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A class of fermionic quantum field theories with interactions is shown to be equivalent to probabilistic
cellular automata, namely cellular automata with a probability distribution for the initial states.
Probabilistic cellular automata on a one-dimensional lattice are equivalent to two-dimensional quantum
field theories for fermions. They can be viewed as generalized Ising models on a square lattice and therefore
as classical statistical systems. As quantum field theories they are quantum systems. Thus quantum
mechanics emerges from classical statistics. As an explicit example for an interacting fermionic quantum
field theory we describe a type of discretized Thirring model as a cellular automaton. The updating rule of
the automaton is encoded in the step evolution operator that can be expressed in terms of fermionic
annihilation and creation operators. The complex structure of quantum mechanics is associated to particle-
hole transformations. The naive continuum limit exhibits Lorentz symmetry. We exploit the equivalence to
quantum field theory in order to show how quantum concepts as wave functions, density matrix,
noncommuting operators for observables and similarity transformations are convenient and useful concepts
for the description of probabilistic cellular automata.
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I. INTRODUCTION

We show that a class of 1þ 1-dimensional discretized
fermionic quantum field theories can be described as rather
simple probabilistic cellular automata. The latter being
classical statistical systems, this is an example of how
quantum mechanics emerges from classical statistics [1,2].
Besides its conceptual relevance, showing for example that
no-go theorems based on Bell’s inequalities [3,4] cannot
apply, we hope that the equivalence can help to solve a class
of fermionic quantum field theories. Probabilistic cellular
automata can be seen as an example for probabilistic
computing. The quantum concepts used to describe prob-
abilistic cellular automata, as wave functions and non-
commuting operators for observables, may become useful
tools in this context.
The main idea is rather simple. Consider a quantum

system with a finite number of states τ. In our fermionic
context these will be configurations of occupation numbers
taking the values one or zero. For discretized time with time
steps ε the evolution is described by the step evolution
operator Ŝ. In continuum quantum mechanics Ŝ corresponds
to the evolution operator evaluated for a finite time difference

ε. For particular models the step evolution operator Ŝ can be
a unique jump operator. This means that the matrix elements
Ŝτρ are either one or zero, with a single one in each row and
column of the matrix. For a unique jump operator every
configuration ρ at time t is mapped to a unique configuration
τðρÞ at tþ ε. Taking the occupation numbers as bits, this
is precisely the updating step of an automaton or a step in
classical computing. With certain locality properties the
automaton is a cellular automaton.
Quantum mechanics is a probabilistic theory. The

cellular automaton will therefore be a probabilistic cellular
automaton. While the evolution is deterministic in this
particular case, the probabilistic aspects enter by a prob-
ability distribution over initial conditions. The probabilistic
information is encoded in a probability distribution fpτg,
or more conveniently in a wave function fqτg, with
pτ ¼ q2τ . Viewing the wave function as a real vector, the
step evolution operator describes the evolution of the wave
function by matrix multiplication

qτðtþ εÞ ¼ ŜτρqρðtÞ: ð1Þ
The continuity of the probabilistic information or wave
function reflects the wave aspects of quantum mechanics,
while the discrete occupation numbers encode the particle
aspects.
We will see how the probabilistic aspects related to the

wave function play a crucial role for the understanding of
quantum features. In this respect our approach differs from
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the interesting attempt by t’Hooft to describe quantum
mechanics by deterministic cellular automata [5–9].
A probabilistic cellular automaton can be described as a

generalized Ising model [10]. A chain of bits or occupation
numbers nðxÞ, with discrete positions x, is equivalent to a
chain of Ising spins sðxÞ, s ¼ 2n − 1. A (classical) cellular
automaton [11–27] updates the bit configuration at every
time step to a definite new bit configuration. This can be
cast into the form of an Ising model on a two-dimensional
lattice with points ðt; xÞ. The interactions between Ising
spins at neighboring time layers have to be chosen such that
the probability is one for the allowed transitions between
two neighboring configurations of the cellular automaton,
and zero otherwise. This is easily cast into the form of a
partition function or “functional integral” by choosing for
the weight factor e−S an action S that diverges to infinity for
the forbidden transitions. The probabilistic aspects are
implemented by boundary terms at some initial and final
time. This type of generalized Ising model is a simple
classical statistical system. The equivalence of a quantum
model with a probabilistic cellular automaton is therefore
the equivalence of a quantum system with a classical
probabilistic system.
Ising models [28–30] are a central tool of information

theory [31]. One can establish a general “bit-fermion map”
between generalized Ising models and Grassmann func-
tional integrals [10]. For the general case the weight
distribution for Ising spins needs not be positive, and the
evolution of the fermionic model described by the
Grassmann functional integral needs not to be unitary.
The equivalence between a fermionic quantum field theory
and a probabilistic cellular automaton can be understood as
an example for the bit-fermion map for which the fermionic
model has a unitary evolution and the weight distribution
for Ising spins is a positive probability distribution. The bit-
fermion map differs from other fermionic descriptions of
two-dimensional Ising models [32–37] or other forms of
fermion-boson equivalence in two dimensions [38–41]. It is
actually valid in arbitrary dimensions. We refer for the
formulation of our models as a generalized Ising model to
ref. [42] and retain here only the property that a probabi-
listic cellular automaton is a classical statistical system.
It is rather easy to formulate free fermions in two

dimensions as probabilistic cellular automata [1,43].
Fermions simply move on the two-dimensional lattice on
straight lines as t increases, either to the right or to the left
in x. A first example of equivalence of a fermionic quantum
field theory with interactions with a probabilistic cellular
automaton was established in ref. [42]. In the present paper
we present a generalization of the treatment of interactions
which allows for the implementation of a wider class of
interactions. The cellular automaton alternates a propaga-
tion step and an interaction step, somewhat similar to the
functional integral description of quantum mechanics with
alternating factors for the kinetic and potential energies. We

develop an expression of the step evolution operator in
terms of fermionic annihilation and creation operators
which makes the fermionic interpretation of the cellular
automaton rather apparent.
The evolution equation (1) involves a real wave function.

We propose that the complex structure characteristic of
quantum mechanics can be associated to the particle-hole
transformation of the cellular automaton or a switch of sign
of the Ising spins in the associated generalized Ising model.
This allows us to formulate the probabilistic cellular
automaton as a quantum system with the usual complex
Hilbert space. The presence of antiparticles characteristic
for fermionic quantum field theories arises naturally in this
setting.
A continuum limit becomes possible for sufficiently

smooth wave functions (not for deterministic cellular
automata). A naive continuum limit simplifies the descrip-
tion considerably, leading to the usual Schrödinger equa-
tion for complex wave functions, or von Neumann
equations for density matrices. These evolution equations
are identical for the probabilistic cellular automaton and the
fermionic quantum field theory. In the naive continuum
limit our fermionic model is Lorentz invariant. If the naive
continuum limit already grasps all essential features, or if a
renormalization group running introduces interesting new
ones, remains to be investigated. A first short account of
some of the results can be found in ref. [44].
The starting point for this work is the Grassmann

functional integral for the fermionic quantum field theory.
In Sec. II we develop the general formalism how to extract
the step evolution operator from this functional integral. In
Sec. III we construct fermionic models with interactions for
which the step evolution operator is a unique jump operator.
These are particular discretized Thirring-type models in
1þ 1-dimensions [45–48]. We investigate Weyl, Majorana
and Dirac fermions in the Appendix C. The equivalent
cellular automaton is presented in Sec. IV. The updating
rule is rather simple. In a first step the bits or particles are
moving either one step to the right or to the left. Besides
the right-movers and left-movers the bits or particles also
come in two colors, say red and green. The interaction is
implemented in a second step. Whenever a single right-
mover and a single left-mover meet at a point x, their colors
are switched between red and green. We establish the close
correspondence of general features of the updating rule and
symmetries of the associated Thirring type model in
Appendix D.
In Sec. V we turn to the probabilistic aspects of the

cellular automaton. We introduce the wave function and
establish that it is the same for the automaton and the
fermion model. We discuss the density matrix, with details
given in Appendix F. In Appendix G we demonstrate the
appearance of noncommuting operators for the cellular
automaton. These operators are in complete analogy to the
fermionic quantum field theory. Section VI introduces the
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complex structure related to the particle-hole transforma-
tion. The complex wave function for the cellular automaton
establishes the complete applicability of the quantum
formulation to this classical statistical system [49,50].
The corresponding complex Hermitian operators are dis-
cussed in Appendix H. Section VII expresses the step
evolution operator in terms of a Hamiltonian. This
Hamiltonian is expressed in terms of fermionic annihilation
and creation operators, underlining the fermionic interpre-
tation of the cellular automaton. The Hamiltonian can be
used for a continuous time evolution that coincides with the
automaton at discrete time intervals. The continuum limit
further simplifies the description. In Sec. VIII we discuss
different possible vacua and the corresponding one-particle
excitations. Section IX introduces the momentum and
position operators for the one-particle states, and estab-
lishes the corresponding uncertainty relation. We discuss
our results and possible extensions in Sec. X.

II. STEP EVOLUTION OPERATOR FOR MODELS
OF FERMIONS

A key quantity for our investigation is the step evolution
operator. For a discrete formulation of functional integrals
the step evolution operator Ŝ corresponds to the transfer
matrix [51,52] with a particular normalization. According
to this normalization the largest absolute values among
the eigenvalues of Ŝ are equal to one. The step evolution
operator describes the propagation of the local probabilistic
information on a “time”-hypersurface to a neighboring
hypersurface. If Ŝ is an orthogonal matrix no information is
lost. In the presence of a complex structure an orthogonal
matrix that is compatible with the complex structure is
equivalent to a unitary matrix in the complex picture.
Orthogonal step evolution operators generate then a unitary
evolution.
Unique jump matrices have precisely one element equal

to one in each row and column. They are orthogonal
matrices. If the step evolution operator is a unique jump
matrix it describes an automaton. Each local bit-configu-
ration on a hypersurface is mapped to precisely one other
local bit-configuration on a neighboring hypersurface. The
hypersurfaces can be associated with the time steps of an
automaton. Then the step evolution operator ŜðtÞ describes
how each microscopic state at t is mapped precisely to
another microscopic state at tþ ε̃. This extends to prob-
abilistic states as given by a probability distribution over
the microscopic states.
We consider here models with one space-dimension. The

fermionic occupation numbers or bits nγðxÞ are located on
the discrete positions x of a chain. For a suitable step
evolution operator these positions can be associated with
the cells of a cellular automaton. This requires that the
updating of the bits in the cell x is only influenced by the
configurations of bits in a few neighboring cells. The local

fermionic quantum field theories discussed in the present
paper realize this cellular automaton property.
For a given fermionic quantum field theory specified by

a Grassmann functional integral we need to extract the
associated step evolution operator. Inversely, one may
construct for a given step evolution operator the associated
quantum field theory. A general formalism for the extrac-
tion of the step evolution operator for Grassmann func-
tional integrals for fermionic models has been developed
in Refs. [10,43,53]. We briefly summarize it here. We
specialize to alternating sequences of kinetic operators that
describe the change of location of particles, and interaction
operators. Both are unique jump operators. In consequence,
the unitary evolution is guaranteed and the models corre-
spond to cellular automata. We construct, in particular, the
step evolution operator for a particular Thirring-type
model. This demonstrates that our setting covers fermionic
quantum field theories with nontrivial interactions.

A. Grassmann functional integral

Consider a Grassmann functional integral

Z ¼
Z

Dψ expð−S½ψ �Þ ¼
Z

Dψw½ψ �; ð2Þ

with action

S ¼
X
t

LðtÞ: ð3Þ

For LðtÞ involving only even powers of Grassmann
variables the weight functional w½ψ � can be written as a
product of commuting time local factors K̃ðtÞ,

w½ψ � ¼ expð−S½ψ �Þ ¼
Y
t

K̃ðtÞ; K̃ðtÞ ¼ expf−LðtÞg:

ð4Þ

For our models each local factor depends on two sets of
Grassmann variables ψαðtþ ε̃Þ ¼ ψγðtþ ε̃; xÞ and ψβðtÞ ¼
ψδðt; yÞ at neighboring tþ ε̃ and t. We do not impose
space-locality at this stage and leave the range of x, y free
for the moment.
An element of the local Grassmann algebra at t can be

written as a linear combination of Grassmann basis func-
tions,

gðtÞ ¼ qτðtÞgτðtÞ: ð5Þ

(We use summation over double indices if not specified
otherwise.) The basis functions gτðtÞ ¼ gτ½ψðtÞ� are products
of Grassmann variables ψαðtÞ
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gτðtÞ ¼ s̃τ
YM
α¼1

ãα; ð6Þ

with ãα ¼ 1 or ãα ¼ ψα, and s̃τ ¼ �1 some conveniently
chosen signs. The two possibilities for ãα ¼ ãγðxÞ corre-
spond to the two possibilities of a fermion of type γ to be
present at x or not, where the precise association will be
specified later. For α ¼ 1…M there a 2M basis functions,
τ ¼ 1…N;N ¼ 2M. They correspond to the 2M microstates
for M fermionic degrees of freedom. These microstates can
also be interpreted as the configurations forM classical bits
or Ising spins, which leads to the equivalence with gener-
alized Ising models [10].
For the convenience of manipulating signs we also

define (no sum over τ here) a second set of basis functions

g0τ ¼ ετgτðtÞ; ετ ¼ ð−1Þmτ ðmτ−1Þ
2 ; ð7Þ

with mτ the number of ψ—factors in gτ. For arbitrary
Grassmann variables ψα and φα we observe the identity

expðψαφαÞ ¼
Y
α

ð1þ ψαφαÞ ¼
X
τ

ετgτðψÞgτðφÞ

¼
X
τ

gτðψÞg0τðφÞ: ð8Þ

In this way the signs ετ which arise from anticommutators
of Grassmann variables are absorbed by the definition of g0τ.
We observe that g0τ can be obtained from gτ by a total
reordering of all Grassmann variables.

B. Step evolution operator

Grassmann functionals have a modular two property [10]
since only a sequence of two unit step operators reproduces
the identical local Grassmann algebra, gðtþ 2ε̃Þ ¼ gðtÞ.
This feature is conveniently encoded in the use of different
basis functions for even and odd t. Here we consider
discrete time steps, t ¼ t0 þmε̃, and denote by odd or even
t the integer m̃ being odd or even. The “transfer matrix”
T̂τρðtÞ is defined for t odd by the double expansion of the
local factor K̃ðtÞ in basis functions at t and tþ ε̃,

K̃ðtÞ ¼ gτðtþ ε̃ÞT̂τρðtÞg0ρðtÞ: ð9Þ

Adding a constant to LðtÞ multiplies T̂τρðtÞ by a constant
factor. This freedom is used to normalize T̂τρðtÞ such that
its largest eigenvalues obey jλij ¼ 1. Here “largest” means
the largest absolute size. For our models there will be more
than a single largest eigenvalue. With this normalization
the transfer matrix becomes the “step evolution operator”
ŜτρðtÞ. We implicitly assume in the following a suitable
normalization of LðtÞ such that

K̃ðtÞ ¼ gτðtþ ε̃ÞŜτρðtÞg0ρðtÞ: ð10Þ

In view of the modulo two properties of Grassmann
functional integrals [10,43,54] we define the step evolution
operator for even t by an expansion in conjugate basis
functions,

K̃ðtÞ ¼ ḡ0τðtþ ε̃ÞŜτρðtÞḡρðtÞ: ð11Þ

The conjugate basis functions are defined by the relation

Z
Dψ ḡτðψÞgρðψÞ ¼ δτρ: ð12Þ

Up to signs the map from gτ to ḡτ exchanges factors of
one and ψα in Eq. (6). The association of “occupied” and
“empty” to 1 and ψα therefore switches between even and
odd t.
We also employ (no sum here)

ḡ0τ ¼ ε0τḡτ ð13Þ

obeying

expðψαφαÞ ¼
X
τ

ḡ0τðψÞḡτðφÞ: ð14Þ

This fixes

ε0τ ¼ ð−1Þm
0
τðm0

τ−1Þ
2 ¼ ð−1Þmτ ετηMð−1ÞMmτ ; ð15Þ

with m0
τ ¼ M −mτ the number of ψ factors in ḡτ and

ηM ¼ 1 for M ¼ 0, 1 mod 4 and ηM ¼ −1 for M ¼ 2, 3
mod 4. For ḡ0τ we observe a relation similar to Eq. (12)

Z
Dψg0τðψÞḡ0ρðψÞ ¼ ηMδτρ: ð16Þ

An explicit expression for M ¼ 1 reads

g1 ¼ g01 ¼ ḡ2 ¼ ḡ02 ¼ 1;

g2 ¼ g02 ¼ ḡ1 ¼ ḡ01 ¼ ψ ; ð17Þ

while for M ¼ 2 one has

g1 ¼ g01 ¼ ḡ4 ¼ ḡ04 ¼ 1;

g2 ¼ g02 ¼ −ḡ3 ¼ −ḡ03 ¼ ψ2;

g3 ¼ g03 ¼ ḡ2 ¼ ḡ02 ¼ ψ1;

g4 ¼ −g04 ¼ ḡ1 ¼ −ḡ01 ¼ ψ1ψ2: ð18Þ

The general relation between ḡτ and gτ is given by
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ḡτðφÞ ¼ ηM

Z
Dψ expðψαφαÞg0τðψÞ: ð19Þ

This results in

ḡ0τðφÞ ¼
Z

Dψ expðφαψαÞgτðψÞ for M even

ḡ0τðφÞ ¼
Z

Dψ expðψαφαÞgτðψÞ for M odd ð20Þ

In the following we will focus on M ¼ 4 mod 4 where
ηM ¼ 1. For an arbitrary number of fermionic species this
can be realized by a suitable number of space points.
For the product of two neighboring local factors one has

for t odd

K̃ðtþ ε̃ÞK̃ðtÞ¼ ḡ0τðtþ2ε̃ÞŜταðtþ ε̃ÞFαβðtþ ε̃ÞŜβρðtÞg0ρðtÞ;
ð21Þ

with

FαβðtÞ ¼ ḡαðtÞgβðtÞ;
Z

DψðtÞFαβðtÞ ¼ δαβ: ð22Þ

It is the simplicity of the second relation (22) that justifies
the use of the conjugate basis functions. The integration of
the product (21) over the common Grassmann variables
ψðtþ ε̃Þ yields a matrix multiplication of the step evolution
operator

Z
Dψðtþ ε̃ÞK̃ðtþ ε̃ÞK̃ðtÞ

¼ ḡ0τðtþ 2ε̃ÞðŜðtþ ε̃ÞŜðtÞÞτρg0ρðtÞ: ð23Þ

Similarly, one obtains (t odd)

K̃ðtÞK̃ðt − ε̃Þ ¼ gτðtþ ε̃ÞŜταðtÞF̃αβðtÞŜβρðt − ε̃Þḡρðt − ε̃Þ
ð24Þ

with

F̃αβðtÞ ¼ g0αðtÞḡ0βðtÞ;
Z

DψðtÞF̃αβðtÞ ¼ ηMδαβ: ð25Þ

Again, integrating the intermediate Grassmann variable
results in a matrix product

Z
DψðtÞK̃ðtÞK̃ðt − ε̃Þ

¼ ηMgτðtþ ε̃ÞðŜðtÞŜðt − ε̃ÞÞτρḡρðt − ε̃Þ: ð26Þ

The product structure extends to longer chains of
neighboring local factors. Employing the relations (22),
(25) the integration over intermediate Grassmann variables

results in matrix multiplication of the step evolution
operators. For initial time tin even one can express the
partition function by a chain of ordered matrix products of
step evolution operators

Z ¼
Z

DψðtfÞDψðtinÞgτðtfÞðŜðtf − ε̃Þ…

Ŝðtin þ 1ÞŜðtinÞÞτρḡρðtinÞ: ð27Þ
Here we have assumed an odd number of time points Mt.
(Only for both M ¼ 2; 3 mod 4 and Mt ¼ 3 mod 4 there is
an additional factor ηM). In the following we considerM ¼
4 mod 4, such that

R
DψðtÞ commutes with all Grassmann

variables ψαðt0 ≠ tÞ and

ηM ¼ 1; ε0τ ¼ ð−1Þmτ ετ: ð28Þ

We can write Eq. (27) in the form

Z ¼ trfŜðtf − ε̃Þ…ŜðtinÞB̂g; ð29Þ

where the boundary matrix is given for open boundary
conditions by

B̂ρτ ¼
Z

DψðtfÞDψðtinÞgτðtfÞḡρðtinÞ: ð30Þ

If one adds in Z boundary factors

gin½ψðtinÞ� ¼ q̃τðtinÞgτ½ψðtinÞ�;
ḡf½ψðtfÞ� ¼ q̄τðtfÞḡτ½ψðtfÞ�; ð31Þ

the boundary matrix becomes

B̂ρτ ¼ q̃ρðtinÞq̄τðtfÞ: ð32Þ

For mixed boundary conditions this matrix can be gener-
alized further.
A this stage we have formally constructed for every

sequence of step evolution operators ŜðtÞ the associated
local factors K̃ðtÞ, and therefore LðtÞ and the functional
integral (2)–(4). The opposite direction is formally straight-
forward. The step evolution operator obtains from K̃ðtÞ for t
odd as

ŜτρðtÞ ¼
Z

Dψðtþ ε̃ÞDψðtÞḡτðtþ ε̃ÞK̃ðtÞḡ0ρðtÞ; ð33Þ

while for even t one has

ŜτρðtÞ ¼
Z

Dψðtþ ε̃ÞDψðtÞg0τðtþ ε̃ÞK̃ðtÞgρðtÞ: ð34Þ

In particular, the unit step evolution operator ŜτρðtÞ ¼
δτρ obtains by virtue of Eqs. (8) (14) for
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K̃idðtÞ ¼ exp

�X
x

ψγðtþ ε̃; xÞψγðt; xÞ
�
: ð35Þ

We emphasize that a static state (unit step evolution
operator) does not correspond to a unit local factor. It
rather involves an action with a time derivative according to

S0 ¼
X
t

L0ðtÞ¼̂
1

ε̃

Z
dtL0ðtÞ

¼ −
1

ε̃

Z
t

X
x

ψγðtþ ε̃; xÞψγðt; xÞ

¼ −
Z
t

X
x

1

ε̃
½ψγðtþ ε̃; xÞ− ψγðt; xÞ�ψγðt; xÞ

¼̂ −
Z
t

X
x

∂tψγðt; xÞψγðt; xÞ ¼
Z
t

X
x

ψγðt; xÞ∂tψγðt; xÞ:

ð36Þ

Such a term is typically part of the action for models of
nonrelativistic or relativistic fermions.

C. Propagating fermions

For a two-dimensional system we define the “right
transport operator” by a local factor

K̃RðtÞ ¼ exp

�X
x

ψγðtþ ε̃; xþ εÞψγðt; xÞ
�
: ð37Þ

The corresponding step evolution operator is a unique jump
operator that maps any state ρ at t to precisely one state
τ ¼ τ̄ðρÞ at tþ ε̃,

Ŝτρ ¼ δτ;τ̄ðρÞ: ð38Þ

Comparing with Eq. (35) a particle or empty place (hole) at
ðt; xÞ is now found at tþ ε̃ at the position xþ ε instead of
staying at x for the identity. More in detail, τ̄ðρÞ is obtained
from ρ by shifting each occupation number one place in x
to the right. Equation (38) is easily established by a change
of variables in Eq. (33)

ψγðtþ ε̃; xþ εÞ ¼ φγðtþ ε̃; xÞ: ð39Þ

The factor ḡτðψγðtþ ε̃; xÞÞ in Eq. (33) becomes

ḡτðψγðtþ ε̃; xÞÞ ¼ ḡτðφγðtþ ε̃; x− εÞÞ ¼ ḡρ̄ðτÞðφγðtþ ε̃; xÞÞ:
ð40Þ

Here ρ̄ðτÞ is the inverse of τ̄ðρÞ and shifts all occupation
numbers one place to the left. For the Grassmann integral
one has

R
Dψðtþ ε̃Þ ¼ R

Dφðtþ ε̃Þ and in terms of the
variable φ Eqs. (35), (38) become

Ŝτρ ¼ δρ̄ðτÞ;ρ ¼ δτ;τ̄ðρÞ: ð41Þ

The same arguments holds for g0τðψðtþ εÞÞ in Eq. (34),
such that Eq. (38) holds for both t odd or even.
We can define a similar “left-transport operator” by a

local factor

K̃LðtÞ ¼ exp

�X
x

ψγðtþ ε̃; x − εÞψγðt; xÞ
�
: ð42Þ

It leads to a step evolution operator similar to Eq. (38),
where τ̄ðρÞ moves now the position of all occupation
numbers one place in x to left. Both the left-transport
and the right transport operator are unique jump operators
and correspond to simple cellular automata. From our
construction it is clear how many other cellular automata
can be obtained by replacing in Eq. (37) the variable ψγðtþ
ε̃; xþ εÞ by ψβðtþ ε̃; x0Þ. We will investigate below more
general cellular automata with a more complex form of K̃.
For the particular type of cellular automata correspond-

ing to Eq. (37) we can decompose the local factor into
space-local simple pieces, as seen easily by writing

K̃RðtÞ ¼
Y
x

Y
γ

K̃γðt; xÞ;

K̃γðt; xÞ ¼ expfψγðtþ ε̃; xþ εÞψγðt; xÞg: ð43Þ

The factors K̃γðt; xÞ for different γ have no common
Grassmann variable, such that the integrals in Eq. (33)
can be done blockwise. Each block involves only two
different Grassmann variables and we can expand (no sum
over γ)

K̃γðt; xÞ ¼ 1þ ψγðtþ ε̃; xþ εÞψγðt; xÞ ¼ 1þ φψ ; ð44Þ

with φ ¼ ψγðtþ ε̃; xþ εÞ, ψ ¼ ψγðt; xÞ. The elements of
the Grassmann algebra for ψ (and similar for φ) are given
by Eq. (17), and we can establish Eq. (38) directly by
factorizing the Grassmann basis functions appropriately.
A massless Dirac spinor in two dimensions consists of

two Weyl spinors, one left moving and the other right
moving. We consider here two different Dirac spinors,
represented by four different Grassmann variables ψγðt; xÞ,
γ ¼ ðη; aÞ, η ¼ L;R ¼ 1, 2, a ¼ 1, 2. The action for the
two free massless Dirac spinors is given by

LfreeðtÞ ¼ −
X
x

fψR;aðtþ ε̃; xþ εÞψR;aðt; xÞ

þ ψL;aðtþ ε̃; x − εÞψL;aðt; xÞg: ð45Þ

This is a simple cellular automaton of the type discussed
above. The two species a ¼ 1; 2 ¼ r, g may be associated
with colors, say red for a ¼ 1 and green for a ¼ 2. The
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complex structure related to Dirac spinors will be discussed
in Sec. VI.

