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A class of fermionic quantum field theories with interactions is shown to be equivalent to probabilistic
cellular automata, namely cellular automata with a probability distribution for the initial states.
Probabilistic cellular automata on a one-dimensional lattice are equivalent to two-dimensional quantum
field theories for fermions. They can be viewed as generalized Ising models on a square lattice and therefore
as classical statistical systems. As quantum field theories they are quantum systems. Thus quantum
mechanics emerges from classical statistics. As an explicit example for an interacting fermionic quantum
field theory we describe a type of discretized Thirring model as a cellular automaton. The updating rule of
the automaton is encoded in the step evolution operator that can be expressed in terms of fermionic
annihilation and creation operators. The complex structure of quantum mechanics is associated to particle-
hole transformations. The naive continuum limit exhibits Lorentz symmetry. We exploit the equivalence to
quantum field theory in order to show how quantum concepts as wave functions, density matrix,
noncommuting operators for observables and similarity transformations are convenient and useful concepts
for the description of probabilistic cellular automata.
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I. INTRODUCTION

We show that a class of 1 + 1-dimensional discretized
fermionic quantum field theories can be described as rather
simple probabilistic cellular automata. The latter being
classical statistical systems, this is an example of how
quantum mechanics emerges from classical statistics [1,2].
Besides its conceptual relevance, showing for example that
no-go theorems based on Bell’s inequalities [3,4] cannot
apply, we hope that the equivalence can help to solve a class
of fermionic quantum field theories. Probabilistic cellular
automata can be seen as an example for probabilistic
computing. The quantum concepts used to describe prob-
abilistic cellular automata, as wave functions and non-
commuting operators for observables, may become useful
tools in this context.

The main idea is rather simple. Consider a quantum
system with a finite number of states z. In our fermionic
context these will be configurations of occupation numbers
taking the values one or zero. For discretized time with time
steps ¢ the evolution is described by the step evolution
operator S. In continuum quantum mechanics S corresponds
to the evolution operator evaluated for a finite time difference
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e. For particular models the step evolution operator § can be
a unique jump operator. This means that the matrix elements
S‘Tp are either one or zero, with a single one in each row and
column of the matrix. For a unique jump operator every
configuration p at time ¢ is mapped to a unique configuration
7(p) at t + e. Taking the occupation numbers as bits, this
is precisely the updating step of an automaton or a step in
classical computing. With certain locality properties the
automaton is a cellular automaton.

Quantum mechanics is a probabilistic theory. The
cellular automaton will therefore be a probabilistic cellular
automaton. While the evolution is deterministic in this
particular case, the probabilistic aspects enter by a prob-
ability distribution over initial conditions. The probabilistic
information is encoded in a probability distribution {p,},
or more conveniently in a wave function {q.,}, with
p. = q2. Viewing the wave function as a real vector, the
step evolution operator describes the evolution of the wave
function by matrix multiplication

q:(1 + ) = 8,4, (1). (1)

The continuity of the probabilistic information or wave
function reflects the wave aspects of quantum mechanics,
while the discrete occupation numbers encode the particle
aspects.

We will see how the probabilistic aspects related to the
wave function play a crucial role for the understanding of
quantum features. In this respect our approach differs from
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the interesting attempt by t'Hooft to describe quantum
mechanics by deterministic cellular automata [5-9].

A probabilistic cellular automaton can be described as a
generalized Ising model [10]. A chain of bits or occupation
numbers 7n(x), with discrete positions x, is equivalent to a
chain of Ising spins s(x), s = 2n — 1. A (classical) cellular
automaton [11-27] updates the bit configuration at every
time step to a definite new bit configuration. This can be
cast into the form of an Ising model on a two-dimensional
lattice with points (7,x). The interactions between Ising
spins at neighboring time layers have to be chosen such that
the probability is one for the allowed transitions between
two neighboring configurations of the cellular automaton,
and zero otherwise. This is easily cast into the form of a
partition function or “functional integral” by choosing for
the weight factor e~ an action S that diverges to infinity for
the forbidden transitions. The probabilistic aspects are
implemented by boundary terms at some initial and final
time. This type of generalized Ising model is a simple
classical statistical system. The equivalence of a quantum
model with a probabilistic cellular automaton is therefore
the equivalence of a quantum system with a classical
probabilistic system.

Ising models [28-30] are a central tool of information
theory [31]. One can establish a general “bit-fermion map”
between generalized Ising models and Grassmann func-
tional integrals [10]. For the general case the weight
distribution for Ising spins needs not be positive, and the
evolution of the fermionic model described by the
Grassmann functional integral needs not to be unitary.
The equivalence between a fermionic quantum field theory
and a probabilistic cellular automaton can be understood as
an example for the bit-fermion map for which the fermionic
model has a unitary evolution and the weight distribution
for Ising spins is a positive probability distribution. The bit-
fermion map differs from other fermionic descriptions of
two-dimensional Ising models [32-37] or other forms of
fermion-boson equivalence in two dimensions [38—41]. Itis
actually valid in arbitrary dimensions. We refer for the
formulation of our models as a generalized Ising model to
ref. [42] and retain here only the property that a probabi-
listic cellular automaton is a classical statistical system.

It is rather easy to formulate free fermions in two
dimensions as probabilistic cellular automata [1,43].
Fermions simply move on the two-dimensional lattice on
straight lines as ¢ increases, either to the right or to the left
in x. A first example of equivalence of a fermionic quantum
field theory with interactions with a probabilistic cellular
automaton was established in ref. [42]. In the present paper
we present a generalization of the treatment of interactions
which allows for the implementation of a wider class of
interactions. The cellular automaton alternates a propaga-
tion step and an interaction step, somewhat similar to the
functional integral description of quantum mechanics with
alternating factors for the kinetic and potential energies. We

develop an expression of the step evolution operator in
terms of fermionic annihilation and creation operators
which makes the fermionic interpretation of the cellular
automaton rather apparent.

The evolution equation (1) involves a real wave function.
We propose that the complex structure characteristic of
quantum mechanics can be associated to the particle-hole
transformation of the cellular automaton or a switch of sign
of the Ising spins in the associated generalized Ising model.
This allows us to formulate the probabilistic cellular
automaton as a quantum system with the usual complex
Hilbert space. The presence of antiparticles characteristic
for fermionic quantum field theories arises naturally in this
setting.

A continuum limit becomes possible for sufficiently
smooth wave functions (not for deterministic cellular
automata). A naive continuum limit simplifies the descrip-
tion considerably, leading to the usual Schrodinger equa-
tion for complex wave functions, or von Neumann
equations for density matrices. These evolution equations
are identical for the probabilistic cellular automaton and the
fermionic quantum field theory. In the naive continuum
limit our fermionic model is Lorentz invariant. If the naive
continuum limit already grasps all essential features, or if a
renormalization group running introduces interesting new
ones, remains to be investigated. A first short account of
some of the results can be found in ref. [44].

The starting point for this work is the Grassmann
functional integral for the fermionic quantum field theory.
In Sec. II we develop the general formalism how to extract
the step evolution operator from this functional integral. In
Sec. III we construct fermionic models with interactions for
which the step evolution operator is a unique jump operator.
These are particular discretized Thirring-type models in
1 + 1-dimensions [45-48]. We investigate Weyl, Majorana
and Dirac fermions in the Appendix C. The equivalent
cellular automaton is presented in Sec. IV. The updating
rule is rather simple. In a first step the bits or particles are
moving either one step to the right or to the left. Besides
the right-movers and left-movers the bits or particles also
come in two colors, say red and green. The interaction is
implemented in a second step. Whenever a single right-
mover and a single left-mover meet at a point x, their colors
are switched between red and green. We establish the close
correspondence of general features of the updating rule and
symmetries of the associated Thirring type model in
Appendix D.

In Sec. V we turn to the probabilistic aspects of the
cellular automaton. We introduce the wave function and
establish that it is the same for the automaton and the
fermion model. We discuss the density matrix, with details
given in Appendix F. In Appendix G we demonstrate the
appearance of noncommuting operators for the cellular
automaton. These operators are in complete analogy to the
fermionic quantum field theory. Section VI introduces the

074502-2



FERMIONIC QUANTUM FIELD THEORIES AS PROBABILISTIC ...

PHYS. REV. D 105, 074502 (2022)

complex structure related to the particle-hole transforma-
tion. The complex wave function for the cellular automaton
establishes the complete applicability of the quantum
formulation to this classical statistical system [49,50].
The corresponding complex Hermitian operators are dis-
cussed in Appendix H. Section VII expresses the step
evolution operator in terms of a Hamiltonian. This
Hamiltonian is expressed in terms of fermionic annihilation
and creation operators, underlining the fermionic interpre-
tation of the cellular automaton. The Hamiltonian can be
used for a continuous time evolution that coincides with the
automaton at discrete time intervals. The continuum limit
further simplifies the description. In Sec. VIII we discuss
different possible vacua and the corresponding one-particle
excitations. Section IX introduces the momentum and
position operators for the one-particle states, and estab-
lishes the corresponding uncertainty relation. We discuss
our results and possible extensions in Sec. X.

II. STEP EVOLUTION OPERATOR FOR MODELS
OF FERMIONS

A key quantity for our investigation is the step evolution
operator. For a discrete formulation of functional integrals
the step evolution operator S corresponds to the transfer
matrix [51,52] with a particular normalization. According
to this normalization the largest absolute values among
the eigenvalues of S are equal to one. The step evolution
operator describes the propagation of the local probabilistic
information on a “time”-hypersurface to a neighboring
hypersurface. If Sisan orthogonal matrix no information is
lost. In the presence of a complex structure an orthogonal
matrix that is compatible with the complex structure is
equivalent to a unitary matrix in the complex picture.
Orthogonal step evolution operators generate then a unitary
evolution.

Unique jump matrices have precisely one element equal
to one in each row and column. They are orthogonal
matrices. If the step evolution operator is a unique jump
matrix it describes an automaton. Each local bit-configu-
ration on a hypersurface is mapped to precisely one other
local bit-configuration on a neighboring hypersurface. The
hypersurfaces can be associated with the time steps of an
automaton. Then the step evolution operator S(7) describes
how each microscopic state at ¢ is mapped precisely to
another microscopic state at ¢ 4 €. This extends to prob-
abilistic states as given by a probability distribution over
the microscopic states.

We consider here models with one space-dimension. The
fermionic occupation numbers or bits n,(x) are located on
the discrete positions x of a chain. For a suitable step
evolution operator these positions can be associated with
the cells of a cellular automaton. This requires that the
updating of the bits in the cell x is only influenced by the
configurations of bits in a few neighboring cells. The local

fermionic quantum field theories discussed in the present
paper realize this cellular automaton property.

For a given fermionic quantum field theory specified by
a Grassmann functional integral we need to extract the
associated step evolution operator. Inversely, one may
construct for a given step evolution operator the associated
quantum field theory. A general formalism for the extrac-
tion of the step evolution operator for Grassmann func-
tional integrals for fermionic models has been developed
in Refs. [10,43,53]. We briefly summarize it here. We
specialize to alternating sequences of kinetic operators that
describe the change of location of particles, and interaction
operators. Both are unique jump operators. In consequence,
the unitary evolution is guaranteed and the models corre-
spond to cellular automata. We construct, in particular, the
step evolution operator for a particular Thirring-type
model. This demonstrates that our setting covers fermionic
quantum field theories with nontrivial interactions.

A. Grassmann functional integral

Consider a Grassmann functional integral

2= [ Dy o= = [ Dwwlul. @
with action

S=> L. (3)

For L(t) involving only even powers of Grassmann
variables the weight functional w[y| can be written as a
product of commuting time local factors K(1),

R(1) = exp{~L(1)}.

(4)

wlw] = exp(=Slw]) = [T K(1).

For our models each local factor depends on two sets of
Grassmann variables v, (t 4 &) = w,(t + & x) and y(t) =
ws(t,y) at neighboring ¢+ & and 7. We do not impose
space-locality at this stage and leave the range of x, y free
for the moment.

An element of the local Grassmann algebra at ¢ can be
written as a linear combination of Grassmann basis func-
tions,

9(1) = q.(1)g.(1). (5)

(We use summation over double indices if not specified
otherwise.) The basis functions g, () = g.[w(?)] are products
of Grassmann variables v, (?)
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5 ] ©
a=1

with a, =1 or a, = y,, and 5§, = £1 some conveniently
chosen signs. The two possibilities for @, = a,(x) corre-
spond to the two possibilities of a fermion of type y to be
present at x or not, where the precise association will be
specified later. For « = 1...M there a 2M basis functions,
7=1...N,N = 2. They correspond to the 2¥ microstates
for M fermionic degrees of freedom. These microstates can
also be interpreted as the configurations for M classical bits
or Ising spins, which leads to the equivalence with gener-
alized Ising models [10].

For the convenience of manipulating signs we also
define (no sum over 7 here) a second set of basis functions

e=(-"FL ()

9r = £:9:(1),
with m, the number of y—factors in g¢,. For arbitrary
Grassmann variables v, and ¢, we observe the identity

exp(Wata) = [ [(1 + vata) = > _€:0:(w)g:(0)

T

= 9:0) (). (8)

In this way the signs &, which arise from anticommutators
of Grassmann variables are absorbed by the definition of ¢.
We observe that ¢, can be obtained from g, by a total
reordering of all Grassmann variables.

B. Step evolution operator

Grassmann functionals have a modular two property [10]
since only a sequence of two unit step operators reproduces
the identical local Grassmann algebra, g(¢+ 2&) = g(¢).
This feature is conveniently encoded in the use of different
basis functions for even and odd t. Here we consider
discrete time steps, t = t, + m&, and denote by odd or even
t the integer /i being odd or even. The “transfer matrix”
T,,,( ) is defined for # odd by the double expansion of the

local factor K(7) in basis functions at ¢ and 7 + &,

K(1) = g.(t + &)1, (1)g, (1). ©)
Adding a constant to £(#) multiplies 7', (¢) by a constant
factor. This freedom is used to normalize T,p(t) such that
its largest eigenvalues obey |4;| = 1. Here “largest” means
the largest absolute size. For our models there will be more
than a single largest eigenvalue. With this normalization
the transfer matrix becomes the “step evolution operator”
S.,(t). We implicitly assume in the following a suitable
normalization of £(z) such that

(1) = g:(t +8)8,,(1)g) (1). (10)

In view of the modulo two properties of Grassmann
functional integrals [10,43,54] we define the step evolution
operator for even ¢ by an expansion in conjugate basis
functions,

(1) = 3.1 +8)8,, (1), (7). (11)

The conjugate basis functions are defined by the relation

/M@me=%- (12)

Up to signs the map from g, to g, exchanges factors of
one and y, in Eq. (6). The association of “occupied” and
“empty” to 1 and v, therefore switches between even and
odd .

We also employ (no sum here)

7. = €.3; (13)
obeying
exXP(Watia) de 7 (14)
This fixes
& = (-1 = (<1)rey (DM, (15)

with m, = M — m,_ the number of y factors in g, and
ny =1for M =0,1mod 4 and 1, = —1 for M =2, 3
mod 4. For g, we observe a relation similar to Eq. (12)

| Prdtwiz ) = s, (16)
An explicit expression for M =1 reads
G=9=nh=0h=1
D=h=0=7=v (17)
while for M = 2 one has
9’1 =04 =04 = 1
G = =03 = —0s = V2,
9329’ —92—92 Vi,
94 =—G4 = G1 = =7, =y 1y>. (18)

The general relation between g, and g, is given by
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@@=W/EMWM%MM~ (19)

This results in

awz/ummmwmw for M even
QK@==/IMfMX%mJ%@O for Modd  (20)

In the following we will focus on M =4 mod 4 where
ny = 1. For an arbitrary number of fermionic species this
can be realized by a suitable number of space points.

For the product of two neighboring local factors one has
for ¢ odd

K(t+8)K(t) = gu(t +28) 80 (t +8) Fop(t+8)84,(1) g, (1),
(21)

with

Fap(1) = 3u(0)gp(1). /MMWMO—W-Qﬂ

It is the simplicity of the second relation (22) that justifies
the use of the conjugate basis functions. The integration of
the product (21) over the common Grassmann variables
w(t + &) yields a matrix multiplication of the step evolution
operator

/Dy/(t +8)K(t +&)K(r)
= (1 +28)(S(t + 8)8(1)) ) (1) (23)
Similarly, one obtains (¢ odd)

,NC(t)IC(t - E‘) = gr(t + E)SraO)Faﬂ(t)Sﬁ/)(t - g)gp(t - E‘)
(24)

| PrOF ) =nus. (25)

Again, integrating the intermediate Grassmann variable
results in a matrix product

= nuge(1+&)(S()S(1 = #)),,5,(1=8).  (26)

The product structure extends to longer chains of
neighboring local factors. Employing the relations (22),
(25) the integration over intermediate Grassmann variables

results in matrix multiplication of the step evolution
operators. For initial time f;,, even one can express the
partition function by a chain of ordered matrix products of
step evolution operators

2= [ Dyley) D)oo 310 - ...

3‘(tin + I)S(tin))rpgp(tin)' (27)

Here we have assumed an odd number of time points M,.
(Only for both M = 2,3 mod 4 and M, = 3 mod 4 there is
an additional factor #7,,). In the following we consider M =
4 mod 4, such that [ Dy/(r) commutes with all Grassmann
variables y,(f # t) and

=1 &= (-1, (28)
We can write Eq. (27) in the form
Z = tr{S‘(tf — E)...S(tin)B}, (29)

where the boundary matrix is given for open boundary
conditions by

&F/mwmmmwmm (30)

If one adds in Z boundary factors

9rlw(tp)] = q:(7)g:[w (17)], (31)

the boundary matrix becomes

Z\g/)-r = Qp(tin)QT(tf)‘ (32)

For mixed boundary conditions this matrix can be gener-
alized further.

A this stage we have formally constructed for every
sequence of step evolution operators S (1) the associated
local factors K(r), and therefore £(r) and the functional
integral (2)—(4). The opposite direction is formally straight-
forward. The step evolution operator obtains from K(z) for ¢
odd as

A

&An=:/Dwa+zﬁwvmxr+akamxw, (33)
while for even ¢ one has
ixa=1/Dwa+éﬁwvmxr+aﬁumxa. (34)

In particular, the unit step evolution operator S'Tp(t) =
0., obtains by virtue of Egs. (8) (14) for
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Ru) =exp{ S e+ 80w 10 b 39)

We emphasize that a static state (unit step evolution
operator) does not correspond to a unit local factor. It
rather involves an action with a time derivative according to

$0=3260()= 2 [ ety
——:/ PRAERSIA)
== [ gl 420 = .0l .9
/prﬂx%tx /zyﬂx,%om

(36)

Such a term is typically part of the action for models of
nonrelativistic or relativistic fermions.

C. Propagating fermions

For a two-dimensional system we define the “right
transport operator” by a local factor

) = exp{ L0+ 2x-+ e (r0) . (37

The corresponding step evolution operator is a unique jump
operator that maps any state p at ¢ to precisely one state
T=7(p) at t + &,

Sep = . (38)

7 P

Comparing with Eq. (35) a particle or empty place (hole) at
(2, x) is now found at # + & at the position x + ¢ instead of
staying at x for the identity. More in detail, 7(p) is obtained
from p by shifting each occupation number one place in x
to the right. Equation (38) is easily established by a change
of variables in Eq. (33)

w,(t+Ex+¢e) =q,(t+&x). (39)

The factor g, (y, (¢ + & x)) in Eq. (33) becomes

= 9e( (1 + 8 x =) = Gp(o) (9, (1 +- &, X))

(40)

9:(y, (1 +2x))

Here p(z) is the inverse of 7(p) and shifts all occupation
numbers one place to the left. For the Grassmann integral
one has [Dy(t+&) = [Dp(t+ &) and in terms of the
variable ¢ Egs. (35), (38) become

Stp = Op(c)p = Ori(p)- (41)

The same arguments holds for ¢,(y(¢+ €)) in Eq. (34),
such that Eq. (38) holds for both ¢ odd or even.

We can define a similar “left-transport operator” by a
local factor

K (t) = exp{Zy/Y(t +&x—e)y,(t, x)} (42)

It leads to a step evolution operator similar to Eq. (38),
where 7(p) moves now the position of all occupation
numbers one place in x to left. Both the left-transport
and the right transport operator are unique jump operators
and correspond to simple cellular automata. From our
construction it is clear how many other cellular automata
can be obtained by replacing in Eq. (37) the variable y, (¢ +-
& x +€) by wy(t + & x'). We will investigate below more
general cellular automata with a more complex form of K.
For the particular type of cellular automata correspond-
ing to Eq. (37) we can decompose the local factor into
space-local simple pieces, as seen easily by writing

0 =[[1IK .
K,(t.x) = exp{y, (t + &, x + &)y, (t.x)}.  (43)

The factors I~C},(t, x) for different y have no common
Grassmann variable, such that the integrals in Eq. (33)
can be done blockwise. Each block involves only two
different Grassmann variables and we can expand (no sum
over y)
K,(t.x) =14y, (t+&x+e)y,(t.x) =1+ p, (44)
with ¢ =y, (t + & x + €), y =y, (1, x). The elements of
the Grassmann algebra for y (and similar for ¢) are given
by Eq. (17), and we can establish Eq. (38) directly by
factorizing the Grassmann basis functions appropriately.

A massless Dirac spinor in two dimensions consists of
two Weyl spinors, one left moving and the other right
moving. We consider here two different Dirac spinors,
represented by four different Grassmann variables v, (, x),

=(n,a), n=L,R=1, 2, a=1, 2. The action for the
two free massless Dirac spinors is given by

Cfree(t) = _Z{WR.a(t + E’ X+ €>WR,a(t’ x)

+ l//L,a(t + E', X = e)l//L.a(t’ x)} (45)

This is a simple cellular automaton of the type discussed
above. The two species a = 1,2 = r, g may be associated
with colors, say red for a = 1 and green for a = 2. The

074502-6



FERMIONIC QUANTUM FIELD THEORIES AS PROBABILISTIC ...

PHYS. REV. D 105, 074502 (2022)

complex structure related to Dirac spinors will be discussed
in Sec. VL.

III. INTERACTING FERMIONIC QUANTUM
FIELD THEORIES

Cellular automata for free fermionic quantum field
theories in 1 + 1-dimensions are rather simple [55,56].
The new feature in Refs. [42,44] and the present work is the
construction of cellular automata for fermionic models with
interactions. We propose here a general strategy of alter-
nating step evolution operators for the propagation and the
interaction. This guarantees a unitary evolution by the
simple property that each one of the steps is a unique jump
operation. The procedure ressembles somewhat the con-
struction of the Feynman path integral by an alternating
sequence of momentum and position eigenstates.

