-dimensional system, it can be
performed in higher dimensions as well. For a system with
three spatial dimensions, the subregions initialized in their
vacuum state will be cubes of some size. Unlike in one
dimension, the number of links left unexcited between the
initial subregions will scale as the surface area of the
subregions. A sequence of unitary transformations acting
on the individual unexcited links, controlled by their
neighboring links on the two cubes they connect, can be
optimized usingVQE to get closer to the vacuum state of the
entire lattice. By limiting the number of links each unitary

acts on in this manner, the number of free parameters in the
VQE Ansatz circuit can be restricted to grow linearly with
the surface area instead of exponentially as it could if all
links were allowed to be acted on simultaneously.

A. Domain decomposition on plaquette chains

A lattice composed of a chain of plaquettes as shown in
Fig. 9 with PBC displays many of the complications
inherent to larger lattices while still being tractable to
simulate on classical computers. A domain decomposition
of a plaquette chain can be performed by breaking up the
lattice into separate subchains, preparing each subchain in
its vacuum state and using VQE to optimize circuits that act
on the boundaries and space between the domains to stitch
them together.
To be useful as an initial state for VQE, a quantum circuit

for the preparation of these domain-decomposed vacuums
must be designed. The circuit to prepare the vacuum state
for a domain of length l can be constructed recursively from
the circuit to prepare the vacuum state for a domain of
length l − 1 as follows. A single plaquette state can be
constructed by performing an R1 rotation from Table I and

TABLE I. This table enumerates the local Givens rotations
required to initialize a domain vacuum on the plaquette chain
truncated at an electric field representation of 3 (up to CP
conjugates of the rotations listed here). The basis states are
defined in the same way as the states in Fig. 1. The first column
labels the rotation and the other two columns specify the basis
states being rotated. R1 excites a single plaquette loop of electric
flux. R2 through R5 stretch the length of a loop of electric flux by
one plaquette. R6 and R7 break a loop of electric flux into two
loops. The basis labels used here were introduced in Ref. [66].

State 1 State 2

R1
�����χ
 1; 1; 1

1; 1
1; 1; 1

!+ �����χ
 1; 3; 1

3; 3̄
1; 3̄; 1

!+

R2
�����χ
 3; 1; 1

3̄; 1
3̄; 1; 1

!+ �����χ
 3; 3; 1

1; 3̄
3̄; 3̄; 1

!+

R3
�����χ
 3; 1; 1

3̄; 1
3̄; 1; 1

!+ �����χ
 3; 3̄; 1

3; 3̄
3̄; 3; 1

!+

R4
�����χ
 1; 1; 3

1; 3̄
1; 1; 3̄

!+ �����χ
 1; 3; 3

3̄; 1
1; 3̄; 3̄

!+

R5
�����χ
 1; 1; 3

1; 3̄
1; 1; 3̄

!+ �����χ
 1; 3̄; 3

3̄; 3
1; 3; 3̄

!+

R6
�����χ
 3; 3; 3

1; 1
3̄; 3̄; 3̄

!+ �����χ
 3; 1; 3

3̄; 3
3̄; 1; 3̄

!+

R7
�����χ
 
3; 3̄; 3̄
3; 1
3̄; 3; 3

!+ �����χ
 
3; 1; 3̄
3̄; 3̄
3̄; 1; 3

!+
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its CP conjugate on the qubits that make up the links in the
plaquette. The two plaquette state can be prepared by
applying R1 rotations on two neighboring plaquettes and
then applying R3 and R4 rotations on one of the plaquettes.
The circuit that prepares the three plaquette vacuum state
can then be constructed by exciting a third plaquette (i.e.
apply an R1 rotation), stretching over the previous two
plaquettes (i.e. apply R3 and R4 rotations to the plaquettes
that have been excited), and performing a rotation on the
center plaquette to deexcite it (i.e. applyR6 and R7 rotations
to the center plaquette). In general, the circuit to prepare a
domain of size l can be constructed from the circuit for a
domain of size l − 1 by exciting a neighboring plaquette,
stretching it over the previous domain, and then deexciting
plaquettes in the center. In general, this approach to
constructing circuits for a domain state scales exponentially
with the size of the domain.
The initial domain decomposition Ansatz can be