III. INTERACTING FERMIONIC QUANTUM
FIELD THEORIES

Cellular automata for free fermionic quantum field
theories in 1þ 1-dimensions are rather simple [55,56].
The new feature in Refs. [42,44] and the present work is the
construction of cellular automata for fermionic models with
interactions. We propose here a general strategy of alter-
nating step evolution operators for the propagation and the
interaction. This guarantees a unitary evolution by the
simple property that each one of the steps is a unique jump
operation. The procedure ressembles somewhat the con-
struction of the Feynman path integral by an alternating
sequence of momentum and position eigenstates.
Arbitrary fermionic quantum field theories do not lead to

a unique jump matrix for the step evolution operator. They
can therefore not be associated with an automaton. The task
of the present section is therefore the establishment of a
family of fermionic quantum field theories which realize
a unique jump step evolution operator. This requires that
the local factor K̃ðtÞ connects a unique Grassmann basis
element at tþ ε to each Grassmann basis element at t. In
other words, each basis element g0ρðtÞ should be multiplied
by a single element gτðtþ ε̃Þ and not by a sum of such
elements. This places restrictions LðtÞ that we will discuss
in detail in the present section.
We also will introduce later a complex structure. The

associated complex picture has the standard properties of
quantum field theories in Minkowski space. In particular,
we construct a model for which the naive continuum limit is
invariant under Lorentz transformations.

A. Fermion interaction and conditional jumps

We start with the interaction part of the step evolution
operator. For this purpose we choose space-local inter-
actions where at every position x the jump is independent
of the configurations of occupation numbers at all other
positions y ≠ x. In this case the local factor K̃ðtÞ factorizes
into a product of independent factors

K̃ðtÞ ¼
X
x

K̃iðt; xÞ; ð46Þ

where K̃iðt; xÞ involves only the two sets of Grassmann
variables ψγðtþ ε̃; xÞ and ψγðt; xÞ at the given position x.
Accordingly, the step evolution operator is a direct product

Ŝint ¼ Ŝðx ¼ 1Þ ⊗ Ŝðx ¼ 2Þ… ⊗ Ŝðx ¼ MxÞ: ð47Þ

Each factor ŜðxÞ acts only on the configurations of
occupation numbers at x. For the two Dirac spinors with
γ ¼ 1…4 each factor ŜðxÞ is a 16 × 16 matrix. The matrix

Ŝint is therefore a ð16 · 2MxÞ × ð16 · 2MxÞ matrix, with Mx
the number of x- points.
We can discuss each factor K̃iðt; xÞ or Ŝðt; xÞ separately.

We label the four internal states γ ¼ 1…4 by
ðR1; R2; L1; L2Þ and the 16 states τ by ordered sequences
of occupation numbers. For the example τ ¼ ð1; 0; 0; 1Þ a
particle R1 and a particle L2 is present, while no particle
R2 or L1 is present. The indices R and L will later be
associated to right-movers and left-movers in the propa-
gation step. The colors 1,2 may be taken as red and green.
We realize interactions by conditional jumps, as for our

first example: Under the condition that precisely two
particles are present, namely one left mover and one right
mover with different colors, the colors are exchanged. This
amounts to a switch of occupation numbers

ð1; 0; 0; 1Þ ↔ ð0; 1; 1; 0Þ: ð48Þ

All other states remain invariant. This process describes the
two-particle scatterings

R1þ L2 → R2þ L1;

R2þ L1 → R1þ L2: ð49Þ

If a third or fourth particle is present, no scattering occurs.
We will later add the scattering process for which two green
particles transform into two red particles and vice versa. For
the moment we discuss only the process (49). The step
evolution operator is a unit matrix except for the sectors
of the states τ with occupation numbers (1,0,0,1) and
(0,1,1,0). In this sector the diagonal elements vanish, and
one has

Ŝð1001Þ;ð0110Þ ¼ Ŝð0110Þ;ð1001Þ ¼ 1: ð50Þ

Repeating the switch yields the identity

Ŝ2ðxÞ ¼ 1; Ŝ2int ¼ 1: ð51Þ

For the computation of the corresponding local factor
K̃iðt; xÞ we can fix the sign convention for the Grassmann
basis functions gτ by convenience. All the relations dis-
cussed above hold independently of the choice of the signs
s̃τ in Eq. (6). We could even use different sign conventions
for different t. This freedom of the choice of local sign
conventions corresponds to a discrete local gauge sym-
metry of the weight function [49,50]. We want to keep the
relations (8) (14), and therefore restrict the possibilities to a
free global choice of signs which is the same for all t. For
the example of the vacuum state for M ¼ 2 we choose

gð0000Þ ¼ g0ð0000Þ ¼ ψ1ψ2ψ3ψ4;

ḡð0000Þ ¼ ḡ0ð0000Þ ¼ 1: ð52Þ
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For the Grassmann integral we employ the ordering

Z
Dψ ¼

Z
dψ4

Z
dψ3

Z
dψ2

Z
dψ1; ð53Þ

such that
R
Dψgð0000Þ ¼ 1. For the two-particle states

relevant for our purpose we chose the basis functions

gð1001Þ ¼ −g0ð1001Þ ¼ ψ2ψ3;

gð0110Þ ¼ −g0ð0110Þ ¼ ψ1ψ4: ð54Þ

According to Eq. (10) the contribution of the two-particle
sector to K̃intðx; tÞ reads

ΔK̃intðt; xÞ ¼ −ψ1ðtþ ε̃; xÞψ4ðtþ ε̃; xÞψ2ðt; xÞψ3ðt; xÞ
− ψ2ðtþ ε̃; xÞψ3ðtþ ε̃; xÞψ1ðt; xÞψ4ðt; xÞ:

ð55Þ

Our general conventions for Grassmann basis functions are
displayed in Appendix A.
We have to combine the contribution (55) with the

contribution of the unit operator for all other states. For this
purpose we first subtract from ΔK̃int the contribution of the
unit operator in this particular two-particle sector by
defining

D̃ðt; xÞ ¼ D̃1ðt; xÞ − D̃2ðt; xÞ;
D̃1ðt; xÞ ¼ ψ 0

1ψ
0
4ψ2ψ3 þ ψ 0

2ψ
0
3ψ1ψ4;

D̃2ðt; xÞ ¼ ψ 0
1ψ

0
4ψ1ψ4 þ ψ 0

2ψ
0
3ψ2ψ3;

D̃ðt; xÞ ¼ −ðψ 0
1ψ

0
4 − ψ 0

2ψ
0
3Þðψ1ψ4 − ψ2ψ3Þ; ð56Þ

where ψ 0
γ ¼ ψ 0

γðtþ ε̃; xÞ, ψγ ¼ ψγðt; xÞ. In terms of D̃ we
can write the local factor as

K̃iðt; xÞ ¼ expfψ 0
γψγg − D̃: ð57Þ

The first term produces the unit matrix, while the second
term subtracts the unit matrix in the sector of the states
(1,0,0,1) and (0,1,1,0) and replaces it by the exchange of
colors.
Next we write the local factor in exponential form in

order to have it as a piece of the action. For this purpose we
observe the identities

D̃1D̃2 ¼ 0; D̃2 ¼ D̃2
1 þ D̃2

2 ¼ 2D̃2
1;

D̃3 ¼ 0; D̃2 ¼ 4ψ 0
1ψ

0
2ψ

0
3ψ

0
4ψ1ψ2ψ3ψ4: ð58Þ

In terms of D̃ we can write the local factor in exponential
form

K̃iðt;xÞ¼ exp

�
ψ 0
γψγ − D̃−

1

2
D̃2þψ 0

γψγD̃−
1

2
ðψ 0

γψγÞ2D̃
�
:

ð59Þ

Indeed, the expansion of the exponential yields Eq. (57).
With

ψ 0
γψγD̃1 ¼ 0;

−ψ 0
γψγD̃ ¼ ψ 0

1ψ
0
2ψ

0
3ψ1ψ2ψ3 þ ψ 0

1ψ
0
2ψ

0
4ψ1ψ2ψ4

þ ψ 0
1ψ

0
3ψ

0
4ψ1ψ3ψ4 þ ψ 0

2ψ
0
3ψ

0
4ψ2ψ3ψ4; ð60Þ

and

ðψ 0
γψγÞ2D̃ ¼ D̃2 ð61Þ

one obtains K̃iðt; xÞ ¼ expf−Liðt; xÞg with

Liðt; xÞ ¼ ð−ψ 0
γψγ þ D̃Þð1þ D̃Þ: ð62Þ

This yields for the interaction part of the action

LintðtÞ ¼
X
x

Liðt; xÞ: ð63Þ

B. Interacting fermionic quantum field theory

A quantum field theory for interacting fermions com-
bines the interaction with the propagation of fermions. This
can be done by the use of a sequence of alternating local
factors. We use the free propagation of Dirac fermions for t
even, and the interaction for t odd. A pair of neighboring
local factors reads for even t

K̃ðtþ ε̃ÞK̃ðtÞ¼ expf−Lintðtþ ε̃Þgexpf−LfreeðtÞg

¼ exp

�
−
X
x

½Liðtþ ε̃;xÞþLfðt;xÞ�
�
; ð64Þ

with Liðtþ ε̃; xÞ given by Eq. (62) shifted to tþ ε̃, and
Lfðt; xÞ extracted from Eq. (45),

Lfðt; xÞ ¼ −ψRaðtþ ε̃; xþ εÞψRaðt; xÞ
− ψLaðtþ ε̃; x − εÞψLaðt; xÞ: ð65Þ

We could integrate over the variables ψðtþ ε̃Þ and obtain
with Eq. (26)

Z
Dψðtþ ε̃ÞK̃ðtþ ε̃ÞK̃ðtÞ ¼ gτðtþ 2ε̃ÞðŜintŜfreeÞτρḡρðtÞ:

ð66Þ

Since both Ŝint and Ŝfree are unique jump operators, this also
holds for the product. The product matrix
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Ŝ ¼ ŜintŜfree ð67Þ

describes the step evolution operator of a cellular automa-
ton discussed in Ref. [1,42]. Repeating the alternating chain
with integration over intermediate Grassmann variables
produces matrix chains of Ŝ,

Z
Dψðtþ 3ε̃ÞDψðtþ 2ε̃ÞDψðtþ ε̃Þ

× K̃ðtþ 3ε̃ÞK̃ðtþ 2ε̃ÞK̃ðtþ ε̃ÞK̃ðtÞ
¼ gτðtþ 4ε̃ÞðŜ2ÞτρḡρðtÞ: ð68Þ

The action (3), with LðtÞ given by L̄i or L̄f for odd and
even t, respectively, produces the same chain of step
evolution operators as a cellular automaton with the
corresponding rules of exchange of colors and propagation.
With an implementation of boundary conditions and
observables in the fermionic representation to be discussed
below, the fermionic model (64) is exactly equivalent to a
probabilistic cellular automaton.
We choose ε̃ ¼ ε=2 and rename

ψγðtþ ε̃; xÞ ¼ ψ̄ γðtþ ε; xÞ: ð69Þ

With these definitions we can employ a coarse grained
lattice with t corresponding to even t on the original lattice.
The lattice distance on the coarse grained lattice is the same
ε in both directions. (We will in the following use integers
m for the sites of the coarse grained lattice, corresponding
to even m an the original lattice.) We can summarize the
action of the discrete fermionic quantum field theory as

Lðt − εÞ ¼ −
X
x

fψ̄Raðt; xÞψRaðt − ε; x − εÞ

þ ψ̄Laðt; xÞψLaðt − ε; xþ εÞ
þ ½ψRaðt; xÞψ̄Raðt; xÞ þ ψLaðt; xÞψ̄Laðt; xÞ
− D̄ðt; xÞ�ð1þ D̄ðt; xÞÞg; ð70Þ

with D̄ðt; xÞ given by D̃ðt; xÞ in Eq. (56) with the
identifications

ψ 0
1 ¼ ψR1ðt; xÞ; ψ1 ¼ ψ̄R1ðt; xÞ;

ψ 0
2 ¼ ψR2ðt; xÞ; ψ2 ¼ ψ̄R2ðt; xÞ;

ψ 0
3 ¼ ψL1ðt; xÞ; ψ3 ¼ ψ̄L1ðt; xÞ;

ψ 0
4 ¼ ψL2ðt; xÞ; ψ4 ¼ ψ̄L2ðt; xÞ: ð71Þ

The first two terms areLfree from Eq. (45), and the remaining
part amounts toLint in Eq. (63). The action (70) contains the
same information as the action (64) since we only have
renamed variables.We show inAppendixB that thevariables
ψ̄ γðt; xÞ have a close connection to the conjugate Grassmann

variables in Ref. [43]. Since the propagation does not mix
even and odd sublattices (cf. Appendix B) we omit the odd
sublattice in the following.
Lattice derivatives are defined by

ð∂t þ ∂xÞψðt; xÞ ¼
1

ε
½ψðt; xÞ − ψðt − ε; x − εÞ�;

ð∂t − ∂xÞψðt; xÞ ¼
1

ε
½ψðt; xÞ − ψðt − ε; xþ εÞ�: ð72Þ

In terms of these derivatives the discrete action reads

Lðt − εÞ ¼
X
x

εψ̄Raðt; xÞð∂t þ ∂xÞψRaðt; xÞ

þ εψ̄Laðt; xÞð∂t − ∂xÞψLaðt; xÞ þ D̄ðt; xÞ
þ ΔLðt − εÞ ð73Þ

with

ΔLðt − εÞ ¼
X
x

D̄ðt; xÞ½D̄ðt; xÞ − ψRaðt; xÞψ̄Raðt; xÞ

− ψLaðt; xÞψ̄Laðt; xÞ�: ð74Þ

The sum is over the space points on the even sublattice.
Equation (73) is the fermionic representation of a prob-
abilistic cellular automaton. For this discrete formulation
no approximations have been made.

C. Continuum formulation

Our fermionic model can be viewed as a particular
discretization of a continuum theory. This discretization
regularizes the Grassmann functional integral since only
a finite number of Grassmann variables appears. In the
continuum limit the number of Grassmann variables goes to
infinity. This is realized by taking ε → 0 at fixed distances
in t and x. For a given distance in time or space the number
of intermediate lattice points goes to infinity. In the naive
continuum limit sums are replaced by integrals,

Z
dt

Z
dx ¼

Z
t;x

¼ 2ε2
X
t;x

ð75Þ

Here the factor 2ε2 accounts for the fact that
P

t;x only
sums over the points of the even sublattice.
For a continuum version of the classical action that is

regularized by our discretization we simply omit higher
orders in ε. Lattice derivatives are replaced by partial
derivatives, acting on a continuum of Grassmann variables
ψγðt; xÞ, ψ̄ γðt; xÞ. We also choose a different normalization
for the Grassmann variables

ψðt; xÞ ¼
ffiffiffiffiffi
2ε

p
ψNðt; xÞ: ð76Þ
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In this way we absorb the factor ð2εÞ−1 arising from
P

t;x

and Eq. (73). Expressed in terms of ψN the interaction
factor D̃ðxÞ is proportional 4ε2ψ4

N . The continuum limit
ε → 0 is taken at fixed ψN .
The continuum version simplifies the action consider-

ably. We can omit in Eq. (73) the piece ΔLðt − εÞ. Not
writing the index N for the renormalized Grassmann
variables explicitly the continuum action takes the simple
form of a local fermionic quantum field theory,

S ¼
Z
t;x
fψ̄Raðt; xÞð∂t þ ∂xÞψRaðt; xÞ

þ ψ̄Laðt; xÞð∂t − ∂xÞψLaðt; xÞ þ 2D̄ðt; xÞg: ð77Þ

For the local interaction term,

D̄ ¼ −ðψ̄R1ψ̄L2 − ψ̄R2ψ̄L1ÞðψR1ψL2 − ψR2ψL1Þ
¼ ψ̄R1ψR1ψ̄L2ψL2 þ ψ̄R2ψR2ψ̄L1ψL1

þψ̄R1ψL1ψ̄L2ψR2 þ ψ̄R2ψL2ψ̄L1ψR1; ð78Þ

all variables correspond to ψN and are taken at ðt; xÞ.
The continuum version (77) can also be considered as a

naive continuum limit of the discrete fermionic model. The
time continuum limit of a discretized model is more
complex, however. It can be encoded in the quantum
effective action which obtains by integrating the fluctua-
tions in the functional integral. This process leads to
running couplings and possible modifications of the naive
continuum limit.

D. Extended interaction

The action (77) defines a type of fermionic quantum field
theory. We next extend the interaction by inclusion of an
additional scattering process. Our construction is not
limited to the particular “scattering” (49). We may add
to the exchange (48) a further exchange

ð1; 0; 1; 0Þ ↔ ð0; 1; 0; 1Þ: ð79Þ

This corresponds to the transition

R1þ L1 → R2þ L2;

R2þ L2 → R1þ L1; ð80Þ

and to a modification of the step evolution in the corre-
sponding sector

Ŝð1010Þ;ð0101Þ ¼ Ŝð0101Þ;ð1010Þ ¼ 1: ð81Þ

The process of two incoming green particles scattered to
two outgoing red particles, and similarly with the colors
exchanged, is related to the process (49) by a type of
crossing symmetry, as characteristic for many relativistic

quantum field theories. We will see that the combination of
the interactions (49) and (80) leads in the continuum limit
to a type of Thirring model.
The construction of the local factor and Li proceed in

complete analogy to the scattering (49). The relevant basis
functions are ðσ ¼ �1Þ

gð1010Þ ¼ −g0ð1010Þ ¼ ψ2ψ4;

gð0101Þ ¼ −g0ð0101Þ ¼ σψ1ψ3: ð82Þ

The conventions in the Appendix A correspond to σ ¼ 1.
We have added the free sign in order to investigate how
different conventions influence the form of the interaction.
The scattering process (80) adds to D̃ in Eq. (56) a term

C̃ðt; xÞ ¼ −ðψ 0
1ψ

0
3 − σψ 0

2ψ
0
4Þðψ1ψ3 − σψ2ψ4Þ: ð83Þ

The expression (59) remains valid with D̃ replaced by
C̃þ D̃. Also Eqs. (61) and (62) remain valid with
D̃ → C̃þ D̃. In the continuum version (77) one replaces
again D̄ by C̄þ D̄, with

C̄ðt; xÞ ¼ −ðψ̄R1ψ̄L1 − σψ̄R2ψ̄L2ÞðψR1ψL1 − σψR2ψL2Þ;
ð84Þ

and all Grassmann variables corresponding to ψNðt; xÞ.
Now the combination 2ðD̄þ C̄Þ specifies the interaction
term in the fermionic action.

E. Lorentz symmetry

In the continuum version the action becomes invariant
under Lorentz transformations. We introduce for each color
two-component vectors of Grassmann variables

ψa ¼
�
ψRa

ψLa

�
; ψ̄a ¼ ðψ̄La;−ψ̄RaÞ: ð85Þ

The action takes the familiar form

S ¼
Z
t;x
f−ψ̄aγ

μ∂μψa þ Lig; ð86Þ

with

Li ¼ 2ðC̄þ D̄Þ: ð87Þ

Here the Dirac matrices are given by the Pauli matrices

γ0 ¼ −iτ2; γ1 ¼ τ1; fγμ; γνg ¼ 2ημν; ð88Þ

with Lorentz signature η00¼−1, η11 ¼ 1, ∂0 ¼ ∂t, ∂1 ¼ ∂x,
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ημν ¼ diagð−1; 1Þ; γμ ¼ ημνγ
ν: ð89Þ

The Lorentz transformations act on the coordinates in the
usual way. At this point we employ the continuum limit
since the lattice coordinates admit only a discrete subgroup.
Beyond the transformation of coordinates the fermion
doublets transform as spinors

δψ ¼ −ηΣ01ψ ; δψ̄ ¼ ηψ̄Σ01; ð90Þ

with infinitesimal transformation parameter η and generator

Σ01 ¼ 1

4
½γ0; γ1� ¼ −

1

2
τ3: ð91Þ

We show in Appendix C that the interaction part reads
for σ ¼ −1

Lint ¼
Z
x

�
−
1

2
ψ̄aγ

μψaψ̄bγμψb þ ψ̄aγ
μψbε

abψ̄cγμψdε
cd

�
;

ð92Þ

with antisymmetric tensor ε12 ¼ −ε21 ¼ 1. The action (92)
is invariant under a global SOð2Þ—symmetry of continu-
ous color rotations. An equivalent Abelian color symmetry
for σ ¼ 1 transforms

�
ψ1

ψ2

�
→ eiβτ1

�
ψ1

ψ2

�
;

�
ψ̄1

ψ̄2

�
→ e−iβτ1

�
ψ̄1

ψ̄2

�
: ð93Þ

We conclude that the conventions for Grassmann basis
elements affect the concrete expression for the action, but
do not alter the physical content of the model.
The interaction (92) defines a type of Thirring model

[45–48] with two colors. By a different ordering of the
Grassmann variables we can equivalently write it as a
colored Grass-Neveu model [57–60]. For this purpose one
expresses 2ðD̄þ C̄Þ in terms of the Lorentz-scalars

φab ¼ ψ̄aψb ¼ ðψ̄LaψRb − ψ̄RaψLbÞ;
φ̃ab ¼ ψ̄aγ̄ψb ¼ ðψ̄LaψRb þ ψ̄RaψLbÞ: ð94Þ

An explicit expression can be found in Appendix C. There
we also discuss the decomposition of Dirac fermions into
Weyl and Majorana fermions.
It is instructive to consider the “continuum constraint”

ψ̄ γ ¼ ψγ , for which the interaction term simplifies

D̄ ¼ −σC̄ ¼ 2ψR1ψL1ψL2ψR2: ð95Þ

Combination into complex Grassmann variables

ζR ¼ ψR1 þ iψR2; ζL ¼ ψL1 þ iψL2 ð96Þ

yields for σ ¼ −1

Li ¼ 2ðC̄þ D̄Þ ¼ −ðζ�LζR − ζ�RζLÞ2 ¼ −ðζ̄ζÞ2; ð97Þ

where the two-component spinors, ζ, ζ̄ are formed in
analogy to Eq. (85). This is precisely the interaction of the
Gross-Neveu model with a particular value of the coupling.
If we omit the extension of the scattering process (80) by

setting C̄ ¼ 0, the coupling strength in Eq. (97) is reduced
by a factor two, and similarly if we only keep the scattering
process (80) and omit the scattering (49) by setting D̄ ¼ 0.
These different automata can be considered as different
lattice-regularizations of the continuum Gross-Neveu
model. This raises the question of the true continuum
limit. Do these discrete lattice regularizations of the Gross-
Neveu model belong to the same universality class as a
continuum regularization which preserves Lorentz sym-
metry? Is Lorentz symmetry restored in the continuum
limit? Is the naive continuum limit a valid approximation to
the effective action? Are the particular values of the
coupling for which one obtains an automaton singled
out for the continuum limit?
We finally observe that the fermionic action appears in

the functional integral by the factor e−S and not as eiS as in
the usual formulation of quantum field theory with a
Minkowski signature. Nevertheless, the model has a unitary
evolution. The analytic continuation of the action to
Euclidean signature differs from the usual setting by an
additional overall factor i.

