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The calculation of dynamic response functions is expected to be an early application benefiting from
rapidly developing quantum hardware resources. The ability to calculate real-time quantities of strongly
correlated quantum systems is one of the most exciting applications that can easily reach beyond the
capabilities of traditional classical hardware. Response functions of fermionic systems at moderate momenta
and energies corresponding roughly to the Fermi energy of the system are a potential early application
because the relevant operators are nearly local, and the energies can be resolved in moderately short real time,
reducing the spatial resolution and gate depth required. This is particularly the case in quasielastic electron
and neutrino scattering from nuclei, a topic of great interest in the nuclear and particle physics communities
and directly related to experiments designed to probe neutrino properties. In this work we use current
quantum hardware and error mitigation protocols to calculate response functions for a highly simplified
nuclear model through calculations of a 2-point real time correlation function for a modified Fermi-Hubbard
model in two dimensions with three distinguishable nucleons on four lattice sites.
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I. INTRODUCTION

Quantum computing holds the promise of enabling
calculations of the real-time evolution of quantum systems,
with a wide range of applications across many areas of
physics including electronic many-body problems, con-
densed matter, cold atom, nuclear and particle physics.
Quantum dynamics with more than a few particles easily
exceeds the capabilities of traditional computers because of
the extremely large number of basis states and the oscillatory
nature of the path integrals involved in evaluating cross
sections and transition rates. In specific cases such as low-
energy resonance scattering and high-energy semiclassical
approaches, valuable information can be gained with
classical computers [1,2]. Quantum computing, though,
has the potential to perform calculations of quantum
dynamics beyond the reach of classical computing.
The linear response of quantum systems is a promising

candidate for early applications of quantum computers [3].
Linear response, as measured for example in neutron

scattering from materials or electron and neutrino scattering
from nuclei directly probes the structure and dynamics of the
underlying system. By adjusting the momentum and energy
transfer one can focus on different scales. Even seemingly
simple cases, where the transfers are of the order of the Fermi
momentum, can yield rich physics. While at larger momen-
tum transfers the response is largely a function of the
momentum distribution or spectral function of the target
[4,5], at more modest momenta two-nucleon physics includ-
ing two-nucleon currents, correlations, and charge exchange
can become quite important [2,6–8]. These effects can play a
role, for example, when trying to measure neutrino proper-
ties through neutrino-nucleus scattering in experiments
including MiniBooNE, MicroBooNE, T2K and DUNE [7].
The linear response function for a specific quantum state

(often the ground state) is defined as

Sðω;qÞ ¼
X
f

jhΨ0jOðqÞjfij2δðω − ðEf − E0ÞÞ; ð1Þ

where jΨ0i describes the ground state with energy E0, the
sum includes all final states jfi with energy Ef, ω and q
denote respectively the energy and the three-momentum
transfer injected in the system by the external probe, and the
operator OðqÞ describes the coupling of the system to the
external probe. For electron scattering from nuclei there are
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two response functions describing the longitudinal (charge)
and transverse (current) components of the response [9]. For
neutrino scattering there are five response functions for a
given momentum and energy transfer, the cross section is
given by a linear combination of these response functions
that depend upon geometry (e.g., the lepton scattering angle)
and the particle (e.g., electron, neutrino, or antineutrino)
being scattered [10]. The response functions govern the
inclusive cross section where all final scattering states are
summed over and only the lepton kinematics is specified.
Equivalent information is available from the Fourier

transform of the relativistic two-point correlation function
in real time τ,

SMðq0;qÞ ¼
Z

d4xeiqxhΨ0jO†ðτ;xÞOð0; 0ÞjΨ0i; ð2Þ

which in the nonrelativistic limit is the same as the real-time
equivalent of Eq. (1), i.e., SMðq0;qÞ → Sðω;qÞ. Classical
simulations in discrete Euclidean time τE, for example of
lattice QCD, give an analogous two-point correlation
function,

CEðτE;qÞ ¼
X
x

eiq·xhΨ0jO†ðτE;xÞOð0; 0ÞjΨ0i; ð3Þ

where in both cases the operatorO can be the electromagnetic
current. We recall that CE and SM are related
through the following Laplace transform CEðτE;qÞ ¼R
dτEe−q0τESMðq0;qÞ. The problem of obtaining SM from

CE is in general an ill-posed problem. The lattice calculation
can be done only at a finite number of discrete values of τE
with the data having errors that typically grow very rapidly
with τE. These errors get exponentially amplified by the
inversion procedure.Various techniques have been developed
in order to obtain good approximations of the frequency
response SM starting from Euclidean data [11–15]. These
approaches are often able to reconstruct signals with simple
structure, such as a quasielastic peaks which are composed of
one broad peak [6] or observables that can be recast directly
into Euclidean timelike transport coefficients dominated by
zero frequencymodes (see e.g., [16]),but the systematic errors
are difficult to assess reliably in the general case.
Quantum computers could perform simulations in real-

time; however, anumber of challengesneeds tobesolved such
as the preparation of the ground state jΨ0i, the application of
the operator O, the evolution of the system for time τ long
compared to the relevant energy scale,1=q0, of the calculation
while preserving coherence, and lastly transitioning back to
the ground state through the second insertion of the excitation
operator O. This work is a step in that direction.
In traditional approaches to the nonrelativistic response,

an integral transform of the response is calculated (such as
Laplace, Lorentz or Gaussian, see e.g., [6,17–21]). The
imaginary-time two point function is calculated in quantum

Monte Carlo approaches, and is equivalent to the non-
relativistic limit of lattice QCD evaluations.
At high energy and momenta, the response can also be

calculated through local properties of the initial state
(momentum distribution or spectral function) [4,5], short-
time expansions of the nuclear propagation [2]. The single-
particle Green’s function yields information on this response,
while the short-time approximation incorporates the cou-
pling and propagation of pairs of nucleons in the final state.
The short-time approach guarantees that the calculated
response reproduces the energy independent and energy-
weighted sum rules E0ðqÞ and Em>0ðqÞ defined as