improved upon by stitching together the different domains.
More specifically, in the circuit that prepares the vacuum
Ansatz, gates R1 through R7, along with their CP con-
jugates, can be applied to the plaquettes in between the
domains and VQE can be used to optimize the rotation
angles. This stitching procedure can also be used to
construct the vacuum for a larger domain instead of using
the generic state preparation circuit. After performing the
stitching, the overlap with the true vacuum can be increased
further by layering another block of gates on the original
domains and optimizing the angles with VQE again.
Explicitly, if the state obtained from the VQE algorithm
is Sðθ⃗2ÞDðθ⃗1Þj0i, where Dðθ⃗1Þ prepares the states on the
domain and Sðθ⃗2Þ stitches the domains together, then the
Ansatz state

Cðθ⃗1; θ⃗2; θ⃗3Þj0i ¼ Dðθ⃗3ÞSðθ⃗2ÞDðθ⃗1Þj0i ð8Þ

can be prepared on the quantum processor and the energy
can be minimized as a function of θ⃗1, θ⃗2, and θ⃗3 using the

VQE algorithm. Due to the exponentially decaying corre-
lations in SU(3) Yang-Mills theory, the overlap with the
true vacuum should increase exponentially with the number
of additional gate layers stacked on the domains and their
boundaries.
A plaquette chain simulated in the multiplet basis with

chromoelectric fields truncated at the 3 representation will
be used to test the performance of the domain decom-
position Ansatz. Finite and infinite plaquette chains were
studied using an matrix product state (MPS) representation
of states in the time evolving block decimation (TEBD)
algorithm as described in Appendix C. Figure 10 shows the
results of optimizing different domain decomposition
Ansätze for a chain of five plaquettes with g ¼ 0.9 and
open boundary conditions. Figure 11 shows the expectation
of the electric energy for the initial single plaquette Ansatz
and the state obtained after stitching the boundaries
together with VQE. As the size of the initial domains is
increased, the overlap with the actual vacuum increases.
However, the improvement eventually saturates due to
boundary effects. Due to the short correlation length at
this coupling, even a single layer of stitching is able to
achieve a high overlap with the actual vacuum.
To understand how the domain decomposition VQE

Ansatz performs for a large lattice, the time evolving block
decimation algorithm was used to prepare the vacuum state
and simulate VQE on an infinite plaquette chain as
described in Appendix C. VQE was performed using
gradient descent as the classical optimizer. The vacuum
expectation of a single plaquette operator was chosen as a
test observable to study the convergence to the true
vacuum. As Fig. 12 shows, the vacuum expectation of
the plaquette operator converges exponentially fast with the
domain size. A classically simulated version of VQE was
used to simulate the stitching of small domains together.
For domains of lengths 1–4 plaquettes, the initial domain
vacuum was prepared using a generic state preparation
circuit. For the initial domain of length five, the circuit to
prepare the vacuum was constructed by stitching together a
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FIG. 10. The left panel shows the overlap of different domain decompositions with the true vacuum. The right panel shows the rms
error in the expectation of the different single plaquette operators on the five plaquette lattice with open boundary conditions. The left-
most points show the results for the initial domain decomposition, the middle points show the result after using VQE to stitch the
boundaries of the domains together, and the right points show the results after using VQE to optimize another layer of circuits on the
domains after stitching.
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vacuum state preparation circuit for a domain of length
three plaquettes and of length one plaquette. The circuit
optimized in VQE consisted of the initial domain vacuum
circuit, along with all rotations in Table I with all rotation
angles allowed to vary freely. For each domain size, the
optimization of the stitching improved the estimation of the
vacuum plaquette expectation by at least an order of
magnitude.