IV. CELLULAR AUTOMATON FOR THE
FERMION MODEL

We have established that the step evolution operator for a
discretization of the particular Thirring type model (92) or
equivalent Gross-Neveu model (97) is a unique jump
matrix. We consider the combination of the evolution steps
at t and tþ ε̃ as a single combined evolution step from t to
tþ 2ε̃ ¼ tþ ε, according to Eq. (67). The first operator
Ŝfree moves right-movers one place in x to the right, and
left-movers one place to the left. The second factor Ŝint
exchanges at each location x the colors of all particles if
precisely one left mover and one right mover is present at x.
Otherwise the colors are kept. This constitutes a simple rule
for a cellular automaton.
With both the Thirring-type model and the associated

cellular automaton having the same evolution rule accord-
ing to identical step evolution operators it only remains to
identify the probabilistic information in the wave function
of the Thirring model with the one of a probabilistic cellular
automaton. The present section will discuss in some more
detail the properties of the “updating rule” encoded in the
step evolution operator, while we turn to the probabilistic
aspects in Sec. V.
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A. Different lattice representations

The square lattice can be decomposed into two sub-
lattices: the even sublattice with mt þmx even, and the odd
sublattice with mt þmx odd. Since all particles move on
diagonals the dynamics on the even and odd sublattice is
completely disconnected and we have defined our model
only on the even sublattice. On each lattice point one can
have up to four particles, left- or right movers, red or green.
Starting from the even sublattice only, we can now
redistribute the particles between the sublattices, by putting
on the even sublattice the right movers and on the odd
lattice sites the left movers. In this picture the whole lattice
is used, with each lattice site occupied by up to two
particles. On the even sublattice one has green or red right
movers, and on the odd sublattice we place the green or red
left-movers.
This redistribution does not change the dynamics, as

illustrated in Fig. 1. In this figure we display the lines of
single occupied sites, occupied either by a red or green
particle. There are additional lines for empty sites, or sites
occupied by both a red and a green particle. These lines do
not scatter and are not shown in the figure. The original
lattice has points at the centers of the squares surrounding
the crosses. Up to four particles can occupy a site, and only
the sites of an even sublattice are occupied by the squares.
After the redistribution the lattice sites are at the corners of
the squares surrounding the scattering points. The distance
between two points is now given by ε. Only up to two
particles can occupy each site. On the initial horizontal line
at t ¼ 0 the right movers occupy the sites with evenmx, and
the left movers the sites with odd mx. This is interchanged
at tþ ε. Now the right movers are on the sites with oddmx,
and the left movers on the sites with even mx.

B. Properties and symmetries of cellular automaton

From Fig. 1 one can easily see a few characteristic
features of this cellular automaton.
(1) The total number of right movers and the total

number of left movers are conserved separately as
time increases. (There is the same number on each
hypersurface with given t.) This implies, of course,
conserved total particle number,

Np ¼
X
x

X
γ

nγðxÞ: ð98Þ

(2) If we disregard the color, all particles move on
straight lines, with velocity c ¼ 1. They move either
to the left or to the right.

(3) Doubly occupied lines, with both a red and a green
particle moving in the same direction, do not
undergo scattering. They move as free “composite
states” or “bound states.” At most one right-moving
and one left-moving composite state can be present
at each site. Possible occupation numbers for these
composite states are one or zero, as for fermions.

(4) The single occupied lines change color whenever
they encounter another single occupied line. The
scattering concerns the internal degrees of freedom.
The interaction changes the color. In the four corners
surrounding each square for a scattering event one
has precisely a total number of four particles, two
red and two green, two left movers and two right
movers. A line with a given color never ends, but it
can move backwards in time. Loops or closed lines
with a given color are possible.

(5) The picture can be rotated by π=2 without changing
the dynamical rules. The dynamics has a type of
“crossing symmetry.” If a red and a green particle
can scatter into a green and a red particle, there is
also a scattering of two green particles into two red
particles, and vice versa.

(6) The dynamics is invariant under a reflection in t
(time reversal symmetry) and in x (parity).

(7) The number of red and green particles is not
conserved separately. Two red particles can become
two green particles. Since changes are always by two
particles, and even (odd) number of red particles
remains even (odd), and similar for the green
particles.

(8) The dynamics is invariant under an exchange of
colors E. Exchanging the two colors in Fig. 1
produces again a diagram allowed by the dynamics.

(9) A single particle line for occupied red sites can also
be seen as a line of single empty green sites or green
holes. The symmetry F exchanges a red particle and
a green hole as well as a green particle and a red
hole. This transformation changes double occupied

FIG. 1. Cellular automaton for interacting fermions. Single
occupied red or green lines scatter at the squares. We have not
indicated empty lines, or left- or right moving lines which are
doubly occupied by one red and one green particle. These lines
are straight without scattering.
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lines into empty lines, and vice versa. Since these
lines do not under go scattering, the dynamics is
invariant under the symmetry F. Combining the
symmetry F with the color exchange symmetry E
one obtains particle-hole symmetry K. Under this
symmetry each particle γ is mapped to a hole γ and
vice versa, e.g., red right moving particles transform
to red right moving holes etc. The dynamics is
invariant under particle-hole symmetry.

These properties have their correspondence in the fer-
mionic quantum field theory. In the Appendix D we list the
symmetries of the Thirring-type model. This establishes
direct relations for all the nine points. General properties as
conserved quantum numbers for the automaton find a direct
root in continuous or discrete symmetries in the fermionic
language.

C. Simple evolution of deterministic automaton

Many of the features discussed so far are rather easily
extended to more complex automata. The particular
automaton discussed here has a rather simple structure
which makes it suitable for a discussion of general
concepts, since the latter often find simple concrete
realizations. For a deterministic cellular automaton with
a sharp initial state τ0 at tin we can compute the configu-
ration τn for t ¼ tin þ nε in a straightforward way.
If at tin we have at position x both a right-moving red and a

right-moving green particle, we will find at t at the position
xþ nε both the red and green right-moving particles. This
follows from the observation that doubly occupied lines do
not scatter. The same holds if at tin neither a right-moving red
particle not a right-moving green particle is present at x.
Since empty lines do not scatter, we infer for t that at xþ nε
no right-movers are present. The argument extends similarly
to left-movers, with xþ nε replaced by x − nε.
What remains are positions x at tin for which only a

single right-moving particle and/or a single left-moving
particle is present. Single particles follow straight lines,
only the color can change due to scattering. For every
single right-mover at ðtin; xÞ we find a single right-mover at
ðtin þ nε; xþ nεÞ, and for every single left-mover at ðtin; xÞ
one has a single left-mover at ðtin þ nε; x − nεÞ. The
numbers of right-movers and left-movers at ðt; xÞ are easily
determined in this way for any initial configuration τ0.
What remains is the determination of the color of the single
right-movers and single left-movers at ðt; xÞ.
For this purpose we observe that a single right-moving

particle line changes color whenever it crosses a single left-
moving particle line, and conserves color for every crossing
of a doubly occupied or empty left-moving line. This can be
seen directly from Fig. 1. Indeed, according to our updating
rule, a change of color occurs if the line crosses a left-
moving line of either a single red or a single green particle.
The color change occurs independently of the color of the
encountered single left-moving particle. The same rule

holds for the color of single left-moving particles. The color
is switched whenever a single right-moving particle of
arbitrary color is crossed.
The color of a single right-mover at ðt; xÞ is determined by

the color of the right-mover at ðtin; x − nεÞ and the number of
color switches. We have the same color at ðt; xÞ and ðtin; x −
nεÞ if the number of crossed single left-movers is even, while
a color switch occurs for an odd number of crossed single
left-moving lines. For the counting of the number of switches
we define the “backwards light cone” of a single right-mover
at ðt; xÞ by the interval ½x − nε; xþ nε�.
One of the boundaries of the light cone is the past

trajectory of the single right-mover, whereas the other
corresponds to the past trajectory of a left-mover. Every
single left-mover at t − nε in the interval ½x − ðn − 2Þε; xþ
nε� will cross the right-moving single particle line in the
time interval ½t − ðn − 1Þε; t� ¼ ½tin þ ε; t�. The number of
color switches is therefore given by the number of positions
in the interval ½x − ðn − 2Þε; xþ nε� for which a single left-
mover is present at tin. This is easily visualized in Fig. 2.
The analogous rule holds for the color switches for a single
left-mover at ðt; xÞ. The number of switches corresponds
to the number of single right-movers in the interval
½x − nε; xþ ðn − 2Þε� at tin.
We can use time-reversal invariance in order to construct

for any given configuration τ at t the corresponding
configuration for t0 < t. With a single combinatorial algo-
rithm for determining for every configuration τ at t the
configuration τ0 at tin from which it originates, we can
focus on the probabilistic aspects of the cellular automaton.
In principle, the problem is simple since pτðtÞ ¼ pτ0ðtinÞ.
For a very large number of time steps and positions x the
relevant light cones become large. One would like to find
some type of continuum formulation. We will see that the
concepts of quantum mechanics as wave functions and a
density matrix are rather useful in this context.

D. Automaton with shifted blocks

There is an alternative view on the automaton of our
model. We can start at even tin in the picture where left and

FIG. 2. Color switches for a single right-mover. The past light
cone of the particle at (t, x ¼ 0) is shaded.
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right movers are situated on different sublattices. For even t
we define blocks Bðt; xÞ consisting of four sites ðt; xÞ; ðtþ
ε; xÞ; ðt; xþ εÞ and ðtþ ε; xþ εÞ. The evolution from t to
tþ ε can then be described separately in each block Bðt; xÞ.
Each block defines a small automaton with four variables
(occupation numbers) at both t and tþ ε, namely the red
and green particles at x and xþ ε. The rules for the
automaton have to specify how each one of the sixteen
configurations is mapped from t to tþ ε. The rule is that all
configurations at ðt; xÞ are transported to ðtþ ε; xþ εÞ, and
all configurations at ðt; xþ εÞ are transported to (tþ ε, x),
with one exception: Configurations with one particle at x
and one particle at xþ ε change color when they are
transported to the diagonally opposite sites at tþ ε. In other
words, all particles are transported on the crossed diagonals
in the block. The color of the particles remains the same
except for the interchange in case of single occupancy at x
and xþ ε. The squares on the bottom line in Fig. 1
correspond to blocks for which a color exchange occurs.
Drawing a square in the lower left corner would feature a
red particle moving on the diagonal without color change.
For odd tþ ε we again define blocks Bðtþ ε; xÞ,

consisting now of the sites ðt; xÞ; ðtþ ε; xÞ; ðt; x − εÞ;
ðtþ ε; x − εÞ. As compared to even t, the blocks are shifted
one place to the left. Otherwise the same rules for the
automaton of each block apply. Alternating the positions of
the blocks between even and odd twe reconstruct all rules of
the full cellular automaton. The advantage of this formulation
is that at each time step it is sufficient to solve the translation
between 16 × 16 unique jump step evolution operator Ŝðt; xÞ
and a representation in terms of Grassmann variables. The
overall step evolution operator obtains as a direct product
over all blocks,

ŜðtÞ ¼
Y
x

Ŝðt; xÞ; ð99Þ

similar to Eq. (47). The difference is that we have now only
half the number of blocks, while the kinetic and interaction
part are treated in common within each block. This setting is
described inRef. [42]. The cellular automaton is precisely the
same as the one corresponding to the particular Thirring
model discussed in the present paper. Also the associated
fermionic model is the same.

V. PROBABILISTIC CELLULAR AUTOMATA AND
EVOLUTION OF THE WAVE FUNCTION

For probabilistic cellular automata the initial conditions
are given by a probability distribution of initial conditions.
This can be described by a wave function which plays the
same role as in quantum mechanics. The evolution of the
wave function follows a discrete Schrödinger equation. We
will first discuss the concept of a wave function for
probabilistic cellular automata. Subsequently, we show
that this wave function is the same for the fermionic

model. This demonstrates that an interacting quantum
theory, more specifically a fermionic quantum field theory
with interactions, is precisely equivalent to a probabilistic
cellular automaton.

A. Initial conditions

For a deterministic cellular automaton the initial state at
some initial time tin is given by precisely one specific
configuration ρ̄. This configuration is propagated by the
rules of the automaton to any later time t, such that the
configuration τ at t is uniquely determined. A convenient
description uses an N-component real vector qin with
components ðqinÞρ. The initial state is specified by
qρðtinÞ ¼ δρ;ρ̄, such that only the ρ̄-component of qðtinÞ
differs from zero. The initial microscopic state ρ̄ is trans-
formed at each time step by the rules of the cellular
automaton. Each step corresponds to a (matrix—) multi-
plication of the vector q by the step evolution operator Ŝ.
After a certain number of steps one arrives at tf at a vector
qðtfÞ. Only one component of this vector differs from zero.
This indicates the microscopic state which is reached by the
action of the automaton.
For a probabilistic cellular automaton the initial con-

dition specifies a probability pρðtinÞ for every possible
initial configuration ρ. It obeys the standard laws of
probability theory, pρðtinÞ ≥ 0;

P
ρ pρðtinÞ ¼ 1. Each con-

figuration ρ propagates by the deterministic rules of the
automaton to a specific configuration τðt; ρ̄Þ at later t. The
probability to find the configuration τ at t, pτðtÞ, is
precisely the probability pρ̄ðtinÞ of the initial configuration
from which it originated,

pτðtÞ ¼ pρ̄ðτÞðtinÞ: ð100Þ

This transformation of the probability distribution defines
the probabilistic cellular automaton. The probability dis-
tribution at any t is, in principle, calculable from the initial
probability distribution. We may again use the vector qin for
the specification of the initial condition. It is defined by the
relation pρðtinÞ ¼ ðqρðtinÞÞ2. In contrast to the deterministic
cellular automaton more than one component of qðtinÞ can
differ from zero. We will see that the evolution rule of
multiplication with the step evolution operator is the same
for probabilistic and deterministic cellular automata.

B. Wave function for cellular automaton

The specification of the probability distribution by a
wave function qðtÞ can be used for every time t,

pτðtÞ ¼ ðqτðtÞÞ2: ð101Þ

The positivity of the probabilities is guaranteed, and the
normalization requires that qðtÞ is a unit vector

C. WETTERICH PHYS. REV. D 105, 074502 (2022)

074502-14



qτðtÞqτðtÞ ¼ 1: ð102Þ

The use of the “classical wave function” qðtÞ [61] instead
of the probability distribution pðtÞ offers both technical and
conceptual advantages [1].
The evolution law for the wave function can be written in

terms of the step evolution operator ŜðtÞ by matrix
multiplication

qðtþ εÞ ¼ ŜðtÞqðtÞ; qτðtþ εÞ ¼ ŜτρðtÞqρðtÞ: ð103Þ
Indeed, with

ŜτρðtÞ ¼ δτ;τ̄ðρÞ ¼ δρ̄ðτÞ;ρ; ð104Þ

the step evolution operator differs from zero only if the
configuration τ at tþ ε equals the configuration τ̄ðρÞ
associated to the configuration ρ at t by the rule of the
automaton. Equation (103) implies

qτðtþ εÞ ¼ qρ̄ðτÞðtÞ;
pτðtþ εÞ ¼ pρ̄ðτÞðtÞ; ð105Þ

thus producing the rule for the probabilistic cellular
automaton. Following the evolution for a sequence of time
step yields Eq. (100).
The vector qðtÞ resembles the wave function of quantum

mechanics in a real representation. Any complex wave
function ψQ has an associated real representation with
twice the number of components. With

ψQðtÞ ¼ qRðtÞ þ iqIðtÞ; ð106Þ

the real representation reads

qðtÞ ¼
�
qRðtÞ
qIðtÞ

�
: ð107Þ

Whenever the evolution of qðtÞ is compatible with the
complex structure (106) the normalization of the wave
function, ψ�

QψQ ¼ 1, is guaranteed by the relation (102). It

is conserved by the evolution (103) since Ŝ is an orthogonal
matrix, such that the length or norm of qðtþ εÞ is the same
as the one of qðtÞ. The evolution is therefore unitary. Also
the relation between the wave function or probability
amplitude qτðtÞ and the probabilities pτðtÞ in Eq. (101)
is the same as for quantum mechanics.

C. Wave function for fermionic quantum field theory

The Grassmann wave function for the fermionic descrip-
tion is an element of the real Grassmann algebra constructed
over the variables ψαðtÞ at a given t, gðtÞ ¼ g½ψðtÞ�. We can
expand it in the basis of the fermionic quantum field theory
with the functions gτðtÞ ¼ gτ½ψðtÞ�,

gðtÞ ¼ qτðtÞgτðtÞ ¼ qτðtÞgτ½ψðtÞ�: ð108Þ

Wewill see that the coefficients qτðtÞ are the components of
the quantum wave function if gðtÞ is properly normalized.
They will be in one-to-one correspondencewith the classical
wave function for the probabilistic cellular automaton. This
allows the identification of the fermionic quantum field
theorywith the cellular automaton. Thewave functionqðtÞ is
a real unit vector with N ¼ 2M components, as appropriate
for a quantum field theory of Dirac fermions, withM ¼ 4Mx
andMx the number of space points.Wewill later decompose
qðtÞ into sectors with a fixed particle number. The wave

function for the one-particle sector qð1Þγ ðt; xÞ will be a real
four-component function of t and x.
The time evolution of the Grassmann wave function gðtÞ

obeys

gðtþ εÞ¼
Z

Dψ̄ðtþ εÞDψðtÞK̃int

�
tþ ε

2

�
K̃freeðtÞgðtÞ

¼ gðtþ2ε̃Þ¼
Z

Dψðtþ ε̃ÞDψðtÞK̃ðtþ ε̃ÞK̃ðtÞgðtÞ;

ð109Þ

where the second line refers to the original formulation
before coarse graining. Insertion of

K̃ðtÞ ¼ ḡ0τðtþ ε̃ÞŜfreeτρ ḡρðtÞ;
K̃ðtþ ε̃Þ ¼ gτðtþ 2ε̃ÞŜintτρg0ρðtþ ε̃Þ; ð110Þ

yields, in close analogy to Sec. II,

gðtþ 2ε̃Þ ¼ qτðtþ 2ε̃Þgτðtþ 2ε̃Þ; ð111Þ

with evolution of the wave function according to

qτðtþ 2ε̃Þ ¼ SintτρSfreeρσ qσðtÞ: ð112Þ

In the coarse grained language this is identical to Eq. (103),
such that the wave function of the fermionic system follows
the same evolution as the one for the cellular automaton.
The evolution law (109) follows directly from the

Grassmann functional integral by a partial integration over
the variables at t0 < t,

gðtÞ ¼
Z

Dψðtin ≤ t0 < tÞDψ̄ðtin < t0 ≤ tÞ

× K̃ðt − ε̃Þ…K̃ðtinÞgðtinÞ: ð113Þ

The step to gðtþ 2ε̃Þ involves two additional K̃-factors and
two additional integrations, proving Eq. (109).
We have implemented initial conditions at tin by an

additional factor gðtinÞ, which encodes the wave function
gτðtinÞ according to
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gðtinÞ ¼ gin½ψðtinÞ� ¼ qτðtinÞgτ½ψðtinÞ�: ð114Þ

This factor could be seen as an additional part of K̃ðtinÞ. We
prefer to have it separated in the notation. In this case the
integrand of the partition function Z in Eq. (2), and
accordingly the weight distribution w½ψ � in Eq. (4). are
multiplied by an additional factor gðtinÞ. We can implement
boundary conditions at tf by a further boundary factor
ĝðtfÞ. We will typically choose these “final boundary
conditions” such that the conjugate wave function agrees
with the wave function, but more general choices are
possible as well.
The conjugate Grassmann wave function is introduced in

complete analogy to the Grassmann wave function, evolv-
ing no backwards from the final boundary condition. We
present details in Appendix E. Quite generally, the pair of
Grassmann wave function and conjugate Grassmann wave
function permit the evaluation of expectation values for
time-local observables in the fermionic quantum field
theory. This can be connected directly to the Grassmann
functional expression for observables in terms of
Grassmann operators.

D. Density matrix for cellular automaton

For a pure state we define a symmetric real density
matrix for the cellular automaton as a bilinear in the wave
function,

ρ̂αβðtÞ ¼ qαðtÞqβðtÞ: ð115Þ

Its relation to the density matrix in the fermionic model
represented by a Grassmann functional is established in the
Appendix F. The density matrix can be extended to more
general boundary conditions for mixed states. Its evolution
obeys a discretized Newmann equation

ρ̂ðtþ εÞ ¼ ŜðtÞρ̂ðtÞŜTðtÞ: ð116Þ

The diagonal elements are the time-local probabil-
ities pαðtÞ ¼ ρ̂ααðtÞ.
The density matrix ρ̂ðtÞ is the central object which

specifies the time-local probabilistic information for the
cellular automaton. Once known at a given time t all
expectation values of time-local observables can be com-
puted from it. No additional information on the past
properties of the automaton for t0 < t are needed. With
the evolution equation (116) the density matrix can be
computed for t0 > t, allowing for predictions in terms of the
state of t. The density matrix contains probabilistic infor-
mation beyond the time-local probabilities pαðtÞ. This is
stored in the off-diagonal elements of ρ̂ðtÞ. This additional
information allows the computation of expectation values
of observables beyond those that are functions of occupa-
tion numbers at t.

E. Operator for observables

In quantum mechanics one associates to some observ-
able A a Hermitian operator Â such that its expectation
value is given for all t by the quantum rule

hAðtÞi ¼ trfÂρðtÞg: ð117Þ

Here ρðtÞ is the quantum density matrix. It is a Hermitian
complex matrix which is normalized, trρ ¼ 1, and positive
in the sense that all its eigenvalues are positive semidefinite.
Expressing the complex quantities in terms of real quan-
tities the density becomes a real symmetric matrix ρ̂ðtÞ, and
similarly the operators are real symmetric matrices. These
structures are found in a completely analogous way for
probabilistic automata.
We discuss in the Appendix G how observables for the

automaton are mapped to operators. This includes observ-
ables involving occupation numbers at different times. The
quantum law (117) for expectation values follows directly
from the general classical statistical rule for expectation
values in probabilistic systems. Also many powerful
methods of quantum physics, as a change of basis, can
be directly implemented for the probabilistic automaton.
Quantum mechanics is characterized by noncommuting
operators for observables. We know that such observables,
as the momentum observable not commuting with the
position observable for a particle, play an important role in
quantum mechanics. The momentum is a key quantity to
characterize the single-particle state in a fermionic quantum
field theory, with extensions to many-particle states. It can
be expected to be also a useful quantity for the associated
probabilistic automaton. This will be discussed in Sec. IX.
The momentum observable is represented by an operator
that does not commute with operators for the occupation
numbers.
Finally, one would like to make the step from a real

formulation to a complex formulation and see how density
matrix and operators are mapped to Hermitian complex
matrices. This requires the introduction of a suitable
complex structure in the next section.

VI. PARTICLE-HOLE SYMMETRY AND
COMPLEX STRUCTURE

Particle-hole symmetry is a key ingredient for fermionic
quantum field theories. The complex structure of quantum
mechanics can be based on this structure. Central sym-
metries as charge conjugation C, time reversal T, and CPT
are directly connected to particle-hole symmetry. For
fermionic quantum field theories the presence of antipar-
ticles emerges naturally in this context. In turn, particle-
hole symmetry reflects the modulo-two property of the
Grassmann functional integral. The particle-hole trans-
formation can be formulated on the level of the wave
function. It therefore applies directly to the cellular
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automaton. The propagation and scattering of our cellular
automaton is invariant under the exchange of particles and
holes and therefore realizes particle-hole symmetry. The
complex structure based on the particle-hole transformation
can be extended to include additional discrete transforma-
tions acting on internal indices.

A. Particle-hole transformation

On the level of the Grassmann wave function we define
the particle-hole transformation as

gðtÞ ¼ qτðtÞgτðtÞ → gcðtÞ ¼ qτðtÞgcτðtÞ: ð118Þ

Here gcτ is related to ḡτ or ḡ0τ by a sign

gcτ ¼ εcτ ḡτ; εcτ ¼ �1: ð119Þ

We choose the sign such that gcτ is one of the Grassmann
basis elements gτc , without an additional minus sign. Every
particle (factor ãα ¼ 1 in gτ) is mapped to a hole (ãα ¼ ψα

in gcτ ), and vice versa.
Instead of changing the Grassmann basis elements at

fixed qðtÞ we can realize the particle-hole transformation
gðtÞ → gcðtÞ also by a map for the wave function at fixed
basis elements,

KðqÞ ¼ qc; Kτρqρ ¼ qcτ : ð120Þ

The matrix K is defined by

gc ¼ Kτρqρgτ ¼ qτgcτ ¼ qcτgτ: ð121Þ

This implies indeed

KðgÞ ¼ ðKðqÞÞτgτ ¼ gc: ð122Þ

With

KðKðgÞÞ ¼ g; ð123Þ

the matrix K describes an involution

KτσKσρ ¼ δτρ; K2 ¼ 1: ð124Þ

For a concrete form of the matrix K we need to identify
pairs of basis elements ðgτ; gcτÞ which are mapped into each
other by K. For this purpose we divide the set of
configurations fτg into two subsets fτ0g and fτcg, where
the elements of fτcg obtain from elements of fτ0g by a
particle-hole transformation. Correspondingly we group
the components of the wave function into two sets. The
associated pairs qτ0 and qτc are grouped into two-compo-
nent vectors, whose components are mapped into each
other by K,

χτ ¼
�
qτ0

qτc

�
¼

�
q0τ
qcτ

�
; Kχτ ¼

�
qτc

q0τ

�
¼

�
qcτ
q0τ

�
;

ð125Þ

such that in this subspace one has

K ¼
�
0 1

1 0

�
¼ τ1: ð126Þ

The number of independent components χτ is only half the
number of components of qτ. We may choose for fτ0g all
configurations with total particle number Np < 2Mx, for
which the complement configurations τc obey Np > 2Mx.
For the remaining “half-filled configurations” with Np ¼
2Mx we include one half in fτ0g and the other half in fτcg.
For a given choice of basis the matrix K is uniquely

fixed. Particle-hole transformations are therefore realized
on the level of wave functions. This formulation directly
applies to the probabilistic cellular automaton since it
shares the same wave function with the associated fer-
mionic quantum field theory. The particle-hole transforma-
tion and the associated complex structure are useful
concepts for the classical statistical system of the probabi-
listic cellular automaton. We note that the choice of signs
εcτ in Eq. (119) is not unique. Different choices lead to
different matrices K. We only require the involution
property K2 ¼ 1. The grouping into pairs (q0τ; qcτ ) remains
the same, but for the action of K on a subspace with given τ
one may have to replace τ1 by −τ1. For the sake of
simplicity we will stick here to the definition (126).
A unit step evolution operator reproduces the same

Grassmann wave function only after two evolution
steps ε̃. After a single evolution step it changes the
Grassmann wave function g½ψ � to ĝ½ψ̄ � according to

Z
DψðtÞ expfψ̄αðtþ εÞψαðtÞgqτðtÞgτ½ψðtÞ�

¼ qτðtÞḡ0τ½ψ̄ðtþ εÞ� ¼ ĝðtþ εÞ: ð127Þ

For every factor ãα ¼ ψα in g½ψ � one has a factor āα ¼ 1 in
ĝ½ψ̄ �, while a factor ãα ¼ 1 in g½ψ � results in a factor ψ̄α for
ĝ½ψ̄ �. If we identify a factor ãα ¼ 1 in ĝ½ψ � with a present
particle, and a factor ãα ¼ ψα with an absent particle or
“hole”, the role of particles and holes is interchanged for a
single evolution step ε̃. Up to relative minus-signs the unit
step evolution operator realizes in a single step ε̃ the particle-
hole conjugation K. This is the reason for our use of coarse
graining that groups together two evolution steps ε̃ to a
combined step ε ¼ 2ε̃.