EmðqÞ ¼ hΨ0jO†ðqÞHmOðqÞjΨ0i; ð4Þ

where Hm is the Hamiltonian to the mth power and is
available from a Taylor expansion of the real or imaginary-
time response at short times. Including the two-particle
ladders in the propagation reproduces reasonably well
quasielastic scattering in simple test cases; it is equivalent
to one sophisticated Trotter step in the real-time evolution as
described in Ref. [2]. This approach provides a natural
explanation for the scaling with momentum and nuclear
system size observed in electron scattering [2]. Quantum
computers, though, can, in principle, follow the real-time
evolution of the system over larger distances and longer
times, enabling reconstruction of the response at lower
momenta and energies. They may also be used to calculate
cross sections to explicit final states, a much more chal-
lenging task on even future quantum hardware [22].
In this paper we study two-point functions of a simple

nuclear model, first introduced in Ref. [23], using current
quantum hardware, and recently developed error mitigation
strategies [24,25].

II. LATTICE MODEL AND RESPONSE FUNCTION

We follow the approach originally developed in Ref. [23],
wherewe considered a model for the triton nucleus on a two-
dimensional lattice with periodic boundary conditions, with
two dynamical nucleons and one static particle on a specific
lattice site. The model considered is equivalent to a two
species Hubbard model with two- and three- body inter-
actions. At the leading order in pionless effective field theory
[26], the Hamiltonian describing the low energy dynamics of
a system of nucleons discretized on a lattice can be expressed
as follows [23,26,27]:

H ¼ −t
XNf

f¼1

X
hi;ji

c†i;fcj;f þU
X
i

XNf

f<f0
ni;fni;f0

þ V
X

f<f0<f00

X
i

ni;fni;f0ni;f00 ; ð5Þ

where the particle number operator ni;f ¼ c†ifcif, with cif
the destruction operator at site i of species f. The kinetic
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energy (or hopping term) in the first line contains a sum hi; ji
over nearest-neighbor sites on the lattice. This corresponds to
a generalized Hubbard model withNf fermionic species and
the addition of an on site repulsive three-body interaction.
For applications in nuclear physics one typically considers
Nf ¼ 4 fermionic species corresponding to neutrons and
protons in both spin projections. The numerical values of the
couplings t, U and V are reported in Table 1 of Ref. [23]
(taken from [28]) and correspond to a lattice spacing
of 1.4 fm.
Similarly to Ref. [23] we will also introduce an addi-

tional local term on site 1 of the lattice given by

Hsite ¼ U
XNf

f¼1

n1;f þ V
X
f<f0

n1;fn1;f0 ; ð6Þ

with the same V andU used in the general model of Eq. (5).
As explained in Ref. [23], this additional interaction term
mimics the presence of an additional particle at that spatial
site that is treated statically.
In order to describe scattering process with external

probes, like neutrino-nucleus scattering, we now resort to
linear response theory. We consider an interaction of the
system described by the Hamiltonian in Eq. (5) with an
external “weak” probe injecting momentum,

qk ¼
π

L
ðxk; yk; zkÞ; ð7Þ

with L the spatial length of the lattice in 3 dimensions and
xk, yk, zk positive integer numbers denoting the location of
site k on the reciprocal lattice. In this initial exploration we
seek to describe probes that couple to the nucleon density
as in neutron scattering or a part of the nuclear longitudinal
response and described by the following interacting
Hamiltonian:

HIðqkÞ ¼
XNf

f¼1

ρfðqiÞ ¼
XNf

f¼1

ef
X
i

eiqk·rini;f; ð8Þ

where ri ¼ ðxi; yi; ziÞ denotes the location of site i on the
spatial lattice, ρf and ef denote respectively the charge
density operator and the charge for the species f. We notice
that from now on we will use the symbol HI to represent
what we denoted with O in Eq. (1) as the excitation
operator. We consider the system to be initially in its
ground state jΨ0i and, in the linear response regime, the
probability to transition to all the final states jni can be
obtained using Fermi’s golden rule,

Sðω;qkÞ ¼
X
n

jhΨ0jHIðqkÞjnij2δðEn þ ω − E0Þ; ð9Þ

analogue of Eq. (1). We recall now the known identity,

Sðω;qkÞ ¼
Z

∞

−∞

dτ
2π

eiωτhΨ0jHIðτ;qkÞHIðqkÞjΨ0i

¼
Z

∞

−∞

dτ
2π

eiωτCðτ;qkÞ; ð10Þ

relating the response function in frequency to a two-
point time correlation function Cðτ;qkÞ. This definition uses
HIðτ;qkÞ ¼ eiHτHIðqkÞe−iHτ as the interacting Hamiltonian
in the Heisenberg picture. One of the goals of the present
work is to study the feasibility of reconstructing the fre-
quency response Sðω;qkÞ from a (possibly noisy) estimate of
the correlation function Cðτ;qkÞ defined above. This is a
classic problem in linear response theory and efficient
quantum algorithms have been developed in the past for
the calculation of the response function through both real-
time simulations [29–31] and by direct sampling in frequency
space [22,32]. Recent work also proposed quantum algo-
rithms to study directly Green’s functions [33,34]. In this
work, we estimate the two-point function Cðτ;qkÞ directly
with a quantum simulation of a small system using current
generation superconducting devices. We use an efficient
algorithm originally proposed in Ref. [29] that requires
one additional ancilla qubit and the possibility to apply
the interaction Hamiltonian HIðqkÞ controlled on the ancilla
state. This requires HIðqkÞ to be unitary, but the scheme can
be easily generalized to interactions that admit a short
expansion into unitaries as we do for our example model
described in the next section.