B. Hardware implementation

As with the single plaquette case, it is instructive to study
multiple plaquettes on existing quantum hardware.
Unfortunately, simulating multiple plaquettes in a local
basis as described in the previous section is beyond the
reach of existing hardware. However, these techniques can

be applied to state preparation in a global basis. IBM’s
Manila quantum processor was used to simulate a two
plaquette system truncated at an electric field representation
of 3 in the global CP invariant basis [136]. For this simple
system, preparing the single plaquette vacuum is equivalent
to using the vacuum state obtained using the Lanczos
algorithm with a Krylov dimension of two. The results of
performing VQE with the error mitigation procedures
described in Appendix A are shown in Fig. 13. As this
figure shows, the VQE algorithm is able to converge to the
true vacuum energy whether it begins in the electric or
single plaquette vacuum. However, by initializing the state
in the single plaquette vacuum, the VQE algorithm is able
to converge to the true vacuum state faster. While the two
initial states converge to the same vacuum state, the

FIG. 11. The top panel shows the expectation of the electric energy for a five plaquette chain with open boundary conditions where
every other plaquette has been initialized to the single plaquette vacuum. The bottom panel shows the expectation of the electric energy
after the boundaries of the initial domains have been stitched together with VQE.
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FIG. 12. The left panel shows the expectation of a plaquette operator at the center of a domain as a function of domain length for both
the initial Ansatz and the state after using VQE to stitch domains together. The dashed blue line shows the vacuum expectation of a single
plaquette operator on an infinite chain of plaquettes with g ¼ 0.9. The right panel shows the error in the vacuum plaquette expectation as
a function of the domain size.

ANTHONY N. CIAVARELLA and IVAN A. CHERNYSHEV PHYS. REV. D 105, 074504 (2022)

074504-10



uncertainties in the vacuum energy they converge to are
quite different. This is due to the circuit Ansatz used to
initialize the state having redundancies in the angle para-
metrization of the state, leading to the two initial Ansätze
converging to different sets of angles describing the same
state. In the absence of noise on the quantum processor,
these parametrizations would be equivalent. However,
existing quantum processors are noisy and there are
systematic errors with angle dependence leading to the
different error bars shown in Fig. 13.

V. DISCUSSION

Achieving a quantum advantage in the simulation of
lattice gauge theories requires the preparation of physically
interesting states, such as the vacuum. In the NISQ era,
hybrid algorithms such as VQE will be essential. To make
use of VQE, an appropriate classical optimizer and Ansatz
circuit must be chosen. In this work, state preparation on
simple SU(3) lattice gauge theories has been performed
with an eye towards scalability. In the variational state
preparation of single plaquette systems, we showed that
Bayesian optimization suffers from convergence issues as
the coupling g is decreased, while gradient descent methods
suffer from no such issue. This suggests that VQE
calculations at scale may need to make use of gradient
descent methods in order to converge, despite the increase
in computational overhead required to compute the gra-
dient. Note that gradient based methods may converge to a
local minimum instead of the true vacuum. This has not
occurred for the simple systems studied in this work, but
may need to be considered when performing calculations
at scale.
Calculations at scale will also require appropriate Ansatz

circuits to perform VQE. Due to the exponential growth of
the Hilbert space with lattice size, circuits capable of

preparing a generic state on the lattice will not be able
to go to scale. In this work, it was demonstrated that in a
quasi-1D SU(3) lattice gauge theory, VQE can be used to
stitch together domains in their vacuum state to prepare the
vacuum state of a larger lattice. The exponential conver-
gence with domain size on an infinite lattice suggests that
even shallow circuits may be able to achieve a large overlap
with the true vacuum state at scale. The calculations on
IBM’s Manila quantum processor showed that circuit
Ansätze that respect a global symmetry will still respect the
global symmetry on existing hardware despite the presence
of noise and imperfect gates. This allows global symmetries
to be used to construct circuit Ansätze that have fewer free
degrees of freedom, which makes them easier to optimize.
While the computations in this work are encouraging,

preparing a vacuum state for QCD with VQE will require
significant developments in the application of quantum
algorithms to lattice gauge theories. The calculations
performed in this work were for a one dimensional string
of plaquettes, but QCD is a three-dimensional theory. In a
3D theory, the domains being initialized in their vacuum
state will be 3D blocks and the number of circuits required
to stitch them together will scale with the surface area of the
domain blocks. Additionally, a QCD calculation that can be
taken to the continuum limit may require more electric field
representations to be included, which will increase the
number of possible local rotations in the VQE stitching
circuit. It is conceivable that it is possible to reach the
continuum limit without increasing the field truncation, but
this remains to be investigated. Regardless, as the con-
tinuum limit is approached, the correlation length of the
system will diverge and more layers of circuits will be
required in the VQE stitching to accurately prepare the
vacuum state. Matter will also need to be included at
the sites, which will complicate the integrating out of the
internal gauge space. In addition to these conceptual
complications, achieving a quantum advantage in the
simulation of lattice QCD will require quantum hardware
with more qubits and a lower error rate, in order to enable
the simulation of a large lattice in a local basis. While
scaling up quantum hardware is challenging, the rapid
improvement in quantum hardware and recent proposals for
codesign [66,101,121] of quantum processors suggest that
it can be done in a manner that will allow the simulation of
lattice QCD on quantum computers in the near future.
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APPENDIX A: HARDWARE CALCULATIONS