Arbitrary fermionic quantum field theories do not lead to
a unique jump matrix for the step evolution operator. They
can therefore not be associated with an automaton. The task
of the present section is therefore the establishment of a
family of fermionic quantum field theories which realize
a unique jump step evolution operator. This requires that
the local factor /C(¢) connects a unique Grassmann basis
element at 7 4 ¢ to each Grassmann basis element at 7. In
other words, each basis element ¢/,(¢) should be multiplied
by a single element g.(7 + &) and not by a sum of such
elements. This places restrictions £(7) that we will discuss
in detail in the present section.

We also will introduce later a complex structure. The
associated complex picture has the standard properties of
quantum field theories in Minkowski space. In particular,
we construct a model for which the naive continuum limit is
invariant under Lorentz transformations.

A. Fermion interaction and conditional jumps

We start with the interaction part of the step evolution
operator. For this purpose we choose space-local inter-
actions where at every position x the jump is independent
of the configurations of occupation numbers at all other
positions y # x. In this case the local factor K() factorizes
into a product of independent factors

K(t) =Y Ki(t.x). (46)

X

where K,(z,x) involves only the two sets of Grassmann
variables w, (f 4 & x) and v, (¢, x) at the given position x.
Accordingly, the step evolution operator is a direct product

S =S(x=1)®8x=2)...0S(x=M,). (47

Each factor S(x) acts only on the configurations of
occupation numbers at x. For the two Dirac spinors with

y = 1...4 each factor S(x) is a 16 x 16 matrix. The matrix

Sy is therefore a (16 -2Mx) x (16 - 2Mx) matrix, with M,
the number of x- points.

We can discuss each factor ;(z, x) or §(z, x) separately.
We label the four internal states y =1...4 by
(R1,R2,L1,L2) and the 16 states 7 by ordered sequences
of occupation numbers. For the example 7 = (1,0,0,1) a
particle R1 and a particle L2 is present, while no particle
R2 or L1 is present. The indices R and L will later be
associated to right-movers and left-movers in the propa-
gation step. The colors 1,2 may be taken as red and green.

We realize interactions by conditional jumps, as for our
first example: Under the condition that precisely two
particles are present, namely one left mover and one right
mover with different colors, the colors are exchanged. This
amounts to a switch of occupation numbers

(1,0,0,1) <> (0,1,1,0). (48)

All other states remain invariant. This process describes the
two-particle scatterings

RI+L2—R2+1LI,
R2+L1— Rl +L2. (49)

If a third or fourth particle is present, no scattering occurs.
We will later add the scattering process for which two green
particles transform into two red particles and vice versa. For
the moment we discuss only the process (49). The step
evolution operator is a unit matrix except for the sectors
of the states r with occupation numbers (1,0,0,1) and
(0,1,1,0). In this sector the diagonal elements vanish, and
one has

()

(1001),(0110) = 3(0110),(1001) =1 (50)

Repeating the switch yields the identity
Sx)=1, 8§, =1. (51)

For the computation of the corresponding local factor

ICi(t, x) we can fix the sign convention for the Grassmann
basis functions g, by convenience. All the relations dis-
cussed above hold independently of the choice of the signs
5, in Eq. (6). We could even use different sign conventions
for different 7. This freedom of the choice of local sign
conventions corresponds to a discrete local gauge sym-
metry of the weight function [49,50]. We want to keep the
relations (8) (14), and therefore restrict the possibilities to a
free global choice of signs which is the same for all 7. For
the example of the vacuum state for M = 2 we choose

/

9(0000) = Y(o000) = V1¥2¥3¥4,
9(0000) = g/(()()()o) =1 (52)
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For the Grassmann integral we employ the ordering

t/fw !/dW{/dW{/dWa/dWh (53)

such that [ Dygoonoy = 1. For the two-particle states
relevant for our purpose we chose the basis functions

9(1001) = ~Y(1001) = ¥2¥3>

/

(

gdo110) = g/(ono Yiys. (54)
According to Eq. (10) the contribution of the two-particle
sector to Ky (x, 1) reads

AR (1. x) = =y (1 + & x)ya (1 + & x)wa (2, x)w3 (1, x)
—wa(t + & x)ys (1 + & Xy (1, )y (1, x).
(55)

Our general conventions for Grassmann basis functions are
displayed in Appendix A.

We have to combine the contribution (55) with the
contribution of the unit operator for all other states. For this
purpose we first subtract from AfCim the contribution of the
unit operator in this particular two-particle sector by
defining

— Dy (1.x) - Dy (1.).

/

= YW WL WY,

)

1. X) = Yylyows + Wiy wy,
)
) - Wzll/3), (56)

— (Wl —woys) (W,
where v/, = /(1 + &,x), y, = ,(t,x). In terms of D we
can write the local factor as

Ki(t.x) = explyju, ) = . (57)

The first term produces the unit matrix, while the second
term subtracts the unit matrix in the sector of the states
(1,0,0,1) and (0,1,1,0) and replaces it by the exchange of
colors.

Next we write the local factor in exponential form in
order to have it as a piece of the action. For this purpose we
observe the identities

DiDy=0. D= D+ D} =20},

=0, D* = 4yl wawsws.  (58)

In terms of D we can write the local factor in exponential
form

S D}

~ ~ 1. -
Ki(t,x) —eXp{w’yl//y —D—3D*+yy, D3

2
(59)
Indeed, the expansion of the exponential yields Eq. (57).
With
wyy,Dy =0,
—wiy, D =y waws + Wbyl o,
VWA WY T wYawowsys,  (60)

and
(W, 2D = D? (61)
one obtains K;(, x) = exp{—L;(z,x)} with

L(62) = (~wjy, + D)1 +D).  (62)

This yields for the interaction part of the action

Lin( Z}tx (63)

B. Interacting fermionic quantum field theory

A quantum field theory for interacting fermions com-
bines the interaction with the propagation of fermions. This
can be done by the use of a sequence of alternating local
factors. We use the free propagation of Dirac fermions for ¢
even, and the interaction for # odd. A pair of neighboring
local factors reads for even ¢

fC([—I— 5)}%([) - CXP{—Eim(t—F lg,)}exp{_'cfree(t)}

= exp{—Z[ﬁi(z‘+§,x) +L(t,x)] } (64)

X

with £;(t + &, x) given by Eq. (62) shifted to 7 + &, and
L(t,x) extracted from Eq. (45),

’C'f(t’ x) = _WRa<t +&x+ 8)‘/’Ra<t7 x)

—WLa(t + & x = e)yp,(t.x). (65)

We could integrate over the variables y (7 +
with Eq. (26)

£) and obtain

/Dl[/ -+ 8 f+ S)K( ) (t + 25‘) (Simgfree)rpf_}p(l)'

(66)

Since both S'im and S‘free are unique jump operators, this also
holds for the product. The product matrix
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S = swint:s\‘free (67)

describes the step evolution operator of a cellular automa-
ton discussed in Ref. [1,42]. Repeating the alternating chain
with integration over intermediate Grassmann variables

produces matrix chains of §,

/ Dy (t + 38Dy (t + 28Dy (1 + &)
x K(t + 38)K(t + 28)K(t + &)K (1)
= g.(t +48)(5%),,5,(0). (68)

The action (3), with £() given by L; or Zf for odd and
even f, respectively, produces the same chain of step
evolution operators as a cellular automaton with the
corresponding rules of exchange of colors and propagation.
With an implementation of boundary conditions and
observables in the fermionic representation to be discussed
below, the fermionic model (64) is exactly equivalent to a
probabilistic cellular automaton.
We choose & = £/2 and rename

w,(t+&x) =y, (1 +ex). (69)
With these definitions we can employ a coarse grained
lattice with ¢ corresponding to even ¢ on the original lattice.
The lattice distance on the coarse grained lattice is the same
€ in both directions. (We will in the following use integers
m for the sites of the coarse grained lattice, corresponding
to even m an the original lattice.) We can summarize the
action of the discrete fermionic quantum field theory as
ﬁ t—€) Z{V/Ra t X V/Ru(

£,X—¢€)

+Wra(tX)wra(t —e,x + )

+ [WRa(t, x)l;_URa(t7 x) + l//La(tﬂ x)l/_/La(t’ x)

= D(1.x)|(1 + D(1,x))}, (70)
with D(t,x) given by D(t,x) in Eq. (56) with the
identifications

Wi = wri(tx), =ri(t.x),
wh = Wra(t.x), w2 = Wra(t.x),
vy = wpi(t,x), Wri(tx),
Wy = wia(t,x), =yt x). (71)

The first two terms are Ly, from Eq. (45), and the remaining
part amounts to L;,, in Eq. (63). The action (70) contains the
same information as the action (64) since we only have
renamed variables. We show in Appendix B that the variables
, (1, x) have a close connection to the conjugate Grassmann

variables in Ref. [43]. Since the propagation does not mix
even and odd sublattices (cf. Appendix B) we omit the odd
sublattice in the following.

Lattice derivatives are defined by

(0 + 0 )w(t,x) ==[w(t,x) —w(t—e,x—¢)],

M= =

(0, =0 w(t,x) =~[y(t,x) —w(t—e x+e). (72)

In terms of these derivatives the discrete action reads

L(t—€) =Y eWra(t, X)(0, + 0 )wra(t, x)
+xeu7La(t, x)(0r = 0 )wra(t, x) + D(1,x)
+AL(t —¢) (73)
with
AL(t—€) ZD (1, x)[D(1,x) = yra(t. X) 7o (2. X)

—Wra(t, X)Wpq(t, x)]. (74)

The sum is over the space points on the even sublattice.
Equation (73) is the fermionic representation of a prob-
abilistic cellular automaton. For this discrete formulation
no approximations have been made.

C. Continuum formulation

Our fermionic model can be viewed as a particular
discretization of a continuum theory. This discretization
regularizes the Grassmann functional integral since only
a finite number of Grassmann variables appears. In the
continuum limit the number of Grassmann variables goes to
infinity. This is realized by taking ¢ — 0 at fixed distances
in ¢ and x. For a given distance in time or space the number
of intermediate lattice points goes to infinity. In the naive
continuum limit sums are replaced by integrals,

/dt/dx—/nx—2ezhzx (75)

Here the factor 2¢* accounts for the fact that ), only
sums over the points of the even sublattice.

For a continuum version of the classical action that is
regularized by our discretization we simply omit higher
orders in ¢. Lattice derivatives are replaced by partial
derivatives, acting on a continuum of Grassmann variables
w,(t,x), ,(t, x). We also choose a different normalization
for the Grassmann variables

(1, x) = V2eyy (1, x). (76)
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In this way we absorb the factor (2¢)~! arising from }_,
and Eq. (73). Expressed in terms of y, the interaction
factor D(x) is proportional 4&%y%. The continuum limit
e — 0 is taken at fixed yy.

The continuum version simplifies the action consider-
ably. We can omit in Eq. (73) the piece AL(t —¢). Not
writing the index N for the renormalized Grassmann
variables explicitly the continuum action takes the simple
form of a local fermionic quantum field theory,

5= / (F ot x) (s + 0 )ralt, )
B (62)(@, = D wra(t.x) + 2D(1 0}, (7)

For the local interaction term,

D =—(WriWr2 —WroWe1) WriWi2 — WroWr1)
=YRYRIVI2V L2 T VRVWRVLIVLI
TYRVLIWVI2V R + VRV L2V LIWRIS (78)

all variables correspond to y and are taken at (7, x).

The continuum version (77) can also be considered as a
naive continuum limit of the discrete fermionic model. The
time continuum limit of a discretized model is more
complex, however. It can be encoded in the quantum
effective action which obtains by integrating the fluctua-
tions in the functional integral. This process leads to
running couplings and possible modifications of the naive
continuum limit.

D. Extended interaction

The action (77) defines a type of fermionic quantum field
theory. We next extend the interaction by inclusion of an
additional scattering process. Our construction is not
limited to the particular “scattering” (49). We may add
to the exchange (48) a further exchange

(1,0,1,0) < (0,1,0,1). (79)
This corresponds to the transition

R1+ L1 — R2+ L2,
R2+ L2 — Rl + LI, (80)

and to a modification of the step evolution in the corre-
sponding sector

S‘(1010),(0101) = 3(0101),(1010) =1 (81)

The process of two incoming green particles scattered to
two outgoing red particles, and similarly with the colors
exchanged, is related to the process (49) by a type of
crossing symmetry, as characteristic for many relativistic

quantum field theories. We will see that the combination of
the interactions (49) and (80) leads in the continuum limit
to a type of Thirring model.

The construction of the local factor and £; proceed in
complete analogy to the scattering (49). The relevant basis
functions are (6 = £1)

gaoio) = —£/(1010) = YWy,
go101) = —9?0101) = oy 3. (82)

The conventions in the Appendix A correspond to ¢ = 1.
We have added the free sign in order to investigate how
different conventions influence the form of the interaction.

The scattering process (80) adds to D in Eq. (56) a term

C(t.x) = =(wiys — owayy) (Wiws —oyayy).  (83)

The expression (59) remains valid with D replaced by
C+D. Also Egs. (61) and (62) remain valid with
D — C+ D. In the continuum version (77) one replaces
again D by C + D, with

C(t.x) = =(WriWL1 — oWV o) WRIWLI — OWRYL2)
(84)

and all Grassmann variables corresponding to (2, x).
Now the combination 2(D + C) specifies the interaction
term in the fermionic action.

E. Lorentz symmetry

In the continuum version the action becomes invariant
under Lorentz transformations. We introduce for each color
two-component vectors of Grassmann variables

WRa ) _ _
W, = ( . ) o= Wra»—Wra)-  (85)
Yia

The action takes the familiar form

5= / (T O e+ L1}, (86)
tx
with

Here the Dirac matrices are given by the Pauli matrices

0 _

Yy = —ifz, Y1 =171, {}’”’ 7”} = 2’7/“/7 (88)

with Lorentz signature njgo = —1,7;; = 1,09 = 0,, 01 = 0,,
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N = diag(_l’ 1)7 Yu = ’Iﬂp}’”- (89)

The Lorentz transformations act on the coordinates in the
usual way. At this point we employ the continuum limit
since the lattice coordinates admit only a discrete subgroup.
Beyond the transformation of coordinates the fermion
doublets transform as spinors

sy = —nty, o = nqpE™, (90)

with infinitesimal transformation parameter # and generator

1
201 =7 [}/07 71]

1
4 = —<73. (91)

2

We show in Appendix C that the interaction part reads
for o = -1

1 Tl - ) abs, cd
Line = — Wl Walot Wy + War YW W aE o

(92)

with antisymmetric tensor €, = —¢&,; = 1. The action (92)
is invariant under a global SO(2)—symmetry of continu-
ous color rotations. An equivalent Abelian color symmetry

for 6 = 1 transforms
) =) G)=em(G) o

Y2 ) V2 Y2
We conclude that the conventions for Grassmann basis
elements affect the concrete expression for the action, but
do not alter the physical content of the model.

The interaction (92) defines a type of Thirring model
[45-48] with two colors. By a different ordering of the
Grassmann variables we can equivalently write it as a
colored Grass-Neveu model [57-60]. For this purpose one
expresses 2(D + C) in terms of the Lorentz-scalars

Pap =W = WLaWRs — WRaWLb)

Pab = Wa?¥Ws = WLaWrb + VRV Lb)- (94)
An explicit expression can be found in Appendix C. There
we also discuss the decomposition of Dirac fermions into
Weyl and Majorana fermions.

It is instructive to consider the “continuum constraint”
v, = y,, for which the interaction term simplifies

D=—-0C = 2y R LIV LY R (95)
Combination into complex Grassmann variables

R =Wri + iWgo, {L=wn Ty, (96)

yields for 6 = —1
L;=2(C+D)=~(ilr = Crl)* = =02 (97)

where the two-component spinors, £, ¢ are formed in
analogy to Eq. (85). This is precisely the interaction of the
Gross-Neveu model with a particular value of the coupling.

If we omit the extension of the scattering process (80) by
setting C = 0, the coupling strength in Eq. (97) is reduced
by a factor two, and similarly if we only keep the scattering
process (80) and omit the scattering (49) by setting D = 0.
These different automata can be considered as different
lattice-regularizations of the continuum Gross-Neveu
model. This raises the question of the true continuum
limit. Do these discrete lattice regularizations of the Gross-
Neveu model belong to the same universality class as a
continuum regularization which preserves Lorentz sym-
metry? Is Lorentz symmetry restored in the continuum
limit? Is the naive continuum limit a valid approximation to
the effective action? Are the particular values of the
coupling for which one obtains an automaton singled
out for the continuum limit?

We finally observe that the fermionic action appears in
the functional integral by the factor e~ and not as e’ as in
the usual formulation of quantum field theory with a
Minkowski signature. Nevertheless, the model has a unitary
evolution. The analytic continuation of the action to
Euclidean signature differs from the usual setting by an
additional overall factor i.

IV. CELLULAR AUTOMATON FOR THE
FERMION MODEL

We have established that the step evolution operator for a
discretization of the particular Thirring type model (92) or
equivalent Gross-Neveu model (97) is a unique jump
matrix. We consider the combination of the evolution steps
at t and ¢ + € as a single combined evolution step from ¢ to
t+2& =t + €, according to Eq. (67). The first operator
:S’free moves right-movers one place in x to the right, and

left-movers one place to the left. The second factor Sim
exchanges at each location x the colors of all particles if
precisely one left mover and one right mover is present at x.
Otherwise the colors are kept. This constitutes a simple rule
for a cellular automaton.

With both the Thirring-type model and the associated
cellular automaton having the same evolution rule accord-
ing to identical step evolution operators it only remains to
identify the probabilistic information in the wave function
of the Thirring model with the one of a probabilistic cellular
automaton. The present section will discuss in some more
detail the properties of the “updating rule” encoded in the
step evolution operator, while we turn to the probabilistic
aspects in Sec. V.
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T
FIG. 1. Cellular automaton for interacting fermions. Single
occupied red or green lines scatter at the squares. We have not
indicated empty lines, or left- or right moving lines which are

doubly occupied by one red and one green particle. These lines
are straight without scattering.

A. Different lattice representations

The square lattice can be decomposed into two sub-
lattices: the even sublattice with m, 4+ m, even, and the odd
sublattice with m, + m, odd. Since all particles move on
diagonals the dynamics on the even and odd sublattice is
completely disconnected and we have defined our model
only on the even sublattice. On each lattice point one can
have up to four particles, left- or right movers, red or green.
Starting from the even sublattice only, we can now
redistribute the particles between the sublattices, by putting
on the even sublattice the right movers and on the odd
lattice sites the left movers. In this picture the whole lattice
is used, with each lattice site occupied by up to two
particles. On the even sublattice one has green or red right
movers, and on the odd sublattice we place the green or red
left-movers.

This redistribution does not change the dynamics, as
illustrated in Fig. 1. In this figure we display the lines of
single occupied sites, occupied either by a red or green
particle. There are additional lines for empty sites, or sites
occupied by both a red and a green particle. These lines do
not scatter and are not shown in the figure. The original
lattice has points at the centers of the squares surrounding
the crosses. Up to four particles can occupy a site, and only
the sites of an even sublattice are occupied by the squares.
After the redistribution the lattice sites are at the corners of
the squares surrounding the scattering points. The distance
between two points is now given by & Only up to two
particles can occupy each site. On the initial horizontal line
at t = 0 the right movers occupy the sites with even m,, and
the left movers the sites with odd m,. This is interchanged
at r + &. Now the right movers are on the sites with odd m,,
and the left movers on the sites with even m,.

B. Properties and symmetries of cellular automaton

From Fig. 1 one can easily see a few characteristic

features of this cellular automaton.

(1) The total number of right movers and the total
number of left movers are conserved separately as
time increases. (There is the same number on each
hypersurface with given ¢.) This implies, of course,
conserved total particle number,

N,= ;;ny(x). (98)

(2) If we disregard the color, all particles move on
straight lines, with velocity ¢ = 1. They move either
to the left or to the right.

(3) Doubly occupied lines, with both a red and a green
particle moving in the same direction, do not
undergo scattering. They move as free “composite
states” or “bound states.” At most one right-moving
and one left-moving composite state can be present
at each site. Possible occupation numbers for these
composite states are one or zero, as for fermions.

(4) The single occupied lines change color whenever
they encounter another single occupied line. The
scattering concerns the internal degrees of freedom.
The interaction changes the color. In the four corners
surrounding each square for a scattering event one
has precisely a total number of four particles, two
red and two green, two left movers and two right
movers. A line with a given color never ends, but it
can move backwards in time. Loops or closed lines
with a given color are possible.

(5) The picture can be rotated by z/2 without changing
the dynamical rules. The dynamics has a type of
“crossing symmetry.” If a red and a green particle
can scatter into a green and a red particle, there is
also a scattering of two green particles into two red
particles, and vice versa.

(6) The dynamics is invariant under a reflection in ¢
(time reversal symmetry) and in x (parity).

(7) The number of red and green particles is not
conserved separately. Two red particles can become
two green particles. Since changes are always by two
particles, and even (odd) number of red particles
remains even (odd), and similar for the green
particles.

(8) The dynamics is invariant under an exchange of
colors E. Exchanging the two colors in Fig. 1
produces again a diagram allowed by the dynamics.

(9) A single particle line for occupied red sites can also
be seen as a line of single empty green sites or green
holes. The symmetry F' exchanges a red particle and
a green hole as well as a green particle and a red
hole. This transformation changes double occupied
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lines into empty lines, and vice versa. Since these
lines do not under go scattering, the dynamics is
invariant under the symmetry F. Combining the
symmetry F with the color exchange symmetry E
one obtains particle-hole symmetry K. Under this
symmetry each particle y is mapped to a hole y and
vice versa, e.g., red right moving particles transform
to red right moving holes etc. The dynamics is
invariant under particle-hole symmetry.
These properties have their correspondence in the fer-
mionic quantum field theory. In the Appendix D we list the
symmetries of the Thirring-type model. This establishes
direct relations for all the nine points. General properties as
conserved quantum numbers for the automaton find a direct
root in continuous or discrete symmetries in the fermionic
language.

C. Simple evolution of deterministic automaton

Many of the features discussed so far are rather easily
extended to more complex automata. The particular
automaton discussed here has a rather simple structure
which makes it suitable for a discussion of general
concepts, since the latter often find simple concrete
realizations. For a deterministic cellular automaton with
a sharp initial state 7, at f;, we can compute the configu-
ration 7, for t = ¢t;, + ne in a straightforward way.

If at #;,, we have at position x both a right-moving red and a
right-moving green particle, we will find at ¢ at the position
x + ne both the red and green right-moving particles. This
follows from the observation that doubly occupied lines do
not scatter. The same holds if at #;, neither a right-moving red
particle not a right-moving green particle is present at x.
Since empty lines do not scatter, we infer for ¢ that at x + ne
no right-movers are present. The argument extends similarly
to left-movers, with x + ne replaced by x — ne.