A. Real time correlation functions

The quantity that we will calculate in the following is the
real time response function defined by the rhs of Eq. (10)
explicitly reported below in a compact notation,

Cðτ;qkÞ ¼ hΨ0jU†ðτÞHIðqkÞUðτÞHIðqkÞjΨ0i
¼ hU†ðτÞHIðqkÞUðτÞHIðqkÞi; ð11Þ

with UðτÞ ¼ e−iHτ the real time evolution operator. We can
express the interacting Hamiltonian, after a mapping to
qubits, as a sum of Pauli operators,

HIðqkÞ ¼
XL
i¼1

αiðqkÞPi; ð12Þ

with Pi ∈ f1; X; Y; Zg⊗n tensor products of Pauli matrices.
The two point function can then be expressed as

Cðτ;qkÞ ¼
XL
i;i0¼1

αi0 ðqkÞαiðqkÞsi0;iðτÞ; ð13Þ

where, for convenience, we have defined the following
matrix elements:
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si0;iðτÞ≡ hΨ0jVi0iðτÞjΨ0i; ð14Þ

with Vi0iðτÞ ¼ U†ðτÞPi0UðτÞPi. As explained in Ref. [29]
the above quantity can be evaluated using the Hadamard
test for the unitary operators Vi0i, and using gate identities
we can write

ð15Þ

where we have in principle two controlled and two
anticontrolled unitary operations. Using the fact that a
controlled and anticontrolled of the same unitary is equiv-
alent to a single unitary acting only on the target qubits, as
stated in Ref. [29], we have

ð16Þ

The anticontrolled gate (i.e., a gate applied when the ancilla
is in j0i) may be expressed in terms of a controlled gate
(i.e., a gate applied when the ancilla is in j1i) used
conjugation with the X gate,

ð17Þ

This modification is useful since it is often the case that gate
libraries of current quantum devices have a controlled gate
instead of an anticontrolled gate. In addition, the last X gate
can be avoided by appropriately redefining the measure-
ment operators.
As first noted in Ref. [29] the following quantum circuit

allows us to compute si0;iðτÞ using only controlled Pauli
operators and the application of one unitary transformation
dependent on the time t, leading therefore to significantly
shorter gate depths than a direct implementation of the
circuit reported in Eq. (15). Measuring the ancillary qubit in
the basis corresponding to the eigenstates of the three Pauli
matrices leads to

hXi ¼ Reðsi0iðτÞÞ; hYi ¼ −Imðsi0iðτÞÞ; ð18Þ
and it is easy to see that hZi ¼ 0. We notice that the total
number of measurements necessary to obtain the above
result with statistical precision ϵ is bounded by

N ≤
L2

ϵ2
max
k

kHIðqkÞk42 ≤
L4

ϵ2
max
k

max
i
jαiðqkÞj4; ð19Þ

where we have defined, similarly to Ref. [23], the following
expression:

kHIðqkÞkq ¼
�XL

i¼1

jαiðqkÞjq
�1=q

; for q ≥ 1: ð20Þ

A proof of this result may be found in the Appendix C 1.
The strong scaling with the number of terms can be
mitigated in a number of different ways. On a fault-tolerant
quantum device one can obtain OðL=ϵÞ using amplitude
estimation [35,36] by trading the number of repetitions
with a comparable increase in the gate depth. One can also
completely remove the L dependence from the number of
measurements by directly applying the interacting
Hamiltonian HI , controlled by the ancila qubit in the
circuit diagrams above. Alternately, one can implement
the sum in Eq. (12) using the “linear combination of
unitaries (LCU)” algorithm [37] and performing the quan-
tum control on the PREPARE unitary instead (see also
[25]). Of course, these two techniques can be combined
together to obtain the benefits of both. The quantity we
actually calculate on a quantum computer is

C̃ðτ;qkÞ ¼ hΨjV†ðτÞHIðqkÞVðτÞHIðqkÞjΨi; ð21Þ

where jΨi is an approximation of the exact ground state
jΨ0i with fidelity F and VðτÞ is a generic approximation of
the time evolution which can be chosen such that

kUðτÞ − VðτÞk ≤
ϵðτÞ
2

: ð22Þ

We can therefore bound the difference between the ideal
response function and the approximate one as

jCðτ;qkÞ − C̃ðτ;qkÞj ≤ kHIðqkÞk21ðϵðτÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p
Þ; ð23Þ

where we have defined

F ¼ jhΨjΨ0ij2; ð24Þ

and a proof of this bound is provided in Appendix C 2.

III. LATTICE MODEL MAPPED TO QUBITS

The model defined in Eq. (5) can be mapped to qubits in
various ways as described in Ref. [23] (see also [38] for an
alternative based on the Gray code). In the following we
will consider the case of two flavors and four lattice sites,
with the first quantization mapping already employed in
Ref. [23] and that we report here for completeness,

j1i¼ j↑↑i; j2i¼ j↓↑i; j3i¼ j↑↓i; j4i¼ j↓↓i:

We notice that with the mapping above we use 2 qubits for
each of the two particles to store their lattice site. Using this
mapping in the 4 qubit Hilbert space, the Hamiltonian
operator from Eq. (5) with the addition of the static
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contribution from Eq. (6) takes the form,

H ¼ 8tþ U
2
− 2t

X4
k¼1

Xk

−
U
4
ðZ1Z4 þ Z2Z3Þ −

U
4

X
i<j<k

ZiZjZk; ð25Þ

when mapped to qubits, the interacting Hamiltonian of
interest from Eq. (8) becomes