To perform VQE on a quantum computer, a circuit must
be designed to prepare the Ansatz state. For the calculations
demonstrated here, only two qubits were used, so the circuit
used to construct the state was capable of preparing an
arbitrary 2 qubit state whose wave function has only real
coefficients. Once the Ansatz state has been prepared on the
quantum computer, the energy of the state must also be
computed. This can efficiently be done by breaking the
Hamiltonian up into a sum over tractable terms, applying
gates that diagonalize each term of the Hamiltonian, and
performing measurements in the computational basis. This
approach to computing the energy will require one circuit
per term in the Hamiltonian. Each of the Hamiltonians
studied in this work can be written in the form

Ĥ ¼ Ĥ1 þ Ĥ2 þ Ĥ3;

Ĥ1 ¼ h111̂ ⊗ Ẑ þ h12X̂ ⊗ 1̂þ h13X̂ ⊗ Ẑ;

Ĥ2 ¼ h21Ẑ ⊗ 1̂þ h221̂ ⊗ X̂;

Ĥ3 ¼ h31X̂ ⊗ X̂ þ h32Ŷ ⊗ Ŷ þ h33Ẑ ⊗ Ẑ: ðA1Þ

These Hamiltonians can be diagonalized using the circuits
shown in Fig. 14. To use gradient descent based methods in

the classical optimization step of VQE, the gradient for the
energy of the state as a function of the rotation angles in the
Ansatz circuit must be computed on the quantum computer.
Due to the periodicity of sin and cos, the gradient can be
computed exactly using a symmetric finite difference
formula with a shift of π

4
. Explicitly, components of the

gradient are computed using

∂iEðθ⃗Þ ¼ E

�
θ⃗ þ π

4
î

�
− E

�
θ⃗ −

π

4
î

�
; ðA2Þ

where Eðθ⃗Þ is the energy as a function of the angles in the
Ansatz circuit and î is a unit vector pointing in the ith
direction. Therefore the gradient can be computed on the
quantum computer using a number of circuits equal to two
times the number of parameters in the Ansatz circuit. The
calculation of the energy on a real quantum computer
suffers from systematic errors due to errors in the imple-
mentation of the gates on the computer and errors in the
measurement process. The measurement errors can be
mitigated by using Qiskit’s measurement filter
subroutine, which removes the leading order measurement
errors by optimizing an approximate inverse of the calcu-
lated all-to-all measurement matrix [141]. The dominant
gate errors come from the implementation of controlled not
(CNOT) gates. The errors associated with CNOT gates are
mitigated using an extrapolation procedure [142,143]. Each
CNOT in the circuit is replaced with an odd number r of
CNOT gates (r ¼ 3, 5, 7) and a linear extrapolation is
performed to r ¼ 0.

APPENDIX B: BAYESIAN OPTIMIZATION

Bayesian optimization is a classical optimizer that can be
used in the VQE algorithm. Bayesian optimization uses the
data already collected to create a Gaussian process-based
surrogate function that approximates the function, f, being
optimized. This surrogate function is then used to create an
acquisition function, which is then optimized to find a new
trial point for the location of f’s minimum. f is then
evaluated at that new point and the result is incorporated
into the data for the next iteration [144]. The Gaussian
process used requires both a mean and covariance matrix
for the function f. The covariance matrix used in this work
is constructed from the Gaussian kernel [145], which
defines the covariance between fðx1Þ and fðx2Þ to be