B. Complex structure

A general complex structure is defined by a pair of
discrete transformations ðK; IÞ which obey
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K2 ¼ 1; I2 ¼ −1; fK; Ig ¼ 0: ð128Þ

The involution K realizes the operation of complex con-
jugation, while I implements the multiplication by i. For K
we choose the particle-hole transformation (120).
Quantities that are even with respect to K are considered
as real, while odd quantities become imaginary.
Correspondingly, we define

φRτ ¼
1ffiffiffi
2

p ðq0τ þ qcτÞ; φIτ ¼
1ffiffiffi
2

p ðq0τ − qcτÞ: ð129Þ

The map from real to complex wave functions,
qðtÞ → φðtÞ, is realized by defining the components φτ

of the complex wave function by

φτ ¼ φRτ þ iφIτ ¼
1þ iffiffiffi

2
p q0τ þ

1 − iffiffiffi
2

p qcτ ¼ e
iπ
4 ðq0τ − iqcτÞ:

ð130Þ

For each τ this is a map χτ → φτ, and we recall that the
number of complex components is now N=2, τ ¼ 1…N=2.
Keeping in mind the different ranges for the sums over τ we
observe

φ�
τφτ ¼

XN=2

τ¼1

φ�
τφτ ¼

XN=2

τ¼1

ððq0τÞ2 þ ðqcτÞ2Þ

¼
XN
τ¼1

q2τ ¼ qτqτ ¼ 1; ð131Þ

which amounts to a standard normalization of a complex
wave function in quantum mechanics

φ†ðtÞφðtÞ ¼ 1: ð132Þ

The map (130) also specifies the transformation I as

I ¼
�

0 1

−1 0

�
¼ iτ2: ð133Þ

With this definition one has

φðKqÞ ¼ φ�; φðIqÞ ¼ iφ; ð134Þ

such that the multiplication of φ with a complex number
can be realized by an appropriate linear transformation of q.
This generalizes to the multiplication of φ by a complex

N=2 × N=2-matrix A, which is implemented by a multi-
plication of q by a real N × N-matrix Â,

φA ¼ Aφ; A ¼ AR þ iAI ↔ qA ¼ Âq;

Â ¼ AR1þ AII: ð135Þ

Any real matrix of the form AR1þ AII is called compatible
with the complex structure and associated in the complex
picture to the complex matrix A. For matrices Â, B̂ that are
compatible with the complex structure the multiplication of
q by Â in the real basis is mapped to the multiplication of φ
by A in the complex basis. Also the real matrix product Â B̂
is mapped to the complex matrix product AB. For sym-
metric matrices ÂT ¼ Â the compatibility condition (135)
implies AT

R ¼ AR, AT
I ¼ −AI . The associated complex

matrix is therefore Hermitian, A† ¼ A.
For symmetric operators Â which are compatible with

the complex structure the quantum rule (G4) for expect-
ation values takes in the complex formulation the usual
form

hAi ¼ hφjAjφi ¼ φ�
τAτρφρ: ð136Þ

We could choose a different basis

χ0 ¼
�
φR

φI

�
; ð137Þ

which is related to χ by the similarity transformation (129).
In this basis one has

K ¼ τ3; I ¼ −iτ2: ð138Þ

There are many possibilities to introduce a complex
structure (128) by a suitable choice of the discrete trans-
formations K and I. In general, the particle-hole trans-
formation and the involution defining the complex
conjugation may be different transformations K0 and K.
In particular, we may multiply the particle-hole trans-
formation K0 by a change of sign of all Grassmann
variables with the color two. Accompanied by a corre-
sponding modification of I this makes the setting compat-
ible with the definition of a complex Dirac spinor in terms
of two real Majorana spinors.
A useful complex structure should be compatible with

the time evolution in the sense that the step evolution
operator is a matrix compatible with the complex structure
obeying Eq. (135). This requirement restricts the possible
complex structures, but is not sufficient to single out a
unique one. We may further require that the vacuum state is
invariant under the complex conjugation K. Thus the useful
complex structures may depend on the vacuum state.
We discuss this briefly in Sec. VIII, focusing in the
following on the identification of K with the particle-hole
transformation.

C. Complex density matrix

For a pure state we define the complex density matrix by

ρτρ ¼ φτφ
�
ρ: ð139Þ
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In terms of the real wave function this reads

ρτρ ¼ q0τq0ρ þ qcτqcρ þ iðq0τqcρ − q0ρqcτÞ: ð140Þ

The symmetric part of ρ is real and the antisymmetric part
imaginary, such that ρ is Hermitian

ρ† ¼ ρ: ð141Þ

The right-hand side (rhs) of Eq. (140) is a linear combi-
nation of matrix elements of the real density matrix ρ̂.
For a generalization beyond pure states we choose a

basis for which the N=2 components corresponding to the
states τ0 of the complex formulation form the first set of
components, and the one for τc the second set, such that the
pure state wave function is ordered as

q ¼
�
q0

qc

�
; ð142Þ

with q0τ ¼ qτ for the first N=2 components. In this basis we
define for general symmetric ρ̂

ρ̂ ¼
�

ρ0 ρ̃

ρ̃T ρc

�
: ð143Þ

For the special case of pure states this yields

ρ0τρ ¼ q0τq0ρ; ρcτρ ¼ qcτqcρ; ρ̃τρ ¼ q0τqcρ; ð144Þ

and therefore Eq. (140) reads

ρτρ ¼ ρ0τρ þ ρcτρ þ iðρ̃τρ − ρ̃TτρÞ: ð145Þ

The matrix (143) is the most general form of a symmetric
real density matrix ρ̂. We can employ Eq. (145) for the
definition of the complex density matrix ρ for mixed states.
For general symmetric mixed state density matrices ρ̂ the
map ρ̂ → ρ is not invertible. A general real symmetric
N × N-matrix has NðN þ 1Þ=2 independent real entries,
while the number of independent real elements for a general
HermitianN=2 × N=2-matrix is onlyN2=4. For a pure state
density matrix the relation ρ̂2 ¼ ρ̂ is mapped to ρ2 ¼ ρ,
such that ρ̂2 is mapped to ρ2. For a general mixed state
density matrix (143) the real square ρ̂2 is no longer mapped
to the complex square ρ2. We can generalize the map (145)
to nonsymmetric real ρ̂ by replacing ρ̃T in Eqs. (143) (145)
by an independent matrix ρ̃0. If ρ̂ is not symmetric, ρ is not
Hermitian.

D. Unitary evolution

Let us next discuss the compatibility of the step
evolution operator with the complex structure. Since the
particle-hole conjugation is a map on configurations or

wave functions at a point t, it remains on the same
sublattice for x, e.g., even x for even t. After the action
of the step evolution operator ŜðtÞ the configuration
remains on the even sublattice, involving now odd x for
odd tþ ε. Only after two steps the configurations are again
on the same even sublattice for x, such that the evolution
can be compared with the action of the particle-hole
transformation. For this reason we define here, with a
slight abuse of notation and for even t,

Ŝ ¼ Ŝðtþ εÞŜðtÞ: ð146Þ

A general step evolution operator Ŝ reads in the
basis (142)

Ŝ ¼
�
Ŝ0 S̃

S̃0 Ŝc

�
; ð147Þ

where the orthogonality ŜT Ŝ ¼ 1 restricts the N=2 × N=2-
matrices Ŝ0, Ŝc, S̃ and S̃0. The evolution law (F23),
ρ̂ðtþ 2εÞ ¼ Ŝ ρ̂ðtÞŜT , is compatible with the complex
structure provided that

Ŝc ¼ Ŝ0; S̃0 ¼ −S̃: ð148Þ

In this case one has

Ŝ ¼ Ŝ01þ S̃I; ð149Þ

and we can map Ŝ to a complex N=2 × N=2-matrix U
defined by

U ¼ Ŝ0 þ iS̃: ð150Þ

According to Eq. (135) the time evolution of the complex
wave function φ reads

φðtþ 2εÞ ¼ UðtÞφðtÞ: ð151Þ

This translates to the evolution law for the complex density
matrix

ρðtþ 2εÞ ¼ UρðtÞU†: ð152Þ

With the condition (148) the orthogonality of Ŝ
translates to

Ŝ0TŜ0 þ S̃T S̃ ¼ 1;

Ŝ0TS̃ ¼ S̃T Ŝ0 ¼ ðŜ0TS̃ÞT: ð153Þ

These relations imply that U is a unitary matrix,

U†U ¼ 1: ð154Þ
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This is easy to understand from Eq. (131): Real orthogonal
transformations preserve the norm of q, and unitary trans-
formations preserve the norm of φ.
For a suitable choice of bit configurations τ0 and τc that

are mapped into each other by the particle-hole trans-
formation the step evolution operator Ŝ of our model obeys
the properties (153). Such a choice is necessary in order to
define the action of Ŝ in the basis (142). For an appropriate
choice we obtain Ŝc ¼ Ŝ0 and S̃ ¼ S̃0 ¼ 0, such that the
evolution is indeed unitary for the corresponding complex
structure.
Consider first a submanifold of states τ0 that are mapped

by Ŝ to other states within the same submanifold, and
assume that the particle-hole transform KðτÞ of every state
in the submanifold yields a state τc that does not belong to
the submanifold. This defines the submanifold of states
fτcg that are in the complement of fτ0g with respect to K.
Particle-hole symmetry of the dynamics implies Ŝc ¼ Ŝ0 for
all states in these submanifolds. For a suitable assignment
of states to τ0 and τc this division into submanifolds is
complete in the sense that every configuration τ belongs
either to fτ0g or to fτcg. This is precisely the case if the
particle-hole transformation never mixes configurations of
the two submanifolds, i.e., for S̃ ¼ S̃0 ¼ 0. We next
establish this property for a suitable assignment of con-
figurations or states.
The step evolution operator for our cellular automaton or

the associated fermionic quantum field theory preserves the
total particle number Np (98). We assign states with Np >
2Mx to fτ0g. Particle-hole conjugation maps these states to
new states with particle number N0

p ¼ 4Mx − Np, for
which N0

p < 2Mx. These states belong to the complement
fτcg. The particle number conserving evolution cannot mix
states with Np < 2Mx with states for which N0

p > 2Mx.
What remains to be determined is a suitable distribution of
the half-filled states to fτ0g and fτcg such that the evolution
does not mix the associated wave functions q0 and qc,

S̃ ¼ S̃0 ¼ 0: ð155Þ

The particle-hole transformation maps particles to holes for
each species separately. For a given configuration τ we can
define particle numbers for each species ðNR1Þτ, ðNR2Þτ,
ðNL1Þτ and ðNL2Þτ. For a state τ0 with given particle
numbers ðNγÞτ0 the particle-hole conjugate or complemen-
tary state τc has particle numbers

ðNγÞτc ¼ Mx − ðNγÞτ0 : ð156Þ

Weneed to distribute the half-filled states withNR1 þ NR2 þ
NL1 þ NL2 ¼ 2Mx to fτ0g and fτcg. We associate the states
with NR1 þ NR2 > Mx to fτ0g, and the states with NR1 þ
NR2 < Mx to fτcg. Since Ŝ preserves the total number of
right movers NR1 þ NR2, one infers that particle-hole

conjugation does not mix these states, in accordance with
Eq. (155). What remains to be distributed at this stage are
only the configurationswith an equal number of rightmovers
and left movers, NR1 þ NR2 ¼ NL1 þ NL2 ¼ Mx.
As familiar in quantum mechanics one can make a

change of basis by a complex similarity transformation.
This does not change the evolution law (152). The step
evolution operator UðtÞ remains unitary in the new basis,
but in general no longer real and orthogonal.

E. Complex operators and general boundary conditions

The complex structure extends to the operators associ-
ated to observables. We discuss this issue in the
Appendix H. Not every observable is compatible with
the complex structure. For those observables that are
compatible with the complex structure the real symmetric
operators are mapped to complex Hermitian operators. The
expectation value of the observable is then given by the
usual quantum rule (117) in the complex formulation.
We can finally formulate the general restriction for the

boundary conditions. Pure state boundary conditions are
specified by the choice of initial and final wave functions
q̃ðtinÞ, q̄ðtfÞ. As in quantum mechanics, mixed boundary
conditions can be obtained by appropriate weighted sums.
The general boundary conditions should be chosen such that
ρ is a positive Hermitian normalized matrix, i.e., all eigen-
values λβ of ρ should be positive semidefinite, λβ ≥ 0. This
property, as well as the relations trρ ¼ 1 and ρ† ¼ ρ, are
preserved by the unitary evolution (152). It is therefore
sufficient that they hold at some given t, say at tin or tf. For a
positivematrix all diagonal elements are positive,ρττ ≥ 0 (no
sum here), such that the conditions for a probabilistic setting
are obeyed. In particular, for q̃ðtÞ ¼ q̄ðtÞ ¼ qðtÞ the density
matrix is a real pure state density matrix with one eigenvalue
one and all other eigenvalues zero. This particular boundary
condition corresponds to ĝðtfÞ ¼ qτðtfÞg0τ½ψ̄ðtfÞ�.

VII. CONTINUOUS EVOLUTION
AND HAMILTON OPERATOR

The step evolution operator describes the unitary evo-
lution of quantum mechanics in discrete time steps. One
can construct an associated continuous time evolution,
given by a Schrödinger or von-Neumann equation, which
reproduces the discrete time evolution for all discrete times
t ¼ tin þmε. In the continuum limit the discreteness of the
time evolution plays no longer a role. As an input for this
section we will only use the step evolution operator Ŝ such
that all results apply equally to the cellular automaton and
the fermionic quantum field theory.
We will express the step evolution operator and the

associated Hamiltonian in terms of fermionic annihilation
and creation operators. This makes the fermionic content of
our probabilistic automaton directly visible, without the
need of an explicit use of the bit-fermion map to a
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Grassmann functional integral. The derivation of the
corresponding expression is, however, rather complex for
the propagation part. The use of the relation between
annihilation and creation operators on one side, and
Grassmann variables on the other side, is a useful tool in
this context.

A. Hamilton operator

The Hamilton operator H is related to the step evolution
operator Ŝ by

Ŝ ¼ expð−iεHÞ: ð157Þ

Since Ŝ is a unitary (in our case orthogonal) matrix, H ¼
H† is Hermitian. The von-Neumann equation for the
evolution of the density matrix,

i∂tρ ¼ ½H; ρ�; ð158Þ

has for a time-independent Hermitian Hamilton operator H
the solution

ρðtÞ ¼ Uðt; t1Þρðt1ÞU†ðt; t1Þ; ð159Þ

with

Uðt; t1Þ ¼ expð−iðt − t1ÞHÞ: ð160Þ

For t − t1 ¼ ε one has Uðt; t1Þ ¼ Ŝðt1Þ according to
Eq. (157). The von Neumann equation (159) reproduces
the discrete evolution equation (152) if we take H piece-
wise constant in the intervals between the discrete time
points t ¼ tin þmtε.
For H we can make the ansatz

H ¼ Hfree þHint þ ΔH; ð161Þ

with

Ŝfree ¼ expð−iεHfreeÞ; Ŝint ¼ expð−iεHintÞ: ð162Þ

This implies for ΔH the relation

expf−iεðHint þHfree þ ΔHÞg
¼ expð−iεHintÞ expð−iεHfreeÞ; ð163Þ

and therefore

ΔH ¼ Oðε½Hint; Hfree�Þ: ð164Þ

This may suggest that in the continuum limit ε → 0 the
commutator term can be neglected, andΔH can be omitted.
The issue is not as straightforward as in the usual

functional integral formulation for quantum field theories.

The reason is that the step evolution operator for an
automaton is not a small deviation from unity of the order
ε since we deal with discrete jumps. For example, we will
see that the interaction part Hint involves a factor ε−1. The
neglect of the commutator term ΔH may be justified for a
sufficiently smooth wave function. In this case we have the
possibility that the wave function changes only by a small
amount ∼ε for one step of the evolution from t to tþ ε. If
the part ∼ΔH only induces changes ∼ε2 it can indeed be
neglected for ε → 0. The continuous character of the wave
function, and therefore the probabilistic character of the
automaton, are crucial in this respect.

B. Annihilation and creation operators

We can express Ŝfree and Ŝint in terms of fermionic
annihilation operators aα and creation operators a†α, which
obey the usual anticommutation relations

fa†α; aβg ¼ δα;β; faα; aβg ¼ fa†α; a†βg ¼ 0: ð165Þ

Their action on the Grassmann wave function can be
represented as

aα¼̂ ψα; a†α¼̂ ∂
∂ψα

: ð166Þ

We want to implement here the action on the wave
function and density matrix and therefore need a suitable
representation in the chosen basis. For a single two-state
system we employ the real 2 × 2-matrices

a ¼
�
0 0

1 0

�
; a† ¼

�
0 1

0 0

�
; a†a ¼

�
1 0

0 0

�
:

ð167Þ

For the sixteen local states for the fermions ψRa, ψLa we
use

aR1 ¼ a ⊗ 1 ⊗ 1 ⊗ 1; aR2 ¼ τ3 ⊗ a ⊗ 1 ⊗ 1;

aL1 ¼ τ3 ⊗ τ3 ⊗ a ⊗ 1; aL2 ¼ τ3 ⊗ τ3 ⊗ τ3 ⊗ a:

ð168Þ

Finally, the anticommutation relations for annihilation
operators at different x are implemented by introducing
the 16 × 16-matrix T3,

T3 ¼ τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3; fT3; aγg ¼ 0; ð169Þ

and taking direct products of the 16 × 16-matrices aγ , T3,
and 1,
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aγðxinÞ ¼ aγ ⊗ 1 ⊗ 1 ⊗ 1…;

aγðxin þ εÞ ¼ T3 ⊗ aγ ⊗ 1 ⊗ 1…;

aγðxin þ 2εÞ ¼ T3 ⊗ T3 ⊗ aγ ⊗ 1…: ð170Þ

The creation operators a†γðxÞ are the Hermitian conjugated
(transposed in our case) of the annihilation operators aγðxÞ.
Further details can be found in Appendix A.
Wewill exploit the close connection between Grassmann

variables and annihilation/creation operators by choosing
sign conventions such that

gρ½ψ �ðaαÞρτ ¼ ψαgτ½ψ �;

gρ½ψ �ða†αÞρτ ¼
∂

∂ψα
gτ½ψ �: ð171Þ

Indeed, the product ψαgτ vanishes if gτ contains already a
factor ψα. In this case the basis function gτ corresponds to a
state for which no particle α is present. The annihilation
operator aα yields zero, as it should be. If gτ contains no
factor ψα it describes a state with a particle α present. After
multiplication with ψα the product ψαgτ is a new basis
function gτ0 up to a possible minus sign. For this basis
function gτ0 no particle α is present. Thus multiplication
with ψα annihilates a particle α, leading to a state with no
particle α present. This is precisely the action of the
annihilation operator aα which therefore transforms
gρðaαÞρτ ¼ ηgτ0 , η ¼ �1. We conclude the general relation
(no sum over τ, α)

gρðaαÞρτ ¼ ηταψαgτ; η2τα ¼ 1: ð172Þ

The argument for the creation operator is similar, with
∂=∂ψαgτ vanishing if a particle α is present (no factor of ψα

in gτ), and creating a particle if no particle is present in gτ
(eliminating the factor ψα). One concludes

gρða†αÞρτ ¼ ητα
∂

∂ψα
gτ: ð173Þ

The occurrence of the same factor ητα as in Eq. (172)
follows from (no sum over α)

gρða†αaαÞρτ ¼ gρðn̂αÞρτ ¼
∂

∂ψα
ψαgτ; ð174Þ

with ðnαÞτρ ¼ ð1; 0Þ the particle occupation number asso-
ciated to gτ. The anticommutation relations (165) remain
unaffected if we multiply both aα and a†α by (−1). This
freedom of choice of a sign for aα, together with the
freedom of choice for the sign s̃τ for gτ in Eq. (6), permits
us to choose conventions for which ητα ¼ 1.
We can define the sign s̃τ by taking a plus sign if the

factors ψβ in gτ are ordered with the lowest β to the left, as

in Eq. (18). All states can be obtained from the completely
filled state g1 ¼ 1 by consecutive application of the
annihilation operator ψβ, starting with the largest β and
continuing with decreasing β. The fact that aα, a

†
β obey the

same anti-commutation relations as ψα, ∂=∂ψβ guarantees
the consistency of the sign convention. More details on sign
conventions can be found in the Appendix A, where we
show that the above convention is compatible with the
prescription (167)–(170).