HIðqkÞ ¼
X

f∈fA;Bg
ef½a0ðqkÞ þ a1ðqkÞZ1

þ a2ðqkÞZ2 þ a3ðqkÞZ3�; ð26Þ

where explicit expressions of the coefficients aiðqkÞ are
reported in Appendix A. The initial state preparation
follows the approach in Ref. [23] and has a numerically
exact fidelity relative to the exact ground state of 96.2%
using the definition of fidelity reported in Eq. (24).
The calculation of Eq. (11) requires the implementation

of approximations of the time evolution operator leading to
the approximate two-point function reported in Eq. (21). In
this work we will use first order Trotter-Suzuki approx-
imations. We define the following three Hamiltonians
(using bd as abbreviation for body):

Hð1bdÞ
A ≡ −2t

X4
k¼1

Xk;

Hð2bdÞ
A ≡ −

U
4
ðZ1Z4 þ Z2Z3Þ;

Hð3bdÞ ≡ −
U
4

X
i<j<k

ZiZjZk: ð27Þ

We recall that the time evolution for each of these
Hamiltonians can be decomposed exactly into one- and
two-qubit gates using fundamental circuit identities [23] (see
also [39] for general constructions). We can explicitly check
that the total number of first-order Trotter-Suzuki splitting is
four, and we will group them in two categories called A and
B and defined as following. We will indicate as A time
orderings the following decompositions:

UA1ðτÞ ¼ e−iH
ð1bdÞ
A τe−iH

ð2bdÞ
A τ−iHð3bdÞτ; ð28Þ

UA2ðτÞ ¼ e−iH
ð2bdÞ
A τ−iHð3bdÞτe−iH

ð1bdÞ
A τ; ð29Þ

and we note that the two-body and three-body part commute.
For the remaining two time orderings, it is convenient to
define the following Hamiltonians:

Hði;jÞ
B ¼ −2tðXi þ XjÞ −

U
4
ZiZj; ð30Þ

where ði; jÞ ∈ fð1; 4Þ; ð2; 3Þg. The real time evolution
operators for the B time orderings can be written as

UB1ðτÞ ¼ e−iH
ð1;4Þ
B τe−iH

ð2;3Þ
B τe−iH

ð3bdÞτ; ð31Þ

UB2ðτÞ ¼ e−iH
ð3bdÞτe−iH

ð1;4Þ
B τe−iH

ð2;3Þ
B τ: ð32Þ

We notice that the commutator ½Hði;jÞ; Hðk;lÞ� for i ≠ j ≠
k ≠ l is vanishing. We report in Fig. 1 the comparison
between the exact and the approximate time evolutions for
the problem considered at different lattice sites for the full
response functions. We note that for small times all the time
orderings seem to be quite close to the exact time evolution.
The ordering B2 works better than the others for the
imaginary parts of the response function for longer times.
We also notice that sums rules are exact for the B-type
propagators.
In order to implement the decomposition from Eq. (31)

in the circuit shown in Eq. (17) we use the three-body
operator derived in Ref. [23] and reported for completeness
in Appendix B. We report in Fig. 2, as an example, the two
circuits needed to calculate the correlator hZ1ðτÞZ3i using
the two different time evolutions UB1ðτÞ and UB2ðτÞ. We
can obtain similar expressions for the A orderings. The
CNOT gate count for the various time orderings and
correlators for one Trotter step is reported in Table I. We
notice here that the fact that term B1 is much more
expensive than term B2 can be easily understood looking
at Fig. 2. As it can be seen for the ordering B2 the diagonal
three-body term commutes with the second controlled Z
gate and can therefore be removed, while for the ordering
B1 this simplification is not possible.
A more detailed example of the implementation of

the above algorithm for the calculation of the two
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FIG. 1. Real and imaginary parts of the response function at
different lattice sites using time orderings A1, A2, B1 and B2
compared against the numerically exact calculation, for the
problem described in the text. The top panels are for q ¼
ð0; 1Þ while the bottom panels are for q ¼ ð1; 1Þ.
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correlators hZ1ðτÞZ3i and hZ4ðτÞZ3ðτÞZ2Z1i is reported in
Appendix B.

IV. RESULTS

We report here results for both the real and imaginary
part of the approximate two point correlation functions
C̃ðτ;qkÞ from Eq. (21) obtained using the IBM five qubit
machine Ourense [40]. We used the IBM quantum pro-
gramming language called Qiskit [41] to implement the
above circuits. We applied to the results of the noisy
quantum processing units error mitigation protocols devel-
oped in Refs. [23]. In particular we first used readout error
mitigation with associated error propagation, and then the

zero-noise-extrapolation (ZNE) as described in Ref. [23]
(see also Refs. [24,42–44] and the Appendixes of [25,45]
for more details on our implementation).
The final two point functions at two different values of

the momentum transfer are shown in Figs. 3–4. We notice
that for the real and imaginary part of the two point
correlator at momentum transfer q ¼ ð0; 1Þ, the bare
results on current quantum hardware deviate only slightly
from the numerical results, and the applied error miti-
gation procedure, brings the machine results very close to
the numerical ones. In particular we notice that the time
ordering A2 and B2 lead to better agreement with the
numerical calculations with respect to their counterparts
A1 and B1. The higher infidelity could have been
anticipated by noticing the different CNOT gate count
(higher for the orderings A1 and B1 compared to the
orderings A2 and B2, see Table I). We also notice that the
first order Trotter approximation used here is a good
approximation for the exact time evolution for times
around 0.1–0.2 (see results in Fig. 1); however, in an
actual calculation aimed at reproducing the exact time
evolution higher order Trotter formulas should be used.
The calculation of the real response function at momen-
tum transfer q ¼ ð1; 1Þ shows more discrepancies with
numerically exact results, and in particular for the
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FIG. 3. Real and imaginary parts of the response function wave vector q ¼ ð0; 1Þ using time ordering A1, A2 (left panel) and B1, B2
(right panel) obtained from the five qubit machine Ourense [40]. For the Trotterized time evolution, black lines, green and red dots
denote the numerically exact result, the bare estimate from the QPU and the error mitigated results, respectively. The dashed grey line
represents the exact dynamics with no time step errors.