What remains are positions x at t;, for which only a
single right-moving particle and/or a single left-moving
particle is present. Single particles follow straight lines,
only the color can change due to scattering. For every
single right-mover at (#;,, x) we find a single right-mover at
(t;y + ne, x + ne), and for every single left-mover at (7, x)
one has a single left-mover at (f;, + ne,x —ne). The
numbers of right-movers and left-movers at (7, x) are easily
determined in this way for any initial configuration z.
What remains is the determination of the color of the single
right-movers and single left-movers at (¢, x).

For this purpose we observe that a single right-moving
particle line changes color whenever it crosses a single left-
moving particle line, and conserves color for every crossing
of a doubly occupied or empty left-moving line. This can be
seen directly from Fig. 1. Indeed, according to our updating
rule, a change of color occurs if the line crosses a left-
moving line of either a single red or a single green particle.
The color change occurs independently of the color of the
encountered single left-moving particle. The same rule

t

tin+ €+
tin

0oe oz

FIG. 2. Color switches for a single right-mover. The past light
cone of the particle at (z, x = 0) is shaded.

holds for the color of single left-moving particles. The color
is switched whenever a single right-moving particle of
arbitrary color is crossed.

The color of a single right-mover at (¢, x) is determined by
the color of the right-mover at (#;,, x — ne) and the number of
color switches. We have the same color at (, x) and (#;,, x —
ne) if the number of crossed single left-movers is even, while
a color switch occurs for an odd number of crossed single
left-moving lines. For the counting of the number of switches
we define the “backwards light cone” of a single right-mover
at (z,x) by the interval [x — ne, x + nel.

One of the boundaries of the light cone is the past
trajectory of the single right-mover, whereas the other
corresponds to the past trajectory of a left-mover. Every
single left-mover at ¢ — ne in the interval [x — (n — 2)e, x +
ne] will cross the right-moving single particle line in the
time interval [t — (n — 1)e, 1] = [t;, + ¢, 7]. The number of
color switches is therefore given by the number of positions
in the interval [x — (n — 2)e, x + ne] for which a single left-
mover is present at #;,. This is easily visualized in Fig. 2.
The analogous rule holds for the color switches for a single
left-mover at (7, x). The number of switches corresponds
to the number of single right-movers in the interval
[x — ne,x + (n —2)e] at 1.

We can use time-reversal invariance in order to construct
for any given configuration z at ¢ the corresponding
configuration for ¢/ < . With a single combinatorial algo-
rithm for determining for every configuration 7 at ¢ the
configuration 7, at f;;, from which it originates, we can
focus on the probabilistic aspects of the cellular automaton.
In principle, the problem is simple since p.(f) = p,, (tn)-
For a very large number of time steps and positions x the
relevant light cones become large. One would like to find
some type of continuum formulation. We will see that the
concepts of quantum mechanics as wave functions and a
density matrix are rather useful in this context.

D. Automaton with shifted blocks

There is an alternative view on the automaton of our
model. We can start at even #;, in the picture where left and
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right movers are situated on different sublattices. For even ¢
we define blocks B(t, x) consisting of four sites (7, x), (z +
e,x),(t,x+¢) and (¢ + €,x + ¢). The evolution from ¢ to
t + € can then be described separately in each block B(z, x).
Each block defines a small automaton with four variables
(occupation numbers) at both ¢ and 7 + ¢, namely the red
and green particles at x and x + e. The rules for the
automaton have to specify how each one of the sixteen
configurations is mapped from ¢ to ¢ + €. The rule is that all
configurations at (7, x) are transported to (7 + &, x + €), and
all configurations at (¢, x + ¢) are transported to (7 + &, x),
with one exception: Configurations with one particle at x
and one particle at x + & change color when they are
transported to the diagonally opposite sites at ¢ + €. In other
words, all particles are transported on the crossed diagonals
in the block. The color of the particles remains the same
except for the interchange in case of single occupancy at x
and x + ¢. The squares on the bottom line in Fig. 1
correspond to blocks for which a color exchange occurs.
Drawing a square in the lower left corner would feature a
red particle moving on the diagonal without color change.

For odd t+e& we again define blocks B(f+ ¢, x),
consisting now of the sites (7,x),(t+ ¢, x), (f,x —¢€),
(t + &,x — €). As compared to even ¢, the blocks are shifted
one place to the left. Otherwise the same rules for the
automaton of each block apply. Alternating the positions of
the blocks between even and odd 7 we reconstruct all rules of
the full cellular automaton. The advantage of this formulation
is that at each time step it is sufficient to solve the translation
between 16 x 16 unique jump step evolution operator S(, x)
and a representation in terms of Grassmann variables. The
overall step evolution operator obtains as a direct product
over all blocks,

S(r) =] 5(z.x). (99)

similar to Eq. (47). The difference is that we have now only
half the number of blocks, while the kinetic and interaction
part are treated in common within each block. This setting is
described in Ref. [42]. The cellular automaton is precisely the
same as the one corresponding to the particular Thirring
model discussed in the present paper. Also the associated
fermionic model is the same.

V.PROBABILISTIC CELLULAR AUTOMATA AND
EVOLUTION OF THE WAVE FUNCTION

For probabilistic cellular automata the initial conditions
are given by a probability distribution of initial conditions.
This can be described by a wave function which plays the
same role as in quantum mechanics. The evolution of the
wave function follows a discrete Schrodinger equation. We
will first discuss the concept of a wave function for
probabilistic cellular automata. Subsequently, we show
that this wave function is the same for the fermionic

model. This demonstrates that an interacting quantum
theory, more specifically a fermionic quantum field theory
with interactions, is precisely equivalent to a probabilistic
cellular automaton.

A. Initial conditions

For a deterministic cellular automaton the initial state at
some initial time #;, is given by precisely one specific
configuration p. This configuration is propagated by the
rules of the automaton to any later time ¢, such that the
configuration 7 at ¢ is uniquely determined. A convenient
description uses an N-component real vector g;, with
components (g;,),. The initial state is specified by
q,(tn) = 8,5, such that only the p-component of g(t;,)
differs from zero. The initial microscopic state p is trans-
formed at each time step by the rules of the cellular
automaton. Each step corresponds to a (matrix—) multi-
plication of the vector ¢ by the step evolution operator 3.
After a certain number of steps one arrives at ¢, at a vector
q(ts). Only one component of this vector differs from zero.
This indicates the microscopic state which is reached by the
action of the automaton.

For a probabilistic cellular automaton the initial con-
dition specifies a probability p,(t,) for every possible
initial configuration p. It obeys the standard laws of
probability theory, p,(t,) > 0, _, p,(ti) = 1. Each con-
figuration p propagates by the deterministic rules of the
automaton to a specific configuration z(z, p) at later 7. The
probability to find the configuration z at 7, p.(1), is
precisely the probability p;(#;,) of the initial configuration
from which it originated,

p‘r(t> - p[)(‘r)(tin)' (100)
This transformation of the probability distribution defines
the probabilistic cellular automaton. The probability dis-
tribution at any ¢ is, in principle, calculable from the initial
probability distribution. We may again use the vector g;,, for
the specification of the initial condition. It is defined by the
relation p,(#,) = (¢,(t;y))?. In contrast to the deterministic
cellular automaton more than one component of ¢(#;,) can
differ from zero. We will see that the evolution rule of
multiplication with the step evolution operator is the same
for probabilistic and deterministic cellular automata.

B. Wave function for cellular automaton

The specification of the probability distribution by a
wave function ¢(¢) can be used for every time ¢,

pe(t) = (q:(1))*.

The positivity of the probabilities is guaranteed, and the
normalization requires that ¢(¢) is a unit vector

(101)
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q:(1)q.(1) = 1. (102)
The use of the “classical wave function” ¢(¢) [61] instead
of the probability distribution p(¢) offers both technical and
conceptual advantages [1].

The evolution law for the wave function can be written in
terms of the step evolution operator S(r) by matrix
multiplication

q(t +€) = S(1)q(1),
Indeed, with

q:(t + &) = 8,,(1)q, (). (103)

Srp(t) = 57.‘?(p) = 5ﬁ(r),pv (104)
the step evolution operator differs from zero only if the
configuration 7 at ¢+ ¢ equals the configuration 7(p)
associated to the configuration p at t by the rule of the
automaton. Equation (103) implies

q:(t+€) = qz5) (1),

pr(t+g) :p/')(r)(t)7 (105)
thus producing the rule for the probabilistic cellular
automaton. Following the evolution for a sequence of time
step yields Eq. (100).

The vector ¢(7) resembles the wave function of quantum
mechanics in a real representation. Any complex wave
function w, has an associated real representation with
twice the number of components. With

wol(t) = qr(1) +iq; (1), (106)
the real representation reads
([ qr(t)
0= ) Hon

Whenever the evolution of ¢(z) is compatible with the
complex structure (106) the normalization of the wave
function, yy o = 1, is guaranteed by the relation (102). It

is conserved by the evolution (103) since Sisan orthogonal
matrix, such that the length or norm of ¢(z + ¢) is the same
as the one of ¢(7). The evolution is therefore unitary. Also
the relation between the wave function or probability
amplitude ¢,(¢) and the probabilities p.(¢) in Eq. (101)
is the same as for quantum mechanics.

C. Wave function for fermionic quantum field theory

The Grassmann wave function for the fermionic descrip-
tion is an element of the real Grassmann algebra constructed
over the variables v, (7) at a given 7, g(t) = g[w(¢)]. We can
expand it in the basis of the fermionic quantum field theory
with the functions g, (1) = g,[y(?)],

9(1) = q.(1)g.(1) = q.(1)g:[w (1)]. (108)
We will see that the coefficients ¢,(¢) are the components of
the quantum wave function if g(z) is properly normalized.
They will be in one-to-one correspondence with the classical
wave function for the probabilistic cellular automaton. This
allows the identification of the fermionic quantum field
theory with the cellular automaton. The wave function ¢(1) is
a real unit vector with N = 2 components, as appropriate
for a quantum field theory of Dirac fermions, with M = 4M
and M , the number of space points. We will later decompose
q(t) into sectors with a fixed particle number. The wave

function for the one-particle sector qﬁl)(t, x) will be a real
four-component function of ¢ and x.

The time evolution of the Grassmann wave function g()
obeys

o(1-+)= [ D+ 1Dy (145 ) Kina 1500
:g(t+2é):/Dy/(t+é)Dy/(z)fC(r+z;)i”C(z)g(t),
(109)

where the second line refers to the original formulation
before coarse graining. Insertion of

K1) = 5.1 + 8)55°5,(1).
K(t+&) = g.(t +28)80 g, (t + &), (110)
yields, in close analogy to Sec. II,
g(t+28) = q.(t + 28)g,(r + 28), (111)
with evolution of the wave function according to
q.(t +28) = S5Speq,(1). (112)

In the coarse grained language this is identical to Eq. (103),
such that the wave function of the fermionic system follows
the same evolution as the one for the cellular automaton.

The evolution law (109) follows directly from the
Grassmann functional integral by a partial integration over
the variables at ¢ < ¢,

o) = [ Dultn <1 < 0Dp(t, < ¢ <)

x K(t—8)..K(t;y)g(tin)- (113)
The step to g(t + 2&) involves two additional K-factors and
two additional integrations, proving Eq. (109).

We have implemented initial conditions at #;,, by an
additional factor ¢(#;,), which encodes the wave function
9.(t;n) according to
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g(tin) = gin[l//(tin)] = q-r(tin)gr[l//(tin)]‘ (114)
This factor could be seen as an additional part of K(t;,). We
prefer to have it separated in the notation. In this case the
integrand of the partition function Z in Eq. (2), and
accordingly the weight distribution w[y] in Eq. (4). are
multiplied by an additional factor g(#;,). We can implement
boundary conditions at 7, by a further boundary factor
g(tr). We will typically choose these “final boundary
conditions” such that the conjugate wave function agrees
with the wave function, but more general choices are
possible as well.

The conjugate Grassmann wave function is introduced in
complete analogy to the Grassmann wave function, evolv-
ing no backwards from the final boundary condition. We
present details in Appendix E. Quite generally, the pair of
Grassmann wave function and conjugate Grassmann wave
function permit the evaluation of expectation values for
time-local observables in the fermionic quantum field
theory. This can be connected directly to the Grassmann
functional expression for observables in terms of
Grassmann operators.

D. Density matrix for cellular automaton
For a pure state we define a symmetric real density
matrix for the cellular automaton as a bilinear in the wave
function,
Pap(0) = dult)ap(0). (115)
Its relation to the density matrix in the fermionic model
represented by a Grassmann functional is established in the
Appendix F. The density matrix can be extended to more
general boundary conditions for mixed states. Its evolution
obeys a discretized Newmann equation

pli+ ) = S(0p1)37 (). (116)

The diagonal elements are the time-local probabil-
ities p(l(t) = ﬁ{l(l(t)'

The density matrix p(z) is the central object which
specifies the time-local probabilistic information for the
cellular automaton. Once known at a given time ¢ all
expectation values of time-local observables can be com-
puted from it. No additional information on the past
properties of the automaton for # < r are needed. With
the evolution equation (116) the density matrix can be
computed for # > ¢, allowing for predictions in terms of the
state of 7. The density matrix contains probabilistic infor-
mation beyond the time-local probabilities p,(¢). This is
stored in the off-diagonal elements of p(¢). This additional
information allows the computation of expectation values
of observables beyond those that are functions of occupa-
tion numbers at 7.

E. Operator for observables

In quantum mechanics one associates to some observ-
able A a Hermitian operator A such that its expectation
value is given for all ¢ by the quantum rule

(A1) = w{Ap(n)}.

Here p(t) is the quantum density matrix. It is a Hermitian
complex matrix which is normalized, trp = 1, and positive
in the sense that all its eigenvalues are positive semidefinite.
Expressing the complex quantities in terms of real quan-
tities the density becomes a real symmetric matrix p(z), and
similarly the operators are real symmetric matrices. These
structures are found in a completely analogous way for
probabilistic automata.

We discuss in the Appendix G how observables for the
automaton are mapped to operators. This includes observ-
ables involving occupation numbers at different times. The
quantum law (117) for expectation values follows directly
from the general classical statistical rule for expectation
values in probabilistic systems. Also many powerful
methods of quantum physics, as a change of basis, can
be directly implemented for the probabilistic automaton.
Quantum mechanics is characterized by noncommuting
operators for observables. We know that such observables,
as the momentum observable not commuting with the
position observable for a particle, play an important role in
quantum mechanics. The momentum is a key quantity to
characterize the single-particle state in a fermionic quantum
field theory, with extensions to many-particle states. It can
be expected to be also a useful quantity for the associated
probabilistic automaton. This will be discussed in Sec. IX.
The momentum observable is represented by an operator
that does not commute with operators for the occupation
numbers.

Finally, one would like to make the step from a real
formulation to a complex formulation and see how density
matrix and operators are mapped to Hermitian complex
matrices. This requires the introduction of a suitable
complex structure in the next section.

(117)

VI. PARTICLE-HOLE SYMMETRY AND
COMPLEX STRUCTURE

Particle-hole symmetry is a key ingredient for fermionic
quantum field theories. The complex structure of quantum
mechanics can be based on this structure. Central sym-
metries as charge conjugation C, time reversal 7', and CPT
are directly connected to particle-hole symmetry. For
fermionic quantum field theories the presence of antipar-
ticles emerges naturally in this context. In turn, particle-
hole symmetry reflects the modulo-two property of the
Grassmann functional integral. The particle-hole trans-
formation can be formulated on the level of the wave
function. It therefore applies directly to the cellular
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automaton. The propagation and scattering of our cellular
automaton is invariant under the exchange of particles and
holes and therefore realizes particle-hole symmetry. The
complex structure based on the particle-hole transformation
can be extended to include additional discrete transforma-
tions acting on internal indices.

A. Particle-hole transformation

On the level of the Grassmann wave function we define
the particle-hole transformation as

9(1) = q:(1)g:(1) = g°(1) = q:(1)g5 (). (118)
Here ¢¢ is related to g, or g, by a sign
9: = €9, & =%l (119)

We choose the sign such that g¢ is one of the Grassmann
basis elements g,-, without an additional minus sign. Every
particle (factor @, = 1 in g,) is mapped to a hole (@, = vy,
in ¢¢), and vice versa.

Instead of changing the Grassmann basis elements at
fixed ¢(z) we can realize the particle-hole transformation
g(t) = ¢°(t) also by a map for the wave function at fixed
basis elements,

K(q)=q°.  Kyq, =4t (120)
The matrix K is defined by
9 = K0p4,9: = 4:9¢ = 459: (121)
This implies indeed
K(g) = (K(q)).9: = ¢"- (122)
With
K(K(g)) = g. (123)
the matrix K describes an involution
K. :K,, = 6., K?=1. (124)

For a concrete form of the matrix K we need to identify
pairs of basis elements (g,, g¢) which are mapped into each
other by K. For this purpose we divide the set of
configurations {z} into two subsets {z'} and {z¢}, where
the elements of {z°} obtain from elements of {7’} by a
particle-hole transformation. Correspondingly we group
the components of the wave function into two sets. The
associated pairs ¢, and g, are grouped into two-compo-
nent vectors, whose components are mapped into each
other by K,

qr q: e qs
v ()= () o= (5)-(3)
qre qr: q: qz
(125)

such that in this subspace one has

0 1
K = =1T1.
(i o)

The number of independent components y, is only half the
number of components of ¢,. We may choose for {7’} all
configurations with total particle number N, < 2M,, for
which the complement configurations z¢ obey N, > 2M,.
For the remaining “half-filled configurations” with N, =
2M . we include one half in {7’} and the other half in {z¢}.

For a given choice of basis the matrix K is uniquely
fixed. Particle-hole transformations are therefore realized
on the level of wave functions. This formulation directly
applies to the probabilistic cellular automaton since it
shares the same wave function with the associated fer-
mionic quantum field theory. The particle-hole transforma-
tion and the associated complex structure are useful
concepts for the classical statistical system of the probabi-
listic cellular automaton. We note that the choice of signs
& in Eq. (119) is not unique. Different choices lead to
different matrices K. We only require the involution
property K> = 1. The grouping into pairs (¢,, ¢¢) remains
the same, but for the action of K on a subspace with given 7
one may have to replace z; by —r;. For the sake of
simplicity we will stick here to the definition (126).

A unit step evolution operator reproduces the same
Grassmann wave function only after two evolution
steps &. After a single evolution step it changes the
Grassmann wave function g[y] to §[] according to

(126)

/ Dy (1) exp{iralt + eyralt) 4. (1) g2l (1)

= G (DGt + €)] = (1 + ). (127)
For every factor @, = w, in g[y| one has a factor a, = 1 in
9[w], while a factor @, = 1 in g[y] results in a factor y,, for
glw]. If we identify a factor @, = 1 in g[y] with a present
particle, and a factor a, =y, with an absent particle or
“hole”, the role of particles and holes is interchanged for a
single evolution step &. Up to relative minus-signs the unit
step evolution operator realizes in a single step € the particle-
hole conjugation K. This is the reason for our use of coarse
graining that groups together two evolution steps & to a
combined step £ = 2&.

B. Complex structure

A general complex structure is defined by a pair of
discrete transformations (K, I) which obey
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K? =1, > = -1, {K,I} =0. (128)
The involution K realizes the operation of complex con-
jugation, while I implements the multiplication by i. For K
we choose the particle-hole transformation (120).

Quantities that are even with respect to K are considered

as real, while odd quantities become imaginary.
Correspondingly, we define
= g+ 49) = (- g0). (129)
PRre \/E q: qz), Pre \/§ qd: —4qz)-

The map from real to complex wave functions,
q(t) > @(t), is realized by defining the components ¢,
of the complex wave function by

R e T B
(PT=¢RT+1¢IT=W%+W%264(611—1q1)~

(130)

For each 7 this is a map y, — ¢,, and we recall that the
number of complex components is now N/2, 7 =1...N/2.
Keeping in mind the different ranges for the sums over z we
observe

N/2 N/2

Pioe =Y i = Y _((4:)* + (¢9)?)
7=1

=1
N
=Y #=q.4q,=1.
=1

which amounts to a standard normalization of a complex
wave function in quantum mechanics

(131)

o' (D)e(t) = 1. (132)

The map (130) also specifies the transformation / as

1 01 j (133)
= _1 O = lT2.
With this definition one has
o(Kq) =o*.  o@(lq) =iy, (134)

such that the multiplication of ¢ with a complex number
can be realized by an appropriate linear transformation of g.

This generalizes to the multiplication of ¢ by a complex
N/2 x N/2-matrix A, which is implemented by a multi-
plication of g by a real N x N-matrix A,

pa=Ap,  A=Ag+iA; < q, = Aq,

A=Agl + Al (135)

Any real matrix of the form Az 1 + A,/ is called compatible
with the complex structure and associated in the complex
picture to the complex matrix A. For matrices A, B that are
compatible with the complex structure the multiplication of
g by A in the real basis is mapped to the multiplication of ¢
by A in the complex basis. Also the real matrix product A B
is mapped to the complex matrix product AB. For sym-
metric matrices A7 = A the compatibility condition (135)
implies AR = Ap, AT = —A;. The associated complex
matrix is therefore Hermitian, AT = A.

For symmetric operators A which are compatible with
the complex structure the quantum rule (G4) for expect-
ation values takes in the complex formulation the usual
form

(A) = (plAlp) = @i AL, (136)
We could choose a different basis
)(/: <(/)R>’ (137)
Pl

which is related to y by the similarity transformation (129).
In this basis one has
K = 73, I = —iTz. (138)

There are many possibilities to introduce a complex
structure (128) by a suitable choice of the discrete trans-
formations K and /. In general, the particle-hole trans-
formation and the involution defining the complex
conjugation may be different transformations K’ and K.
In particular, we may multiply the particle-hole trans-
formation K’ by a change of sign of all Grassmann
variables with the color two. Accompanied by a corre-
sponding modification of 7 this makes the setting compat-
ible with the definition of a complex Dirac spinor in terms
of two real Majorana spinors.

A useful complex structure should be compatible with
the time evolution in the sense that the step evolution
operator is a matrix compatible with the complex structure
obeying Eq. (135). This requirement restricts the possible
complex structures, but is not sufficient to single out a
unique one. We may further require that the vacuum state is
invariant under the complex conjugation K. Thus the useful
complex structures may depend on the vacuum state.
We discuss this briefly in Sec. VIII, focusing in the
following on the identification of K with the particle-hole
transformation.