C. Interaction Hamiltonian

We next express the interaction part of the step evolution
operator and Hamiltonian in terms of annihilation and
creation operators. For this purpose we first consider the
16 × 16-matrix

D̂þ ¼ a†R2a
†
L1aL2aR1 ¼ a ⊗ a† ⊗ a† ⊗ a: ð175Þ

Its action on a local state produces zero except for the state
(1 0 0 1) for which

D̂þð1001Þ ¼ ð0110Þ: ð176Þ

Similarly,

D̂− ¼ D̂†
þ ¼ a†R1a

†
L2aL1aR2 ¼ a† ⊗ a ⊗ a ⊗ a† ð177Þ

acts as

D̂−ð0110Þ ¼ ð1001Þ: ð178Þ

The sum D̂ ¼ D̂þ þ D̂− interchanges the corresponding
two-particle states

D̂∶ð1001Þ ↔ ð0110Þ; D̂2 ¼ 1; ð179Þ

while it yields zero for all other local states. As a result, the
operator

ŜDðtÞ ¼ expð−iαD̂tÞ ð180Þ

equals unity for all states except φ1 ¼ ð1001Þ and
φ2 ¼ ð0110Þ, while

ŜDðtÞ
�
φ1

φ2

�
¼ cosðαtÞ

�
φ1

φ2

�
− i sinðαtÞ

�
φ2

φ1

�
: ð181Þ

In particular, for α ¼ π=ð2εÞ one has

ŜDðεÞ
�
φ1

φ2

�
¼ −i

�
φ2

φ1

�
: ð182Þ

Up to the factor −i this describes the color exchange
process (48) for an incoming red right mover and an
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incoming green left mover, together with the process for
interchanged colors.
The color exchange process for an incoming right mover

and incoming left mover of the same color can be described
by defining the matrices

Ĉþ ¼ a†R2a
†
L2aR1aL1 ¼ −a ⊗ a† ⊗ a ⊗ a†

Ĉ− ¼ Ĉ†
þ ¼ a†L1a

†
R1aL2aR2 ¼ −a† ⊗ a ⊗ a† ⊗ a: ð183Þ

The matrix

Ĉ ¼ Ĉþ þ Ĉ− ð184Þ

annihilates all states except

φ3 ¼ ð 1 0 1 0 Þ; φ4 ¼ ð 0 1 0 1 Þ; ð185Þ

which are interchanged

Ĉ

�
φ3

φ4

�
¼ −

�
φ4

φ3

�
: ð186Þ

With

ŜCðtÞ ¼ exp
�
−
iπt
2ε

Ĉ
�

ð187Þ

one finds

ŜCðtÞ
�
φ3

φ4

�
¼ cos

�
πt
2ε

��
φ3

φ4

�
þ i sin

�
πt
2ε

��
φ4

φ3

�
;

ð188Þ

while for all other states except φ3, φ4 this operator acts as
unity. In particular, for t ¼ ε one realizes the exchange (79),

ŜCðεÞ
�
φ3

φ4

�
¼ i

�
φ4

φ3

�
: ð189Þ

Since D̂ and Ĉ act on different sets of states those
operators commute,

½D̂; Ĉ� ¼ 0; D̂�Ĉ� ¼ Ĉ�D̂� ¼ 0; ð190Þ

resulting in

ŜiðtÞ ¼ exp

�
−
iπt
2ε

ðD̂þ ĈÞ
�

¼ ŜDðtÞŜCðtÞ: ð191Þ

For t ¼ ε we define

Ŝi ¼ ŜiðεÞ ð192Þ

which is unity for all states except φ1, φ2, φ3, φ4 for which
it acts as

Ŝi

0
BBB@

φ1

φ2

φ3

φ4

1
CCCA ¼

0
BBB@

φ2

φ1

φ4

φ3:

1
CCCA ð193Þ

This is precisely the local color exchange of the cellular
automaton. Furthermore, both D̂ and Ĉ involve even
numbers of creation and annihilation operators, such that
the even products of T3 in Eq. (170) are unity. We conclude
that Ŝint is a direct product of local factors

Ŝint ¼ ŜiðxinÞ ⊗ Ŝiðxin þ εÞ ⊗ Ŝiðxin þ 2εÞ…: ð194Þ

We can identify the interaction Hamiltonian in
Eq. (162) as

Hint ¼
X
x

π

2ε
ðD̂ðxÞ þ ĈðxÞÞ

¼ π

2ε

X
x

fa†R2ðxÞa†L1ðxÞaL2ðxÞaR1ðxÞ

þ a†R1ðxÞa†L2ðxÞaL1ðxÞaR2ðxÞ
þ a†R2ðxÞa†L2ðxÞaR1ðxÞaL1ðxÞ
þ a†L1ðxÞa†R1ðxÞaL2ðxÞaR2ðxÞg: ð195Þ

The interaction Hamiltonian is Hermitian. In the form

Hint ¼ −
π

2ε

X
x

½a†R1ðxÞaR2ðxÞ − a†R2ðxÞaR1ðxÞ�

× ½a†L1ðxÞaL2ðxÞ − a†L2ðxÞaL1ðxÞ� ð196Þ

the symmetries L ↔ R, as well as color exchange 1 ↔ 2,
are directly visible. We observe the prefactor 1=ε. In
distinction to the Grassmann variables we cannot absorb
this factor by an arbitrary multiplicative renormalization of
the annihilation and creation operators. Their normalization
is fixed by the inhomogeneous anticommutation rule. We
will encounter later a different continuum normalization for
which the anticommutator is ∼δðx − yÞ.
The interaction Hamiltonian is not uniquely fixed by

Eq. (162). We can add a piece

H0
int ¼

2π

ε

X
x

fðxÞ; ð197Þ

with fðxÞ an integer function of

FERMIONIC QUANTUM FIELD THEORIES AS PROBABILISTIC … PHYS. REV. D 105, 074502 (2022)

074502-23



n̂RðxÞ ¼ a†R1ðxÞaR1ðxÞ þ a†R2ðxÞaR2ðxÞ;
n̂LðxÞ ¼ a†L1ðxÞaL1ðxÞ þ a†L2ðxÞaL2ðxÞ: ð198Þ

Indeed, n̂RðxÞ and n̂LðxÞ commute with Hint, such that

exp½−iεðHint þH0
intÞ� ¼ Ŝint

Y
x

expð−2πifðxÞÞ ¼ Ŝint:

ð199Þ

D. Right and left transport

We next turn to the free or kinetic step evolution operator
Ŝfree. Despite the very simple structure of the right- or left-
transport operators the expression of the Hamiltonian in
terms of annihilation and creation operators needs some
care. Otherwise the unique jump property is lost.
Since Ŝfree is a product of independent factors for the left

and right movers, and for the two colors, we can write

Ŝfree ¼ ŜðRÞ1 ⊗ ŜðRÞ2 ⊗ ŜðLÞ1 ⊗ ŜðLÞ2

Hfree ¼
X
a¼1;2

ðHðRÞ
a þHðLÞ

a Þ: ð200Þ

The two colors will be distinguished only by the label a of
the operators aLaðxÞ etc. We will in the following not write
the color labels explicitly.
In the Appendix I we proof the useful relations

ŜðRÞ ¼ N

�
exp

�X
x

a†Rðxþ εÞ½aRðxÞ − aRðxþ εÞ�
��

;

ŜðLÞ ¼ N

�
exp

�X
x

a†Lðx − εÞ½aLðxÞ − aLðx − εÞ�
��

:

ð201Þ

Here N is an ordering operation for operators which is
specified in Appendix I. For this proof we employ the
relations between functions of Grassmann variables and
Grassmann derivatives on one side, and functions of
annihilation and creation operators on the other side.
They are explained in detail in the Appendix A. We stress
that Eq. (201) is an identity for matrices. It holds inde-
pendently of the fermionic language used for the proof,
such that it applies immediately to the cellular automaton.

E. Partial continuum limit and loss
of unique jump property

For the partial continuum limit the ordering operation for
the exponential function can be omitted, while the ortho-
gonality of ŜR;L is maintained. In this limit one finds

ŜR ¼ exp

�
−
1

2

X
x

a†RðxÞ½aRðxþ εÞ − aRðx − εÞ�
�
;

ŜL ¼ exp

�
1

2

X
x

a†LðxÞ½aLðxþ εÞ − aLðx − εÞ�
�
:

ð202Þ

The omission of the ordering operation N, which will be
motivated below, has an important conceptual conse-
quence. The matrices ŜR;L are no longer unique jump
matrices. A given wave function qρðtÞ ¼ δρ;ρ̄ correspond-
ing to a sharp (deterministic) configuration ρ̄ is mapped to a
sum of nonzero entries for different configurations accord-
ing to qτðtþ ε̃Þ ¼ ŜτρqρðtÞ ¼ Ŝτρ̄. Replacing Eq. (201) by
Eq. (202) the evolution is no longer given by a simple
updating rule for an automaton. We now encounter a
feature characteristic for most quantum systems: a given
state undergoes a probabilistic evolution to several different
quantum states. In a double slit experiment an incoming
particle with a given momentum can pass either in one or
the other slit, or even combine both possibilities and
produce the characteristic interference. This change of
character of the evolution also occurs if we omit the
commutator term ΔH in Eq. (163).
Because of its conceptual relevance we discuss the

partial continuum limit in some detail. Omitting only the
ordering operationN one has (not indicating the indexR for
the fermionic operators)

ŜR
0 ¼ exp

�
−
X
x

a†ðxÞ½aðxÞ − aðx − εÞ�
�
;

ðŜ0TR Þ−1 ¼ exp

�X
x

a†ðxÞ½aðxÞ − aðxþ εÞ�
�
: ð203Þ

The operator ŜR
0 is no longer orthogonal, since

X
x

ða†ðxÞaðxÞÞT ¼
X
x

a†ðxÞaðxÞ;
X
x

ða†ðxÞaðx − εÞÞT ¼
X
x

a†ðx − εÞaðxÞ

¼ −
X
x

a†ðxÞaðxþ εÞ: ð204Þ

The two expressions in Eq. (202) remain identical, how-
ever, if we assume coincidence of the two versions of lattice
derivatives

∂ð−Þ
x aðxÞ ¼ 1

ε
½aðxÞ − aðx − εÞ�;

∂ðþÞ
x aðxÞ ¼ 1

ε
½aðxþ εÞ − aðxÞ�; ð205Þ

which will be the case effectively if ŜR acts on sufficiently
smooth wave functions. We can take a partial continuum
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limit even for discrete x if we take for the exponent the
mean of the two expressions in Eq. (203). This leads to
Ŝ−1R ¼ ŜTR in Eq. (202), and similar for ŜL.
The reason for omitting the ordering operation N in the

partial continuum limit is the observation that the difference
between the ordered exponential in ŜR and the standard
exponential ŜR

0 only arises from the anticommutators of
fa†ðxÞ; aðyÞg at identical points x ¼ y. For x ≠ y the
anticommutator vanishes, similar to fψ̄ðxÞ;ψ 0ðyÞg ¼ 0.
The ordering operation has therefore no effect if x and y
are sufficiently distant from each other. Consider now a
smooth wave function q̃ that varies only over distances
L ≫ ε. Only this variation will lead in Eq. (201) to a
difference of ŜR from the unit operator. The sums

P
xy for

T2 in Eq. (I12) will extend effectively over large ranges of
x − y, typically jx − yj > L. The contribution of strictly
identical or neighboring points y ¼ x or y ¼ x − ε, that
give rise to T2;c in Eq. (I14), is suppressed as compared to
the total sum by a factor ε=L. It vanishes in the continuum
limit ε=L → 0. This argument extends in a similar way to
higher orders in the expansion of the exponential. In
summary, for sufficiently smooth wave functions the step
evolution operator does not retain the detailed information
on space differences of the order ε. The smoothness of the
probabilistic information, as encoded in a smooth wave
function q̃, plays a central role here. As our discussion
above shows, the approximation (202) fails if we consider
very sharp wave functions, as the one for a single particle
located at t precisely at the position z. A systematic
discussion of the continuum limit can be found in the
Appendix J.
As mentioned before, the transition to the partial

continuum limit has an important conceptual implication.
While ŜR;L remain orthogonal operators, they are no longer
unique jump operators. The action of ŜR;L in Eq. (202) does
not map a given bit configuration at t uniquely to a new bit
configuration at tþ ε̃. The partial continuum limit of a
probabilistic cellular automaton has no longer a determin-
istic time evolution. The step evolution operator Ŝ becomes
genuinely probabilistic in the partial continuum limit,
mapping a given bit configuration only with certain
probabilities to new bit configurations. The different bit
configurations to which Ŝ maps differ only on distances of
the order ε. For a smooth wave function they are suffi-
ciently close to each other such that their difference in a
suitable continuum limit plays no role. In a certain sense,
the continuum limit is a coarse graining for which the
resolution on distances ε is lost. Nevertheless, following the
evolution for many time steps the loss of determinism on
the coarse grained level can have important consequences.

F. Kinetic Hamiltonian and continuum limit

Combining Eqs. (202) with Eq. (162) we can directly
extract the kinetic Hamiltonian Hfree,

HðRÞ ¼ −
i
2ε

X
x

a†RðxÞ½aRðxþ εÞ − aRðx − εÞ�;

HðLÞ ¼ i
2ε

X
x

a†LðxÞ½aLðxþ εÞ − aLðx − εÞ�: ð206Þ

As it should be, the Hamiltonian is Hermitian. In terms of
the lattice derivative

∂xaðxÞ ¼
1

2ε
½aðxþ εÞ − aðx − εÞ� ð207Þ

one obtains

HR;L ¼∓ i
X
x

a†R;LðxÞ∂xaR;LðxÞ: ð208Þ

We recognize a type of lattice momentum operator −i∂x.
Indeed, we can make a lattice Fourier transform

aðxÞ ¼ M
−1
2

x

X
p

eipxaðpÞ; ð209Þ

with Mx the number of x-points and discrete periodic
momenta (period 2π=ε) which we take in the range (m
integer)

p ¼ 2πm
εMx

; jpj ≤ π

ε
: ð210Þ

With

X
x

eixðp−p0Þ ¼ Mxδp;p0 ;
X
p

e−ipðx−yÞ ¼ Mxδx;y; ð211Þ

the inverse reads

aðqÞ ¼ M
−1
2

x

X
x

e−ipxaðxÞ: ð212Þ

The annihilation and creation operators in the momen-
tum basis obey the usual anticommutation relations

fa†ðpÞ; aðqÞg ¼ δp;q;

faðpÞ; aðqÞg ¼ fa†ðpÞ; aðqÞ†g ¼ 0: ð213Þ

In the momentum basis one obtains the simple relation

HðRÞ ¼
X
p

pa†RðpÞaRðpÞ; HðLÞ ¼ −
X
p

pa†LðpÞaLðpÞ;

ð214Þ

where we employ here the continuum approximation for
the definition of the derivative ∂x,
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−i∂xaðxÞ ¼ M
−1
2

x

X
p

peipxaðpÞ: ð215Þ

For free right movers one finds the relativistic energy-
momentum relation (dispersion relation) E ¼ P, while free
left movers obey E ¼ −P. Momentum eigenstates with
positive energy E > 0 obey P ¼ p > 0 for right movers
and P ¼ p < 0 for left movers. Correspondingly, for a
single right handed or left handed particle the plane wave
solutions are

φð1Þ
R ∼ eipðx−tÞ; p > 0; φð1Þ

L ∼ eipðxþtÞ; p < 0:

ð216Þ

As mentioned above, we can neglect ΔH for the
continuum limit in the time direction. The density matrix
obeys then the continuous von-Neumann equation with
Hamiltonian

H ¼ −
i
2ε

X
x

fa†RaðxÞ½aRaðxþ εÞ − aRaðx − εÞ�

− a†LaðxÞ½aLaðxþ εÞ − aLaðx − εÞ�g
−

π

2ε

X
x

½a†R1ðxÞaR2ðxÞ − a†R2ðxÞaR1ðxÞ�

× ½a†L1ðxÞaL2ðxÞ − a†L2ðxÞaL1ðxÞ�: ð217Þ

We can further take the continuum limit in the x-
direction, with

P
x ¼ ε−1

R
dx, replacing the lattice deriva-

tive by a partial derivative,

H ¼
Z

dx
�
−
i
ε
½a†RaðxÞ∂xaRaðxÞ − a†LaðxÞ∂xaLaðxÞ�

−
π

2ε2
½a†R1ðxÞaR2ðxÞ − a†R2ðxÞaR1ðxÞ�

× ½a†L1ðxÞaL2ðxÞ − a†L2ðxÞaL1ðxÞ�
�
: ð218Þ

The factors of ε can be absorbed by a renormalization

arenðxÞ ¼
1ffiffiffi
ε

p aðxÞ; ð219Þ

which corresponds to the continuum normalization of the
anticommutator relations

fa†renðxÞ; arenðyÞg ¼ 1

ε
δx;y ∼ δðx − yÞ: ð220Þ

The evolution of the complex density matrix for the
probabilistic cellular automaton follows the von-Neumann
equation for a fermionic quantum field theory. In case of a
pure state density matrix ρ2 ¼ ρ we can express it in terms
of a complex wave function φ

ραβ ¼ φαφ
�
β; ð221Þ

which evolves according to the Schrödinger equation

i∂tφ ¼ Hφ: ð222Þ

We can express the continuous evolution in the real
formulation as well. For this purpose we replace i by
the matrix I which maps q0 to qc, resulting in

∂tq ¼ −IĤq ¼ Wq ¼ ðWkin þWintÞq; ð223Þ

where Ĥ obtains from H in Eq. (218) by the replacement
i → I. The kinetic part is block-diagonal in q0 and qc

Wkin ¼ −
1

ε

Z
x
fa†RaðxÞ∂xaRaðxÞ − a†LaðxÞ∂xaLaðxÞg;

ð224Þ

while the interaction part Wint involves a factor I and
therefore rotates between q0 and qc.
For understanding the approximations involved in the

continuum limit it is instructive to integrate the Schrödinger
equation (223) from t to tþ ε under the assumption of
slowly varying qðtÞ,

qðtþ εÞ ¼ qðtÞ þ δqðtÞ ¼ expðεWÞqðtÞ
¼ ð1þ εWÞqðtÞ þOðε2Þ: ð225Þ

We focus first on a right-mover of a free theory where in a
discrete setting for x one has

εW ¼ 1

2

X
x

ða†ðxþ εÞaðxÞ þ aðxþ εÞa†ðxÞÞ: ð226Þ

For each term in the sum the wave function changes only
for those configurations for which the occupation numbers
at xþ ε and x are different. If the components of the wave
functions for these pairs of configurations differ in relative
size only by ε the change δq=q is of the order ε. In other
words, the wave function should be smooth enough such
that the derivative operator,

W ¼−
1

2ε

X
x

a†ðxÞ½aðxþ εÞ−aðx− εÞ�

¼−
X
x

a†ðxÞ∂xaðxÞ ¼
1

2ε

X
x

½a†ðxþ εÞ−a†ðx− εÞ�aðxÞ

¼
X
x

∂xa†ðxÞaðxÞ ¼−WT; ð227Þ

can be regarded as a quantity of the order one, not diverging
for ε → 0. In the continuum limit we can then neglect the
term ∼Oðε2Þ in Eq. (225). Since W is an antisymmetric
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matrix, ŜR;c ¼ expðεWÞ is an orthogonal matrix. In the
Appendix J we present the operatorWðtÞ and its properties
in more detail.
The continuous step evolution operator,

ŜR;c ¼ 1þ εW; ð228Þ

differs in structure from the original right-transport operator
ŜR. It is now given by unity with an additional contribution
εW that is considered to be small in the sense that its action
on smooth wave functions produces only a small effect. It is
no longer a unique jump operator since it has both diagonal
entries from the term one, and off-diagonal entries from
the term εW. Nevertheless, for sufficiently smooth wave
functions the difference between the action of ŜR and ŜR;c
on q is of the order ε2 and can be neglected in the
continuum limit.
A second condition on wave functions for which a

continuum limit is valid requires that the commutator
½Hint; Hfree� can be considered as a quantity that remains
finite for ε → 0 (or diverges less fast than ε−1). In this case
the neglect of ΔH in Eq. (163) is justified. It can happen
that Hint diverges for ε → 0, partially depending on the
choice of H0

int in Eq. (197). As long as the divergent part
commutes with Hfree the continuum limit remains valid.
The divergent part of Hint may lead to overall phase
rotations of wave functions on a time scale given by ε
which can be factored out. Typically, the integrated
continuous evolution operator

Ŝc ¼ exp½−iεðHint þHfreeÞ�; ð229Þ

is no longer a unique jump matrix, in contrast to Ŝ. A given
configuration can now either propagate or scatter, repro-
ducing the same result as the automaton only for suffi-
ciently smooth wave functions.
We conclude that the continuum limit for sufficiently

smooth wave functions corresponds to some type of coarse
graining. It looses the distinction between two neighboring
configurations which may evolve differently by applying
the updating rule of the automaton. The two configurations
are treated as identical, with certain probabilities to follow
either the updating of the first or the second configuration.
The continuum limit is no longer an automaton.

VIII. GROUND STATES AND ONE PARTICLE
WAVE FUNCTIONS

Many concepts of quantum field theories apply directly
to probabilistic cellular automata. These include the notions
of ground state and one-particle excitations or conserved
quantities as momentum and charge. On the level of the
density matrix for the cellular automaton these features can
be discussed in complete analogy to other quantum
systems. In the formulation as cellular automata many

perhaps somewhat abstract concepts in fermionic quantum
field theories find a rather concrete intuitive realization.

A. Ground states

Possible ground states correspond to a stationary density
matrix. In case of a classical pure state they correspond to
time-translation invariant classical wave functions q̃ðtÞ,
q̄ðtÞ. We will define here translation invariance by shifts 2ε.
Thus the criterion for a ground state reads

ρ̂ðtþ 2εÞ ¼ ρ̂ðtÞ; ρðtþ 2εÞ ¼ ρðtÞ;
q̃ðtþ 2εÞ ¼ q̃ðtÞ; q̄ðtþ 2εÞ ¼ q̄ðtÞ: ð230Þ

First obvious candidates for ground states are the com-
pletely empty state, nγðt; xÞ ¼ 0, or the completely filled
state nγðt; xÞ ¼ 1.
Other possible ground states are half-filled states. For

even t we can have at each position x one green left mover
and one red right mover. At tþ ε all particles switch color,
and at tþ 2ε the configuration turns back to the configu-
ration at t. Such a state is depicted in Fig. 3.
There are only one-particle lines, no doubly occupied or

empty lines. We may denote the wave function for this state
as q̃ðAÞ, and for a similar state with exchanged color by q̃ðBÞ.
We will take for simplicity positive q̃ðAÞðtinÞ, which equals
one for the half-filled configuration τA described above,

and vanishes for all other τ ≠ τA, q̃
ðAÞ
τ ðtinÞ ¼ δτ;τA . We infer

q̃ðtinþ2mεÞ¼ q̃ðAÞ; q̃ðtinþð2mþ1ÞεÞ¼ q̃ðBÞ: ð231Þ

We note the existence of a similar, but not identical, ground
state with q̃ðtinÞ ¼ q̃ðBÞ. The color-exchange symmetry
maps one ground state (A) to the other ground state (B).
For any given ground state (A) or (B) it is spontaneously
broken.
A further half-filled ground state (C) has at tin all sites

occupied by one red left mover and one red right mover,
with associated wave function q̃ðtinÞ ¼ q̃ðCÞ. Again, by a
switch of color of all particles we define the state q̃ðDÞ, with

FIG. 3. Configuration for vacuum (A).
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q̃ðtinþ2mεÞ¼ q̃ðCÞ; q̃ðtinþð2mþ1ÞεÞ¼ q̃ðDÞ: ð232Þ

The ground state with q̃ðtinÞ ¼ q̃ðDÞ is closely related, but
not identical. Again, any given half-filled ground state (C)
or (D) breaks the color exchange symmetry spontaneously.
For the ground states we take the conjugate wave

function equal to the classical wave function,
q̄ð0ÞðtÞ ¼ q̃ð0ÞðtÞ. This results in a diagonal real density
matrix with only one nonvanishing element,

ρ̂τρðtÞ ¼ ρτρðtÞ ¼ δτρδτ;τ̄ðtÞ; ð233Þ

with τ̄ðtÞ ¼ τA for t even and τ̄ðtÞ ¼ τB for t odd, and
similarly for the other ground states. For the ground state
τ̄ðtinÞ ¼ τA the ground state wave function obeys

q̃ð0Þτ ðtÞ ¼ q̄ð0Þτ ðtÞ ¼ δτ;τA for t ¼ tin þ 2mε

q̃ð0Þτ ðtÞ ¼ q̄ð0Þτ ðtÞ ¼ δτ;τB for t ¼ tin þ ð2mþ 1Þε: ð234Þ

None of these ground states is invariant under the
particle-hole transformation. The completely empty and
completely filled states are mapped onto each other, and for
the half-filled ground states the particle hole transformation
maps ðAÞ ↔ ðBÞ and ðCÞ ↔ ðDÞ. We can define the wave
function of a particle-hole symmetric ground state by the
superposition

q0ðtÞ ¼
1ffiffiffi
2

p ðqðAÞ þ qðBÞÞ; ð235Þ

where we identify q̃ ¼ q̄ ¼ q. For this ground state the
probability for the configurations τA and τB are both one
half. This ground state is invariant under color exchange
and obeys q0ðtþ εÞ ¼ q0ðtÞ. If we want to define complex
conjugation by the particle-hole transformation, the ground
state has a real wave function in the complex language.
Similar particle-hole invariant ground states can be
obtained by combining (C) and (D) or the totally empty
and filled states. One may also consider the half-filled
ground state

q0ðtÞ ¼
1

2
ðqðAÞ þ qðBÞ þ qðCÞ þ qðDÞÞ; ð236Þ

with probability 1=4 for the configurations τA, τB, τC
and τD.
Finally, another interesting ground state is the half-filled

equipartition state. Let us denote by τðEÞi the configurations
which have precisely one right-mover and one left-mover
on each site x. There are 4Mx such configurations since at
each site there are four possibilities: The right mover can be
red or green, and the same holds for the left-mover. With
wave functions qi defined by ðqiÞτ ¼ δ

τ;τðEÞi
, the equiparti-

tion wave function obeys

qðEÞðtÞ ¼ 2−Mx

X
i

qi: ð237Þ

The probabilities to find a given half-filled configuration

τðEÞi are all equal and given by 4−Mx. The half-filled
equipartition state is invariant under the particle-hole

transformation. The latter maps each configuration τðEÞi

to another configuration τðEÞj which obtains by switching
the color of all particles.
We can start at tin with the equipartition (237). The time

evolution of any given configuration τðEÞi is rather simple.
At every point of the ðt; xÞ-lattice a left moving single-
particle line crosses a right-moving single particle line. For
each given left-moving or right-moving single-particle line
the color changes therefore at every time step. In particular,
at tþ 2ε every color of a right mover at ðt; xÞ is displaced to
ðtþ 2ε; xþ 2εÞ, while the color of a left-mover at ðt; xÞ is
found at ðtþ 2ε; x − 2εÞ. This is again one of the configu-

rations τðEÞk , such that the equipartition wave function is
stationary. Actually the equipartition wave function keeps
the same value (237) for all t since the additional switch of
color from t to tþ ε still remains within the space of

configurations τðEÞi .
The continuum Hamiltonian (217) constitutes a map

within the space of wave functions for configurations with
one right-mover and one left-mover at each x. The
eigenvalues of the Hamiltonian H0 restricted to this space
correspond to possible vacuum energies. A vacuum wave
function that is an eigenstate of H0 undergoes a phase
rotation with the corresponding eigenvalue. This overall
phase rotation can be factored out. If the continuum limit is
exact for a given vacuum state the relative phase between t
and tþ ε equals zero, according to q0ðtþ εÞ ¼ q0ðtÞ.