TABLE I. CNOT gate count for the implementation of the two-
point function calculation using different decompositions of the
time evolution operator. Different rows correspond to different
operator structures (see Appendix A for details).

A1 A2 B1 B2

hZ1ðτÞZ1i 19 6 26 8
hZ1ðτÞZ3i 25 9 28 11
hZ1ðτÞZ2ðτÞZ3Z4i 25 15 28 15
hZ1ðτÞZ2ðτÞZ1Z2i 30 9 29 13

FIG. 2. Circuits for the calculation of the correlator hZ1ðtÞZ3i using the time evolutions B1 (left) and B2 (right).

A. BARONI et al. PHYS. REV. D 105, 074503 (2022)

074503-6



imaginary part the mitigated hardware results are signifi-
cantly different from the exact ones. In order to asses the
quality of the above runs, similarly to what has been done
in Ref. [25], we introduce the following error metrics, the
chi squared and the normalized sum of squared deviations
(nssd), defined respectively as

χ2ðqkÞ ¼
XN
l¼1

½CðtÞðτl;qkÞ − CðeÞðτl;qkÞ�2
½ΔCðτl;qkÞ�2

; ð33Þ

nssdðr;qkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
l¼1 ½CðtÞðτl;qkÞ − CðeÞðτl;qkÞ�2P

N
l¼1½rCðtÞðτl;qkÞ�2

s
; ð34Þ

where N is the number of time steps used, and CðeÞðτl;qkÞ
and CðtÞðτl;qkÞ denote respectively the exact theoretical
and the experimental results. These two error metrics serve
two distinct purposes: the χ2 is used as an indication that the
error estimation is appropriate, and large values indicate a
residual component of unaccounted systematic error, the
nssdmetric instead is useful to understand the performance
of the error mitigation routine in reproducing the centroid
of the distribution of the observables. In the following we
use for nssd a value of r ¼ 0.1 that denotes a 10% relative
error. We first discuss the real and imaginary time corre-
lation function at momentum transfer q ¼ ð0; 1Þ reported in

Table II. The value of the error mitigated χ2 is between 10
and 50 times smaller than the corresponding bare (unmiti-
gated value). For the nssd metric instead the mitigated value
is between >1 and 5 times smaller than the unmitigated
ones. This suggests that the error mitigation techniques in
this case favors the improvement of the dispersion of the
results. We also notice that the worst performing ordering,
i.e., with corresponding higher error metrics, is B1 for both
cases and that can be explained by the high gate depth of its
implementation. We can now discuss the quality metrics for
the real and imaginary part of the correlator at momentum
transfer q ¼ ð1; 1Þ, reported in Table III. While the error
mitigated values of both χ2 and nssd experience a reduction
with respect to the bare values similar to the previous case,
the final mitigated numbers are much higher. We notice that
the calculation of the two-point function at momentum
transfer q ¼ ð1; 1Þ requires four controlled operations that
lead to circuit depths in some cases slightly higher than the
case where only two controlled operations were required.
The imaginary part, in this case, shows the highest values
for both the error metrics used. Similar results have been
obtained using other five qubit machines such as Vigo.
Also, these calculations were done over several months and
the results did not change. The ordering A2 seems overall to
provide an imaginary correlation function closer to the
numerically exact one, and this is related to the low gate
count of the associated circuits used for the calculation. The
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FIG. 4. Real and imaginary parts of the response function wave vector q1 ¼ ð1; 1Þ using time ordering A1, A2 (left panels) and B1, B2
(right panels) ran on the five qubit machine Ourense. Black lines, green and red dots denote respectively the expected result, the bare
estimate from the QPU and the error mitigated results. The dashed grey line represents the exact dynamics with no time step errors.

TABLE II. Quality metrics for the real and imaginary (in parenthesis) part of the response function with q ¼ ð0; 1Þ
using different time orderings.

A1 A2 B1 B2

χ2 Bare 514.14(472.05) 658.52(716.81) 343.41(2456.35) 233.65(643.87)
Mitigation 11.88(20.43) 64.82(51.19) 75.14(167.15) 30.80(60.96)

nssd Bare 1.36(4.28) 1.60(2.28) 1.71(5.48) 1.44(2.40)
Mitigation 0.39(1.96) 0.66(0.94) 1.55(3.67) 1.25(1.39)
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second ordering that performs well for the calculation of the
imaginary response is B2 (which corresponds to the circuits
with the second smallest CNOT count). We finally arrive at
the remaining orderings A1 and B1, that have comparably
high CNOT gate counts and give considerably worse
results. However, we notice that the gate count for circuits
used to obtain the real and imaginary part differs only of a
phase gate, and therefore gate count alone cannot explain
the fact that the real parts for orderings A1 and B1 show
results much more in agreement with the exact calculations
than their imaginary counterparts. It is possible that the
final state produced by the implemented quantum circuit
using gates with limited fidelity has a larger deviation in the
Y direction (which we use to measure the imaginary part of
the correlator) than in the X direction (used for the
real part).