C. Complex density matrix

For a pure state we define the complex density matrix by

Prp = P20} (139)
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In terms of the real wave function this reads

Py = dedp + 454 + i(qzq; — qpqs).  (140)
The symmetric part of p is real and the antisymmetric part
imaginary, such that p is Hermitian
p"=p. (141)
The right-hand side (rhs) of Eq. (140) is a linear combi-
nation of matrix elements of the real density matrix p.
For a generalization beyond pure states we choose a
basis for which the N/2 components corresponding to the
states 7’ of the complex formulation form the first set of
components, and the one for z¢ the second set, such that the
pure state wave function is ordered as

q= )
with ¢, = g, for the first N/2 components. In this basis we
define for general symmetric p

(142)

. PP
e (4 C ) (143)
pop
For the special case of pure states this yields
Pop =y Pop =45y Pop = qedy.  (144)
and therefore Eq. (140) reads
Prp = p{rp +p$p + i(,b‘rp _[)Zp)' (145)

The matrix (143) is the most general form of a symmetric
real density matrix p. We can employ Eq. (145) for the
definition of the complex density matrix p for mixed states.
For general symmetric mixed state density matrices p the
map p — p is not invertible. A general real symmetric
N x N-matrix has N(N + 1)/2 independent real entries,
while the number of independent real elements for a general
Hermitian N /2 x N /2-matrix is only N? /4. For a pure state
density matrix the relation p> = p is mapped to p? = p,
such that 5 is mapped to p?>. For a general mixed state
density matrix (143) the real square p? is no longer mapped
to the complex square p>. We can generalize the map (145)
to nonsymmetric real p by replacing p” in Eqgs. (143) (145)
by an independent matrix p'. If p is not symmetric, p is not
Hermitian.

D. Unitary evolution

Let us next discuss the compatibility of the step
evolution operator with the complex structure. Since the
particle-hole conjugation is a map on configurations or

wave functions at a point ¢, it remains on the same
sublattice for x, e.g., even x for even t. After the action
of the step evolution operator S (t) the configuration
remains on the even sublattice, involving now odd x for
odd 7 + e. Only after two steps the configurations are again
on the same even sublattice for x, such that the evolution
can be compared with the action of the particle-hole
transformation. For this reason we define here, with a
slight abuse of notation and for even #,

S =58(t+¢)3(z). (146)

A general step evolution operator S reads in the

basis (142)
. (5§35
S: <~ A‘)’
S8

where the orthogonality §78 = 1 restricts the N/2 x N/2-
matrices S s S'C, S and §'. The evolution law (F23),
p(t +2¢) = Sp(r)8T, is compatible with the complex
structure provided that

(147)

=8 §=-3 (148)

In this case one has

S =281+3I, (149)

and we can map S to a complex N/2 x N/2-matrix U
defined by
U=_5+i8S. (150)

According to Eq. (135) the time evolution of the complex
wave function ¢ reads

o(t+2¢) =U(t)p(t). (151)

This translates to the evolution law for the complex density
matrix
p(t+2e) = Up(t)U". (152)

With the condition (148) the orthogonality of S
translates to

TS LTS =1,

§T§ =378 = (§73)7. (153)
These relations imply that U is a unitary matrix,
Utu = 1. (154)
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This is easy to understand from Eq. (131): Real orthogonal
transformations preserve the norm of ¢, and unitary trans-
formations preserve the norm of ¢.

For a suitable choice of bit configurations 7’ and z¢ that
are mapped into each other by the particle-hole trans-
formation the step evolution operator S of our model obeys
the properties (153). Such a choice is necessary in order to
define the action of S in the basis (142). For an appropriate
choice we obtain §¢ =28 and S= 5 = 0, such that the
evolution is indeed unitary for the corresponding complex
structure.

Consider first a submanifold of states 7’ that are mapped
by S to other states within the same submanifold, and
assume that the particle-hole transform K(z) of every state
in the submanifold yields a state z¢ that does not belong to
the submanifold. This defines the submanifold of states
{z°} that are in the complement of {7’} with respect to K.
Particle-hole symmetry of the dynamics implies $¢ = &' for
all states in these submanifolds. For a suitable assignment
of states to 7/ and z¢ this division into submanifolds is
complete in the sense that every configuration z belongs
either to {7’} or to {z°}. This is precisely the case if the
particle-hole transformation never mixes configurations of
the two submanifolds, i.e., for S=58 =0. We next
establish this property for a suitable assignment of con-
figurations or states.

The step evolution operator for our cellular automaton or
the associated fermionic quantum field theory preserves the
total particle number N, (98). We assign states with N, >
2M, to {7'}. Particle-hole conjugation maps these states to
new states with particle number N, =4M,-N,, for
which N/, < 2M,. These states belong to the complement
{7°}. The particle number conserving evolution cannot mix
states with N, < 2M, with states for which N/, > 2M .
What remains to be determined is a suitable distribution of
the half-filled states to {7’} and {z¢} such that the evolution
does not mix the associated wave functions ¢’ and ¢¢,

S=§=0. (155)
The particle-hole transformation maps particles to holes for
each species separately. For a given configuration 7 we can
define particle numbers for each species (Ng;),, (Ng2).,
(N11), and (N;,),. For a state 7/ with given particle
numbers (N, ), the particle-hole conjugate or complemen-
tary state z¢ has particle numbers
(N))e = M, — (N,),. (156)
We need to distribute the half-filled states with Nz + Ngo +
Ny + Npp, =2M, to {7’} and {z¢}. We associate the states
with Ng; + Ng, > M, to {7}, and the states with Ng; +
Ng» < M, to {z°}. Since S preserves the total number of
right movers Np; + Np,, one infers that particle-hole

conjugation does not mix these states, in accordance with
Eq. (155). What remains to be distributed at this stage are
only the configurations with an equal number of right movers
and left movers, Ng; + Npy = Ny + Ny =M,

As familiar in quantum mechanics one can make a
change of basis by a complex similarity transformation.
This does not change the evolution law (152). The step
evolution operator U(r) remains unitary in the new basis,
but in general no longer real and orthogonal.

E. Complex operators and general boundary conditions

The complex structure extends to the operators associ-
ated to observables. We discuss this issue in the
Appendix H. Not every observable is compatible with
the complex structure. For those observables that are
compatible with the complex structure the real symmetric
operators are mapped to complex Hermitian operators. The
expectation value of the observable is then given by the
usual quantum rule (117) in the complex formulation.

We can finally formulate the general restriction for the
boundary conditions. Pure state boundary conditions are
specified by the choice of initial and final wave functions
4(tin), q(t). As in quantum mechanics, mixed boundary
conditions can be obtained by appropriate weighted sums.
The general boundary conditions should be chosen such that
p 1s a positive Hermitian normalized matrix, i.e., all eigen-
values A of p should be positive semidefinite, 45 > 0. This
property, as well as the relations trp = 1 and p' = p, are
preserved by the unitary evolution (152). It is therefore
sufficient that they hold at some given ¢, say at f;, or 7. Fora
positive matrix all diagonal elements are positive, p,, > 0 (no
sum here), such that the conditions for a probabilistic setting
are obeyed. In particular, for §(z) = g(t) = ¢(t) the density
matrix is a real pure state density matrix with one eigenvalue
one and all other eigenvalues zero. This particular boundary
condition corresponds to §(t;) = q.(t;)d.[w(ts)].

VII. CONTINUOUS EVOLUTION
AND HAMILTON OPERATOR

The step evolution operator describes the unitary evo-
lution of quantum mechanics in discrete time steps. One
can construct an associated continuous time evolution,
given by a Schrodinger or von-Neumann equation, which
reproduces the discrete time evolution for all discrete times
t = t;, + me. In the continuum limit the discreteness of the
time evolution plays no longer a role. As an input for this
section we will only use the step evolution operator S such
that all results apply equally to the cellular automaton and
the fermionic quantum field theory.

We will express the step evolution operator and the
associated Hamiltonian in terms of fermionic annihilation
and creation operators. This makes the fermionic content of
our probabilistic automaton directly visible, without the
need of an explicit use of the bit-fermion map to a
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Grassmann functional integral. The derivation of the
corresponding expression is, however, rather complex for
the propagation part. The use of the relation between
annihilation and creation operators on one side, and
Grassmann variables on the other side, is a useful tool in
this context.

A. Hamilton operator
The Hamilton operator H is related to the step evolution
operator S by
S = exp(—ieH). (157)
Since S is a unitary (in our case orthogonal) matrix, H =
H' is Hermitian. The von-Neumann equation for the
evolution of the density matrix,
i0,p = [H. p), (158)
has for a time-independent Hermitian Hamilton operator H
the solution

p(t) = U(t,1))p(t)) U (1. 1,), (159)

with

U(t, t;) =exp(—i(t —t,)H). (160)
For t—1t; =¢ one has U(t.t,) = 8(r;) according to
Eq. (157). The von Neumann equation (159) reproduces
the discrete evolution equation (152) if we take H piece-
wise constant in the intervals between the discrete time
points t = t;, + m,e.

For H we can make the ansatz

H = Hy. + Hyy + AH, (161)
with
Sie = exp(~ieHpe). S = exp(=ieHy).  (162)
This implies for AH the relation

exp{—ie(Hiy + Hpee + AH)}
= exp(—ieHy) exp(—ieH e ), (163)

and therefore

AH = O(e[Hiy. Hiree))- (164)

This may suggest that in the continuum limit € — O the
commutator term can be neglected, and AH can be omitted.

The issue is not as straightforward as in the usual
functional integral formulation for quantum field theories.

The reason is that the step evolution operator for an
automaton is not a small deviation from unity of the order
e since we deal with discrete jumps. For example, we will
see that the interaction part H;,, involves a factor £~!. The
neglect of the commutator term AH may be justified for a
sufficiently smooth wave function. In this case we have the
possibility that the wave function changes only by a small
amount ~¢ for one step of the evolution from 7 to ¢ + €. If
the part ~AH only induces changes ~¢? it can indeed be
neglected for € — 0. The continuous character of the wave
function, and therefore the probabilistic character of the
automaton, are crucial in this respect.

B. Annihilation and creation operators

We can express Sp.. and S;, in terms of fermionic

annihilation operators a, and creation operators al,, which
obey the usual anticommutation relations

{ahoap) =60y {aga) = {akuaf} =0. (163)
Their action on the Grassmann wave function can be

represented as

. . 0
Ag= W, al= .
o e O,

(166)

We want to implement here the action on the wave
function and density matrix and therefore need a suitable
representation in the chosen basis. For a single two-state
system we employ the real 2 x 2-matrices

0 0 0 1 . 1 0
a= s at = , a'a= .
(i o) =[5 o) (0 o)

(167)
For the sixteen local states for the fermions wg,, ¥, we
use

aRr=a®@1®1®1,
a1 =133 Q@ a® 1,

aR2:T3®a®1®1,
a, =130 13 @ 73 ® a.
(168)

Finally, the anticommutation relations for annihilation
operators at different x are implemented by introducing
the 16 x 16-matrix 75,

T3 =173 ®T3 ®T3 ®T3, {T3,Cl},} :O, (169)
and taking direct products of the 16 x 16-matrices a,, T3,

and 1,
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a}/<xin) =a, RIRXIR®I...,
a,(xn+6)=T:®a,@1®1...,

ay(xin +28) = T3 ® T3 ® ay ® 1.... (170)

The creation operators a; (x) are the Hermitian conjugated
(transposed in our case) of the annihilation operators a, (x).
Further details can be found in Appendix A.

We will exploit the close connection between Grassmann
variables and annihilation/creation operators by choosing
sign conventions such that

9plwl(aq) e = wag:lwl,

W)@y = -l

(171)

Indeed, the product y,g, vanishes if g, contains already a
factor y,,. In this case the basis function g, corresponds to a
state for which no particle « is present. The annihilation
operator a, yields zero, as it should be. If g, contains no
factor v, it describes a state with a particle « present. After
multiplication with y, the product y,g, is a new basis
function g, up to a possible minus sign. For this basis
function g, no particle a is present. Thus multiplication
with y, annihilates a particle «, leading to a state with no
particle « present. This is precisely the action of the
annihilation operator a, which therefore transforms
9p(aa),. = ngs, n = £1. We conclude the general relation
(no sum over 7, a)
gp<aa)pr = Nza¥ aYz» ’7%0[ =1. (172)
The argument for the creation operator is similar, with
0/ 0w g, vanishing if a particle « is present (no factor of y,,
in g,), and creating a particle if no particle is present in g,
(eliminating the factor y,). One concludes

0
9p (a:;)pr = Nea aiwagr'

(173)
The occurrence of the same factor 7, as in Eq. (172)
follows from (no sum over )

. 9

gp(aaaa>p1 = gﬂ(ﬁa)/)r = WV/agrv (174)
a

with (ng),, = (1,0) the particle occupation number asso-
ciated to g,. The anticommutation relations (165) remain
unaffected if we multiply both a, and a}; by (—1). This
freedom of choice of a sign for a, together with the
freedom of choice for the sign 5, for g, in Eq. (6), permits
us to choose conventions for which 7., = 1.

We can define the sign §, by taking a plus sign if the

factors yy in g, are ordered with the lowest /3 to the left, as

in Eq. (18). All states can be obtained from the completely
filled state g; =1 by consecutive application of the
annihilation operator y, starting with the largest # and
continuing with decreasing . The fact that a,, a; obey the
same anti-commutation relations as y,, 0/0y guarantees
the consistency of the sign convention. More details on sign
conventions can be found in the Appendix A, where we

show that the above convention is compatible with the
prescription (167)—(170).

C. Interaction Hamiltonian

We next express the interaction part of the step evolution
operator and Hamiltonian in terms of annihilation and
creation operators. For this purpose we first consider the
16 x 16-matrix

A

P 0
D, =apa; a0 =a @ a"®d Q a.

(175)

Its action on a local state produces zero except for the state
(1 0 0 1) for which

D, (1001) = (0110). (176)
Similarly,
D_=D! =a}al,aap=a" ®a®@a®@d  (177)
acts as

D_(0110) = (1001). (178)

The sum D = D, + D_ interchanges the corresponding
two-particle states

D:(1001) < (0110), D* =1, (179)

while it yields zero for all other local states. As a result, the
operator

A

Sp(1) = exp(—iaDt) (180)

equals unity for all states except ¢, = (1001) and
¢, = (0110), while

SD(I)<Z;> —cos(at)(z;) - isin(at)(Z?). (181)

In particular, for « = z/(2¢) one has

o) ()

Up to the factor —i this describes the color exchange
process (48) for an incoming red right mover and an

(182)
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incoming green left mover, together with the process for
interchanged colors.

The color exchange process for an incoming right mover
and incoming left mover of the same color can be described
by defining the matrices

C, = a;zazzamau =-a®a" @a®a

C_=C" =a} ahapap =—a" ®@a®d @a. (183)

The matrix
C=C,+C_ (184)
annihilates all states except
ps=(1 0 1 0}, @=(0 1 0 1). (185
which are interchanged
é(%) _—<(p“>. (186)
P4 P3
With
" int
Sc(t) = -—C 187
el =exp(-52¢) (187)
one finds
2 P3 it P3 . ([t P4
Sc(t)( > = cos<—>< ) +ism<—>< )
P4 2e) \ o4 2e) \ 3
(188)

while for all other states except @3, @4 this operator acts as
unity. In particular, for # = € one realizes the exchange (79),

s () =i(5)

Since D and C act on different sets of states those
operators commute,

(189)

[D,C]=0, D,C,=0C.D,=0, (190)
resulting in
0 _exp{—g(b+é)} — 5,(08c(r).  (191)
For t = ¢ we define
S; = Si(e) (192)

which is unity for all states except ¢, ¢, @3, @4 for which
it acts as

P (%)

Si P2 _ P1 (193)
@3 (1
P4 @3-

This is precisely the local color exchange of the cellular
automaton. Furthermore, both D and C involve even
numbers of creation and annihilation operators, such that
the even products of 75 in Eq. (170) are unity. We conclude
that S’im is a direct product of local factors

A A

Sint = Si(xin) ® Si(xin + &) ® Si(xip +26)....  (194)

We can interaction Hamiltonian in

Eq. (162) as

identify the

Hip = Y 2 (D(x) + €(x))
= %Z{a;z(x)azl (x)ag,(x)ag (x)

+ apy (x)aj,(x)ag; (x)ags(x)

+ ago(X)ap, (x)ag) (x)ap (x)

+ay ) (x)ag, (x)ags (X)ags(x)}. (195)

The interaction Hamiltonian is Hermitian. In the form

Hi = =33 [ag (x)aga(x) = ajo(x)a ()]

(196)

X [021 (x)as(x) = aiz(x)am(X)]

the symmetries L <> R, as well as color exchange 1 <> 2,
are directly visible. We observe the prefactor 1/e. In
distinction to the Grassmann variables we cannot absorb
this factor by an arbitrary multiplicative renormalization of
the annihilation and creation operators. Their normalization
is fixed by the inhomogeneous anticommutation rule. We
will encounter later a different continuum normalization for
which the anticommutator is ~5(x — y).

The interaction Hamiltonian is not uniquely fixed by
Eq. (162). We can add a piece

Hi =7 350, (197)

with f(x) an integer function of
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ig(x) = a;;l(x)am (x) + ag, (x)agy(x),
il

pi(X)ap(x) + 022(x)aL2(x)- (198)

Indeed, 7ig(x) and 7, (x) commute with Hj, such that

i€ ( 1nt+Hmt Sthexp me( )) = Sint-

(199)

expl-

D. Right and left transport

We next turn to the free or kinetic step evolution operator
S’free. Despite the very simple structure of the right- or left-
transport operators the expression of the Hamiltonian in
terms of annihilation and creation operators needs some
care. Otherwise the unique jump property is lost.

Since S'free is a product of independent factors for the left
and right movers, and for the two colors, we can write

Shee =8P @ 510 @ §1H @ 51

Hfree = Z (HSJ ) +HSJL))
a=12

(200)

The two colors will be distinguished only by the label a of
the operators a; ,(x) etc. We will in the following not write
the color labels explicitly.

In the Appendix I we proof the useful relations

S® =N [exp{zxza;u + &)[ag(x) — ag(x + @]H ,
—N [exp{zx:aux —&)ay (x) —ay (x — e)]}] .

(201)

Here N is an ordering operation for operators which is
specified in Appendix I. For this proof we employ the
relations between functions of Grassmann variables and
Grassmann derivatives on one side, and functions of
annihilation and creation operators on the other side.
They are explained in detail in the Appendix A. We stress
that Eq. (201) is an identity for matrices. It holds inde-
pendently of the fermionic language used for the proof,
such that it applies immediately to the cellular automaton.

E. Partial continuum limit and loss
of unique jump property
For the partial continuum limit the ordering operation for
the exponential function can be omitted, while the ortho-
gonality of Sy is maintained. In this limit one finds

{ ZaR ag x+8)—aR(x—s)]}

= exp{zzx:aZ(x)[aL x+¢€)—ap(x— g)]}.

(202)

The omission of the ordering operation N, which will be
motivated below, has an important conceptual conse-
quence. The matrices S’R,L are no longer unique jump
matrices. A given wave function ¢,() = §,; correspond-
ing to a sharp (deterministic) configuration p is mapped to a
sum of nonzero entries for different configurations accord-
ing to g, (r+ &) = S’qu/,(t) = S’,,-). Replacing Eq. (201) by
Eq. (202) the evolution is no longer given by a simple
updating rule for an automaton. We now encounter a
feature characteristic for most quantum systems: a given
state undergoes a probabilistic evolution to several different
quantum states. In a double slit experiment an incoming
particle with a given momentum can pass either in one or
the other slit, or even combine both possibilities and
produce the characteristic interference. This change of
character of the evolution also occurs if we omit the
commutator term AH in Eq. (163).

Because of its conceptual relevance we discuss the
partial continuum limit in some detail. Omitting only the
ordering operation N one has (not indicating the index R for
the fermionic operators)

~atx-el},

S/ = exp - >l

(SH1 = exp{ZaT —a(x+ e)}} (203)
The operator S’ is no longer orthogonal, since
z< - S Wt
S =§:a' -
= —Za a(x+¢).  (204)

The two expressions in Eq. (202) remain identical, how-
ever, if we assume coincidence of the two versions of lattice
derivatives

o7 a(x) = ~[a(x) — a(x—e)],

[a(x + &) = a(x)],

M= =

o Ma(x) = (205)

which will be the case effectively if Sg acts on sufficiently
smooth wave functions. We can take a partial continuum
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limit even for discrete x if we take for the exponent the
mean of the two expressions in Eq. (203). This leads to
3’,}1 = 3’% in Eq. (202), and similar for S’L.

The reason for omitting the ordering operation N in the
partial continuum limit is the observation that the difference
between the ordered exponential in S r and the standard
exponential Sz’ only arises from the anticommutators of
{a'(x),a(y)} at identical points x =y. For x #y the
anticommutator vanishes, similar to {y(x),y’(y)} =0.
The ordering operation has therefore no effect if x and y
are sufficiently distant from each other. Consider now a
smooth wave function g that varies only over distances
L > ¢e. Only this variation will lead in Eq. (201) to a
difference of S from the unit operator. The sums >y for
T, in Eq. (I12) will extend effectively over large ranges of
x —y, typically |x —y| > L. The contribution of strictly
identical or neighboring points y = x or y = x — ¢, that
give rise to T, in Eq. (I14), is suppressed as compared to
the total sum by a factor &/L. It vanishes in the continuum
limit ¢/L — 0. This argument extends in a similar way to
higher orders in the expansion of the exponential. In
summary, for sufficiently smooth wave functions the step
evolution operator does not retain the detailed information
on space differences of the order e. The smoothness of the
probabilistic information, as encoded in a smooth wave
function g, plays a central role here. As our discussion
above shows, the approximation (202) fails if we consider
very sharp wave functions, as the one for a single particle
located at ¢ precisely at the position z. A systematic
discussion of the continuum limit can be found in the
Appendix J.

As mentioned before, the transition to the partial
continuum limit has an important conceptual implication.
While S’R‘L remain orthogonal operators, they are no longer
unique jump operators. The action of S’R.L in Eq. (202) does
not map a given bit configuration at ¢ uniquely to a new bit
configuration at t 4 &€ The partial continuum limit of a
probabilistic cellular automaton has no longer a determin-
istic time evolution. The step evolution operator S becomes
genuinely probabilistic in the partial continuum limit,
mapping a given bit configuration only with certain
probabilities to new bit configurations. The different bit
configurations to which S maps differ only on distances of
the order ¢. For a smooth wave function they are suffi-
ciently close to each other such that their difference in a
suitable continuum limit plays no role. In a certain sense,
the continuum limit is a coarse graining for which the
resolution on distances ¢ is lost. Nevertheless, following the
evolution for many time steps the loss of determinism on
the coarse grained level can have important consequences.