B. One particle wave function

Single particle states are, in general, a complex issue. In a
quantum field theory the notion of a single particle
corresponds to some local excitation of a vacuum or
ground state. Its properties depend on the particular
vacuum. For our very simple automaton the task of defining
single-particle states is facilitated by the property that each
particle line continues as either a right-mover or a left-
mover. Only its color can change by scattering. For a
vacuum with a fixed particle number we can define a
single-particle configuration at tin by adding one occupied
bit to the vacuum. This must be a right-mover or a left-
mover at some position x. For vacua with precisely one
right-mover and one left-mover at every position x we can
follow the trajectory of the “surplus” bit or particle by
spotting at each t the location where three bits are occupied.
The corresponding trajectories have to be on the diagonal
corresponding to a right-mover or a left-mover. The particle
defined in this way undergoes no change of direction. (This
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can differ if one chooses another form of the interaction.)
Since the particle moves with light velocity, no mass term is
induced by some form of spontaneous symmetry breaking.
The same argument holds for single-hole configurations.
Despite its simplicity, several interesting features of one-

particle states are visible in our model. One possibility to
define a real one-particle wave function qð1ÞðtÞ is by the
action of a single creation operator on the ground state

qð1Þτ ðtÞ ¼ N
X
x;γ

qð1Þγ ðt; xÞða†γðxÞÞτρqð0Þρ : ð238Þ

The coefficients qð1Þγ ðt; xÞ are the one-particle wave func-
tion in the occupation number basis. They can be seen as a
4Mx-component real vector, or as a four-component field
which depends on a single discrete space coordinate x. The
normalization factor N is introduced to ensure the nor-
malization

X
x;γ

ðqð1Þγ ðt; xÞÞ2 ¼ 1: ð239Þ

The definition (238) is appropriate if the evolution
according to Eq. (103) does not change this form of the
wave function. The step evolution operator Ŝ of our model
does not change the particle number. For ground states with
one right-mover and one left-mover on each site the vectors

ða†γðxÞÞτρqð0Þρ form a complete basis of all one-particle

states. Then we can write qð1ÞðtÞ in the form (238) for
arbitrary t. The projection Ŝγδðx; yÞ of the step evolution
operator Ŝ on the one-particle states follows directly from
applying the updating rules on the corresponding one-
particle bit configurations. We can similarly define the
single-hole wave function qðc;1ÞðtÞ by replacing in
Eq. (238) the creation operator a†γðxÞ by the annihilation

operator aγðxÞ, and the coefficients qð1Þγ ðt; xÞ by the one-

hole wave function qðc;1Þγ ðt; xÞ. We may define a general-
ized one-particle configuration by either an additional bit
of type γ present or absent at x. The corresponding one-

particle wave function is the pair ðqð1Þγ ðt; xÞ; qðc;1Þγ ðt; xÞÞ. In
this case we adapt the normalization (239) correspondingly

X
x;γ

½ðqð1Þγ ðt; xÞÞ2 þ ðqðc;1Þγ ðt; xÞÞ� ¼ 1: ð240Þ

The continuum evolution connects qð1Þ and qðc;1Þ due to the
factor I in the interaction part Wint in Eq. (223).
For the empty ground state a single particle does not

undergo scatterings. The evolution is therefore simple: a
single right-moving particle evolves on a straight trajectory
to increasing x, without changing its color. Similarly, a
single left-mover follows a straight trajectory with decreas-
ing x. For half-filled ground states the situation could, in

principle, be more complex since scattering could induce a
change of color of the generalized particle. For our simple
automaton this issue is solved easily for ground states with
one right-mover and one left-mover on each site. The single
particle encounters a one-particle line at each time step,
such that the additional bit or hole changes color at each
time step.
The one-particle bit configurations depend on the ground

state. For the empty ground state one has a single occupied
bit moving on a straight line without scattering, either as a
right mover or a left mover, and either red or green. Adding
a particle to the half-filled vacuum (A) one produces a
double occupied line. The particles that can be added for
the initial state are not arbitrary. At a given position we can
only add a green right mover or a red left mover, since for
the ground state (A) the green left mover and the red right
mover is already occupied. The only nonzero components
of the one-particle wave function (238) for qð0Þ ¼ qðAÞ
occur for the corresponding values of γ. The one-particle
states involve only half the numbers of species as compared
to the empty ground state.
Adding at t ¼ 0 to the ground state (A) a green right

mover produces the initial point for a double occupied line
with one red and one green right mover. This line
propagates to the right without scattering, similar to the
one-particle lines for the empty ground state. We have
depicted the evolution of the corresponding spin configu-
ration in Fig. 4. Similarly, adding a red left mover produces
a doubly occupied left moving line without further
scattering.
With increasing t the form (238) of the one-particle wave

function is not preserved. We observe to the left of the
double-occupied line the appearance of a new vacuum
structure, namely vacuum (C). The vacuum (C) is found
within a light-cone spreading out from its origin at t ¼ 0.
Outside the light cone one finds the vacuum (A). The
double-line of a particle created at t ¼ 0 is therefore
accompanied by a string of alternating red or green particles

FIG. 4. Soliton excitation. The black line is doubly occupied.
To the left of the doubly occupied line, within the shaded “light
cone,” we observe the vacuum (C). Outside this light cone one
observes the vacuum (A). The doubly occupied line can be
considered as a soliton separating different vacuum states.
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extending to the other border of the light cone. The wave
function for this configuration for t > 0 can no longer be
described by the action of creation operators at various
positions x, with invariant vacuum otherwise. The half-
filled vacua (A), (B), (C), (D) can actually be present in
different regions of space, with appropriate double-occu-
pied or empty lines at the boundaries. In this context
double-occupied or empty lines can be interpreted as
solitons. With the understanding that to the right and left
of the double-occupied or empty lines there are different
vacua we can still describe the propagation of the soliton by

a suitable one-particle wave function qð1ÞL;Rðt; xÞ.
Finally, for the half-filled equipartition vacuum (E) a

single particle constructed according to Eq. (238) corre-
sponds to a double-occupied line with the same vacuum on
both sides. Whatever is the distribution of colors for the
right-and left-movers for all points x away from the double-
occupied line at t, there is a corresponding color distribu-
tion at tþ ε. Since all color distributions have the same
weight for the vacuum wave function qðEÞ in Eq. (237), the
wave function differs from the vacuum only at the position
x of the double-occupied line, and by a possible normali-
zation factor N .
There are only two different one-particle states of this

type—one right-moving and the other left-moving. The
double-occupied line involves both a red and a green
particle and is therefore “color blind.” More in detail,
the creation operator a†R1ðxÞ in Eq. (237) creates for all τðEÞi
with a green right-mover at x a site with both a red and a

green right mover, while it yields zero if τðEÞi involves a red-
right mover at x. It yields a nonzero result only for half of

the qðEÞi . The creation operator a†R2ðxÞ yields a nonzero

result for the other half of the qðEÞi , producing the same
double-occupied site at x.
We can also construct single-particle states for composite

particles. As an example, a composite single-particle
excitation in a given vacuum, say vacuum (A), can be
constructed by a double-occupied line with a neighboring
parallel empty line. This replaces in Eq. (238) the operator

a†γðxÞ by a†γðxÞaδðxþ 2εÞ, and correspondingly qð1Þγ ðt; xÞ
by qð1Þγδ ðt; xÞ. Outside these two lines the vacuum is not
modified. The possible values for ðγ; δÞ are restricted. For a
right-moving particle in vacuum (A) one has γ ¼ ðR; 2Þ and
δ ¼ ðR; 1Þ, while the left-moving particle has γ ¼ ðL; 1Þ,
δ ¼ ðL; 2Þ. Other particles or holes are two parallel
neighboring double-occupied lines, or two parallel empty
lines. Further more extended objects can separate the two
parallel lines by a certain distance, with a string of a
different vacuum in between the two lines.

C. Charges

For the half filled configuration τðAÞ we may take away a
single red right-moving particle. This produces a red hole.

The corresponding empty line replaces the double occupied
line in Fig. 4. Otherwise Fig. 4 remains unchanged. A right-
moving red hole propagates in the same way as a green
right-moving particle. Similarly, a green left-moving hole
behaves as a red left-moving particle. This generalizes to

the other half-filled configurations τðEÞi . Right- and left-
moving holes can be described similarly to Eq. (238) with
a†γðxÞ replaced by the annihilation operator aγðxÞ.
One may treat both the one-particle state and the one-hole

state as a generalized particle, and assign charge Q ¼ 1 to
particles and Q ¼ −1 to holes. With total particle number

Np ¼
X
γ

X
x

nγðxÞ ð241Þ

taking in the half-filled vacuum the valueN0 ¼ 2Mx one has

Q ¼ Np − N0 ¼ Np − 2Mx: ð242Þ

Since Np is conserved, also the charge Q is conserved.
Instead of left and right moving particles and holes we

may speak about left and right moving particles with
opposite charge Q. For the half-filled vacuum all these
generalized one-particle states move on straight lines
without scattering. They are rather similar to the one-
particle states for the empty vacuum.
We can introduce separate charges QR and QL for the

right movers and left movers

QR ¼ NR1 þ NR2 −Mx; QL ¼ NL1 þ NL2 −Mx;

ð243Þ

with

Q ¼ QR þQL: ð244Þ

The charges QR and QL are conserved separately. The
assignment of particle numbers and charges to the different
half-filled ground states is indicated in Table I. Similarly, all

half-filled configurations τðEÞi have QR ¼ QL ¼ 0.
The different configurations with a single generalized

particle in the half-filled equipartition vacuum have

QR ¼ �1; QL ¼ 0; ð245Þ

TABLE I. Particle numbers and charges for various half-filled
ground states.

Vacuum NR1 NR2 NL1 NL2 QR QL

A Mx 0 0 Mx 0 0
B 0 Mx Mx 0 0 0
C Mx 0 Mx 0 0 0
D 0 Mx 0 Mx 0 0
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or

QL ¼ �1; QR ¼ 0: ð246Þ

The individual one-particle configurations can be labeled
by ðQR;QLÞ and the coordinate x at which the charged
particle is found.

D. Complex structure for vacua and charged particles

For the four half-filled vacua A, B, C,D the particle-hole
transformation acts as

K∶A ↔ B; C ↔ D: ð247Þ

We may associate A and C with fτ0g, while B and D span
fτcg for this sector. In the complex language we have two
complex components of the wave function in this sector

φð0Þ
1 ¼ 1þ iffiffiffi

2
p qðAÞ þ 1 − iffiffiffi

2
p qðBÞ;

φð0Þ
2 ¼ 1þ iffiffiffi

2
p qðCÞ þ 1 − iffiffiffi

2
p qðDÞ; ð248Þ

where we assume again q̃ ¼ q̄ ¼ q. For a restriction to
these four possible vacuum states the real four-component
wave functions ðqðAÞ; qðBÞ; qðCÞ; qðDÞÞ is mapped to a two-

component complex wave function ðφð0Þ
1 ;φð0Þ

2 Þ. The dis-
crete transformation corresponding to the multiplication
with i maps

I∶qðAÞ → qðBÞ; qðBÞ → −qðAÞ;

qðCÞ → qðDÞ; qðDÞ → −qðCÞ: ð249Þ

The totally empty and totally filled vacuum states are
mapped into each other by K. We can employ the same
construction replacing qðAÞ and qðBÞ by the wave functions
for the totally empty and filled states.
The particle-hole symmetric vacua correspond to a real

wave function, e.g.,

1ffiffiffi
2

p ðqðAÞ þ qðBÞÞ ¼ 1ffiffiffi
2

p ðφð0Þ
1 þ ðφð0Þ

1 Þ�Þ: ð250Þ

The half-filled equipartition vacuum is invariant under the
particle-hole transformation. In the complex language qðEÞ
remains a real wave function. We observe that the indi-

vidual components qðEÞi can again be grouped into complex
wave functions. This defines the action of multiplication

with i as a suitable map in the space of real qðEÞi , and
therefore also defines formally iqðEÞ in the complex
formulation.
For the one-particle excitations of the half-filled vacua

we associate the states with positive charges QR ¼ 1 or

QL ¼ 1 to fτ0g, and the states with negative charges QR ¼
−1 or QL ¼ −1 to the complement fτcg. Particle-hole
conjugation and the associated complex conjugation K
reverses the charges

fK;QRg ¼ 0; fK;QLg ¼ 0: ð251Þ

The (generalized) one-particle wave functions can be
grouped as real fields depending on x,

qγðxÞ ¼
�
q0γðxÞ
qcγðxÞ

�
; ð252Þ

for which the charge operator Q acts as

Q

�
q0γðxÞ
qcγðxÞ

�
¼

�
q0γðxÞ
−qcγðxÞ

�
; Q ¼ τ3: ð253Þ

The complex one-particle wave functions read

φγðxÞ ¼
1þ iffiffiffi

2
p q0γðxÞ þ

1 − iffiffiffi
2

p qcγðxÞ: ð254Þ

These complex wave functions are not eigenstates of the
charge operator which mixes φγðxÞ and φ�

γðxÞ.
The appropriate range of the index γ depends on the

particular vacuum state. It always comprises R and L. For
the equipartition vacuum only four generalized particles
with QR ¼ �1, QL ¼ 0 and QR ¼ 0, QL ¼ �1 exist, such
that γ ¼ R, L. For the particle-hole symmetric combination
of the totally empty and filled configurations γ takes the
four values (R1, R2, L1, L2). For the particle hole
symmetric combination of the vacua (A) and (B) the range
of γ depends on which configurations we count as particles.

E. Chiral transformations of the one-particle wave
functions

We can perform separate phase transformations on the
complex wave function of the right-moving and left-
moving one-particle excitations

φR → eiαRφR; φL → eiαLφL: ð255Þ

The infinitesimal chiral transformation

δφ ¼ iαφ ð256Þ

can be translated directly to the infinitesimal transformation
of the real wave functions q, qc,

δq ¼ αqc; δqc ¼ −αq0: ð257Þ

This follows directly from the definition
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φ ¼ 1þ iffiffiffi
2

p q0 þ 1 − iffiffiffi
2

p qc ¼ e
iπ
4q0 þ e−

iπ
4qc: ð258Þ

Thus chiral rotations correspond for our complex structure
to a rotation between particles and holes. Since the step
evolution operator does not distinguish between particles
and holes the evolution is invariant under chiral rotations.

IX. MOMENTUM AND UNCERTAINTY
RELATION

We have discussed in Sec. VIII the simple properties of
vacua and one-particle wave functions in the language of
the cellular automaton. All these findings translate directly
to the discrete fermionic quantum field theory. The wave
functions are identical. In the opposite direction we can ask
how simple properties of the fermionic quantum field
theory translate to the cellular automaton. For one-particle
fermionic excitations the characteristic quantity is the
momentum of the particle. We will investigate how this
observable appears for the cellular automaton. For a single
fermionwe also have the position observable. The associated
operators for momentum and position do not commute,
implying the uncertainty relation characteristic for quantum
mechanics. The appearance of noncommuting operators for
observables in the classical statistical system of the cellular
automatonwill also shed light on how “no go theorems” for a
classical statistical implementation of quantum systems, as
Bell’s inequalities [3,4], are circumvented.

A. Evolution of one-particle wave function

The time evolution of the one-particle wave function is
very simple. Since a single particle or hole cannot scatter,
the generalized particles move on straight lines, with dx ¼
dt for right-movers and dx ¼ −dt for left-movers. We may
consider a pair of complex one-particle wave functions, one
right-mover φRðt; xÞ and one left-mover φLðt; xÞ. This
applies to all vacua discussed in the preceding section,
with an additional index for several species in some cases.
The evolution is given by

φðtþ2ε;xÞ¼ Ŝφðt;xÞ; φ¼
�
φR

φL

�
; Ŝ¼

�
ŜR 0

0 ŜL

�
;

ð259Þ

with block diagonal evolution operator generating a shift in
the corresponding direction

φRðtþ2ε;xÞ¼φRðt;x−2εÞ; φLðtþ2ε;xÞ¼φLðt;xþ2εÞ:
ð260Þ

With discrete “lattice derivatives”

∂tφðt; xÞ ¼
1

4ε
ðφðtþ 2ε; xÞ − φðt − 2ε; xÞÞ;

∂xφðt; xÞ ¼
1

4ε
ðφðt; xþ 2εÞ − φðt; x − 2εÞÞ; ð261Þ

one obtains the discrete evolution equation

∂tφR ¼ −∂xφR; ∂tφL ¼ ∂xφL: ð262Þ

The general solutions are functions of t − x or tþ x,

φR ¼ fRðt − xÞ; φL ¼ fLðtþ xÞ: ð263Þ

By multiplication with i Eq. (262) yields the discrete
Schrödinger equation

i∂tφ ¼ Hφ; H ¼
�
P 0

0 −P

�
; P ¼ −i∂x: ð264Þ

The continuum limit is rather simple in this case, replacing
lattice derivatives by partial derivatives. We recognize the
momentum operator P. In the real formulation with χR ¼
ðq0R; qcRÞ this operator reads

P̂ ¼ −I∂x ¼
�

0 −∂x

∂x 0

�
; ð265Þ

where for discrete lattice points the operator ε∂x is a real
antisymmetric matrix (cf. Ref. [1] for details). Thus P̂ is
symmetric and P therefore Hermitian. The operator P̂
commutes with Ŝ, such that P̂ corresponds to a conserved
quantity.

B. Momentum eigenstates

The eigenfunctions of the momentum operator P are
periodic. The ones with positive energy are given by
(p > 0)

φR ∼ e−ipðt−xÞ; φL ∼ e−ipðtþxÞ: ð266Þ

In the real formulation this corresponds to a rotation
between particles and holes

q0R¼ N̄ cos½pðt−xÞþαR�; qcR¼ N̄ sin½pðt−xÞþαR�;
q0L ¼ N̄ cos½pðtþxÞþαL�; qcL ¼ N̄ sin½pðtþxÞþαL�;

ð267Þ

with appropriate normalization factor N̄. For a finite
numberMx of sites of a periodic lattice, and lattice distance
2ε, the possible values of p are discrete

p ¼ 2πk
2εMx

¼ 2πk
L

; k ∈ Z; ð268Þ
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with L ¼ 2εMx the circumference of the torus in x. For
discrete lattice points the momentum p is periodic with
period Δp ¼ π=ε, since p and pþ Δp yield the same
values for all lattice points separated by 2ε.
From ðq0RÞ2 þ ðqcRÞ2 ¼ N̄2 we conclude that the proba-

bility to find either a right-moving particle or a right-moving
hole does not depend on x or t. However, the probability to
find a particle at x oscillates ∼ cos2½pðt − xÞ þ αR�. At the
maxima of this oscillating probability distribution the prob-
ability to find a hole vanishes. For the example of the half-
filled equipartition vacuum the particle at x corresponds
to the presence of both red and green right-movers at x,
while a hole at x describes the absence of right movers at x.
The momentum eigenstates therefore have a very concrete
interpretation in terms of probabilities to find various
configurations of occupation numbers, and the associated
oscillating expectation values.
The precise components between which the oscillation

takes place depends on the choice of the complex structure.
For a different complex structure the oscillation may be
between the two colors.
In the complex picture we can employ the Fourier

transform in order to express arbitrary complex wave
functions φRðt; xÞ or φLðt; xÞ as linear combinations of
momentum eigenstates. The Fourier transform is a standard
tool for the description of fermionic quantum field theories.
Here it finds a corresponding application to probabilistic
cellular automata for which its use may not have been
obvious without the correspondence to the quantum sys-
tems of fermions.

C. Momentum observable

In a fermionic quantum field theory the Hermitian
momentum operator P of a single particle is usually
considered to represent an observable. For an observable
in quantum mechanics the possible measurement values for
an observable correspond to the eigenvalues of the asso-
ciated operator. For discrete space points these eigenvalues
are given by

λðpÞ ¼ sinð2pεÞ
2ε

; ð269Þ

with discrete values of p given by Eq. (268). In the
continuum limit ε → 0 one simply finds λðpÞ ¼ p. The
expectation value hPi is given by the probabilities to find
the different eigenvalues, as encoded in the quantum rule

hPðtÞi ¼ trfPρðtÞg: ð270Þ

In particular, for one of the eigenstates (266) for a particular
value p the expectation value should coincide with an
eigenvalue

hPip ¼ λðpÞ: ð271Þ

This may be verified by direct computation [1] of Eq. (270)
for the corresponding density matrix ρpðtÞ. According to
our discussion in Appendix G 3 the probabilities to find
given eigenvalues of λðpÞ can be associated to the diagonal
elements of the density matrix in a basis of eigenstates
labeled by p. This is simply the Fourier-representation of
the density matrix. Computing the expectation values with
these probabilities amounts to the quantum rule (270). All
these formal requirements are equally obeyed by the
fermionic quantum field theory and the probabilistic
cellular automaton. They only involve the density matrix
and the operator P.
What remains to the specified is a measurement descrip-

tion for an observable associated to the operator P. This
should yield λðpÞ for individual measurements and repro-
duce the expectation value hPi. The problem of finding
such a prescription seems to be the same for the fermionic
quantum field theory and the probabilistic cellular automa-
ton. Measuring momentum for free relativistic particle is
not easy even as a gedanken-experiment. Properties of
trajectories cannot be used except for the sign of p—the
generalized particles move always on straight lines with
light velocity. One possibility for momentum eigenstates
could be the counting of oscillations in x for the expectation
values of particles and holes. This determines jpj and
therefore λðpÞ for every momentum eigenstate [1]. The
generalization to arbitrary states would need some “appa-
ratus” that projects a given state to the eigenstates of P with
the required probabilities.
We do not want to deepen here a discussion of possible

measurement prescriptions.Whatever canbe found, it is clear
that the possible measurement values λðpÞ do not have a
given value for the configurations τ. A momentum observ-
able is a “statistical observable” in the sense that it measures
properties of probability distributions (in our case periodic-
ity). In this respect it has common features with quantities as
entropy or other characterizations of probability distribu-
tions. While not having fixed values in microstates (con-
figurations in our case), it characterizes the probabilistic
information. Nevertheless, it can take sharp values λðpÞ for
particular density matrices, and one may associate this with
possible outcomes of measurements.

D. Position observable and uncertainty relation

Intuitively it is clear that periodic expectation values of
occupation numbers are not compatible with sharp posi-
tions of particles. This is reflected in Heisenberg’s uncer-
tainty relation between position and momentum. Not
surprisingly anymore, the quantitative relation will be
precisely the same for the probabilistic cellular automaton
and the fermionic quantum system.
For configurations τ for which one generalized particle

(particle or hole) is present at the position x the position
observable takes the value x. For the one-particle states τð1Þ
the position is a standard observable which takes a fixed
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value xτ for every one-particle configuration τð1Þ.
Correspondingly, the associated operator is diagonal

X̂ρσ ¼
X
τ

xτδτρδτσ; ð272Þ

with ρ and σ restricted here to one-particle configurations.
The position observable does not make a difference
between particles and holes. The corresponding operator
X̂ is therefore compatible with the complex structure and
takes in the complex formulation again the form (272)
(now with a restricted range for τð1Þ ∈ fτ0g). The position
operator also does not distinguish between right- and left-
movers, and is color blind in case of several species of one-
particle excitations.
Having defined both the position and momentum oper-

ators as suitable matrices we can compute the commutator.
In the continuum limit ε → 0 one obtains in the real and
complex formulation, respectively

½X̂; P̂� ¼ I; ½X;P� ¼ i: ð273Þ

This is the standard result for quantum mechanics. From
these Heisenberg’s uncertainty relation follows in the
standard way.
Our discussion of momentum and position observables

sheds light on the question how no-go theorems for an
embedding of quantum mechanics in classical statistics are
circumvented. We already know that this must be the case
since our probabilistic cellular automaton is fully equiv-
alent to a quantum system, being itself a classical statistical
system. Bell’s theorem establishes important inequalities
for classical correlation functions in a rather general
contest. It only assumes the existence of states for which
the observables take fixed values, and a positive probability
distribution for these states. Quantum experiments show
that measured correlations can violate these inequalities.
Obviously no contradiction arises if the measured corre-
lation are not given by classical correlation functions. The
classical products of observables may simply not exist, as
in our case for position and momentum since there are no
states for which both position and momentum have a sharp
value. More generally, quantum systems are often sub-
systems for which the probabilistic information is sufficient
to compute the expectation values hAi and hBi for two
observables, but insufficient for the computation of their
classical correlation. Measurement correlations for a
sequence of ideal measurements in such system are
typically given by prescriptions different from the classical
correlations, typically based on products of the associated
operators [1]. In this case Bell’s inequalities do not lead
to contradictions. Such subsystems are characterized by
“incomplete statistics.”

X. DISCUSSION

This paper demonstrates that certain fermionic quantum
field theories with interactions are equivalent to probabi-
listic cellular automata. This particular class of fermionic
models is realized whenever the quantum evolution oper-
ator for discrete time steps is a unique jump matrix with
only one element in each row and column equal to one, and
all other elements zero. We have established a general way
to compute the step evolution operator from the Grassmann
functional integral which defines the fermionic quantum
field theory. In particular, we have formulated a family of
discretized Thirring-type fermionic quantum field theories
in 1þ 1-dimensions for which the step evolution operator
is a unique jump matrix and therefore realizes a cellular
automaton.
One may consider as an important outcome of this

investigation that we have succeeded to construct a genuine
quantum theory with interactions as a classical statistical
system. All objects and concepts as wave function, density
matrix, noncommuting operators and expectation values for
observables, are strictly identical for the fermionic quantum
field theory and the associated probabilistic cellular
automaton. All predictions and quantum rules emerge from
the simple laws for probabilities and expectation values for
observables in classical statistics. This demonstrates that
no-go theorems for the emergence of quantum mechanics
from classical statistics cannot apply.
Probabilistic cellular automata for bit systems are syn-

onymous to a type of probabilistic classical computing for
which the computational steps of bit-manipulations are
deterministic, while initial conditions are probabilistic.
Since already these simple forms of probabilistic comput-
ing show quantum features, one may ask if forms of
quantum computing could be performed by classical
probabilistic systems, as static memory materials, artificial
neural networks or neuromorphic computing [62–65].
On the other side, one may hope that the equivalence to a

probabilistic cellular automaton may help for exact or
partial solutions of the corresponding fermionic quantum
field theories. The updating rules for the cellular automaton
often allow for simple exact combinatorial results, as the
absence of scattering for doubly occupied lines, that may be
less straightforward to find in the Grassmann functional
integral description for the fermions. In the present paper
we have discussed Dirac fermions. The same methods
can be applied for Majorana fermions, Weyl fermions or
Mayorana-Weyl fermions.
In this paper we have focused on a particular discretized

Thirring type model. The implementation of more fermion
species and new forms of interactions or mass terms seems
rather straightforward by use of the recipes of Sec. III.
Lorentz-symmetry in the naive continuum limit is not
difficult to realize, given the simple transformation rules
for the Grassmann variables.
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Generalizations of our formalism to three or four
dimensions do not seem to encounter problems of principle.
What is not yet achieved, however, are cellular automata
that realize simple fermionic quantum field theories with
Lorentz symmetry in three or four dimensions. So far it
remains an open question if our world could be described
by a probabilistic cellular automaton, or if more general
probabilistic systems are needed.