V. FROM THE TIME DOMAIN TO THE
FREQUENCY DOMAIN

We consider a quantum circuit similar to the one
displayed in Eq. (17) but with an initial time evolution
on the target state jΨi. This leads to the calculation of the
following correlator depending on two time variables:

Cðτ; tÞ ¼ hΨjHIðtÞHIðtþ τÞjΨi; ð35Þ

whereHI denotes a generic interacting Hamiltonian (where
for convenience we left the possible dependence from the
momentum transfer implicit, since it is of no interest in the
following discussion) in the Heisenberg representation
evolved with UðtÞ ¼ e−iHt. We notice that the correlation
function of the previous sections is recovered whenever
t ¼ −τ. Inserting a complete set of eigenstates jni of H we
get

Cðτ; tÞ ¼
X
n;k;m

hΨjmihmjHIjnihnjHIjkihkjΨi

× eiðEn−EkÞτeiðEm−EkÞt; ð36Þ

which allows us to define the following frequency domain
version of the correlator Cðτ; tÞ∶

SðωÞ≡
Z þ∞

−∞

dt
2π

Z þ∞

−∞

dτ
2π

eiωτCðτ; tÞ ð37Þ

¼
X
n;k;m

hΨjmihmjHIjnihnjHIjkihkjΨi

× δðEn − Ek þ ωÞδðEm − EkÞ: ð38Þ

Using the second delta function in the line above we arrive
at the following expression for the frequency domain
response function:

SðωÞ ¼
X
n;m

jhΨjmihmjHIjnij2δðEn − Em þ ωÞ; ð39Þ

where we recall that the above derivation assumes that the
delta function over the energies is the same delta function
over the states, and therefore the states are not degenerate in
energy. We notice that in practice the integrals over t and τ
are done for finite time and the frequency domain response
function reads as

C̃finiteðτ̃; T;ωÞ ¼ 1

4Tτ̃

Z
T

−T
dt

Z
τ̃

−τ̃
dτeiωτCðτ; TÞ: ð40Þ

We notice that in order to achieve a resolution Δω we
have T ∼ 1=Δω. In order to perform the above integral we
define a grid over times T (τ) with ð2NT þ 1ÞΔt ¼ 2T
(ð2Nτ þ 1ÞΔτ ¼ 2τ) time steps. We can then write

C̃ðτ̃; T;ωÞ≡ ΔτΔt
4T τ̃

XNτ

j¼−Nτ

XNt

l¼−Nt

eiτjωCðτj; tlÞ; ð41Þ

where we used τj ¼ jΔτ and similarly tl ¼ lΔT. We also
notice that we have the following upper bound using the
midpoint rule in Riemann sums:

jC̃finiteðT; T;ωÞ − C̃ðT; T;ωÞj ≤ α
T3τ̃3

N2
TN

2
τ̃

; ð42Þ

whereα ¼ M2=24,withM2maximumof the absolutevalue
of the second derivative of the integrand on the interval of
interest. Choosing Δt ¼ Δτ ¼ Δ and τ̃ ¼ T we obtain

C̃ðT; T;ωÞ ¼ Δ2

4T2

XNt

j¼−Nt

XNt

l¼−Nt

eijΔωCðjΔ; lΔÞ; ð43Þ

TABLE III. Quality metrics for the real and imaginary (in parenthesis) part of the response function with q ¼
ð1; 1Þ using different time orderings.

A1 A2 B1 B2

χ2 Bare 2885.02(13422.84) 3879.64(5212.32) 11305.15(11390.61) 9958.04(9774.88)
Mitigation 144.77(1547.30) 99.97(14.79) 320.89(1694.40) 270.56(303.41)

nssd Bare 3.16(15.93) 4.17(5.82) 8.45(11.78) 7.03(7.05)
Mitigation 2.61(12.17) 1.62(0.96) 4.91(9.16) 3.50(4.27)
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and inorder to reachaprecisionΔω in the response function in
frequency domain we need to evaluate N2

t ¼ Oð1=Δω2Þ
correlators. This is quadratically worse than the Oð1=ΔωÞ
cost (either in measurements or gate depth) required to
compute the response function in frequency space using
expansions in orthogonal polynomials [31,32] or using
quantum phase estimation [22]. This suggests that, in sit-
uations where the frequency response is the observable of
interest and when only approximations to the nuclear ground
state with low fidelity are available, these latter methods
should be preferred. Future work in this direction will help
elucidate the tradeoffs between the two approaches. A
preliminary discussion of the effects of the excited contami-
nation in the initial state is reported in Appendix C 3.

VI. CONCLUSIONS AND OUTLOOK

In this paper we performed a calculation of the real time
two-point correlation function for a simple model of a triton
using leading order pionless EFT as first presented in
Ref. [22]. In particular, we adopted for our problem an
algorithm first presented in Ref. [29]. We performed a
theoretical error analysis for the general version of the
problem at hand investigating the required number of
measurements as a function of the statistical precision
and the error on the implementation of the time evolution.
We performed calculations using current available IBM
quantum hardware (five qubit machines, with T connec-
tivity). Results have been error mitigated using readout
error mitigation and zero-noise-extrapolation and are in
agreement with the exact ones for the momentum transfer
q ¼ ð0; 1Þ and for the real part at momentum transfer
q ¼ ð1; 1Þ. We noticed discrepancies with the exact results
for two of the four time orderings for the error mitigated
imaginary part of the response function at q ¼ ð1; 1Þ. We
conclude that in order to have a more accurate approxi-
mation of the real time evolution, the ordering B2 should be
preferred to the ordering A2 in near future devices with
substantially lower error rates than the current devices used.
For the machines used in this problem, the lower gate count
of A2 compared to B2 leads to overall less machine noise.
Therefore, the error mitigation protocol employed to extract
results performs better for A2 than for B2. In the future we
plan to explore the use of different error mitigation
strategies and to perform calculations for a larger number
of sites. Finally, we have also shown that techniques to
reconstruct the frequency response starting from real-time
data coming from two-point correlation function can
require up to a quadratic increase in the number of
experiments when the initial state is not the exact
ground-state as compared with methods that work directly
in frequency space. Besides applications where real time
information is directly required, real time approaches might
still be used efficiently in practice when either an approxi-
mation to the initial many-body ground state can be
obtained with high-fidelity.
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APPENDIX A: EXCITATION OPERATOR AND
RESPONSE FUNCTION EXPANSION