F. Kinetic Hamiltonian and continuum limit

Combining Eqgs. (202) with Eq. (162) we can directly
extract the kinetic Hamiltonian H,

Zaze
28 Zal‘

As it should be, the Hamiltonian is Hermitian. In terms of
the lattice derivative

[ag(x + €) — ag(x —€)],

[ap (x + &) —az(x —€)]. (206)

1
z—g[a(x +eé)

Oa(x) =

—a(x —é¢)] (207)

one obtains

L—r iZaig,L(X)axaR,L(x)- (208)

We recognize a type of lattice momentum operator —id,.
Indeed, we can make a lattice Fourier transform

1 .
= MY era(p)
P

(209)

with M, the number of x-points and discrete periodic
momenta (period 2z/e) which we take in the range (m
integer)

2rm 3
P:W7 |P|5;' (210)
X
With
Sttt =M, D e = M5, (211)
X 4
the inverse reads
_1 .
a q) = MXZZe_’an(x) (212)
X

The annihilation and creation operators in the momen-
tum basis obey the usual anticommutation relations

{a’(p),a(q)} =
{a(p),a(q)} = {da'(p).a(q)"} = 0.

In the momentum basis one obtains the simple relation

ZpaR Jag(p),  HY ==Y paj(p)ay(p
P

(214)

5/’74’
(213)

where we employ here the continuum approximation for
the definition of the derivative 0,,
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—ida(x) = M;%Zpeipxa(p). (215)

For free right movers one finds the relativistic energy-
momentum relation (dispersion relation) E = P, while free
left movers obey E = —P. Momentum eigenstates with
positive energy £ > 0 obey P = p > 0 for right movers
and P = p <0 for left movers. Correspondingly, for a
single right handed or left handed particle the plane wave
solutions are

(pg) ~ Pt (p<Ll) ~ POt

p >0, p <0.

(216)

As mentioned above, we can neglect AH for the
continuum limit in the time direction. The density matrix
obeys then the continuous von-Neumann equation with
Hamiltonian

H = _2_8 — {ajea(x)[aRa(x + E) - aRa(x - 8)]

—ay,(x)[aL,(x + &) —ap,(x —€)]}

=5 2l (9)aia(x) = da(x)a ()

x [a}, (x)aga(x) = a22<x)aL1(x)]~ (217)

We can further take the continuum limit in the x-
direction, with Y~ = ¢~! [ dx, replacing the lattice deriva-
tive by a partial derivative,

= X —i aT X a X —aT X a X
= [ ax] =Lk, 00s0, ) = ()11
- S5 lak (ar(x) - ajy(x)ap ()

< [}y (Waga(x) - a22<x>au<x>]}. (218)

The factors of e can be absorbed by a renormalization

aren(x) = \/E (219)

which corresponds to the continuum normalization of the
anticommutator relations

{a:en<x)7 aren(y)} = 15%)’

£

~8(x—y). (220)

The evolution of the complex density matrix for the
probabilistic cellular automaton follows the von-Neumann
equation for a fermionic quantum field theory. In case of a
pure state density matrix p?> = p we can express it in terms
of a complex wave function ¢

Pap = PaPls (221)

which evolves according to the Schrédinger equation

i0,p = He. (222)
We can express the continuous evolution in the real
formulation as well. For this purpose we replace i by
the matrix / which maps ¢’ to ¢¢, resulting in

0iq = -IHg =Wq =W + Win)g.  (223)
where H obtains from H in Eq. (218) by the replacement
i = I. The kinetic part is block-diagonal in ¢’ and ¢°

Wi = = [ {aka(900:00,(9) = afy (99,00, (0),

(224)

while the interaction part W;, involves a factor / and
therefore rotates between ¢’ and ¢°.

For understanding the approximations involved in the
continuum limit it is instructive to integrate the Schrodinger
equation (223) from ¢ to t+ & under the assumption of
slowly varying ¢(7),

q(t+¢e) = q(t) +q(t) = exp(eW)q(t)

= (1 +eW)q(t) + O(£?). (225)
We focus first on a right-mover of a free theory where in a
discrete setting for x one has

eW = EZ(aT(x +é&)a(x) + a(x + &)a’ (x)).

X

(226)

For each term in the sum the wave function changes only
for those configurations for which the occupation numbers
at x + € and x are different. If the components of the wave
functions for these pairs of configurations differ in relative
size only by ¢ the change 6¢q/q is of the order ¢. In other
words, the wave function should be smooth enough such
that the derivative operator,

(227)

can be regarded as a quantity of the order one, not diverging
for € — 0. In the continuum limit we can then neglect the
term ~O(e?) in Eq. (225). Since W is an antisymmetric
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matrix, Sg. = exp(eW) is an orthogonal matrix. In the
Appendix J we present the operator W () and its properties
in more detail.

The continuous step evolution operator,

A

Spe =1+ €W, (228)
differs in structure from the original right-transport operator
Sk. It is now given by unity with an additional contribution
eW that is considered to be small in the sense that its action
on smooth wave functions produces only a small effect. It is
no longer a unique jump operator since it has both diagonal
entries from the term one, and off-diagonal entries from
the term eW. Nevertheless, for sufficiently smooth wave
functions the difference between the action of S and § Re
on g is of the order £ and can be neglected in the
continuum limit.

A second condition on wave functions for which a
continuum limit is valid requires that the commutator
[Hin, Hiee] can be considered as a quantity that remains
finite for ¢ — 0 (or diverges less fast than ~!). In this case
the neglect of AH in Eq. (163) is justified. It can happen
that H,,, diverges for ¢ — 0, partially depending on the
choice of H/  in Eq. (197). As long as the divergent part
commutes with Hp,. the continuum limit remains valid.
The divergent part of H;, may lead to overall phase
rotations of wave functions on a time scale given by &
which can be factored out. Typically, the integrated
continuous evolution operator

A

S = exp[_ie(Him + Hfree)]» (229)
is no longer a unique jump matrix, in contrast to S A given
configuration can now either propagate or scatter, repro-
ducing the same result as the automaton only for suffi-
ciently smooth wave functions.

We conclude that the continuum limit for sufficiently
smooth wave functions corresponds to some type of coarse
graining. It looses the distinction between two neighboring
configurations which may evolve differently by applying
the updating rule of the automaton. The two configurations
are treated as identical, with certain probabilities to follow
either the updating of the first or the second configuration.
The continuum limit is no longer an automaton.

VIII. GROUND STATES AND ONE PARTICLE
WAVE FUNCTIONS

Many concepts of quantum field theories apply directly
to probabilistic cellular automata. These include the notions
of ground state and one-particle excitations or conserved
quantities as momentum and charge. On the level of the
density matrix for the cellular automaton these features can
be discussed in complete analogy to other quantum
systems. In the formulation as cellular automata many

t

0 ¢ X

FIG. 3. Configuration for vacuum (A).

perhaps somewhat abstract concepts in fermionic quantum
field theories find a rather concrete intuitive realization.

A. Ground states

Possible ground states correspond to a stationary density
matrix. In case of a classical pure state they correspond to
time-translation invariant classical wave functions g(¢),
g(t). We will define here translation invariance by shifts 2e.
Thus the criterion for a ground state reads

p(t+2e) = p(t),
g(t+2¢) = q(1).

p(t+2¢) = p(a),

q(r+2¢) = q(1), (230)
First obvious candidates for ground states are the com-
pletely empty state, n,(t, x) = 0, or the completely filled
state n,(t,x) = 1.

Other possible ground states are half-filled states. For
even ¢ we can have at each position x one green left mover
and one red right mover. At ¢ 4 ¢ all particles switch color,
and at ¢ 4 2¢ the configuration turns back to the configu-
ration at ¢. Such a state is depicted in Fig. 3.

There are only one-patrticle lines, no doubly occupied or
empty lines. We may denote the wave function for this state
as g4, and for a similar state with exchanged color by ().
We will take for simplicity positive ) (z,,), which equals
one for the half-filled configuration 7, described above,

and vanishes for all other 7 # 7, Z]iA) (tin) = 0,,. We infer

Q(tm"—zme) :q<A>v g(t1n+(2m+ 1)8) :Z](B) (231)
We note the existence of a similar, but not identical, ground
state with §(t,,) = ¢'®). The color-exchange symmetry
maps one ground state (A) to the other ground state (B).
For any given ground state (A) or (B) it is spontaneously
broken.

A further half-filled ground state (C) has at #;, all sites
occupied by one red left mover and one red right mover,
with associated wave function §(t,,) = §©). Again, by a
switch of color of all particles we define the state §°), with
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q(tin+2me) =), q(tn+(2m+1)e)=g'").  (232)
The ground state with §(;,) = g is closely related, but
not identical. Again, any given half-filled ground state (C)
or (D) breaks the color exchange symmetry spontaneously.
For the ground states we take the conjugate wave
function equal to the classical wave function,
g9(1) = (). This results in a diagonal real density
matrix with only one nonvanishing element,
ﬁ‘[/)(t) = prp(t) = 51/;57,‘?([)’ (233)
with 7(z) = 7, for ¢ even and 7(¢) = 75 for ¢ odd, and
similarly for the other ground states. For the ground state
7(t;,) = 74 the ground state wave function obeys

for t = t;, + 2me

for t =t;, + 2m+ 1)e. (234)

None of these ground states is invariant under the
particle-hole transformation. The completely empty and
completely filled states are mapped onto each other, and for
the half-filled ground states the particle hole transformation
maps (A) <> (B) and (C) <> (D). We can define the wave
function of a particle-hole symmetric ground state by the
superposition

do() = ¢1§ (¢ + ). (235)

where we identify § = g = ¢. For this ground state the
probability for the configurations 7, and 7 are both one
half. This ground state is invariant under color exchange
and obeys gy (t + €) = gy (7). If we want to define complex
conjugation by the particle-hole transformation, the ground
state has a real wave function in the complex language.
Similar particle-hole invariant ground states can be
obtained by combining (C) and (D) or the totally empty
and filled states. One may also consider the half-filled
ground state

1
90(1) =5 (4¥ + 4 + 49+ 4P, (236)

with probability 1/4 for the configurations 7, 73, 7¢
and 7p.

Finally, another interesting ground state is the half-filled
equipartition state. Let us denote by Tl(-E the configurations
which have precisely one right-mover and one left-mover
on each site x. There are 4¥+ such configurations since at
each site there are four possibilities: The right mover can be
red or green, and the same holds for the left-mover. With
wave functions g; defined by (g;), = J__), the equiparti-

tion wave function obeys

q(1) =27 g (237)

The probabilities to find a given half-filled configuration

TEE) are all equal and given by 4= The half-filled

equipartition state is invariant under the particle-hole
(E)

i

transformation. The latter maps each configuration

to another configuration T;-E)

the color of all particles.
We can start at t;,, with the equipartition (237). The time
evolution of any given configuration %) is rather simple
: .
At every point of the (¢, x)-lattice a left moving single-
particle line crosses a right-moving single particle line. For
each given left-moving or right-moving single-particle line
the color changes therefore at every time step. In particular,
at 7 + 2¢ every color of a right mover at (¢, x) is displaced to
(t + 2¢, x + 2¢), while the color of a left-mover at (¢, x) is
found at (7 + 2¢, x — 2¢). This is again one of the configu-
rations T]EE), such that the equipartition wave function is
stationary. Actually the equipartition wave function keeps
the same value (237) for all 7 since the additional switch of

color from t to t+ ¢ still remains within the space of

configurations TE-E> .

The continuum Hamiltonian (217) constitutes a map
within the space of wave functions for configurations with
one right-mover and one left-mover at each x. The
eigenvalues of the Hamiltonian H|, restricted to this space
correspond to possible vacuum energies. A vacuum wave
function that is an eigenstate of H( undergoes a phase
rotation with the corresponding eigenvalue. This overall
phase rotation can be factored out. If the continuum limit is
exact for a given vacuum state the relative phase between ¢
and ¢ + € equals zero, according to go(t + &) = qo(?).

which obtains by switching

B. One particle wave function

Single particle states are, in general, a complex issue. In a
quantum field theory the notion of a single particle
corresponds to some local excitation of a vacuum or
ground state. Its properties depend on the particular
vacuum. For our very simple automaton the task of defining
single-particle states is facilitated by the property that each
particle line continues as either a right-mover or a left-
mover. Only its color can change by scattering. For a
vacuum with a fixed particle number we can define a
single-particle configuration at #;, by adding one occupied
bit to the vacuum. This must be a right-mover or a left-
mover at some position x. For vacua with precisely one
right-mover and one left-mover at every position x we can
follow the trajectory of the “surplus™ bit or particle by
spotting at each ¢ the location where three bits are occupied.
The corresponding trajectories have to be on the diagonal
corresponding to a right-mover or a left-mover. The particle
defined in this way undergoes no change of direction. (This
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can differ if one chooses another form of the interaction.)
Since the particle moves with light velocity, no mass term is
induced by some form of spontaneous symmetry breaking.
The same argument holds for single-hole configurations.
Despite its simplicity, several interesting features of one-
particle states are visible in our model. One possibility to
define a real one-particle wave function ¢(!(¢) is by the
action of a single creation operator on the ground state

g (1) = MY gV (t.x)(a) ()0 (238)

The coefficients q§1>(t, x) are the one-particle wave func-

tion in the occupation number basis. They can be seen as a
4M .-component real vector, or as a four-component field
which depends on a single discrete space coordinate x. The
normalization factor N is introduced to ensure the nor-
malization

(239)

Xy

The definition (238) is appropriate if the evolution
according to Eq. (103) does not change this form of the
wave function. The step evolution operator S of our model
does not change the particle number. For ground states with

one right-mover and one left-mover on each site the vectors

(a;(x)),pq,(,o) form a complete basis of all one-particle

states. Then we can write ¢(!)(¢) in the form (238) for
arbitrary 7. The projection S’yé(x, y) of the step evolution

operator § on the one-particle states follows directly from
applying the updating rules on the corresponding one-
particle bit configurations. We can similarly define the
single-hole wave function ¢(©!)(7) by replacing in
Eq. (238) the creation operator a;(x) by the annihilation

operator a,(x), and the coefficients q,(,l)(t, x) by the one-

hole wave function qﬁc’l)(t, x). We may define a general-

ized one-particle configuration by either an additional bit
of type y present or absent at x. The corresponding one-

particle wave function is the pair (q;(,l) (1,x), q;(,c'l) (1,x)). In

this case we adapt the normalization (239) correspondingly

Sl@ (1 x) + (g (x)] = 1.

Xy

(240)

The continuum evolution connects ¢! and ¢(©") due to the
factor / in the interaction part W;,, in Eq. (223).

For the empty ground state a single particle does not
undergo scatterings. The evolution is therefore simple: a
single right-moving particle evolves on a straight trajectory
to increasing x, without changing its color. Similarly, a
single left-mover follows a straight trajectory with decreas-
ing x. For half-filled ground states the situation could, in

L

0 2 T

(©)

FIG. 4. Soliton excitation. The black line is doubly occupied.
To the left of the doubly occupied line, within the shaded “light
cone,” we observe the vacuum (C). Outside this light cone one
observes the vacuum (A). The doubly occupied line can be
considered as a soliton separating different vacuum states.

principle, be more complex since scattering could induce a
change of color of the generalized particle. For our simple
automaton this issue is solved easily for ground states with
one right-mover and one left-mover on each site. The single
particle encounters a one-particle line at each time step,
such that the additional bit or hole changes color at each
time step.

The one-particle bit configurations depend on the ground
state. For the empty ground state one has a single occupied
bit moving on a straight line without scattering, either as a
right mover or a left mover, and either red or green. Adding
a particle to the half-filled vacuum (A) one produces a
double occupied line. The particles that can be added for
the initial state are not arbitrary. At a given position we can
only add a green right mover or a red left mover, since for
the ground state (A) the green left mover and the red right
mover is already occupied. The only nonzero components
of the one-particle wave function (238) for ¢(® = ¢
occur for the corresponding values of y. The one-particle
states involve only half the numbers of species as compared
to the empty ground state.

Adding at t =0 to the ground state (A) a green right
mover produces the initial point for a double occupied line
with one red and one green right mover. This line
propagates to the right without scattering, similar to the
one-particle lines for the empty ground state. We have
depicted the evolution of the corresponding spin configu-
ration in Fig. 4. Similarly, adding a red left mover produces
a doubly occupied left moving line without further
scattering.

With increasing ¢ the form (238) of the one-particle wave
function is not preserved. We observe to the left of the
double-occupied line the appearance of a new vacuum
structure, namely vacuum (C). The vacuum (C) is found
within a light-cone spreading out from its origin at t = 0.
Outside the light cone one finds the vacuum (A). The
double-line of a particle created at + =0 is therefore
accompanied by a string of alternating red or green particles
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extending to the other border of the light cone. The wave
function for this configuration for # > 0 can no longer be
described by the action of creation operators at various
positions x, with invariant vacuum otherwise. The half-
filled vacua (A), (B), (C), (D) can actually be present in
different regions of space, with appropriate double-occu-
pied or empty lines at the boundaries. In this context
double-occupied or empty lines can be interpreted as
solitons. With the understanding that to the right and left
of the double-occupied or empty lines there are different
vacua we can still describe the propagation of the soliton by

a suitable one-particle wave function q(Ll}g(t, x).

Finally, for the half-filled equipartition vacuum (E) a
single particle constructed according to Eq. (238) corre-
sponds to a double-occupied line with the same vacuum on
both sides. Whatever is the distribution of colors for the
right-and left-movers for all points x away from the double-
occupied line at 7, there is a corresponding color distribu-
tion at ¢ + . Since all color distributions have the same
weight for the vacuum wave function q(E) in Eq. (237), the
wave function differs from the vacuum only at the position
x of the double-occupied line, and by a possible normali-
zation factor .

There are only two different one-particle states of this
type—one right-moving and the other left-moving. The
double-occupied line involves both a red and a green
particle and is therefore ‘“color blind.” More in detail,
the creation operator aj, (x) in Eq. (237) creates for all TEE>
with a green right-mover at x a site with both a red and a
green right mover, while it yields zero if Tl(»E) involves a red-
right mover at x. It yields a nonzero result only for half of
(E)

the ¢; '. The creation operator azz(x) yields a nonzero

result for the other half of the qEE), producing the same
double-occupied site at x.

We can also construct single-particle states for composite
particles. As an example, a composite single-particle
excitation in a given vacuum, say vacuum (A), can be
constructed by a double-occupied line with a neighboring
parallel empty line. This replaces in Eq. (238) the operator

aj(x) by a} (x)as(x + 2¢), and correspondingly q,(,l)(t, X)

by q}(,}s)(t, x). Outside these two lines the vacuum is not
modified. The possible values for (y, §) are restricted. For a
right-moving particle in vacuum (A) one has y = (R, 2) and
6 = (R, 1), while the left-moving particle has y = (L, 1),
6= (L,2). Other particles or holes are two parallel
neighboring double-occupied lines, or two parallel empty
lines. Further more extended objects can separate the two
parallel lines by a certain distance, with a string of a
different vacuum in between the two lines.

C. Charges

For the half filled configuration 7(4) we may take away a
single red right-moving particle. This produces a red hole.

The corresponding empty line replaces the double occupied
line in Fig. 4. Otherwise Fig. 4 remains unchanged. A right-
moving red hole propagates in the same way as a green
right-moving particle. Similarly, a green left-moving hole
behaves as a red left-moving particle. This generalizes to

the other half-filled configurations T,(-E). Right- and left-
moving holes can be described similarly to Eq. (238) with
aj (x) replaced by the annihilation operator a,(x).

One may treat both the one-particle state and the one-hole
state as a generalized particle, and assign charge Q =1 to

particles and Q = —1 to holes. With total particle number
Np =22 m)
¥ X

taking in the half-filled vacuum the value Ny = 2M , one has

(241)

Q=N,-Ny=N,-2M,. (242)
Since N, is conserved, also the charge Q is conserved.

Instead of left and right moving particles and holes we
may speak about left and right moving particles with
opposite charge Q. For the half-filled vacuum all these
generalized one-particle states move on straight lines
without scattering. They are rather similar to the one-
particle states for the empty vacuum.

We can introduce separate charges Qp and Q; for the
right movers and left movers

Or = Ngy + Ngy — M,, Qr =Ny +Np,—M,,

(243)
with

Q=0r+0;. (244)
The charges Qp and Q; are conserved separately. The
assignment of particle numbers and charges to the different
half-filled ground states is indicated in Table I. Similarly, all
half-filled configurations 7\ have Qg = Q; = 0.
The different configurations with a single generalized
particle in the half-filled equipartition vacuum have
O = %1,

0, =0, (245)

TABLE 1.  Particle numbers and charges for various half-filled
ground states.

Vacuum Ngi Ng» N, N> Or 0O
A M, 0 0 M, 0 0
B 0 M, M, 0 0 0
c M, 0 M, 0 0 0
D 0 M 0 M 0 0

=
=
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or

The individual one-particle configurations can be labeled
by (Qg,Q;) and the coordinate x at which the charged

particle is found.

D. Complex structure for vacua and charged particles

For the four half-filled vacua A, B, C, D the particle-hole
transformation acts as
K:A < B, C < D. (247)
We may associate A and C with {7}, while B and D span
{z“} for this sector. In the complex language we have two
complex components of the wave function in this sector

(0)_1+i(A) l_i(B)
- + b
Y N
0 1+ 1—-1
9y = N A A (248)

where we assume again § = g = ¢. For a restriction to
these four possible vacuum states the real four-component
wave functions (¢, ¢(8), ¢(©), ¢(®)) is mapped to a two-

component complex wave function ((pgo),(pgo)). The dis-

crete transformation corresponding to the multiplication
with i maps

I:q(A) — q(B>’ q(B> - _q(A)’

g\ — ¢, g - —4'©. (249)
The totally empty and totally filled vacuum states are
mapped into each other by K. We can employ the same
construction replacing ¢4 and ¢®) by the wave functions
for the totally empty and filled states.

The particle-hole symmetric vacua correspond to a real

wave function, e.g.,

1 1 0 0)ra

" +d") =5l + (@")). (250)
The half-filled equipartition vacuum is invariant under the
particle-hole transformation. In the complex language ¢(*)

remains a real wave function. We observe that the indi-

vidual components ng) can again be grouped into complex

wave functions. This defines the action of multiplication

with i as a suitable map in the space of real qEE), and

therefore also defines formally ig') in the complex
formulation.

For the one-particle excitations of the half-filled vacua
we associate the states with positive charges Qr =1 or

0; = 1to {7}, and the states with negative charges Qp =
—1 or Q; = -1 to the complement {z°}. Particle-hole
conjugation and the associated complex conjugation K
reverses the charges

{K.Qr} =0, {K.0L} =0. (251)
The (generalized) one-particle wave functions can be
grouped as real fields depending on x,

q,(x) >
at = (). (252
! a5 (x)
for which the charge operator Q acts as
! (x ' (x
Q<qi( )> = < qyf : ) Q=15 (253)
q;(x) —q;(x)
The complex one-particle wave functions read
1+ 1—i |
@, (x) = W‘I;(x) + W%(x)- (254)

These complex wave functions are not eigenstates of the
charge operator which mixes ¢,(x) and ¢; (x).