APPENDIX A: CONVENTIONS FOR
GRASSMANN ELEMENTS AND ANNIHILATION/

CREATION OPERATORS

In this Appendix, we specify an ordering of states and
Grassmann variables, a choice of sign for the Grassmann
basis elements, and a convention for the creation and
annihilation operators. Our results do not depend on this
particular choice of conventions. For practical checks it is
sometimes useful, however, to have at least one definite and
consistent convention. This Appendix should help the
reader to find all conventions quickly.
We first order the index α for the occupation numbers nα

or the associated Grassmann variables ψα, with α ¼ ðx; γÞ,
and γ ¼ ðη; aÞ, η ¼ ðR;LÞ, a ¼ ð1; 2Þ. We start at α ¼ 1
with ðxin; R; 1Þ or ðxin; γ ¼ 1Þ, and first increase the internal
index, α ¼ 2 corresponding to ðxin; γ ¼ 2Þ, α ¼ 4 to
ðxin; γ ¼ 4Þ. Next we increase x by ε, α ¼ 5 corresponding
to ðxin þ ε; γ ¼ 1Þ, where γ ¼ 1;…4, with

γ ¼ 1¼̂ ðR; 1Þ
γ ¼ 2¼̂ ðR; 2Þ
γ ¼ 3¼̂ ðL; 1Þ
γ ¼ 4¼̂ ðL; 2Þ: ðA1Þ

With this system, α is given by the integer

α¼ 4mþ γ ¼ 4ðx− xinÞ=εþ γ; m¼ 0;1;2…Mx − 1:

ðA2Þ

The variables nα or ψα can therefore be labeled equivalently
by ðx; γÞ, ðx; η; aÞ or the integer α. We use the index α
without distinction of the different ways of labeling. ForMx
space points we have α ¼ 1…M, M ¼ 4Mx.
We next order the 2M states denoted by τ ¼ 1…N,

N ¼ 2M. A convenient label for each state or configuration
of Ising spins, occupation numbers or bits is the bit notation
fnαg ¼ ðn1; n2; n3…nMÞ; with nα ¼ 1 for an occupied
generalized site α and nα ¼ 0 for an empty site, e.g.,
(0,1,0) for the configuration where α ¼ 2 is occupied and
α ¼ 1, 3 are empty. We can associate to each bit configu-
ration a standard binary number, e.g., nB ¼ 2 for (0,1,0),
nB ¼ 7 for (1,1,1). We order by beginning with the fully
occupied state and define the integer

τ ¼ 2M − nB: ðA3Þ

Wave functions can be seen as N-components vectors
with components qτ. In the corresponding vector space we
use as basis vectors vðτÞ unit vectors which have one
element equal to one and all other elements equal to zero,
e.g.,

vðτÞρ ¼ δðτÞρ : ðA4Þ

We can represent vðτÞ in a “direct product form”

vðτÞ ¼ N ðτÞ
ð1Þ ⊗ N ðτÞ

ð2Þ ⊗ N ðτÞ
ð3Þ… ⊗ N ðτÞ

ðMÞ; ðA5Þ

with two component unit vectors

N ðτÞ
ðαÞ ¼

�
1

0

�
if nðτÞα ¼ 1;

N ðτÞ
ðαÞ ¼

�
0

1

�
if nðτÞα ¼ 0: ðA6Þ

Here nðτÞα is the occupation number nα corresponding to the
state τ. For the example M ¼ 3, N ¼ 8 the components of
vðτÞ read ðσα ¼ 1; 2Þ

vðτÞρ ¼ N ðτÞ
ð1Þσ1N

ðτÞ
ð2Þσ2N

ðτÞ
ð3Þσ3 ;

ρ ¼ 4ðσ1 − 1Þ þ 2ðσ2 − 1Þ þ σ3: ðA7Þ

In particular, one has vð1Þ ¼ N ð1Þ
ð1Þ ⊗ N ð1Þ

ð2Þ…, with all

N ðτÞ
ðαÞ ¼ ð1

0
Þ for the fully occupied state. For vð2Þ one

changes N ð2Þ
ðMÞ ¼ ð0

1
Þ, while all α ≠ M correspond to

N ð2Þ
ðαÞ ¼ ð1

0
Þ. This direct product form is useful if we

represent operators as matrices in a direct product form,
as we will do with creation and annihilation operators.
We next turn to the Grassmann basis elements by fixing

the signs s̃τ in Eq. (6). The basis element gτ contains a

factor ψα for every n
ðτÞ
α ¼ 0. We take a plus sign for s̃τ if all

factors ψα are ordered with increasing α, the smallest α to
the left. With the bit notation for τ one has, for example

gð10011001Þ ¼ ψ2ψ3ψ6ψ7

¼ ψR2ðxinÞψL1ðxinÞψR2ðxin þ εÞψL1ðxin þ εÞ:
ðA8Þ

The totally filled state, nα ¼ 1 for all α, obeys gð111…Þ ¼ 1.
The other basis elements can be obtained by consecutively
taking away particles, starting with the highest α.
Multiplication of gτ by ψα yields zero if gτ contains already
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a factor ψα, i.e., for n
ðτÞ
α ¼ 0. On the other hand, if no ψα is

present, nðτÞα ¼ 1, ψαgτ is a new basis element gτ0 up
to a sign. Here τ0 obtains from τ by annihilating a particle

nðτ
0Þ

α ¼ 0 for nðτÞα ¼ 1. The sign depends on the number of ψβ

with β < α in gτ. We conclude that multiplication with ψα

can be associated to the annihilation of a particleα. Similarly,
∂=∂ψα acts as creation of a particleα if noparticleα is present

in τ. One has ð∂=∂ψαÞgτ ¼ 0 if nðτÞα ¼ 1, and ð∂=∂ψαÞgτ ¼
�gτ00 , with nðτ

00Þ
α ¼ 0 for nðτÞα ¼ 1.

We define a “right transport operator t̃þγ ðxÞ by (no sum
over γ)

t̃þγ ðxÞ ¼
∂

∂ψγðxþ εÞψγðxÞ: ðA9Þ

It annihilates a particle of type γ at x and creates one at
xþ ε, provided that for gτ a particle γ is present at x and no
particle γ is present at xþ ε. Otherwise t̃þγ ðxÞgτ ¼ 0. The
basis element gτ corresponding to a one-particle state
contains all ψα except for α ¼ ðx; γÞ. (At the position α ¼
ðx; γÞ there is a factor 1 instead of ψα.) For a one particle
state with a particle at ðx; γÞ one has

t̃þγ ðxÞgτ ¼ gτþ
t̃þγ0 ðyÞgτ ¼ 0 for x ≠ y; γ ≠ γ0: ðA10Þ

The state τþ obtains from τ by displacing the particle from
x to xþ ε. In terms of integers α one has

t̃þα ¼ ∂
∂ψαþ4

ψα: ðA11Þ

One can check easily that t̃þγ ðxÞ does not introduce a minus
sign in the change from gτ to gτþ . Similarly, the left
transport operator t̃−γ ðxÞ obeys for a single particle γ at x

t̃−γ ðxÞgτ ¼
∂

∂ψγðx − εÞψðxÞgτ ¼ gτ− ; ðA12Þ

with gτ− obtained from gτ by displacing the single particle
from x to x − ε.
Annihilation operators aγðxÞ and creation operators

a†γðxÞ ¼ aTγ ðxÞ are defined in terms of the basis annihilation
and creation operators a and a† which are real 2 × 2
matrices

a ¼
�
0 0

1 0

�
; a† ¼

�
0 1

0 0

�
; ðA13Þ

acting on real two component unit vectors as

a

�
1

0

�
¼

�
0

1

�
; a

�
0

1

�
¼ 0;

a†
�
1

0

�
¼ 0; a†

�
0

1

�
¼

�
1

0

�
: ðA14Þ

For aγðxÞ we choose a direct product representation

aγðxÞ ¼ T3 ⊗ T3 ⊗ … ⊗ T3 ⊗ aγ ⊗ 1 ⊗ 1 ⊗ … ⊗ 1;

ðA15Þ

where the 16 × 16 matrix aγ is placed at the position
x ¼ xin þmε. The 16 × 16 matrix T3 anticommutes with
aγ; a

†
γ ,

T3 ¼ τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3; fτ3; aγg ¼ 0; ðA16Þ

and the factors 1 in Eq. (A15) stand for unit 16 × 16
matrices. For aγ we employ

aR1 ¼ a ⊗ 1 ⊗ 1 ⊗ 1; aR2 ¼ τ3 ⊗ a ⊗ 1 ⊗ 1;

aL1 ¼ τ3 ⊗ τ3 ⊗ a ⊗ 1; aL2 ¼ τ3 ⊗ τ3 ⊗ τ3 ⊗ a:

ðA17Þ

With

a†γ ¼ aTγ ; a†γðxÞ ¼ aTγ ðxÞ ðA18Þ

we can obtain a†γðxÞ from aγðxÞ by replacing the factor a by
a†. We observe the basic anticommutation relations for
annihilation and creation operators of fermions

fa†γ ; aδg ¼ δγδ; fa†γðxÞ; aδðyÞg ¼ δγδδxy;

faγ; aδg ¼ 0; faγðxÞ; aδðyÞg ¼ 0;

fa†γ ; a†δg ¼ 0; fa†γðxÞ; a†δðyÞg ¼ 0: ðA19Þ

For this convention the right transport operator (no sum
over γ),

t†γðxÞ ¼ a†γðxþ εÞaγðxÞ; ðA20Þ

transports the single particle wave function for a particle γ
at x to a particle γ at xþ ε without a change of sign. Noting
the relation

τ3a ¼ −aτ3 ¼ −a

τ3a† ¼ −a†τ3 ¼ a†; ðA21Þ

one has
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T3aR1 ¼ −ða ⊗ τ3 ⊗ τ3 ⊗ τ3Þ;
T3a

†
R1 ¼ ða† ⊗ τ3 ⊗ τ3 ⊗ τ3Þ;

T3aR2 ¼ −ð1 ⊗ a ⊗ τ3 ⊗ τ3Þ;
T3a

†
R2 ¼ ð1 ⊗ a† ⊗ τ3 ⊗ τ3Þ; ðA22Þ

and similarly for L1, L2. As compared to Eq. (A17) we
note the different τ3 factors. For the right transport operator
this implies (no sum over γ)

a†γðxþ εÞaγðxÞ ¼ ð1 ⊗ 1… ⊗ T3aγ ⊗ a†γ ⊗ 1 ⊗ 1…Þ:
ðA23Þ

Let us consider γ ¼ R1 and focus on the parts at x and xþ ε

T3aR1 ⊗ a†R1 ¼ −ða⊗ τ3 ⊗ τ3 ⊗ τ3Þ⊗ ða† ⊗ 1⊗ 1⊗ 1Þ:
ðA24Þ

The τ3-factors produce a factor (−1) for every absent
particle. Since for a single particle of type R1 the particles
R2, L1 and L2 are absent both at x and xþ ε, the three
minus signs from the τ3-factors cancel the overall minus
sign. We conclude that a δ-type single particle wave
function with a particle R1 sitting precisely at x is changed
by multiplication with tþR1 to a similar wave function, now
with the particle sitting precisely at xþ ε. The situation for
the other particle types R2, L1 and L2 is similar. The left
transport operator t−γ ðxÞ has the same properties, now with
the particle γ transported to x − ε,

t−γ ðxÞ ¼ a†γðx − εÞaγðxÞ: ðA25Þ

For the part at (x − ε, x) one has now the product
a†γ ⊗ T3aγ , such that the change of positions of the factors
as compared to tþγ ðxÞ has no influence on the overall sign.
Applying the annihilation aγðxÞ to a Grassmann wave

function

g ¼ qτgτ ðA26Þ

we can equivalently multiply the vector qτ with the operator
aγðxÞ, or the vector gτ with the transposed aTγ ðxÞ ¼ a†γðxÞ,

½aγðxÞ�τρqρgτ ¼ qτgρðaγðxÞÞρτ ¼ qτĝτ: ðA27Þ

We observe the relation

gρðaγðxÞÞρτ ¼ ða†γðxÞÞτρgρ ¼ ψγðxÞgτ; ðA28Þ

which is equivalent to

½ðaγðxÞÞτρqρ − ψγðxÞqτ�gτ ¼ 0: ðA29Þ

For a proof of the relation (A28) we note that only those ρ

with nðρÞγ ðxÞ ¼ 0 contribute in the sum on the left hand side.
The corresponding basis elements gρ therefore all have a
factor ψγðxÞ. This is precisely what happens on the rhs of
Eq. (A28) due to the multiplication with ψγðxÞ. If τ is a state
with nðτÞγ ðxÞ ¼ 0 one has ψγðxÞgτ ¼ 0, while the left-hand
side (lhs) of Eq. (A28) vanishes as well due to the vanishing
elements a†τρ. On the rhs of Eq. (A28) we only need to

consider those τ for which nðτÞγ ðxÞ ¼ 1, and on the l.h.s.

only those gρ with nðρÞγ ðxÞ ¼ 0. The factors of ψα with α ≠
ðx; γÞ are the same for gτ on the rhs and all terms ∼gρ on the
lhs. The two expressions in Eq. (A28) can therefore differ at
most by a relative minus sign.
For a discussion of a possible sign we start with M ¼ 1,

where

a†
�
g1
g2

�
¼
�
ĝ1
ĝ2

�
; ĝ1 ¼ g2 ¼ ψ ; ĝ2 ¼ 0: ðA30Þ

This coincides with ĝτ ¼ ψgτ, ĝ1 ¼ ψg1 ¼ ψ ,
ĝ2 ¼ ψg2 ¼ 0. For M ¼ 2 we have a†1 ¼ a† ⊗ 1, a†2 ¼
τ3 ⊗ a† or

a†1

0
BBB@

g1
g2
g3
g4

1
CCCA ¼

0
BBB@

g3
g4
0

0

1
CCCA; a†2

0
BBB@

g1
g2
g3
g4

1
CCCA ¼

0
BBB@

g2
0

−g4
0

1
CCCA: ðA31Þ

On the other hand, one has with Eq. (18),

ψ1

0
BBB@
g1
g2
g3
g4

1
CCCA¼ψ1

0
BBB@

1

ψ2

ψ1

ψ1ψ2

1
CCCA¼

0
BBB@

ψ1

ψ1ψ2

0

0

1
CCCA¼

0
BBB@
g3
g4
0

0

1
CCCA

ψ2

0
BBB@
g1
g2
g3
g4

1
CCCA¼ψ2

0
BBB@

1

ψ2

ψ1

ψ1ψ2

1
CCCA¼

0
BBB@

ψ2

0

ψ1ψ2

0

1
CCCA¼

0
BBB@

g2
0

−g4
0

1
CCCA: ðA32Þ

Thus for M ¼ 1, 2 Eq. (A28) is obeyed without an
additional minus sign. Generalizing to arbitrary M we
observe

ψαgτ ¼ ĝτ ¼ σ̂τgτ0 ; σ̂τ ¼ �1; ðA33Þ

where a minus sign σ̂τ ¼ −1 occurs whenever the number

of empty sites, nðτÞβ ¼ 0, for β < α is odd. On the lhs of
Eq. (A28) possible minus signs can only arise from the
τ3-factors in a

†
α. For a given a

†
α these τ3 factors occur for all

β < α according to Eqs. (A15), (A17). Every τ3 factor
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produces a sign (−1) for nðτÞβ ¼ 0, and a factor (þ1) if

nðτÞβ ¼ 1. This coincides with the number of minus signs in
ψαgτ, concluding the proof that no additional sign occurs
in Eq. (A28).
For the Grassmann derivative the relation analogous to

Eq. (A28) reads

gρða†ðxÞÞρτ ¼ ðaγðxÞÞτρgρ ¼
∂

∂ψγðxÞ
gτ: ðA34Þ

The argument that both sides contain the same ψ-factors is
similar to the one below Eq. (A28). Again, the number
minus signs from the anticommutation of ∂=∂ψγ with the
factors ψβ, β < γ, equals the number of negative eigen-
values for the τ3-factors in aγðxÞ.
For sequences of operations of the type (A28), (A34) we

should interpret the action of annihilation and creation
operators as matrix multiplication from the right of the
basis elements, e.g.,

gρðaγðxÞÞρτ¼ψγðxÞgτ; gρða†γðxÞÞρτ¼
∂

∂ψγðxÞ
gτ: ðA35Þ

This implies relations of the type

gρða†γðxÞaβðxÞÞρτ ¼
∂

∂ψγðxÞ
ψβgτ: ðA36Þ

For the operator multiplication we have the isomorphism

aγðxÞ¼̂ ψγðxÞ; a†γðxÞ¼̂ ∂
∂ψγðxÞ

; ðA37Þ

which holds if for every given ðx; γÞ not both aγðxÞ and
a†γðxÞ appear in these expressions. (Otherwise the isomor-
phism holds only for suitably ordered products of annihi-
lation and creation operators.) Grassmann operators A a
sequences of factors ψα and ∂=∂ψβ, e.g.,

A1 ¼ ψ2

∂
∂ψ4

ψ6ψ7

∂
∂ψ10

: ðA38Þ

The associated operator A is a corresponding product of
annihilation operators aα and creation operators a†β, with
the same order, e.g.,

A1 ¼ a2a
†
4a6a7a

†
10: ðA39Þ

The operator A acts on the basis elements from the right,

gρAρτ ¼ Agτ: ðA40Þ

This procedure implies for arbitrary Grassmann elements

Ag ¼ Aqτgτ ¼ qτgρAρτ ¼ Aτρqρgτ ¼ q0τgτ; ðA41Þ

such that the wave function q is multiplied by the operator
A from the left as usual,

qτ → q0τ ¼ Aτρqρ: ðA42Þ

In particular, the occupation number operator for a particle
γ at x is given in the occupation number basis and as
associated Grassmann operator by

n̂ðxÞ ¼ a†γðxÞaγðxÞ; N γðxÞ ¼
∂

∂ψγðxÞ
ψγðxÞ: ðA43Þ

APPENDIX B: COARSE GRAINING AND
CONJUGATE GRASSMANN VARIABLES

The product of step evolution operators for propagation
and interaction can be viewed as a type of coarse grained
step evolution operator. Two evolution steps are combined
into a common coarse grained step. This doubles the
Grassmann variables appearing in the combined step,
involving for every coarse grained time both ψ and ψ̄ .
We briefly discuss in this Appendix how ψ̄ is related to the
conjugate Grassmann variables in Ref. [43].
The product (66) is a new local factor K̄ðtÞ which

depends on the Grassmann variables ψγðtþ 2ε̃; xÞ and
ψγðxÞ. The associated step evolution operator ŜðtÞ is given
by Eq. (67). Restricting the observables to even t this
defines a “coarse grained” fermionic model. The relation
between K̄ðtÞ and ŜðtÞ is given by

K̄ðtÞ ¼ gτðtþ 2ε̃ÞŜτρðtÞḡρðtÞ: ðB1Þ

The units of the time-distance between two neighboring
points m and mþ 1 on the time lattice is arbitrary. For our
particular construction a noninteracting particle advances
one space unit during two time units. The velocity can
be normalized to one by choosing the time difference
ε̃ between neighboring lattice points as ε̃ ¼ ε=2.
Equation (B1) becomes in the new units

K̄ðtÞ ¼ gτðtþ εÞŜτρðtÞḡρðtÞ: ðB2Þ

As a disadvantage of integrating out the intermediate
Grassmann variables ψγðtþ ε

2
; xÞ both the Grassmann basis

functions gτ and the conjugate Grassmann basis functions
ḡτ are needed for an extraction of ŜðtÞ from K̄ðtÞ.
Correspondingly the intermediate integration changes the
form of K̄ðtÞ, even if ŜðtÞ is the identity operation. This is
easily seen by the multiplication of unit step evolution
operators

K̃ðtþ εÞ ¼ expðψφÞ; K̃ðtÞ ¼ expðφψ 0Þ; ðB3Þ
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where

K̄ðtÞ ¼
Z

Dφ expðψφþ φψ 0Þ

¼
Z

Dφð1þ φðψ 0 − ψÞÞ

¼ ψ 0 − ψ ¼ δðψ 0 − ψÞ: ðB4Þ

It is advantageous to keep the exponential form of the
local factors for the coarse grained view as well. This can be
done by doubling the number of Grassmann variables at
every t. At every t one has then two sets of variables
ψγðt; xÞ and ψ̄ γðt; xÞ, and the functional integration is over
ψ and ψ̄ . In our case we can simply associate ψ̄ðtÞ with
ψðt − ε=2Þ by defining

ψ̄R;aðtþ ε; xÞ ¼ ψR;a

�
tþ ε

2
; x

�
;

ψ̄L;aðtþ ε; xÞ ¼ ψL;a

�
tþ ε

2
; x

�
: ðB5Þ

The Grassmann variables ψðtþ ε
2
Þ play a role very similar

to the conjugate Grassmann variables used, for example,
in Ref. [43].
We can define even and odd sublattices. With t ¼ mtε,

x ¼ mxε and integer mt, mx the even (odd) sublattice
contains the points with mt þmx even (odd). The action of
our model does not connect the even and the odd sublattice.
Since for every step ε in t the kinetic terms moves the
variables either one place to the right or to the left, it does
not mix the sublattices. A particle on the even sublattice
remains on the even sublattice. The interaction term is local
and does not change the situation. In the following we
simply omit the odd sublattice and define

P
t;x as a sum

over the points of the even sublattice. The factor D̃ðtþ ε; xÞ
in Eq. (70) is evaluated on the even sublattice at tþ ε.
There exist equivalent alternative formulations that put

the right movers on the even sublattice and the left movers
on the odd sublattice (see next section), or the green
particles on the even sublattice and the red particles on
the odd sublattice. This may seem at first sight more
economical since one has a full square lattice and only two
species at each lattice site. The discussion becomes more
complex, however, since often different cases have to be
addressed specifically. For this reason we will focus on the
formulation on the even sublattice with four species of
Grassmann variables and four species of conjugate
Grassmann variables at each lattice site.

APPENDIX C: WEYL AND MAJORANA
FERMIONS

In this Appendix, we discuss the notion of two-
dimensional Weyl, Majorana and Majorana-Weyl spinors.

This clarifies the particle content for different types of the
continuum limit.
Without a complex structure the “real” Grassmann

variables ψR and ψL form right-moving and left-moving
Majorana-Weyl spinors. A Majorana spinor is composed of
two Majorana-Weyl spinors ψþ;ψ− that transform inde-
pendently

ψþ¼1þ γ̄

2
ψ ¼

�
ψR

0

�
; ψ−¼

1− γ̄

2
ψ ¼

�
0

ψL

�
; ðC1Þ

where γ̄ corresponds to γ5 in four dimensions,

γ̄ ¼ −γ0γ1 ¼ τ3; fγ̄; γμg ¼ 0: ðC2Þ

1. Lorentz invariance of Thirring automaton

Lorentz transformations scale the Majorana-Weyl spin-
ors in opposite directions

δψþ ¼ η

2
ψþ; δψ− ¼ −

η

2
ψ−: ðC3Þ

With ψ̄R and ψ̄L transforming in the same way as ψR and
ψL any interaction that involves an equal number of right-
movers and left-movers is Lorentz invariant. We observe
the relation

ψ̄ ¼ ðψ̄R; ψ̄LÞγ0: ðC4Þ

The kinetic term (first term in the action (86) involves in
addition a derivative that adds to the Lorentz transformation
property and makes it invariant.
In order to see the Thirring form and Lorentz-invariance

of the interaction term Lint we observe the relations

ψ̄γ0ψ ¼ −ðψ̄RψR þ ψ̄LψLÞ;
ψ̄γ1ψ ¼ −ψ̄RψR þ ψ̄LψL; ðC5Þ

and

ψ̄dγ
μψcψ̄bγμψa ¼ −2ðψ̄RdψRcψ̄LbψLa þ ψ̄RbψRaψ̄LdψLcÞ:

ðC6Þ

With the naming (71) this yields

2D̄ ¼ −ψ̄1γ
μψ1ψ̄2γμψ2 þ ψ̄1γ

μψ2ψ̄2γμψ1;

2C̄ ¼ −
1

2
ðψ̄1γ

μψ1ψ̄1γμψ1 þ ψ̄2γ
μψ2ψ̄2γμψ2Þ

þ σ

2
ðψ̄1γ

μψ2ψ̄1γμψ2 þ ψ̄2γ
μψ1ψ̄2γμψ1Þ: ðC7Þ

We observe that D̄ and C̄ are separately Lorentz-invariant,
only the color structure depends on the particular
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combination. We have also used the sign σ in the con-
vention (82) in order to demonstrate that Lorentz symmetry
does not depend on the sign convention. The particular
combination C̄þ D̄ can be written in the form

Li¼ 2ðC̄þ D̄Þ¼−
1

2
ψ̄aγ

μψaψ̄bγμψb

þσ

2
ðψ̄1γ

μψ2þσψ̄2γ
μψ1Þðψ̄1γμψ2þσψ̄2γμψ1Þ: ðC8Þ

For σ ¼ −1 this yields Eq. (92).
Equivalently, we can write Li in terms of the Lorentz

scalars ψ̄aψb and ψ̄aγ̄ψb using

2D̄ ¼ ðψ̄1ψ2Þðψ̄2ψ1Þ − ðψ̄1γ̄ψ2Þðψ̄2γ̄ψ1Þ
− ðψ̄1ψ1Þðψ̄2ψ2Þ − ðψ̄1γ̄ψ1Þðψ̄2γ̄ψ2Þ; ðC9Þ

and

2C̄ ¼ 1

2
fðψ̄1ψ1Þ2 − ðψ̄1γ̄ψ1Þ2 þ ðψ̄2ψ2Þ2 − ðψ̄2γ̄ψ2Þ2

− σ½ðψ̄1ψ2Þ2 − ðψ̄1γ̄ψ2Þ2 þ ðψ̄2ψ1Þ2 − ðψ̄2γ̄ψ1Þ2�g:
ðC10Þ

This is a type of colored Gross-Neveu model.