Kðx1;x2Þ ¼ e
−Σd

i¼1

ðx1i−x2iÞ2
l2
i ; ðB1Þ

where d is the number of dimensions of the inputted point
and li are hyperparameters specifying the width of the
Gaussian for each component of x. The mean of f is
generically unknown, but given the covariance matrix the
mean can be approximated by the best linear unbiased
predictor,

FIG. 14. The top circuit is used to compute the expectation of
H1, the second circuit is used to compute the expectation of H2,
and the bottom circuit is used to compute the expectation of H3.
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μ ¼ ð1TC−11Þ−11TC−1Z; ðB2Þ

where 1 is a vector with all entries equal to 1, C is the
covariance matrix with matrix elements given by
Cij ¼ Kðxi;xjÞ, and Z is a vector with entries given by
the value of the function at the evaluated points, Zi ¼
fðxiÞ [146].
Given the mean and variance of the Gaussian process,

the value of f at a point xposterior that has not already been
evaluated follows a Gaussian distribution with a mean and
variance given by

μposterior ¼ cTC−1Z − ð1 − cTC−11Þð1TC−11Þ−11TC−1Z;

σ2posterior ¼ Kðxposterior;xposteriorÞ − cTC−1c

þ ð1 − cTC−11Þ2ð1TC−11Þ−1; ðB3Þ

where c is a vector with entries ci ¼ Kðxposterior;xiÞ [146].
Equation (B3) expresses the posterior mean and variance
under the assumption that f can be evaluated without error.
In order to incorporate errors, the variance of the data must
be added to the diagonal elements of the covariance matrix
C and to σ2posterior [145].
To use a Gaussian process in practice, the hyperpara-

meters of the kernel must be selected. In this work, this was
done by maximizing the likelihood of the data under a
multivariate Gaussian model with a mean equal to the best
linear unbiased predictor’s mean and with a covariance
equal to C (with the variance of the data added to its
diagonal elements) from Eq. (B2). Another issue with
practical implementation that arises is that C often ends up
singular as the Gaussian process is iterated. This issue is
known as multicollinearity and it occurs when one of the
points used to constructC can be exactly predicted from the
other points leading to zero being an eigenvalue of C. This
can be remedied by using Tikohonov regularization where
a fake “data variance” distinct from the real data variance is
added to C but not to σ2posterior [132].
The probability distribution of f at unevaluated points is

used to construct an acquisition function, whose job it is to
balance exploration and exploitation. The acquisition
function is optimized to find the minimum of f. In this
work, probability of improvement [144] was used as the
acquisition function; i.e. the probability that the minimum
of f is smaller than the previously found minimum is
maximized. This is equivalent to minimizing

acqðxÞPI ¼
μposteriorðxÞ − fmin

σposteriorðxÞ
; ðB4Þ

where fmin is the previously found minimum of f.

APPENDIX C: PLAQUETTE CHAIN
TENSOR NETWORK

The TEBD algorithm can be used to simulate the
time evolution of an infinite translationally invariant quan-
tum system by Trotterizing the time evolution operator
[147–149]. The vacuum state of a system can be prepared by
performing imaginary time evolution. This algorithm was
developed for the simulation of systems whose Hamiltonian
only consists of 2-site nearest-neighbor couplings, so its
application to the simulation of a plaquette chain requires
nonstandard modifications. Figure 15 shows how the links
in the plaquette chain can be blocked together to form a 1D
quantum system whose state can be described with MPS.
In this blocking, the electric field operator on a single link

becomes a single site operator, the plaquette operator
becomes a three site operator, and the Gauss’s law
constraint become a constraint on neighboring sites.
The Gauss’s law constraint can be enforced by adding an
energy penalty for violating Gauss’s law.

FIG. 16. This figure shows the required sequence of SVDs that
must be performed to return an MPS tensor network to MPS form
after applying a 3-site gate.