The appropriate range of the index y depends on the
particular vacuum state. It always comprises R and L. For
the equipartition vacuum only four generalized particles
with Qr = 1, O; = 0 and Qr = 0, Q; = +£1 exist, such
that y = R, L. For the particle-hole symmetric combination
of the totally empty and filled configurations y takes the
four values (R1, R2, L1, L2). For the particle hole
symmetric combination of the vacua (A) and (B) the range
of y depends on which configurations we count as particles.

E. Chiral transformations of the one-particle wave
functions

We can perform separate phase transformations on the
complex wave function of the right-moving and left-
moving one-particle excitations

PR — €“Rpp, @ — ey (255)
The infinitesimal chiral transformation
Sp = iagp (256)

can be translated directly to the infinitesimal transformation
of the real wave functions ¢, ¢¢,
5q = aq°®, 5q¢ = —aq'. (257)

This follows directly from the definition
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M, M-

Thus chiral rotations correspond for our complex structure
to a rotation between particles and holes. Since the step
evolution operator does not distinguish between particles
and holes the evolution is invariant under chiral rotations.

g¢ = eiq +eFqc.  (258)

IX. MOMENTUM AND UNCERTAINTY
RELATION

We have discussed in Sec. VIII the simple properties of
vacua and one-particle wave functions in the language of
the cellular automaton. All these findings translate directly
to the discrete fermionic quantum field theory. The wave
functions are identical. In the opposite direction we can ask
how simple properties of the fermionic quantum field
theory translate to the cellular automaton. For one-particle
fermionic excitations the characteristic quantity is the
momentum of the particle. We will investigate how this
observable appears for the cellular automaton. For a single
fermion we also have the position observable. The associated
operators for momentum and position do not commute,
implying the uncertainty relation characteristic for quantum
mechanics. The appearance of noncommuting operators for
observables in the classical statistical system of the cellular
automaton will also shed light on how “no go theorems” for a
classical statistical implementation of quantum systems, as
Bell’s inequalities [3,4], are circumvented.

A. Evolution of one-particle wave function

The time evolution of the one-particle wave function is
very simple. Since a single particle or hole cannot scatter,
the generalized particles move on straight lines, with dx =
dr for right-movers and dx = —d¢ for left-movers. We may
consider a pair of complex one-particle wave functions, one
right-mover @g(7,x) and one left-mover ¢;(z,x). This
applies to all vacua discussed in the preceding section,
with an additional index for several species in some cases.
The evolution is given by

. .~ (8 0
o(t+2e,x)=S8¢p(t,x), ¢@= <¢R>, S=< ko ),
PL 0 S

(259)

with block diagonal evolution operator generating a shift in
the corresponding direction

@r(t+2¢e,x)=q@g(t,x—2¢),
(260)

With discrete “lattice derivatives”

@ (t+2e,x) =@ (t,x+2¢).

0,0(1.%) = 1 (gl +26.3) = pli = 26,)).

1
Oxplt,x) = o= (@(t.x +2¢) — (1. x = 2¢)),  (261)
€
one obtains the discrete evolution equation
01pr = —0,Qr: 0L = 0,1 (262)

The general solutions are functions of ¢t — x or ¢ + x,

or = fr(t—X), L = fr(t+x). (263)

By multiplication with i Eq. (262) yields the discrete
Schrodinger equation

. P 0 .
0,0 = Ho, H= o _p) P =—id,. (264)

The continuum limit is rather simple in this case, replacing
lattice derivatives by partial derivatives. We recognize the
momentum operator P. In the real formulation with yp =
(g%, q%) this operator reads

) 0 -0,
p=—10, = ( )
9, 0

where for discrete lattice points the operator €0, is a real
antisymmetric matrix (cf. Ref. [1] for details). Thus P is
symmetric and P therefore Hermitian. The operator P
commutes with S, such that P corresponds to a conserved
quantity.

(265)

B. Momentum eigenstates

The eigenfunctions of the momentum operator P are
periodic. The ones with positive energy are given by
(p>0)

Or ~ e—ip(z—x)’ oL~ e—ip(t+x) (266)

In the real formulation this corresponds to a rotation
between particles and holes

g = Nsin[p(r—x) +ag],
g5 = Nsinlp(t-+ )+ ).
(267)

with appropriate normalization factor N. For a finite
number M, of sites of a periodic lattice, and lattice distance
2¢, the possible values of p are discrete

- 2k _27rk
P=%em,” L

kez. (268)
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with L = 2eM, the circumference of the torus in x. For
discrete lattice points the momentum p is periodic with
period Ap = x/e, since p and p + Ap yield the same
values for all lattice points separated by 2e.

From (g%)? + (¢%)* = N? we conclude that the proba-
bility to find either a right-moving particle or a right-moving
hole does not depend on x or . However, the probability to
find a particle at x oscillates ~ cos?[p(7 — x) + ag]. At the
maxima of this oscillating probability distribution the prob-
ability to find a hole vanishes. For the example of the half-
filled equipartition vacuum the particle at x corresponds
to the presence of both red and green right-movers at x,
while a hole at x describes the absence of right movers at x.
The momentum eigenstates therefore have a very concrete
interpretation in terms of probabilities to find various
configurations of occupation numbers, and the associated
oscillating expectation values.

The precise components between which the oscillation
takes place depends on the choice of the complex structure.
For a different complex structure the oscillation may be
between the two colors.

In the complex picture we can employ the Fourier
transform in order to express arbitrary complex wave
functions @g(t,x) or ¢;(f,x) as linear combinations of
momentum eigenstates. The Fourier transform is a standard
tool for the description of fermionic quantum field theories.
Here it finds a corresponding application to probabilistic
cellular automata for which its use may not have been
obvious without the correspondence to the quantum sys-
tems of fermions.

C. Momentum observable

In a fermionic quantum field theory the Hermitian
momentum operator P of a single particle is usually
considered to represent an observable. For an observable
in quantum mechanics the possible measurement values for
an observable correspond to the eigenvalues of the asso-
ciated operator. For discrete space points these eigenvalues
are given by

_sin(2pe)

Ap) == (269)

with discrete values of p given by Eq. (268). In the
continuum limit € — O one simply finds A(p) = p. The
expectation value (P) is given by the probabilities to find
the different eigenvalues, as encoded in the quantum rule

(P(1)) = w{Pp(1)}.

In particular, for one of the eigenstates (266) for a particular
value p the expectation value should coincide with an
eigenvalue

(270)

(271)

This may be verified by direct computation [1] of Eq. (270)
for the corresponding density matrix p,(f). According to
our discussion in Appendix G 3 the probabilities to find
given eigenvalues of A(p) can be associated to the diagonal
elements of the density matrix in a basis of eigenstates
labeled by p. This is simply the Fourier-representation of
the density matrix. Computing the expectation values with
these probabilities amounts to the quantum rule (270). All
these formal requirements are equally obeyed by the
fermionic quantum field theory and the probabilistic
cellular automaton. They only involve the density matrix
and the operator P.

What remains to the specified is a measurement descrip-
tion for an observable associated to the operator P. This
should yield A(p) for individual measurements and repro-
duce the expectation value (P). The problem of finding
such a prescription seems to be the same for the fermionic
quantum field theory and the probabilistic cellular automa-
ton. Measuring momentum for free relativistic particle is
not easy even as a gedanken-experiment. Properties of
trajectories cannot be used except for the sign of p—the
generalized particles move always on straight lines with
light velocity. One possibility for momentum eigenstates
could be the counting of oscillations in x for the expectation
values of particles and holes. This determines |p| and
therefore A(p) for every momentum eigenstate [1]. The
generalization to arbitrary states would need some “appa-
ratus” that projects a given state to the eigenstates of P with
the required probabilities.

We do not want to deepen here a discussion of possible
measurement prescriptions. Whatever can be found, itis clear
that the possible measurement values A(p) do not have a
given value for the configurations 7. A momentum observ-
able is a “statistical observable” in the sense that it measures
properties of probability distributions (in our case periodic-
ity). In this respect it has common features with quantities as
entropy or other characterizations of probability distribu-
tions. While not having fixed values in microstates (con-
figurations in our case), it characterizes the probabilistic
information. Nevertheless, it can take sharp values A(p) for
particular density matrices, and one may associate this with
possible outcomes of measurements.

D. Position observable and uncertainty relation

Intuitively it is clear that periodic expectation values of
occupation numbers are not compatible with sharp posi-
tions of particles. This is reflected in Heisenberg’s uncer-
tainty relation between position and momentum. Not
surprisingly anymore, the quantitative relation will be
precisely the same for the probabilistic cellular automaton
and the fermionic quantum system.

For configurations z for which one generalized particle
(particle or hole) is present at the position x the position
observable takes the value x. For the one-particle states z(!)
the position is a standard observable which takes a fixed
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value x, for every one-particle configuration z(!).
Correspondingly, the associated operator is diagonal

X,p = x:5,,0,. (272)

with p and o restricted here to one-particle configurations.
The position observable does not make a difference
between particles and holes. The corresponding operator
X is therefore compatible with the complex structure and
takes in the complex formulation again the form (272)
(now with a restricted range for 7(!) € {z'}). The position
operator also does not distinguish between right- and left-
movers, and is color blind in case of several species of one-
particle excitations.

Having defined both the position and momentum oper-
ators as suitable matrices we can compute the commutator.
In the continuum limit € — 0 one obtains in the real and
complex formulation, respectively

A

X.P| =1, [X,P] =i. (273)
This is the standard result for quantum mechanics. From
these Heisenberg’s uncertainty relation follows in the
standard way.

Our discussion of momentum and position observables
sheds light on the question how no-go theorems for an
embedding of quantum mechanics in classical statistics are
circumvented. We already know that this must be the case
since our probabilistic cellular automaton is fully equiv-
alent to a quantum system, being itself a classical statistical
system. Bell’s theorem establishes important inequalities
for classical correlation functions in a rather general
contest. It only assumes the existence of states for which
the observables take fixed values, and a positive probability
distribution for these states. Quantum experiments show
that measured correlations can violate these inequalities.
Obviously no contradiction arises if the measured corre-
lation are not given by classical correlation functions. The
classical products of observables may simply not exist, as
in our case for position and momentum since there are no
states for which both position and momentum have a sharp
value. More generally, quantum systems are often sub-
systems for which the probabilistic information is sufficient
to compute the expectation values (A) and (B) for two
observables, but insufficient for the computation of their
classical correlation. Measurement correlations for a
sequence of ideal measurements in such system are
typically given by prescriptions different from the classical
correlations, typically based on products of the associated
operators [1]. In this case Bell’s inequalities do not lead
to contradictions. Such subsystems are characterized by
“incomplete statistics.”

X. DISCUSSION

This paper demonstrates that certain fermionic quantum
field theories with interactions are equivalent to probabi-
listic cellular automata. This particular class of fermionic
models is realized whenever the quantum evolution oper-
ator for discrete time steps is a unique jump matrix with
only one element in each row and column equal to one, and
all other elements zero. We have established a general way
to compute the step evolution operator from the Grassmann
functional integral which defines the fermionic quantum
field theory. In particular, we have formulated a family of
discretized Thirring-type fermionic quantum field theories
in 1 4 1-dimensions for which the step evolution operator
is a unique jump matrix and therefore realizes a cellular
automaton.

One may consider as an important outcome of this
investigation that we have succeeded to construct a genuine
quantum theory with interactions as a classical statistical
system. All objects and concepts as wave function, density
matrix, noncommuting operators and expectation values for
observables, are strictly identical for the fermionic quantum
field theory and the associated probabilistic cellular
automaton. All predictions and quantum rules emerge from
the simple laws for probabilities and expectation values for
observables in classical statistics. This demonstrates that
no-go theorems for the emergence of quantum mechanics
from classical statistics cannot apply.

Probabilistic cellular automata for bit systems are syn-
onymous to a type of probabilistic classical computing for
which the computational steps of bit-manipulations are
deterministic, while initial conditions are probabilistic.
Since already these simple forms of probabilistic comput-
ing show quantum features, one may ask if forms of
quantum computing could be performed by classical
probabilistic systems, as static memory materials, artificial
neural networks or neuromorphic computing [62—-65].

On the other side, one may hope that the equivalence to a
probabilistic cellular automaton may help for exact or
partial solutions of the corresponding fermionic quantum
field theories. The updating rules for the cellular automaton
often allow for simple exact combinatorial results, as the
absence of scattering for doubly occupied lines, that may be
less straightforward to find in the Grassmann functional
integral description for the fermions. In the present paper
we have discussed Dirac fermions. The same methods
can be applied for Majorana fermions, Weyl fermions or
Mayorana-Weyl fermions.

In this paper we have focused on a particular discretized
Thirring type model. The implementation of more fermion
species and new forms of interactions or mass terms seems
rather straightforward by use of the recipes of Sec. IIL
Lorentz-symmetry in the naive continuum limit is not
difficult to realize, given the simple transformation rules
for the Grassmann variables.
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Generalizations of our formalism to three or four
dimensions do not seem to encounter problems of principle.
What is not yet achieved, however, are cellular automata
that realize simple fermionic quantum field theories with
Lorentz symmetry in three or four dimensions. So far it
remains an open question if our world could be described
by a probabilistic cellular automaton, or if more general
probabilistic systems are needed.

APPENDIX A: CONVENTIONS FOR
GRASSMANN ELEMENTS AND ANNIHILATION/
CREATION OPERATORS

In this Appendix, we specify an ordering of states and
Grassmann variables, a choice of sign for the Grassmann
basis elements, and a convention for the creation and
annihilation operators. Our results do not depend on this
particular choice of conventions. For practical checks it is
sometimes useful, however, to have at least one definite and
consistent convention. This Appendix should help the
reader to find all conventions quickly.

We first order the index a for the occupation numbers n,,
or the associated Grassmann variables v, with a = (x,7),
and y = (,a), n= (R,L), a=(1,2). We start at @ = 1
with (xj,, R, 1) or (x;,,7 = 1), and first increase the internal
index, a =2 corresponding to (xi,,7y =2), a=4 to
(xin, ¥ = 4). Next we increase x by &, @ = 5 corresponding
to (X, + &,y = 1), where y = 1, ...4, with

(A1)
With this system, a is given by the integer

a=4m+y=4(x—xy,)/e+y, m=0,1,2..M,—1.

(A2)

The variables n, or y, can therefore be labeled equivalently
by (x,7), (x,n,a) or the integer @. We use the index a
without distinction of the different ways of labeling. For M,
space points we have a = 1...M, M = 4M,.

We next order the 2™ states denoted by 7 = 1...N,
N = 2™ A convenient label for each state or configuration
of Ising spins, occupation numbers or bits is the bit notation
{ng.} = (ny,ny,n3...ny); with n, =1 for an occupied
generalized site a and n, =0 for an empty site, e.g.,
(0,1,0) for the configuration where o = 2 is occupied and
a =1, 3 are empty. We can associate to each bit configu-
ration a standard binary number, e.g., ng = 2 for (0,1,0),
np =7 for (1,1,1). We order by beginning with the fully
occupied state and define the integer

7 =2M —np. (A3)

Wave functions can be seen as N-components vectors
with components ¢,. In the corresponding vector space we
use as basis vectors (Y unit vectors which have one
element equal to one and all other elements equal to zero,

e.g.,

o) =8, (A4)
We can represent »(%) in a “direct product form”
(n () @3 (M)
with two component unit vectors
@_ (1 .0
N @ = if ng’ =1,
’ 0
@ _ (%) &, @
N = | if ny’ =0. (A6)

Here nff) is the occupation number 1, corresponding to the

state 7. For the example M = 3, N = 8§ the components of
v read (o, = 1,2)

v/(,T> - N N(;) N ‘

p=4(c;—1)+2(c— 1)+ 03. (A7)

In particular, one has o) :NEB ®NE;;, with all
N Ez = (}) for the fully occupied state. For v one
changes N 8}) = (9), while all a# M correspond to

N Eii = ((1)) This direct product form is useful if we

represent operators as matrices in a direct product form,
as we will do with creation and annihilation operators.
We next turn to the Grassmann basis elements by fixing
the signs 5, in Eq. (6). The basis element g, contains a
factor y, for every n((f) = (. We take a plus sign for 5 if all
factors y, are ordered with increasing a, the smallest a to
the left. With the bit notation for 7 one has, for example

g(10011001) = Y2 3¥W 7
= Wro (Xin)Wr1 (Xin)Wra (Xin + €)wpy (Xin + €).
(A8)

The totally filled state, n, = 1 for all a, obeys g11;..) = 1.
The other basis elements can be obtained by consecutively
taking away particles, starting with the highest a.
Multiplication of g, by v, yields zero if g, contains already
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a factor y,,, i.e., for n,(,T) = 0. On the other hand, if no y,, is

present, nﬁf) =1, w,g9, is a new basis element g, up

to a sign. Here 7’ obtains from 7 by annihilating a particle

2" = 0forn'™ = 1.The sign depends on the number of /5

with < a in g,. We conclude that multiplication with y,,
can be associated to the annihilation of a particle . Similarly,
0/ 0y, acts as creation of a particle « if no particle « is present
in 7. One has (9/0y,)g, = 0if n'Y) = 1, and (0/dy,)g, =
+g., with ni) = 0 for n¥) = 1.

We define a “right transport operator 7 (x) by (no sum
over y)

N 0
0 =gy g W (A9
It annihilates a particle of type y at x and creates one at
x + &, provided that for g, a particle y is present at x and no
particle y is present at x + &. Otherwise 7,/ (x)g, = 0. The
basis element g, corresponding to a one-particle state
contains all y, except for a = (x,7). (At the position o =
(x,y) there is a factor 1 instead of y,.) For a one particle
state with a particle at (x,y) one has

b (X)9: = 9.

(¥)g: =0 for x #y, r#y.  (Al0)

The state 7. obtains from 7 by displacing the particle from
x to x 4+ . In terms of integers a one has

=2

f =y (ALl)
al//a+4

One can check easily that 77 (x) does not introduce a minus
sign in the change from g, to g, . Similarly, the left
transport operator 7, (x) obeys for a single particle y at x

0

SO -e) A1

w(x)g: = 9.

with g, obtained from g, by displacing the single particle
from x to x —e.

Annihilation operators a,(x) and creation operators
ay(x) = a} (x) are defined in terms of the basis annihilation
and creation operators a and a' which are real 2 x 2

matrices
0 0 0 1
a= , at = . (A13)
1 0 00

acting on real two component unit vectors as

)-() o)
(2)-u ()=

For a,(x) we choose a direct product representation

(A14)

a,0)=T:®T:®...0T:®4¢,®101®...01,
(A15)

where the 16 x 16 matrix a, is placed at the position
X = x;, + me. The 16 x 16 matrix 75 anticommutes with

¥

a,, ay,

VAl

T3 =173 ® 73 ® 73 ® 73, {7,'3, Cl},} = 0, (A16)

and the factors 1 in Eq. (Al5) stand for unit 16 x 16
matrices. For a, we employ

ap=a®@1Q@1Q1,
aL1:T3®T3®a®1,

ap=130a®1Q1,
aL2:T3®T3®T3®d.
(A17)

With
ay(x) = ay (x) (A18)

we can obtain a} (x) from a,(x) by replacing the factor a by

a®. We observe the basic anticommutation relations for
annihilation and creation operators of fermions

{ay.as} =85 {ay(x).a5(y)} = 8,56,
{ayv Ll(;} =0, {a}’

{a).a5} =0, (AL9)

For this convention the right transport operator (no sum
over y),

() = aj(x + £)ay (x). (A20)

transports the single particle wave function for a particle y
at x to a particle y at x + € without a change of sign. Noting
the relation

T3d = —Ad73 = —d

T

r3a" = —a'zy = df, (A21)

one has
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T3LlR1 = —(Cl ® 73 ® 73 ® 13)’
Tiap = (a' @ 13, ® 13 ® 13),
T3aR2 = _(1 ®a® 73 ® 73)’

Tiah, = (1®a' ® 73 ® 13), (A22)
and similarly for L1, L2. As compared to Eq. (A17) we
note the different 73 factors. For the right transport operator
this implies (no sum over y)

aj(x+e)a,x)=181...0T:a,®a, @1 ®1...).
(A23)

Let us consider y = R1 and focus on the parts at x and x + &

T3aR1®a;1:—(a®T3 ® 73 ®T3)®(CZT®1®1®1).
(A24)

The 73-factors produce a factor (—1) for every absent
particle. Since for a single particle of type R1 the particles
R2, L1 and L2 are absent both at x and x + &, the three
minus signs from the z3-factors cancel the overall minus
sign. We conclude that a S-type single particle wave
function with a particle R1 sitting precisely at x is changed
by multiplication with 74, to a similar wave function, now
with the particle sitting precisely at x + €. The situation for
the other particle types R2, L1 and L2 is similar. The left
transport operator ¢, (x) has the same properties, now with
the particle y transported to x — &,
(x) = aj(x— €)a,(x). (A25)
For the part at (x —&, x) one has now the product
a}' ® T3a,, such that the change of positions of the factors
as compared to 7, (x) has no influence on the overall sign.
Applying the annihilation a,(x) to a Grassmann wave
function

we can equivalently multiply the vector ¢, with the operator

a,(x), or the vector g, with the transposed a] (x) = a;(x),
[a,(X)]epqp9: = 4:95(ay(x)) e = G:5:- (A27)
We observe the relation
9p(ay(x)) e = (a7(x))5p9p = W, (x)ger  (A28)
which is equivalent to
[(ay(x))rpqp - l//y(x)CIr}gT =0. (A29)

For a proof of the relation (A28) we note that only those p

with nip ) (x) = 0 contribute in the sum on the left hand side.

The corresponding basis elements g, therefore all have a
factor y, (x). This is precisely what happens on the rhs of
Eq. (A28) due to the multiplication with y, (x). If 7 is a state

with n,” (x) = 0 one has y, (x)g, = 0, while the left-hand

side (Ihs) of Eq. (A28) vanishes as well due to the vanishing
elements ai,,. On the rhs of Eq. (A28) we only need to

consider those 7 for which ny) (x) =1, and on the Lh.s.

only those g, with nj(,’) )(x) = 0. The factors of y, with @ #

(x,7) are the same for g, on the rhs and all terms ~g, on the
lhs. The two expressions in Eq. (A28) can therefore differ at
most by a relative minus sign.