We can explicitly write the density excitation operator for
one of the fermion species, denoted with the subscript A as

ρAðqkÞ ¼ eA
X4
i¼1

eiqk·xic†i;Aci;A; ðA1Þ

where eA is the charge. The total density operator for both
fermion species is simply ρ ¼ ρA þ ρB. Using the mapping
reported in Ref. [23] we can write the excitation operator for
the specie A at site ðm; nÞ as

ρAðqkÞ ¼ eA½j00ih00j þ ð−1Þmj01ih01j
þ ð−1Þnj10ih10j þ ð−1Þmþnj11ih11j�:

The expression of the total charge ρ ¼ ρA þ ρB can be
written as

ρðq0;0Þ ¼ eA þ eB

ρðq0;1Þ ¼ eAZ1 þ eBZ3

ρðq1;1Þ ¼ eAZ1Z2 þ eBZ3Z4: ðA2Þ

Therefore we can decompose the response function for site
(0,1) as

Cðτ;q0;1Þ ¼ hU†ðτÞρðq0;1ÞUðτÞρðq0;1Þi ¼ e2AhZ1ðτÞZ1i
þ eAeBhZ1ðτÞZ3i þ eAeBhZ3ðτÞZ1i
þ e2BhZ3ðτÞZ3i; ðA3Þ

where ZkðτÞ ¼ U†ðτÞZkUðτÞ, and similarly for the site
(1,0). For the site (1,1) we have
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Cðτ;q1;1Þ ¼ e2AhZ1ðτÞZ2ðτÞZ1Z2i
þ eAeB½hZ1ðτÞZ2ðτÞZ3Z4i
þ hZ3ðτÞZ4ðτÞZ1Z2i�
þ e2BhZ3ðτÞZ4ðτÞZ3Z4i: ðA4Þ

We recall here that both the initial state we consider and the
Hamiltonian are symmetric respect to the exchanges,

ð1; 4Þ ↔ ð2; 3Þ: ðA5Þ

APPENDIX B: CIRCUITS

We preliminary discuss the three-body oracle reported in
Fig. 2 that can be expressed as follows:

ðB1Þ

where the full decomposition of the oracle for e−iH
ð3bdÞ
M t, first

derived in Ref. [23], can be found in Fig. 5. We describe
now how we implemented the circuit reported in the right
hand side of the B1 decomposition in Fig. 2 (an similar
construction applies to the B2 decomposition on the right).
For ease of the present discussion, we temporarily remove
the oracle gate that implements the time evolution Hð2;3Þ

B
given the fact that the second control is not acting on qubits
T3 and T2. Now in order to simplify the circuit further we
use the identity chain reported in Fig. 6 where janci denotes
a generic ancillary state, and in the first equality above we
used the fact that Hð1;4Þ

B ¼ Hð4;1Þ
B . The second equality

in Fig. 6 follows from applying a swap gate to a controlled
Z gate. Given the T connectivity of the machines used we
want to apply the controlled gates over the same qubit.
Starting from the final right-hand side of Fig. 6 with the
qubit T3 added we can add an identity gate formed by two
consecutive swap gates between qubits T4 and T3,

ðB2Þ

and we can avoid executing the last two swaps between
qubits T1, T4 and qubits T4, T3.
We report here one of the circuits used to calculate the

correlator hZ4ðτÞZ3ðτÞZ2Z1i. The implementation using
the identities just described for the above mentioned
correlator reads as

ðB3Þ

where we notice that the last two swaps between qubits 1,4
and 3,2, located after the two remaining controlled Z are not
reported in the circuit since they will not affect the
measurement result. The above circuit can be reduced to
the following form using circuit identities for sequences of
Hadamard and controlled Z gates (see e.g., Ref. [39]),

ðB4Þ

APPENDIX C: ERROR BOUNDS

We quantify the total error given by the difference of the
estimator and the Trotter error as ϵ̃ðtÞ, and we require that
the Trotter and the statistical error to be less than

FIG. 5. Circuit decomposition for the three-body propagator for e−iH
ð3bdÞ
M t. The angle in the single qubit rotations is θ ¼ τU=2.
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ϵ̃ðtÞ=2 ¼ ϵðtÞ. In the following we analyze the two errors
separately.

1. Measurement bounds

We estimate here the number of measurements needed to
achieve the desired precision ϵ over the calculation of the
real time response function Cðτ;qkÞ. We preliminary define
the following estimator of the matrix element defined in the
text in Eq. (14):

s̄i0;iðτÞ ¼
P

js
j
i0;iðτÞ

Mi0;i
; ðC1Þ

where sji0;iðτÞ denotes the outcomes of Mi0;i measurements
for a fixed value of the time step τ. The estimator of the
response function Cðτ;qkÞ can be written as

C̄ðτ;qkÞ ¼
XL
i;i0¼1

αi0 ðqkÞαiðqkÞs̄i0;iðτÞ; ðC2Þ

where L the number of terms in the interaction Hamiltonian
is simply equal to the product of the number of species with
nonzero coupling to the charge operator. The correspond-
ing variance of the estimator reads as

var½C̄ðτ;qkÞ� ¼
XL
i;i0¼1

α2i0 ðqkÞα2i ðqkÞ
1 − js̄i0;iðτÞj2

Mi0;i
:

≤
XL
i;i0¼1

α2i0 ðqkÞα2i ðqkÞ
1

Mi0;i
; ðC3Þ

where the expression in the first line comes from the fact
that the average of s2 is the identity since [cf. definition of
si0;iðτÞ in Eq. (14)]

hψ0jV†
i0iðτÞVi0iðτÞjψ0i ¼ 1: ðC4Þ

We now require the variance in Eq. (C3) to be equal to ϵ2

and we consider the case for which ∀ i; i0Mi0;i ¼ M ¼
N=L2 whereN is the total number of measurements done to
estimate C̄ðτ;qkÞ. We arrive at