FIG. 15. An infinite chain of SU(3) plaquettes can be mapped
onto a 1D quantum system whose state can be represented with
MPS by blocking sets of 3 links together as shown.
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The TEBD algorithm finds the vacuum by applying a
Trotterized version of the imaginary time evolution oper-
ator to a translationally invariant state. For a 2-site
Hamiltonian, this is accomplished by storing a unit cell
of 2 sites and performing an singular value decomposition
(SVD) after applying each gate to keep the most relevant
states. For a 3-site Hamiltonian, such as the Hamiltonian
obtained for the plaquette chain, a unit cell of 3 sites must
be stored and two SVDs must be performed to obtain the
most relevant local states as shown in Fig. 16. The approach
used to perform time evolution in TEBD can also be used to
apply arbitrary gates. To represent the Ansatz states
obtained using domains of l plaquettes, a unit cell of
length lþ 1 had to be stored and the state was prepared by
applying gates and performing a SVD to return to MPS
form as in the case of time evolution.

APPENDIX D: DATA FROM IBM’s
MANILA PROCESSOR

The following tables in this appendix contain the
energies that were computed on IBM’s Manila quantum
processor. All error bars were computed from the uncer-
tainty in the linear CNOT extrapolation as described in
Appendix A.

TABLE II. This table lists the data shown in Fig. 7. The left
column states the number of times gradient descent was applied,
the center column contains the energies computed for the circuit
that had the CP symmetry explicitly enforced, and the right
column contains the energies computed for the circuit without the
CP symmetry enforced.

Step number
CP symmetry

enforced
CP symmetry
unenforced

1 2.957� 0.025 2.941� 0.017
2 2.973� 0.028 2.91� 0.04
3 2.93� 0.04 2.931� 0.032
4 2.891� 0.013 2.928� 0.016
5 2.905� 0.028 2.877� 0.017
6 2.88� 0.05 2.830� 0.009
7 2.868� 0.019 2.825� 0.023
8 2.806� 0.025 2.84� 0.04
9 2.826� 0.016 2.847� 0.027
10 2.83� 0.017 2.822� 0.006
11 2.87� 0.04 2.882� 0.025
12 2.824� 0.02 2.823� 0.024
13 2.806� 0.026 2.826� 0.015
14 2.834� 0.007 2.846� 0.021
15 2.808� 0.019 2.833� 0.015
16 2.783� 0.004 2.812� 0.004
17 2.843� 0.007 2.819� 0.006
18 2.808� 0.016 2.801� 0.013

TABLE III. This table lists the data shown in Fig. 8. The left
column states the number of times gradient descent was applied,
the center column contains the energies computed for the gradient
descent that began at the electric vacuum, and the right column
contains the energies computed for the gradient descent that
began at the state obtained from the Lanczos algorithm with a
Krylov dimension of 2.

Step number Electric start Krylov start

1 4.61� 0.06 3.900� 0.030
2 4.44� 0.08 3.917� 0.024
3 4.265� 0.034 3.85� 0.04
4 4.11� 0.04 3.827� 0.020
5 4.040� 0.014 3.826� 0.025
6 3.984� 0.024 3.81� 0.04
7 3.928� 0.007 3.867� 0.030
8 3.855� 0.016 3.814� 0.034
9 3.85� 0.04 3.84� 0.05
10 3.811� 0.030 3.78� 0.04
11 3.837� 0.018 3.79� 0.04
12 3.790� 0.024 3.80� 0.05
13 3.804� 0.025 3.785� 0.032
14 3.789� 0.024 3.790� 0.022
15 3.83� 0.06 3.767� 0.007

TABLE IV. This table lists the data shown in Fig. 13. The left
column states the number of times gradient descent was applied.
The center column contains the energies computed for the
gradient descent that began at the electric vacuum. The right
column contains the energies computed for the gradient descent
that began at the single plaquette vacuum.

Step number Electric start One plaquette start

1 2.96� 0.07 2.6648� 0.0013
2 2.85� 0.10 2.631� 0.022
3 2.77� 0.11 2.66� 0.04
4 2.72� 0.10 2.609� 0.012
5 2.69� 0.09 2.651� 0.017
6 2.71� 0.07 2.616� 0.010
7 2.65� 0.07 2.610� 0.015
8 2.63� 0.06 2.625� 0.018
9 2.65� 0.06 2.642� 0.019
10 2.66� 0.04 2.6021� 0.0023
11 2.638� 0.021 2.594� 0.008
12 2.64� 0.05 2.600� 0.017
13 2.624� 0.021 2.639� 0.019
14 2.608� 0.029 2.618� 0.010
15 2.612� 0.019 2.639� 0.005
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