For a discussion of a possible sign we start with M = 1,
where

a = . ]
92 9
This with g, =wg, G =y =w,

g =wg, =0. For M =2 we have alfza'r@’la a;:
73 ®a’ or

an=9=y, 9, =0. (A30)

coincides

9 93 9 92
. 0
ai 9 _ 94 7 a; 9 _ ( A31)
g3 0 93 —94
9a 0 9a 0
On the other hand, one has with Eq. (18),
91 1 78 93
w 92 —y Vo | W2 | | 94
1 =y = =
93 Wi 0 0
9a UAUP) 0 0
9 1 ") 9
9 %) 0
¥ =y, = = (A32)
93 Vi 817%) —94
94 VYo 0 0

Thus for M =1, 2 Eq. (A28) is obeyed without an
additional minus sign. Generalizing to arbitrary M we
observe

Yadr = .@1 = 6191’5 6-1: = %I, (A33)

where a minus sign 6, = —1 occurs whenever the number
of empty sites, n<T) =0, for f < a is odd. On the lhs of
Eq. (A28) possible minus signs can only arise from the

73-factors in ay. Fora given a}, these 73 factors occur for all
p < a according to Egs. (Al15), (Al7). Every 73 factor
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produces a sign (—1) for ng) =0, and a factor (+1) if

ng) = 1. This coincides with the number of minus signs in

V.9.> concluding the proof that no additional sign occurs
in Eq. (A28).

For the Grassmann derivative the relation analogous to
Eq. (A28) reads

0
gp<a+(x))pr = (ay(x))rpgp = Wgr (A34)

The argument that both sides contain the same y-factors is
similar to the one below Eq. (A28). Again, the number
minus signs from the anticommutation of /0y, with the
factors w4, f <y, equals the number of negative eigen-
values for the z;-factors in a,(x).

For sequences of operations of the type (A28), (A34) we
should interpret the action of annihilation and creation
operators as matrix multiplication from the right of the
basis elements, e.g.,

0
= ! =—gq,. (A
g/)(a]/(x))/)‘r l//y(x)gf’ g/)(a}’ (x)),ur 51//y(x) 9z ( 35)
This implies relations of the type
0@ @) = 5 O wpg (A36)
Iy, (x)

For the operator multiplication we have the isomorphism

a, ()2 (). af(x)= (A37)

Oy (x)

which holds if for every given (x,y) not both a,(x) and
aj(x) appear in these expressions. (Otherwise the isomor-
phism holds only for suitably ordered products of annihi-
lation and creation operators.) Grassmann operators A a

sequences of factors v, and 0/0y, e.g.,

0

0
A =y, — . A38
Y Ll (A38)

The associated operator A is a corresponding product of

annihilation operators a, and creation operators a;, with
the same order, e.g.,

A, = ayalagaqdl,. (A39)

The operator A acts on the basis elements from the right,

g/)Ap‘r = Ag‘r (A4O)

This procedure implies for arbitrary Grassmann elements

Ag = Aq.9: = 4:9pA 0 = Aydp9: = 4:9..  (A41)
such that the wave function ¢ is multiplied by the operator
A from the left as usual,

4 = 4r = Ay, (A42)
In particular, the occupation number operator for a particle
y at x is given in the occupation number basis and as
associated Grassmann operator by

7 =dal(x)a,(x X) = 0 X
0 = af(Wa (). No0) = 5w )

(A43)

APPENDIX B: COARSE GRAINING AND
CONJUGATE GRASSMANN VARIABLES

The product of step evolution operators for propagation
and interaction can be viewed as a type of coarse grained
step evolution operator. Two evolution steps are combined
into a common coarse grained step. This doubles the
Grassmann variables appearing in the combined step,
involving for every coarse grained time both y and .
We briefly discuss in this Appendix how v is related to the
conjugate Grassmann variables in Ref. [43].

The product (66) is a new local factor K(¢) which
depends on the Grassmann variables w, (7 + 2 x) and

v, (x). The associated step evolution operator S(1) is given
by Eq. (67). Restricting the observables to even ¢ this
defines a “coarse grained” fermionic model. The relation
between () and S(7) is given by

K1) = g.(t +28)8,, ()3, (1)- (B1)

The units of the time-distance between two neighboring
points m and m + 1 on the time lattice is arbitrary. For our
particular construction a noninteracting particle advances
one space unit during two time units. The velocity can
be normalized to one by choosing the time difference

¢ between neighboring lattice points as &= ¢g/2.
Equation (B1) becomes in the new units
K(1) = g.(t + )8,,(1)3,(1). (B2)

As a disadvantage of integrating out the intermediate
Grassmann variables , (1 + 5, x) both the Grassmann basis
functions g, and the conjugate Grassmann basis functions
g, are needed for an extraction of S(r) from K(r).
Correspondingly the intermediate integration changes the
form of K(1), even if 8(r) is the identity operation. This is
easily seen by the multiplication of unit step evolution
operators

K(t+e) =exp(yep),  K(1) =exp(opy’), (B3)
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where
K(1) = / Dy exp(yop + gy

- /mu + oy —w))

=y -y =0y —vy). (B4)

It is advantageous to keep the exponential form of the
local factors for the coarse grained view as well. This can be
done by doubling the number of Grassmann variables at
every f. At every t one has then two sets of variables
w,(t,x) and ¥, (t, x), and the functional integration is over
w and . In our case we can simply associate y(f) with
w(t —€/2) by defining

_ &
U/R,a<t+87x):y/R,a t+§7x s

patt e =via(r+50). 89

The Grassmann variables y(t + %) play a role very similar
to the conjugate Grassmann variables used, for example,
in Ref. [43].

We can define even and odd sublattices. With t = me,
x =m,e and integer m,, m, the even (odd) sublattice
contains the points with m, 4 m, even (odd). The action of
our model does not connect the even and the odd sublattice.
Since for every step e in ¢ the kinetic terms moves the
variables either one place to the right or to the left, it does
not mix the sublattices. A particle on the even sublattice
remains on the even sublattice. The interaction term is local
and does not change the situation. In the following we
simply omit the odd sublattice and define ), = as a sum

over the points of the even sublattice. The factor D(¢ + €, x)
in Eq. (70) is evaluated on the even sublattice at ¢ + &.

There exist equivalent alternative formulations that put
the right movers on the even sublattice and the left movers
on the odd sublattice (see next section), or the green
particles on the even sublattice and the red particles on
the odd sublattice. This may seem at first sight more
economical since one has a full square lattice and only two
species at each lattice site. The discussion becomes more
complex, however, since often different cases have to be
addressed specifically. For this reason we will focus on the
formulation on the even sublattice with four species of
Grassmann variables and four species of conjugate
Grassmann variables at each lattice site.

APPENDIX C: WEYL AND MAJORANA
FERMIONS

In this Appendix, we discuss the notion of two-
dimensional Weyl, Majorana and Majorana-Weyl spinors.

This clarifies the particle content for different types of the
continuum limit.

Without a complex structure the “real” Grassmann
variables yp and y; form right-moving and left-moving
Majorana-Weyl spinors. A Majorana spinor is composed of
two Majorana-Weyl spinors y_,y_ that transform inde-
pendently

1+7 WR 1-7 (0)
= fry s = fr y Cl
V=Y <0> v-=7v=\,, (C1)

where 7 corresponds to y° in four dimensions,

7 == =1 {r.r*} =0. (C2)

1. Lorentz invariance of Thirring automaton

Lorentz transformations scale the Majorana-Weyl spin-
ors in opposite directions

n n
Sy =w,. y_=-_y_. (C3)
2 2
With y and y; transforming in the same way as y and
y any interaction that involves an equal number of right-
movers and left-movers is Lorentz invariant. We observe
the relation
¥ = (P )7’ (C4)
The kinetic term (first term in the action (86) involves in
addition a derivative that adds to the Lorentz transformation
property and makes it invariant.
In order to see the Thirring form and Lorentz-invariance
of the interaction term L;,, we observe the relations

W'y = =Ry + W),

Wy'y = =Ry +WLYL (Cs)
and

Var'weWp Wa = =2WRaAWRW LW La + VROV RV LaW Lc)-

(Co)
With the naming (71) this yields
2D = =y "y oy, o + U W lay .
2C = —% vy + Wy wawayy)
+ % ' wainywe + Waryivarn). (C7)

We observe that D and C are separately Lorentz-invariant,
only the color structure depends on the particular
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combination. We have also used the sign ¢ in the con-
vention (82) in order to demonstrate that Lorentz symmetry
does not depend on the sign convention. The particular
combination C + D can be written in the form

_ _ 1_ B
L;=2(C+D)= AL LT
[0}

2

(WY wo + oy ) (W Y wa + oy, ). (C8)

For ¢ = —1 this yields Eq. (92).
Equivalently, we can write £; in terms of the Lorentz
scalars y,y;, and W, 7y, using

2D = (@) (Faw) — (@iwn) (7w

— () ) = nvwn) (Warw2).  (C9)

and

1
28 = S {y)? = Gaw))* + (Faw)* = (7w

— ol 2)? = (I 7y2)* + (Foy)* = (aryn)*]}-

(C10)
This is a type of colored Gross-Neveu model.
2. Complex Grassmann variables

For 6 = —1 we can combine the two Majorana spinors

into a complex Dirac spinor. The complex structure for the
Grassmann variables is realized by grouping the two colors
into a complex Grassmann variable,

{=w + iy, { =y — i, (C11)
In this case the interaction takes the particularly simple

form

L= =5ty @nt), c12)

and the action reads

ST /,X{Re@”% + @wa)*(zyﬂo}. c13)

3. Continuity constraint

The Grassmann variables (7, x) and (7, x) are inde-
pendent. This originates from the association of y(t, x) to
Grassmann variables at ¢ + . In the discrete formulation of
the Grassmann functional integral they are independent
integration variables. For certain purposes in the continuum
limit one may assume by continuity y (7 + ¢) = w(r) and
therefore impose the continuity constraint

W, (1,x) =y, (1. x). (C14)
This implies
War'wy, = war'v'we. (C15)
and therefore
War'ws = —(WraWro + WLaWLD):
War'Wo = —WraWrb + VLW Lb- (C16)

Nonzero contributions require a # b, such that only the
term ~o in Eq. (C8) contributes for ¢ = —1 to the
interaction term

Li = 8YriWrWL1¥Wia- (C17)

For 6 = 1 one has £; = 0. In the complex formulation the
continuity constraint results in

& (x) =G (x). (C18)

With the relation

{=(r¢),  ¢=C""=(.-¢). (C19)
the identification (C18), (C19) is compatible with the
Lorentz transformations and the time evolution equations
or field equations. B

In Eq. (C13) the continuity constraint (C19) relates ¢

to ¢*. With

Z=(Z+,5_),
C_=—(pr1 —iRa) = —C7,
(C20)

(o =yriTiyry, {_=wr tiyi,
Co =y —ipn =07,

one obtains by partial integration Re(fyﬂaﬂé’) - ny‘aﬂé’
and (&y*0)* — —Cy*¢. We end with a fermion model with
action

s- | x{—f}/"aﬂC +§<M)<ch>}. (c21)

This is a particular case of the Thirring model [45-48] with
a particular value of the coupling. The Thirring model is
exactly solvable. With the identification (C18), (C19) the
interaction term simplifies

C+D

1 - - 1 - _
~1 &0 @) = L @O Eno)
= (_:#?—QC— = dyRiIYRWLIV12 (C22)

in accordance with Eq. (C17). This yields Eq. (97).
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APPENDIX D: SYMMETRIES OF THE
THIRRING-TYPE MODEL

In this Appendix, we list symmetries of the discrete
Thirring type fermionic quantum field theory. They are in
direct correspondence to properties of the cellular automa-
ton. The numbers refer to the numbers in Sec. IV.

(1) The separately conserved number of left-moving and
right moving particles corresponds to global chiral
symmetry. In the complex formulation the action is
invariant under the chiral transformations

A
Y= e gy, po=e "y, (DI
as seen directly from
Yy _ _
Y = l// ’ Y= (l//—’ l//Jr)’
'y =ty oty (D2)

In the formulation (92) the chiral symmetry corre-
sponds to separate SO(2)- color rotations for the
right movers and left movers.

(2) The motion of all particles with velocity |v| = ¢ =1
reflects Lorentz symmetry. A particle mass is for-
bidden by chiral symmetry. For arbitrarily occupied
configurations a simple additional particle still
moves on a straight line.

(3) The fermionic model has bosonic “composite par-
ticles” moving freely with speed of light.

(4) The interaction in the fermionic model is local,
involving precisely the Grassmann variables for four
different particles

S =2 [ - O (). (03

This describes 2 to 2 scattering. A scattering of
bosonic two-particle composite states would involve
eight Grassmann variables for boson-boson scatter-
ing and six Grassmann variables for boson-fermion
scattering. It is not present.

(5) The action (C21) is invariant under a Euclidean
rotation in the 7—x plane,

t— X, X — —t, (D4)
if the Grassmann variables transform as
y-y' ="y, @y =y (D5)

(6) The fermionic model is invariant under parity trans-
formations

P:x - —x,

F(1.x) = =t ).

(D6)

w(t.x) = rlw(t, —x),

The parity transformation changes y; <> wg. The
model is also invariant under time reflections.
(7) The action (C21) is invariant under the discrete

transformations
e VA (D7)
and
Ryiysy =y, Yy = =Y. (D8)

The combination of these symmetries implies that
the action can only admit terms with an even number
of factors for each color. Thus any change of the
number of particles with a given color always
involves two units.

(8) The “color exchange symmetry”

W1 <y, a7} (D9)
is a discrete symmetry beyond the continuous color
rotations. It is manifest in Eq. (92).

(9) Particle-hole symmetry maps

Coyelt.x) & Fa(tx). (DI0)

and reads in the doublet notation for Dirac spinors

Ciy < %", oy’ (DI1)
With yy*y — —ypy*y the invariance of the action
(92) is easily verified.

The one to one correspondence between properties of the
cellular automaton and the symmetries of the fermionic
model can help to find the fermionic model for a given
automaton, or vice versa, if a direct calculation as per-

formed in Secs. II, III, is cumbersome.

APPENDIX E: CONJUGATE GRASSMANN WAVE
FUNCTION

In this Appendix, we discuss the conjugate Grassmann
wave function. Together with the Grassmann wave function
it can be used to evaluate expectation values of observables
that are expressed by Grassmann operators. The Grassmann
wave function can be extracted from the Grassmann
functional integral by integration over Grassmann variables
w (") for ¢ > 1. For suitable boundary conditions it can be
expressed by the wave function ¢(#). This establishes how
observables in the Grassmann formulation and their
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expectation values can be mapped to observables for the
associated cellular automaton.

We can associate [43] to the Grassmann wave function
(108) a conjugate Grassmann wave function §(z) which
depends on (1),

9(t) = q.(1)g:[w(1)]. (E1)
By use of the identities (14), (12), (16) one has
/ Dy (1) Dy (1) exp{wo (1) w o (1) } ge [ ()19, [w ()] = 6,
(E2)

This implies

/ Dy (1) D (1) exp (o (v (1)} 3(1)9(1) = 4. (1) (1) = 1.

(E3)

The conjugate wave function is convenient for the imple-
mentation of observables in the fermionic formulation—see
Ref. [43] for details.

For example, the operator for the occupation number of a
particle of type y at position x at time ¢ is given by (no sum
over y here)

N, = 7, (1.5, (1.). (E4)

We associate (for ¢t = t;, + 2mé&) a basis element g,, for
which a,(x) =y, (x) in Eq. (6), to a microscopic state with
no particle of type y present at x. For all those basis
elements one has \V, (x)g, = 0. On the other hand, the set
of basis elements with a,(x) = 1 corresponds to states for
which a particle of type y is present at x. Only for those
basis elements one has NV, (x)g, = @, (x)y, (x)g, # 0. One
infers

0  for no particle(y, x)
13

7

[ Pwlon, g, iv = |

for particle(y, x)
(E5)

where
/ Dy = / Dy Dip exp{Waa}t

=TI / Ay o difr (1 + Fap,). (E6)

This implies a simple expression for the mean particle
number 7, (x)

(n,(x)) = / DydlpIN, (x)gly]
= Yl W = S (@)pe (E7)

T

where [n,(x)], = (1,0) is the particle number in the micro-
scopic state 7. The expression (E7) is precisely the mean
particle number for the probabilistic cellular automaton. The
relations (ES)—(E7) hold for every time ¢. Since the evolution
of the wave function is the same for the cellular automaton
and the fermionic model, the expectation values are the same
for all times. This extends to products of particle numbers and
therefore to correlation functions. One can actually construct
further interesting observables beyond such products, includ-
ing a momentum observable [1].

Arbitrary wave functions ¢(z) are allowed quantum
states for the fermionic quantum field theory. These real
unit vectors form a Hilbert space once a suitable complex
structure is introduced. On the other side, arbitrary prob-
ability distributions for the probabilistic cellular automaton
can be described by suitable wave functions. We conclude
that the probabilistic cellular automaton and the fermionic
quantum field theory are equivalent descriptions for the
same physical reality or model.

The conjugate Grassmann wave function can be related
to the Grassmann functional integral [43], now to the part
for ¢ > t,

ali0] = [ aw'@) [ Dute > 123t
< (T R@))R 0 expi-paliwi(n). (@9

' >1+8

Here K'(r) obtains from K(¢) by replacing w(z) — /().
Combining with the expression (E3) for the Grassmann
wave function this amounts to

z= / Dy (1)l (1)) gl (1)) (E9)

Indeed, the integration over y/'(¢), combined with the
exponential factor in Dy, yields

/ A (1)dy (1) exp{ra (1) (wal) — wi(0)} (1) = K(0).
(E10)

The product g (7)]g[y(?)] involves the product of local
factors K(7') over all 7. Also the functional integral is over
the Grassmann variables at all #. One recovers Eq. (2) with
appropriate boundary factors.

For §(1), as defined by Eq. (E8), to coincide with the
definition (El) we take the boundary factor §(z;) to
coincide with the expression (El) at 7;. One can show
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[43] that the time evolution of §(z) is the same for the
definitions (E1) and (E8). The identity therefore holds for
all #. We therefore find a functional integral expression for
the mean particle number

(n, (1)) = / Dyd,N, (1. x)eSgm.  (ELI)

This extends to observables constructed from occupation
numbers. Equation (E11) is a familiar expression for
expectation values in fermionic quantum field theories
formulated as a Grassmann functional integral. We could
have started from this expression and derive the wave
function ¢(#) according to Eq. (113). This demonstrates
that wave functions are the appropriate concept for the
description of time-local subsystems of an overall prob-
abilistic system formulated for all times [1]. This applies
directly to the probabilistic cellular automaton that can be
seen as a classical statistical system.

APPENDIX F: DENSITY MATRIX

The density matrix is a central tool in quantum mechan-
ics. It permits us to describe more general probabilistic
states, namely mixed states, in addition to the special case
of pure states. In our context it allows more general
boundary conditions. Furthermore, the elements of the
density matrix can often directly be related to expectation
values and correlations to suitable observables. We will see
that the density matrix is a suitable object for the intro-
duction of the complex structure of quantum mechanics.
The density matrix can be formulated both for the
fermionic quantum field theory and the probabilistic
cellular automaton. It is identical for both pictures.

1. Density matrix for fermions

For general Grassmann wave functions ¢(¢) and con-
jugate Grassmann wave functions §(¢),

9(t) = 4. (1) g:lw (1)], a:()g:lw ()], (F1)

we define the Grassmann density matrix as a bilinear

L (D15l (1))

(03,09 w0, (F2)
It depends on the Grassmann variables y(7) and (7). In the
original formulation it involves variables at two time layers

t and r — &. The coefficients of a double expansion in y(¢)
and () are the elements of the quantum density matrix

plir(0).w(0)] = P (Dgely (D] gl (1)l (F3)

9(1) =

plip (1), w(1)]

ol
Ql Q

with

= 3:(1)q,(1). (F4)

We can define [y ()] by the functional identity (E8) for
general final boundary factors §(t;). Equation (E9)
becomes

Pep(1)

Z = q(1).q:(1), (F5)

such that §(z;) is restricted by the normalization Z = 1.
One would like to identify the diagonal elements of the
density matrix with the local probabilities (no sum over =
here)

p’[ = ﬁTT = QT(I)QT(I) 2 0' (F6)

The positivity of p,(¢) further restricts the possible choices
for g(z;). We will present below a simple criterion for
Eq. (F6) based on the positivity of the density matrix. If
Eq. (F6) holds, the generalization of Eq. (E11) leads for the
corresponding generalization of Eq. (E7) a probabilistic
interpretation

(ny(1.2)) = [ DGO, (1. )glw (1)
—Z (1.0]:@:(0): (1) = Y[, (£, 2)]po(1).
(F7)
We can further generalize the boundary conditions by
considering a set of probabilistic states with different

boundary factors (g\” (), @;fl)(tf)), labeled by a. For
each a one has

P 1) =3\ (gl (1) (F8)

Taking a weighed sum over different sets @, with positive
probabilities w, > 0, X,w, = 1, one arrives at the general
density matrix

Dyt Zwaqf (). (F9)

The normalization of the partition function is kept,
Z=> pu=> waa (03 (1)
= ZwaZﬁg) = Zwa =1

The local probabilities are the diagonal elements of the
generalized density matrix,

p(1)

(F10)

= Pec(1), (F11)

074502-43



C. WETTERICH

PHYS. REV. D 105, 074502 (2022)

and the expectation value of the occupation number takes
the form

(ny (1,0)) = Y[, (1. 0)] pec(r) = te{i, (1,)p(1)}. (F12)

T

With the definition of the diagonal operator

[, (2. 0], = [n, (2. )].05, (F13)

Eq. (F12) is the familiar formula for quantum mechanics in
a real language.
Let us consider the transformation

Walt) < Wa(1). (F14)

combined with a total reordering R of all Grassmann
variables. This reordering obeys for the product of two
Grassmann elements

R(9192) = R(92)R(q1), (F15)

and

R(g:) = ¢: (F16)

Correspondingly, the Grassmann density matrix transforms
as

]
]. (F17)

This transformation results in a transposition of the density
matrix

Prol0) = Pplt).  (FI8)

2. Time evolution of density matrix

For the time evolution of the density matrix p(7) we need
the time evolution of the conjugate wave function g(¢).
From the definition of the conjugate wave function (E8)
one infers its relation to the hole wave function g

Al (0] = / Dy (1) explira (a0}l (1)]
= /Dy/(t’ > t+8)5(t) [[ K@)

>t

— a.(0) / Dy (1) explira(Owa(1) L1 (1)]

= q.(1)g:[w(1)]. (F19)

Iy (t—e)] = g,(t —&)gly (1 - €)]

= | Dy (t)Dy (1 - &)glw ()IK(1 - 8)K(1 - 28)

one finds

EIﬂ(t - 8) = QT(t)STO'(t - g)‘g'ap(t - 25)
EIT(t)(S'intSfree)‘rp = E]T(t)srp(t - g), (FZI)

where the last expression uses the coarse grained step
evolution operator (67). Inversion yields

a.(t+¢€) = g,(1)5,) (1), (F22)

and we conclude the evolution law for the density matrix

plt+e)=8np(n)57'(1) = S(0p()S™ (1), (F23)
where the last expression uses S8T = 1. This corresponds
to the unitary evolution law of quantum mechanics for the
case of a real density matrix and real step evolution
operator.