N ≤
L2

ϵ2
maxk

�XL
i¼1

α2i ðqkÞ
�2
: ðC5Þ

2. Trotter and state error bounds

We notice that the quantity that we want to calculate is
sk0kðτÞ reported in Eq. (14) and the actual implementation
contains two errors one coming from the initial state
preparation and the other coming from the approximate
implementation of the time evolution operator VðτÞ. We
preliminary define the difference,

Δk0kðτÞ ¼ Tr½V†ðτÞPk0VðτÞPkΠ�
− Tr½U†ðτÞPk0UðτÞPkΠ0�; ðC6Þ

where we have defined Π0 ¼ jΨ0ihΨ0j and Π ¼ jΨihΨj.
We can therefore write

Δk0kðτÞ ¼ δTrott:k0k ðτÞ þ δstatek0k ðτÞ; ðC7Þ

where we have defined

δTrott:k0k ðτÞ≡ Tr½ðV†ðτÞPk0VðτÞ −U†ðτÞPk0UðτÞÞPkΠ0�
δstatek0k ðτÞ≡ Tr½V†ðτÞPk0VðτÞPkðΠ − Π0Þ�: ðC8Þ

We notice that

δTrott:k0k ðτÞ ¼ hΨ0jðV†ðτÞ − U†ðτÞ þ U†ðτÞÞPk0VðτÞPkjΨ0i
− hΨ0jU†ðτÞPk0 ðUðτÞ − VðτÞ þ VðτÞÞPkjΨ0i

¼ hΨ0jðV†ðτÞ − U†ðτÞÞP0
kVðτÞPkjΨ0i

− hΨ0jU†ðτÞPk0 ðUðτÞ − VðτÞÞPkjΨ0i; ðC9Þ

taking the norm of the difference of the above quantity,

jδTrott:k0k ðτÞj ≤ kV†ðτÞ −U†ðτÞkkPk0VðτÞPkk
þ kVðτÞ − UðτÞkkPkU†ðτÞPk0k

¼ 2kVðτÞ −UðτÞk; ðC10Þ

where we used the fact that the norm of the product of three
unitaries is the unity. An extensive discussion for the case
of Trotterizzation and qubitization is reported in Ref. [23].
We finally compute the difference δstatek0k ðτÞ and using
Eq. (B8) of Ref. [25] we arrive at

FIG. 6. Circuit identities used in the synthesis of the full circuit for pair correlators as described in the text.
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jδstatek0k ðτÞj ≤ 1

2
TrjΠ − Π0j ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p
; ðC11Þ

where F is the fidelity defined in Eq. (24).

3. Excited state contamination in the initial state

The correlator that we want to calculate is the following:

Cðτ;qkÞ ¼ eiE0τhΨ0jHIðqkÞUðτÞHIðqkÞjΨ0i; ðC12Þ

where jΨ0i denotes the exact ground state and UðτÞ ¼
e−iHτ the exact time evolution. We observe that using a set
of eigenstates of H, denoted by jii, where ji ¼ 0i ¼ jΨ0i
we can write

HIðqkÞ ¼
X
i;j

ai;jðqkÞjiihjj; ðC13Þ

where ai;jðqkÞ ¼ hijHIðqkÞjji. We, therefore, have

Cðτ;qkÞ ¼ eiE0τ
X
l

e−iElτa0;lðqkÞal;0ðqkÞ: ðC14Þ

The approximate ground state can be expressed as

jΨi ¼ c0jΨ0i þ
XK
i¼1

cijii; ðC15Þ

and the approximate correlator is

CΨðτ;qkÞ ¼
X
i;j;m

ai;jðqkÞaj;mðqkÞeiðEi−EjÞτhΨjiihmjΨi:

ðC16Þ

We can now consider the case of imaginary time evolution
in which the operator UðτÞ is replaced by the operator
UEðτEÞ ¼ e−HτE . The Euclidean version of the real time
correlator is

CEðτE;qkÞ ¼ e−E0τE
X
l

e−ElτEa0;lðqkÞal;0ðqkÞ; ðC17Þ

and expanding we obtain

CEðτE;qkÞ ¼ e−2E0τEa0;0ðqkÞa0;0ðqkÞ
þ e−E0τE

X
l≠0

e−ElτEa0;lðqkÞal;0ðqkÞ; ðC18Þ

where the second term is subleading compared to the first
term (if E0 < El ∀ l ≠ 0). The approximate correlator in
Euclidean time is

CE
ΨðτE;qkÞ ¼

X
i;j;m

ai;jðqkÞaj;mðqkÞe−ðEiþEjÞτEc⋆i cm: ðC19Þ

The exact Euclidean correlator has the spectral decom-
position,

CE
ΨðτE;qkÞ ¼

X
j;m

a0;jðqkÞaj;mðqkÞe−ðE0þEjÞτEc⋆0cm

þ
X

i≠0;j;m
ai;jðqkÞaj;mðqkÞe−ðEiþEjÞτEc⋆i cm;

ðC20Þ

where the leading terms, proportional to e−2E0τE , are

CE
ΨðτE;qkÞ ¼ jc0j2a0;0ðqkÞa0;0ðqkÞe−2E0τE

þ
X
m≠0

a0;0ðqkÞa0;mðqkÞe−2E0τEc⋆0cm

þ � � � : ðC21Þ

Terms represented by � � � get contributions from the excited
states that are exponentially suppressed by the respective
mass gaps. However, the second term present in Eq. (C21)
above, coming from the excited state contamination in the
initial state jΨi, is only suppressed by cm=c0 and not
exponentially. It is therefore important to optimize the
fidelity of jΨi, i.e., increase the overlap with jΨ0i, in order
to reduce the systematic bias in the results.
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