3. Density matrix for cellular automaton

In Eq. (E8) we have defined the conjugate wave function
g(t) in terms of the boundary conditions at final time .
Similarly, we can consider the probabilistic cellular
automaton as a classical statistical system for which we
fix boundary conditions both at 7, and 7, in the form of
initial and final wave functions g(#,) and g(t;). For an
invertible cellular automaton we can follow g(7) backwards
from ¢, to an arbitrary time 7, and g(¢) forwards from #, to
t. The pair of wave functions (g(7), g(z)) therefore involve
boundary information from both boundary conditions at #;,
and 7;. The same holds for the density matrix which we
define again by Eq. (F4). The density matrix p(¢) contains
information beyond the local probabilities p.(z), which
correspond to the diagonal elements of p(f) according to
Eq. (FI11). We will see below how the information in the
off-diagonal elements for p can be used for the computation
of the expectation values of additional local observables
that are represented by off-diagonal operators. The density
matrix (F4) is a pure state density matrix. More general
density matrices for mixed states are again defined
by Eq. (F9).

The possible differences between g(¢,) and g(z,) will
not play an important role for this paper. We will mainly
focus on g(t;) = g(t;), which implies for all ¢
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q(1) = q(1) = q(1).

We will distinguish between g(¢) and g(¢) only if we want
to indicate the different formal status. With Eq. (F24) the
density matrix is symmetric for all ¢

pr(1) = p(1).

For the boundary condition (F24) the evolution of the
density matrix is directly formulated as an initial value
problem. All necessary boundary information is encoded in
the initial wave function g(t;,).

(F24)

(F25)

APPENDIX G: OPERATORS FOR OBSERVABLES

The description of observables by noncommuting oper-
ators is a characteristic feature of quantum systems. Since
our automaton is equivalent to a quantum system for
fermions we will find the same noncommuting operator
structures for the classical statistical system of the cellular
automaton. This constitutes a simple example how non-
commuting operator structures emerge in classical statistics
[1,53]. We will see that the density matrix p(¢) contains
sufficient probabilistic information for the computation of
expectation values of observables that are not expressed as
functions of occupation numbers at ¢. This includes energy
(Sec. VII) and momentum (Sec. IX). The operators
associated to these observables are typically not diagonal
and do not commute with each other. Their expectation
values involve the off-diagonal elements of the density
matrix.

1. Quantum rule for expectation values

For an observable that takes for the configuration 7 the
value A, we define the diagonal operator A with elements

~

A, = A, (G1)
Its expectation value follows the quantum rule
(A(1)) = w{Ap(1)} (G2)

This quantum rule is a consequence of the association of
the diagonal elements p,,(7) with the probabilities p,(7)
that at time ¢ the configuration 7 is realized. It follows
directly from the basic definition of expectation values in
classical statistics

AD) =S peA = S pn(0d, = e{Ap()}.  (G3)

It is therefore not a separate postulate or axiom.
The observables described by the diagonal operators
(G1) can be occupation numbers 7, (x), arbitrary products

of the occupation numbers, or more generally arbitrary real
functions of occupation numbers. Here occupation num-
bers all refer to the same time ¢ for which the density matrix
p(1) is taken in Eq. (G2). The “diagonal observables” (G1)
therefore include all equal-time correlation functions of
occupation numbers at ¢. The time evolution of expectation
values is encoded in the time evolution of the density
matrix. This corresponds to the Schrodinger-picture of
quantum mechanics For the special case of a pure state
density matrix p, () = q,(t)q,(t) one obtains the quantum
rule for expectation values in terms of the wave function

~ A

(A(1)) = (g(1)Aq(1)) = q.(1)Agyq, (1)

This follows by inserting the pure state density matrix into
the quantum rule (G2). So far we discuss here ‘“real
quantum mechanics” with real p and g. We will introduce
a complex structure in the next section. For operators that
are compatible with the complex structure the quantum rule
for observables will then take the familiar form in terms of a
Hermitian density matrix and Hermitian operators associ-
ated to observables.

(G4)

2. Observables at different times

The density matrix p(¢) contains sufficient probabilistic
information for a computation of expectation values of
observables at different times. As an example, we consider
observables A(#') that are functions of occupation numbers
at the time ¢/ = ¢ — £. We can associate to these observables
the operators

(G5)

(Go)

The expectation value of A(¢') can be evaluated by use of
the quantum rule (G2) from the density matrix p()

(A1) = u{A(:0p(1)}. (G7)
Here the first time-argument ' in A('; 1) refers to the time ¢
for the occupation numbers n,(#',x) for which A(#') is
defined as a function, while the second time argument ¢
indicates the reference time ¢ for which the density matrix
p(1) is taken in Eq. (G2). Equation (G7) follows from
Eq. (G2) at  — ¢ and the evolution law (F23) for the density
matrix,

(A(1') = w{Ap(1)} = wAST (1 = )p(1) (1 — £)}

= t{8(r — )AST (1 — )p(1)}. (G8)
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The use of time dependent operators A(', ) corresponds to
the Heisenberg picture in quantum mechanics. In general
both the time evolution of p(r) and the ¢'-dependence of
A(?'; 1) contribute to the time dependence of the expectation
value (A(7)).

For a general S(r) the operator A(¢';¢) for ¢ # t is no
longer diagonal and does not commute with A. This is
related to the fact that the step evolution operator is not a
diagonal matrix. The operators A and § do, in general, not
commute. For the particular case where A and § commute
one has A('; 1) = A and therefore (A(')) = (A(z)). If S(z)
is independent of # and commutes with A, the observable A
is a conserved quantity with the same expectation value for
arbitrary ¢ and 7,

A

A8 =0= (@) = A@W).  (G9)
Nonconserved observables are represented by operators
that do not commute with S. Nevertheless, for the particular
case of cellular automata for which S is a unique jump
operator the operator A(7;1) is found to be diagonal. It
therefore commutes with A = A(r; ). Examples for non-
commuting operators will be given later.

The construction of Heisenberg operators A(#;¢) is not
limited to # = ¢ — &. It can be done for the whole range of 7
for which the step evolution operator is known in the range
between ¢ and ¢. In particular, one has for constant S and
I =1+ ne

A(t + ne, 1) = SAS", (G10)
where we recall S™' = 87 This permits the definition of the
time-derivative of observables as

. 1
A(r) :4—(A(t—|—2€)—A(t—2€)>, (G11)
€
which is represented by the operator
X 1 arnn PO
A(f) = - [ST2AS? — §2A577). (G12)
€

The expectation value of the time-derivative of the observ-
able A follows from the general rule (G2)

(A(1) = twr{A(1p(1)}.

We can further represent products of observables at
different times by time-ordered operator products. For time
Y = t—ne, n> 0, one has

(G13)

A(t)B(1') = AS"BS™, (G14)

such that the unequal time correlation function reads

(A(1)B(1)) = r{AS"BS™"p(r)}. (G15)
This is precisely the value that one obtains if we interpret
the probabilistic cellular automaton as an overall statistical
system for all times [1]. It can then be seen as a particular
generalized two-dimensional Ising model with boundary
conditions. Again, the rule (G15) follows from the standard
rule for expectation values in classical statistics.

3. Change of basis

The quantum rule (G2) is invariant under a change of
basis
p—p =DpD™", A=A =DAD™'.  (Gl6)
We focus here on orthogonal D, D'D = 1, such that a
symmetric density matrix remains symmetric in every
basis. We can view the density matrix at r — & as a basis
change of p(7), with D = §~!'. In the new basis the operator
A(f;1) in Eq. (G5) becomes

(G17)

In this basis the expectation value (A(#')) follows directly
by evaluating Eq. (G2) at 1 —¢.

This simple observation leads to a probabilistic inter-
pretation of the diagonal elements of the transformed
density matrix. The diagonal elements p,, correspond to
the probabilities to find the value A, for an observable that
is represented in this basis by a diagonal operator A’ of the
form

Ay = A8, (G18)

This statement is equivalent to the generalization of the
quantum rule to observables that are represented by
arbitrary symmetric operators

(A) = S A, = wlpA} = wlpd).  (G19)

Indeed, an arbitrary symmetric matrix A can be diagonal-
ized by an orthogonal transformation (G16) with suit-
able D.

For a positive symmetric density matrix p (all eigenval-
ues positive semidefinite) also p’ is a positive symmetric
matrix. This implies p., > 0. The normalization of the
probabilities follows from trp’ = 1. In every basis the
diagonal elements p,, have therefore the properties of a
probability distribution. For the choices of basis which
diagonalize the operators discussed above the probabilistic
interpretation of p., follows from the classical statistical
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rule for expectation values, employing a complete set of
observables. We will not enter here a discussion of the
classical statistical origin of the probabilistic interpretation
of p., for an arbitrary choice of basis.

APPENDIX H: COMPLEX STRUCTURE FOR
OPERATORS

In this Appendix, we extend the complex structure to
operators. This completes the quantum formalism for
cellular automata in the usual complex setting.

1. Complex operators

For real symmetric operators A that are compatible with
the complex structure (135) the quantum rule (G2) for
expectation values translates in the complex formulation to
the familiar form

(A1) = wr{Ap(n)}. (H1)
With Egs. (144), (145) we define
p=pr—ipr.  pr=p+p" p=p"-p (H2)
where

PR=Pr» Pl ==P1, AR=Ag A]=-A;. (H3)

Insertion into Eq. (G2) yields the standard relation for
complex quantum mechanics,

(A) = w{Ap} = r{Agpg + Aypy} = w{Ap).  (H4)
The expression (H1) is independent of the choice of basis.
It defines the expectation value for a large class of
observables beyond the diagonal observables formed from
functions of occupation numbers at a fixed time. General
time-local observables are represented by Hermitian oper-
ators A(t) = A™(¢) [1].

Among the diagonal operators only those are compatible
with the complex structure associated to the particle-hole
transformation that act in the same way on ¢’ and ¢°.
Diagonal operators are described by diagonal A with
A; = 0, such that the structure (135) is block diagonal with
the same operator acting on ¢’ and ¢°. This generalizes to
all operators that do not mix ¢’ and ¢°. Some simple
observables as particle numbers for separate species cannot
be represented by operators that are compatible with the
complex structure. The particle numbers for ¢’ and ¢°
differ. For such observables the translation to the complex
pictures results in operators that mix ¢ and ¢*. There
remain, however, many interesting observables that are
compatible with the complex structure. A simple example
is the position operator for single particle states that we will
discuss in Sec. X.

As expected, the Grassmann functional integral for
fermions entails all rules of quantum mechanics. What is
perhaps more surprising at first sight is that the same holds
for the associated cellular automaton. It follows, however,
from the fact that the implementation of boundary con-
ditions in terms of wave functions and, more generally, the
density matrix, can be implemented in complete corre-
spondence to the fermionic model. This becomes even
more apparent if we formulate the probabilistic cellular
automaton as a generalized Ising model [10].

2. Involution for Grassmann variables

The complex structure for the wave function, density
matrix and operators can be associated to an involution
in the Grassmann algebra. This involution maps
W, (t) = ,(t). In order to recall that this involution is
related to complex conjugation we write somewhat for-
mally

Walt) = Wa(1). (H5)

This relation resembles the relation (C18), (C19) with
a=(x,y) = (x,n,a), e.g.,
Vo= WraVia) = FraVia): (HO6)
It is compatible with the Lorentz transformations. In
contrast to the complex Grassmann variables ¢, ¢ in
Egs. (C18), (C19) the Grassmann variables y, y remain
“real” objects.
On the level of the Grassmann wave function the
involution g — ¢* maps gly ()] to §ly()] and vice versa

g'lw (0] = 9l (1)] = G:(1)g:[w (1)]. (H7)

This operation includes the total reordering R such that

gelw (1)) = R(g:[w(1)]) = g:[w(1)]. (H8)

We recover for the Grassmann density matrix the trans-
formation (F14) including the reordering R,

P () w(n)] = poy()g, [y (1)) g (1))

= Py ()g:lw ()] g [w (1)]. (H9)

Comparison with Eq. (F3) establishes again Eq. (F18)
(H10)

The complex conjugate Grassmann element g*[y] = §[]
is related to the hole wave function glw] by Eq. (F19).
Observing that g,[y]| and ¢¢[y] only differ by possible
minus signs we infer the close relation of the involution
for Grassmann variables (HS5) with the particle-hole
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transformation. By a suitable choice of signs one can have the
two involutions coincide. We could choose a definition

of g = 91(85 = 1)

APPENDIX I: TRANSPORT OPERATORS IN
TERMS OF FERMIONIC ANNIHILATION AND
CREATION OPERATORS

In this Appendix, we derive the expression of the right-
and left-transport operators in terms of annihilation and
creation operators. It contains a specific ordering of
operators which is necessary in order to maintain the
unique jump property for the transport operators. The
proof is somewhat involved and takes advantage of the
relation between annihilation and creation operators on one
side and multiplication of Grassmann elements with
Grassmann variables on the other side.

1. Discrete transport operators

We concentrate first on the right movers and omit the
index (Ra). The evolution of the Grassmann wave function
from (1) = 7,(0)g.lw(1)] 10 g(t+8) = 8,0, (Ng.lw(r +
)] can be described either by the evolution of the wave
function g,(z + &) = S,/,c}p(t) at fixed basis functions g,, or
equivalently by a transformation of basis functions,

Gl (t +8) = ¢ lw(t +8)] = g lw(t +8)5,.. (1)

at fixed g,. Note that for this transformation the operators
multiply the basis functions from the right, see the
Appendix for details. For right movers the new basis

functions g£’> obtain by a replacement of all factors y(x)
in g, by w(x + €). We obtain the expression

w18, = / Dy [[60w'(x) - y(x +e)g ). (12)

The same expression holds if we replace g, by g.. Insertion
of the expression for g’TS,,, into Eq. (11) for I~C(t) reproduces
indeed £ r according to Eq. (36).

The o-function for Grassmann variables can be expressed
as

6(y'(x) —y(x +¢))
=y'(x) —y(x+e)

= / dir(x + &) exp{ir(x + &)y’ (x) —w(x +¢)]},  (13)

[[60/ (x) —w(x+e))

:/Dli/exp{zx:q?(x—ke)[w’(x)—W(X—H?)]}v (14)

such that

A

(89).w]=9,W13
— [ Poowess{ it ey ) -wix-e}

xge[w']. (I5)

The integral over the product with an arbitrary Grassmann
element g[y| obeys

/ Dyl (59).lv]

~ [ DwDiDw gy

We next employ the general identity [66],

/ Dy gly]Fn Lf)g : w} 9:w]

7

~ [ DwDiDwgly
cexp{ S+ )y (x-+¢) (s o)
2 }

X FN [1/77 l//]g‘r [l//l] (17)

Here Fy[r,y’] orders a function F[j,y’] such that all
factors y, are on the left of factors /. The function
F N[a—i,z//} obtains from Fy[,w'] by the replacements
W, = /0y, v = y,, keeping the ordering of 9/0y,
to the left of y,,. In particular, each factor of y, for a given
a can appear in F at most once, since 2 = 0. Thus
0/0w, can occur in Fy at most once. The same holds for
y,, in Fy and y, in Fy. We recognize in Eq. (I6) the
structure of Eq. (I7), with Fy given by the second
exponential after reordering. In consequence, we find the
relation
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/ Dy ily](S9).w]
= / Dy jly]

s fexp{ 32 5 ) = v+ 0l
X 1s)

Here the ordering operation N applied to the exponential
puts for a Taylor expansion exp(x) =) % ,x"/n! all
factors 0/0y, to the left, without changing their relative
order. Furthermore, each term in this Taylor expansion is
multiplied by a sign (=1)"~! for n > 2. This minus sign
results from the anticommutation with factors y/, when
bringing the factors vy, to the left for the function Fy in
Eq. (I7). Since the relation (I8) holds for arbitrary glw] we
conclude

ool =N |exp{ 3 st -wlaere] || v,
X (19

We finally employ the relation (171) between Grassmann
variables and annihilation/creation operators,

gp[w]szgp[w]N{exp{zxjawxw)[a(w—a<x+s>1H ,

pT

(110)

where the ordering operation orders now the creation
operators a’ to the left. Multiplication of Eq. (I10) with
J.lw| and integrating over y yields a é-function according
to Eq. (12). This concludes the proof of Eq. (201) for right
movers. For left movers we replace in Eq. (I2) ¢ — —e¢. This
results in € - —¢ for Eq. (201).

2. Ordering and unique jump property

The ordering operation N is important for the orthogon-

ality of S, which guarantees the unitary evolution. This can
be seen if we expand the exponential to second order (using
periodicity in x)

Sp=N {exp{zcﬂ(x +e)a(x) — alx + gHH
=1+ Za’f(x +€)a(x) — ZCIT(X)a(x) ATy
(111)

where

Tzz—éggawxma*(ym

x la(x) —a(x+¢)]la(y) —a(y +¢)].  (112)
We can apply these operators on states with different
particle numbers. For the vacuum state only the term 1
contributes, and the vacuum is time-translation invariant.
For a single particle located at z, with a sharp wave
function g, (x) ~ 8, ., only terms with a single factor a(z)
contribute in the sums in Eq. (I11). This eliminates the
contribution 7, in Eq. (I11) which contains two annihila-
tion operators on the right, yielding zero when applied to a
single particle state. The same holds for higher order terms
in the expansion. From the first terms only the ones with
x = z contribute in the sums,
Spqy =1 +a'(z+ e)a(z) —a'(2)a(@)]q,.  (113)
For the one particle state one has af(z)a(z) = n(z) = 1,
which cancels the term 1. The particle at z is therefore
transported to z + & by the term a'(z + €)a(z), and Sz, is
indeed again a one particle state, with the particle located
now precisely at z + ¢. This simple property would not
hold without the ordering operation N. We can write

Ty =5 Y a(x-+ e)la() ~alx + )]
xa'(y+e)la(y) —a(y +e)]+ T

Ty — %Zcﬁ(x +o)Ralx) —a(x+ &) —alx—g)). (114)

The first term corresponds to the expansion of the exponen-
tial without the ordering operation. Without the ordering
operation one would therefore have to replace in Eq. (I12)
Ty, —» T, — T;,. The contribution —T’, . would replace the
jump from z to z + & by half the wave function staying at z,
and the other half jumping to z + 2¢. For an exponential
without the ordering there would be further terms modifying
the evolution and broadening the wave function. The action
of § » would no longer be a unique jump operation.

For the ordered exponential the term 7, accounts for the
propagation of two particles at two distinct sites z; and z,.
They both jump by one site, to z; +¢ and z, + ¢,
respectively. This term also contains contributions that
cancel the effect of the first terms in Eq. (I11) on the two
particle state.

APPENDIX J: CONTINUUM EVOLUTION AND
SMOOTHNESS OF PROBABILISTIC
INFORMATION

In this Appendix, we derive the continuum time evolu-
tion in a real formulation, starting from the discrete step
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evolution operator. This highlights more formally the
conditions for a valid continuum limit. We also map to
the complex formulation of the time evolution in quantum
mechanics.

The evolution law (103) is a discrete Schrodinger
equation in a real representation. We can write it in a
more familiar form by introducing the discrete “time-
derivative”

0,4(1) = 1. (alt +20) = ql1=2e)). ()

The advantage of this choice as compared to Eq. (72) is that
q(t), q(t + 2¢) and ¢(r — 2¢) all involve lattice points with
the same x, in accordance to our restriction to the even
sublattice. (In the second formulation with blocks of four
lattice sites the blocks at ¢ and ¢ + ¢ are shifted by one unit
in x, such that it is convenient to combine two time steps as
well.) We introduce the operator W(r) by

W = §(1 4 £)8(r). (J2)
By definition, W(¢) is antisymmetric for orthogonal S(r),
W (1) = -W(1), (I3)
since

e 2V — [§(1 4 &)3(1)]! = [8( + &)S(1)]”

_ [e2£W(t)]T — o2V (1) (J4)

In terms of W(r) and the discrete derivative (J1) the
evolution equation (103) takes the form

1 N N
8,6](1‘) _ E [eQeW(z) _ e—zew(t—zs)]' (JS)

A continuum limit can be realized whenever ¢(7) is a
sufficiently smooth function of ¢ such that for e — 0 the
discrete derivative (J1) can be replaced by a partial
derivative 0, acting on a differentiable real function ¢(¢).
Expanding Eq. (J5) for small ¢ yields

g (1) = 5 [W(r) + W(r = 2¢e)lq(r) +0(e),  (J6)

N =

and the continuum limit becomes

9iq(1) = W(1)q(1), (J7)

where

We emphasize that the formal expansion (J6) has to be
handled with care since § is, in general, not close to the unit
operator. One has to specify in which sense W is a quantity
of the order e.

The antisymmetry of W(7) guarantees that the continuous
evolution equation (J7) preserves the norm of ¢(z).
Equation (J7) is the continuous Schrodinger equation in a
real representation. In a complex representation an antisym-
metric W(¢) corresponds to a Hermitian Hamilton operator.
We observe that the evolution equations (103), (J5) or (J8) are
all linear in ¢ such that the superposition principle for
amplitudes in quantum mechanics follows automatically.

The continuum limit leads to an important simplification.
In general S(7) and S(r + €) do not commute. Defining

3(1) = M) (19)
one has

31+ €)3(0) = eV W)
— W)t W0) 1 0(2[W (1 + &), W(1)]).
(J10)

2

In the continuum limit the commutator term ~&“ can be

neglected, such that

A

W(t) == (W(r+e) + W(r)),

(W(t+e)+W(t)+W(t—e) +W(t—2e)).
(J11)

Bl= =

W() =

In the presence of a complex structure the antisymmetric
matrix W(t) is mapped to —iH () with Hermitian Hamilton
operator H(z). The evolution equation (J7) becomes the
Schrodinger equation (222). For our generalized Thirring
model the Hamilton operator is given by Eq. (218). Indeed,
the relations between the step evolution operator and the
creation and annihilation operators hold as well if we
replace i by a matrix multiplication with / in the real
formulation. In the real formulation one has W = —IH. For
the kinetic part —I(H®) + H(L)) is a real antisymmetric
matrix, as obtained by multiplying Eq. (206) with —i.
The interaction part —/H,, involves I, with exp(—elH,,,)
the interaction part of the step evolution operator. In the
complex formulation one replaces [ — i, leading to
Eq. (218). The coefficients ~e~! or ¢? suggest at first
sight that the Hamilton operator diverges in the continuum
limit € — 0. This divergence is absorbed, however, by a
field redefinition or the associated continuum normaliza-
tion (219) of the annihilation and creation operators. For
this continuum normalization the limit e — 0 is straightfor-
ward since H does no longer involve e.
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