2. Complex Grassmann variables

For σ ¼ −1 we can combine the two Majorana spinors
into a complex Dirac spinor. The complex structure for the
Grassmann variables is realized by grouping the two colors
into a complex Grassmann variable,

ζ ¼ ψ1 þ iψ2; ζ̄ ¼ ψ̄1 − iψ̄2: ðC11Þ

In this case the interaction takes the particularly simple
form

Li ¼ −
1

2
ðζ̄γμζÞ�ðζ̄γμζÞ; ðC12Þ

and the action reads

S ¼ −
Z
t;x

�
Reðζ̄γμ∂μζÞ þ

1

2
ðζ̄γμζÞ�ðζ̄γμζÞ

�
: ðC13Þ

3. Continuity constraint

The Grassmann variables ψðt; xÞ and ψ̄ðt; xÞ are inde-
pendent. This originates from the association of ψ̄ðt; xÞ to
Grassmann variables at tþ ε. In the discrete formulation of
the Grassmann functional integral they are independent
integration variables. For certain purposes in the continuum
limit one may assume by continuity ψðtþ εÞ ¼ ψðtÞ and
therefore impose the continuity constraint

ψ̄ γðt; xÞ ¼ ψγðt; xÞ: ðC14Þ

This implies

ψ̄aγ
μψb ¼ ψT

aγ
0γμψb; ðC15Þ

and therefore

ψ̄aγ
0ψb ¼ −ðψRaψRb þ ψLaψLbÞ;

ψ̄aγ
1ψb ¼ −ψRaψRb þ ψLaψLb: ðC16Þ

Nonzero contributions require a ≠ b, such that only the
term ∼σ in Eq. (C8) contributes for σ ¼ −1 to the
interaction term

Li ¼ 8ψR1ψR2ψL1ψL2: ðC17Þ

For σ ¼ 1 one has Li ¼ 0. In the complex formulation the
continuity constraint results in

ζ̄γðxÞ ¼ ζ�γðxÞ: ðC18Þ

With the relation

ζ† ¼ ðζ�R; ζ�LÞ; ζ̄ ¼ ζ†γ0 ¼ ðζ�L;−ζ�RÞ; ðC19Þ

the identification (C18), (C19) is compatible with the
Lorentz transformations and the time evolution equations
or field equations.
In Eq. (C13) the continuity constraint (C19) relates ζ̄

to ζ�. With

ζþ ¼ψR1þ iψR2; ζ−¼ψL1þ iψL2; ζ̄¼ðζ̄þ; ζ̄−Þ;
ζ̄þ ¼ ψ̄L1− iψL2 ¼ ζ�−; ζ̄−¼−ðψ̄R1− iψ̄R2Þ¼−ζ�þ;

ðC20Þ

one obtains by partial integration Reðζ̄γμ∂μζÞ → ζ̄γμ∂μζ

and ðζ̄γμζÞ� → −ζ̄γμζ. We end with a fermion model with
action

S ¼
Z
t;x

�
−ζ̄γμ∂μζ þ

1

2
ðζ̄γμζÞðζ̄γμζÞ

�
: ðC21Þ

This is a particular case of the Thirring model [45–48] with
a particular value of the coupling. The Thirring model is
exactly solvable. With the identification (C18), (C19) the
interaction term simplifies

C̄þ D̄ ¼ −
1

4
ðζ̄γμζÞ�ðζ̄γμζÞ ¼

1

4
ðζ̄γμζÞðζ̄γμζÞ

¼ ζ̄þζ̄−ζþζ− ¼ 4ψR1ψR2ψL1ψL2; ðC22Þ

in accordance with Eq. (C17). This yields Eq. (97).
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APPENDIX D: SYMMETRIES OF THE
THIRRING-TYPE MODEL

In this Appendix, we list symmetries of the discrete
Thirring type fermionic quantum field theory. They are in
direct correspondence to properties of the cellular automa-
ton. The numbers refer to the numbers in Sec. IV.
(1) The separately conserved number of left-moving and

right moving particles corresponds to global chiral
symmetry. In the complex formulation the action is
invariant under the chiral transformations

ψþ → eiαþψþ; ψ− → eiα−ψ−;

ψ̄þ → e−iαþ ψ̄þ; ψ̄− ¼ e−iα− ψ̄−; ðD1Þ

as seen directly from

ψ ¼
�
ψþ
ψ−

�
; ψ̄ ¼ ðψ̄−; ψ̄þÞ;

ψ̄γμψ ¼ ψ̄þγμψþ þ ψ̄−γ
μψ−: ðD2Þ

In the formulation (92) the chiral symmetry corre-
sponds to separate SOð2Þ- color rotations for the
right movers and left movers.

(2) The motion of all particles with velocity jvj ¼ c ¼ 1
reflects Lorentz symmetry. A particle mass is for-
bidden by chiral symmetry. For arbitrarily occupied
configurations a simple additional particle still
moves on a straight line.

(3) The fermionic model has bosonic “composite par-
ticles” moving freely with speed of light.

(4) The interaction in the fermionic model is local,
involving precisely the Grassmann variables for four
different particles

Sint ¼ 2

Z
t;x
ψ̄−ðxÞψ̄þðxÞψþðxÞψ−ðxÞ: ðD3Þ

This describes 2 to 2 scattering. A scattering of
bosonic two-particle composite states would involve
eight Grassmann variables for boson-boson scatter-
ing and six Grassmann variables for boson-fermion
scattering. It is not present.

(5) The action (C21) is invariant under a Euclidean
rotation in the t–x plane,

t → x; x → −t; ðD4Þ

if the Grassmann variables transform as

ψ → ψ 0 ¼ −γ0ψ ; ψ̄ → ψ̄ 0 ¼ ψ̄γ1: ðD5Þ

(6) The fermionic model is invariant under parity trans-
formations

P∶x → −x;

ψðt; xÞ → γ1ψðt;−xÞ; ψ̄ðt; xÞ → −ψ̄ðt;−xÞγ1:
ðD6Þ

The parity transformation changes ψL ↔ ψR. The
model is also invariant under time reflections.

(7) The action (C21) is invariant under the discrete
transformations

ψ → −ψ ; ψ̄ → −ψ̄ ðD7Þ

and

R2∶ψ2 → −ψ2; ψ̄2 → −ψ̄2: ðD8Þ

The combination of these symmetries implies that
the action can only admit terms with an even number
of factors for each color. Thus any change of the
number of particles with a given color always
involves two units.

(8) The “color exchange symmetry”

ψ1 ↔ ψ2; ψ̄1 ↔ ψ̄2 ðD9Þ

is a discrete symmetry beyond the continuous color
rotations. It is manifest in Eq. (92).

(9) Particle-hole symmetry maps

C∶ψηαðt; xÞ ↔ ψ̄ηαðt; xÞ; ðD10Þ

and reads in the doublet notation for Dirac spinors

C∶ψ ↔ γ0ψ̄T; ψ̄ ↔ ψTγ0: ðD11Þ

With ψ̄γμψ → −ψ̄γμψ the invariance of the action
(92) is easily verified.

The one to one correspondence between properties of the
cellular automaton and the symmetries of the fermionic
model can help to find the fermionic model for a given
automaton, or vice versa, if a direct calculation as per-
formed in Secs. II, III, is cumbersome.

APPENDIX E: CONJUGATE GRASSMANN WAVE
FUNCTION

In this Appendix, we discuss the conjugate Grassmann
wave function. Together with the Grassmann wave function
it can be used to evaluate expectation values of observables
that are expressed by Grassmann operators. The Grassmann
wave function can be extracted from the Grassmann
functional integral by integration over Grassmann variables
ψðt0Þ for t0 > t. For suitable boundary conditions it can be
expressed by the wave function qðtÞ. This establishes how
observables in the Grassmann formulation and their
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expectation values can be mapped to observables for the
associated cellular automaton.
We can associate [43] to the Grassmann wave function

(108) a conjugate Grassmann wave function ĝðtÞ which
depends on ψ̄αðtÞ,

ĝðtÞ ¼ qτðtÞg0τ½ψ̄ðtÞ�: ðE1Þ

By use of the identities (14), (12), (16) one has

Z
DψðtÞDψ̄ðtÞ expfψ̄αðtÞψαðtÞgg0τ½ψ̄ðtÞ�gρ½ψðtÞ� ¼ δτρ:

ðE2Þ

This implies

Z
DψðtÞDψ̄ðtÞ expfψ̄αðtÞψαðtÞgĝðtÞgðtÞ ¼ qτðtÞqτðtÞ ¼ 1:

ðE3Þ

The conjugate wave function is convenient for the imple-
mentation of observables in the fermionic formulation—see
Ref. [43] for details.
For example, the operator for the occupation number of a

particle of type γ at position x at time t is given by (no sum
over γ here)

N γ ¼ ψ̄ γðt; xÞψγðt; xÞ: ðE4Þ

We associate (for t ¼ tin þ 2mε̃) a basis element gτ, for
which ãγðxÞ ¼ ψγðxÞ in Eq. (6), to a microscopic state with
no particle of type γ present at x. For all those basis
elements one has N γðxÞgτ ¼ 0. On the other hand, the set
of basis elements with ãγðxÞ ¼ 1 corresponds to states for
which a particle of type γ is present at x. Only for those
basis elements one has N γðxÞgτ ¼ ψ̄ γðxÞψγðxÞgτ ≠ 0. One
infers

Z
Dψg0τ½ψ̄ �N γðxÞgρ½ψ � ¼

�
0 for no particleðγ; xÞ
δτρ for particleðγ; xÞ ;

ðE5Þ

where

Z
Dψ ¼

Z
DψDψ̄ expfψ̄αψαg

¼
Y
α

Z
dψαdψ̄αð1þ ψ̄αψαÞ: ðE6Þ

This implies a simple expression for the mean particle
number nγðxÞ

hnγðxÞi ¼
Z

Dψ ĝ½ψ̄ �N γðxÞg½ψ �

¼
X
τ

qτ½nγðxÞ�τqτ ¼
X
τ

½nγðxÞ�τpτ; ðE7Þ

where ½nγðxÞ�τ ¼ ð1; 0Þ is the particle number in the micro-
scopic state τ. The expression (E7) is precisely the mean
particle number for the probabilistic cellular automaton. The
relations (E5)–(E7) hold for every time t. Since the evolution
of the wave function is the same for the cellular automaton
and the fermionic model, the expectation values are the same
for all times. This extends to products of particle numbers and
therefore to correlation functions. One can actually construct
further interesting observables beyond such products, includ-
ing a momentum observable [1].
Arbitrary wave functions qðtÞ are allowed quantum

states for the fermionic quantum field theory. These real
unit vectors form a Hilbert space once a suitable complex
structure is introduced. On the other side, arbitrary prob-
ability distributions for the probabilistic cellular automaton
can be described by suitable wave functions. We conclude
that the probabilistic cellular automaton and the fermionic
quantum field theory are equivalent descriptions for the
same physical reality or model.
The conjugate Grassmann wave function can be related

to the Grassmann functional integral [43], now to the part
for t0 > t,

ĝ½ψ̄ðtÞ� ¼
Z

dψ 0ðtÞ
Z

Dψðt0 ≥ tþ ε̃ÞĝðtfÞ

×

� Y
t0≥tþε̃

K̃ðt0Þ
�
K̃0ðtÞ expf−ψ̄αðtÞψ 0

αðtÞg: ðE8Þ

Here K̃0ðtÞ obtains from K̃ðtÞ by replacing ψðtÞ → ψ 0ðtÞ.
Combining with the expression (E3) for the Grassmann
wave function this amounts to

Z ¼
Z

DψðtÞĝ½ψ̄ðtÞ�g½ψðtÞ�: ðE9Þ

Indeed, the integration over ψ 0ðtÞ, combined with the
exponential factor in Dψ , yields

Z
dψ̄ðtÞdψ 0ðtÞ expfψ̄αðtÞðψαðtÞ − ψ 0

αðtÞÞgK̃0ðtÞ ¼ K̃ðtÞ:

ðE10Þ

The product ĝ½ψ̄ðtÞ�g½ψðtÞ� involves the product of local
factors K̃ðt0Þ over all t0. Also the functional integral is over
the Grassmann variables at all t0. One recovers Eq. (2) with
appropriate boundary factors.
For ĝðtÞ, as defined by Eq. (E8), to coincide with the

definition (E1) we take the boundary factor ĝðtfÞ to
coincide with the expression (E1) at tf. One can show
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[43] that the time evolution of ĝðtÞ is the same for the
definitions (E1) and (E8). The identity therefore holds for
all t. We therefore find a functional integral expression for
the mean particle number

hnγðtÞi ¼
Z

Dψ ĝfN γðt; xÞe−Sgin: ðE11Þ

This extends to observables constructed from occupation
numbers. Equation (E11) is a familiar expression for
expectation values in fermionic quantum field theories
formulated as a Grassmann functional integral. We could
have started from this expression and derive the wave
function qðtÞ according to Eq. (113). This demonstrates
that wave functions are the appropriate concept for the
description of time-local subsystems of an overall prob-
abilistic system formulated for all times [1]. This applies
directly to the probabilistic cellular automaton that can be
seen as a classical statistical system.

APPENDIX F: DENSITY MATRIX

The density matrix is a central tool in quantum mechan-
ics. It permits us to describe more general probabilistic
states, namely mixed states, in addition to the special case
of pure states. In our context it allows more general
boundary conditions. Furthermore, the elements of the
density matrix can often directly be related to expectation
values and correlations to suitable observables. We will see
that the density matrix is a suitable object for the intro-
duction of the complex structure of quantum mechanics.
The density matrix can be formulated both for the
fermionic quantum field theory and the probabilistic
cellular automaton. It is identical for both pictures.

1. Density matrix for fermions

For general Grassmann wave functions gðtÞ and con-
jugate Grassmann wave functions ĝðtÞ,

gðtÞ ¼ q̃τðtÞgτ½ψðtÞ�; ĝðtÞ ¼ q̄τðtÞg0τ½ψ̄ðtÞ�; ðF1Þ

we define the Grassmann density matrix as a bilinear

ρ̃½ψ̄ðtÞ;ψðtÞ� ¼ g½ψðtÞ�ĝ½ψ̄ðtÞ�Þ
¼ q̃τðtÞq̄ρðtÞgτ½ψðtÞ�g0ρ½ψ̄ðtÞ�: ðF2Þ

It depends on the Grassmann variables ψðtÞ and ψ̄ðtÞ. In the
original formulation it involves variables at two time layers
t and t − ε̃. The coefficients of a double expansion in ψðtÞ
and ψ̄ðtÞ are the elements of the quantum density matrix

ρ̃½ψ̄ðtÞ;ψðtÞ� ¼ ρ̂τρðtÞgτ½ψðtÞ�g0ρ½ψ̄ðtÞ�; ðF3Þ

with

ρ̂τρðtÞ ¼ q̃τðtÞq̄ρðtÞ: ðF4Þ

We can define ĝ½ψ̄ðtÞ� by the functional identity (E8) for
general final boundary factors ĝðtfÞ. Equation (E9)
becomes

Z ¼ q̃ðtÞτq̄τðtÞ; ðF5Þ

such that ĝðtfÞ is restricted by the normalization Z ¼ 1.
One would like to identify the diagonal elements of the
density matrix with the local probabilities (no sum over τ
here)

pτ ¼ ρ̂ττ ¼ q̃τðtÞq̄τðtÞ ≥ 0: ðF6Þ

The positivity of pτðtÞ further restricts the possible choices
for ĝðtfÞ. We will present below a simple criterion for
Eq. (F6) based on the positivity of the density matrix. If
Eq. (F6) holds, the generalization of Eq. (E11) leads for the
corresponding generalization of Eq. (E7) a probabilistic
interpretation

hnγðt; xÞi ¼
Z

Dψ ĝ½ψ̄ðtÞ�N γðt; xÞg½ψðtÞ�

¼
X
τ

½nγðt; xÞ�τq̃τðtÞq̄τðtÞ ¼
X
τ

½nγðt; xÞ�pτðtÞ:

ðF7Þ

We can further generalize the boundary conditions by
considering a set of probabilistic states with different
boundary factors ðgðαÞin ðtinÞ, ĝðαÞf ðtfÞÞ, labeled by α. For
each α one has

ρ̂ðαÞτρ ðtÞ ¼ q̃ðαÞτ ðtÞq̄ðαÞρ ðtÞ: ðF8Þ

Taking a weighed sum over different sets α, with positive
probabilities wα ≥ 0, Σαwα ¼ 1, one arrives at the general
density matrix

ρ̂τρðtÞ ¼
X
α

wαq̃
ðαÞ
τ ðtÞq̄ðαÞρ ðtÞ: ðF9Þ

The normalization of the partition function is kept,

Z ¼
X
τ

ρ̂ττ ¼
X
α

wαq̃
ðαÞ
τ ðtÞq̄ðαÞτ ðtÞ

¼
X
α

wα

X
τ

ρ̂ðαÞττ ¼
X
α

wα ¼ 1: ðF10Þ

The local probabilities are the diagonal elements of the
generalized density matrix,

pτðtÞ ¼ ρ̂ττðtÞ; ðF11Þ
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and the expectation value of the occupation number takes
the form

hnγðt; xÞi ¼
X
τ

½nγðt; xÞ�τρ̂ττðtÞ ¼ trfn̂γðt; xÞρ̂ðtÞg: ðF12Þ

With the definition of the diagonal operator

½n̂γðt; xÞ�τρ ¼ ½nγðt; xÞ�τδτρ ðF13Þ

Eq. (F12) is the familiar formula for quantum mechanics in
a real language.
Let us consider the transformation

ψαðtÞ ↔ ψ̄αðtÞ; ðF14Þ

combined with a total reordering R of all Grassmann
variables. This reordering obeys for the product of two
Grassmann elements

Rðg1g2Þ ¼ Rðg2ÞRðg1Þ; ðF15Þ

and

RðgτÞ ¼ g0τ ðF16Þ
Correspondingly, the Grassmann density matrix transforms
as

ρ̃½ψðtÞ; ψ̄ðtÞ� → ρ̂τρðtÞRðgτ½ψ̄ðtÞ�g0ρ½ψðtÞ�Þ
¼ ρ̂τρðtÞgρ½ψðtÞ�g0τ½ψ̄ðtÞ�
¼ ρ̂0ρτðtÞgρ½ψðtÞ�g0τ½ψ̄ðtÞ�: ðF17Þ

This transformation results in a transposition of the density
matrix

ρ̂ðtÞ → ρ̂0ðtÞ ¼ ρ̂TðtÞ; ρ̂0τρðtÞ ¼ ρ̂ρτðtÞ: ðF18Þ

2. Time evolution of density matrix

For the time evolution of the density matrix ρ̂ðtÞ we need
the time evolution of the conjugate wave function q̄ðtÞ.
From the definition of the conjugate wave function (E8)
one infers its relation to the hole wave function ḡ

ḡ½ψðtÞ� ¼
Z

Dψ̄ðtÞ expfψ̄αðtÞψαðtÞgĝ½ψ̄ðtÞ�

¼
Z

Dψðt0 ≥ tþ ε̃ÞĝðtfÞ
Y
t0≥t

K̃ðtÞ

¼ q̄τðtÞ
Z

Dψ̄ðtÞ expfψ̄αðtÞψαðtÞgg0τ½ψ̄ðtÞ�

¼ q̄τðtÞḡτ½ψðtÞ�: ðF19Þ

With

ḡ½ψðt − εÞ� ¼ q̄ρðt − εÞḡρ½ψðt − εÞ�

¼
Z

DψðtÞDψðt − ε̃Þḡ½ψðtÞ�K̃ðt − ε̃ÞK̃ðt − 2ε̃Þ

¼ q̄τðtÞŜτσðt − ε̃ÞŜσρððt − 2ε̃Þḡρ½ψððt − 2ε̃Þ�
ðF20Þ

one finds

q̄ρðt − εÞ ¼ q̄τðtÞŜτσðt − ε̃ÞŜσρðt − 2ε̃Þ
¼ q̄τðtÞðŜintŜfreeÞτρ ¼ q̄τðtÞŜτρðt − εÞ; ðF21Þ

where the last expression uses the coarse grained step
evolution operator (67). Inversion yields

q̄τðtþ εÞ ¼ q̄ρðtÞŜ−1ρτ ðtÞ; ðF22Þ

and we conclude the evolution law for the density matrix

ρ̂ðtþ εÞ ¼ ŜðtÞρ̂ðtÞŜ−1ðtÞ ¼ ŜðtÞρ̂ðtÞŜTðtÞ; ðF23Þ

where the last expression uses ŜŜT ¼ 1. This corresponds
to the unitary evolution law of quantum mechanics for the
case of a real density matrix and real step evolution
operator.

3. Density matrix for cellular automaton

In Eq. (E8) we have defined the conjugate wave function
q̄ðtÞ in terms of the boundary conditions at final time tf.
Similarly, we can consider the probabilistic cellular
automaton as a classical statistical system for which we
fix boundary conditions both at tin and tf in the form of
initial and final wave functions q̃ðtinÞ and q̄ðtfÞ. For an
invertible cellular automaton we can follow q̄ðtÞ backwards
from tf to an arbitrary time t, and q̃ðtÞ forwards from tin to
t. The pair of wave functions ðq̃ðtÞ; q̄ðtÞÞ therefore involve
boundary information from both boundary conditions at tin
and tf. The same holds for the density matrix which we
define again by Eq. (F4). The density matrix ρ̂ðtÞ contains
information beyond the local probabilities pτðtÞ, which
correspond to the diagonal elements of ρ̂ðtÞ according to
Eq. (F11). We will see below how the information in the
off-diagonal elements for ρ̂ can be used for the computation
of the expectation values of additional local observables
that are represented by off-diagonal operators. The density
matrix (F4) is a pure state density matrix. More general
density matrices for mixed states are again defined
by Eq. (F9).
The possible differences between q̄ðtfÞ and q̃ðtfÞ will

not play an important role for this paper. We will mainly
focus on q̄ðtfÞ ¼ q̃ðtfÞ, which implies for all t
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q̃ðtÞ ¼ q̄ðtÞ ¼ qðtÞ: ðF24Þ

We will distinguish between q̃ðtÞ and q̄ðtÞ only if we want
to indicate the different formal status. With Eq. (F24) the
density matrix is symmetric for all t

ρ̂TðtÞ ¼ ρ̂ðtÞ: ðF25Þ

For the boundary condition (F24) the evolution of the
density matrix is directly formulated as an initial value
problem. All necessary boundary information is encoded in
the initial wave function qðtinÞ.

APPENDIX G: OPERATORS FOR OBSERVABLES

The description of observables by noncommuting oper-
ators is a characteristic feature of quantum systems. Since
our automaton is equivalent to a quantum system for
fermions we will find the same noncommuting operator
structures for the classical statistical system of the cellular
automaton. This constitutes a simple example how non-
commuting operator structures emerge in classical statistics
[1,53]. We will see that the density matrix ρ̂ðtÞ contains
sufficient probabilistic information for the computation of
expectation values of observables that are not expressed as
functions of occupation numbers at t. This includes energy
(Sec. VII) and momentum (Sec. IX). The operators
associated to these observables are typically not diagonal
and do not commute with each other. Their expectation
values involve the off-diagonal elements of the density
matrix.

1. Quantum rule for expectation values

For an observable that takes for the configuration τ the
value Aτ we define the diagonal operator Â with elements

Âτρ ¼ Aτδτρ: ðG1Þ

Its expectation value follows the quantum rule

hAðtÞi ¼ trfÂ ρ̂ðtÞg: ðG2Þ

This quantum rule is a consequence of the association of
the diagonal elements ρ̂ττðtÞ with the probabilities pτðtÞ
that at time t the configuration τ is realized. It follows
directly from the basic definition of expectation values in
classical statistics

hAðtÞi ¼
X
τ

pτðtÞAτ ¼
X
τ

ρττðtÞAτ ¼ trfÂ ρ̂ðtÞg: ðG3Þ

It is therefore not a separate postulate or axiom.
The observables described by the diagonal operators

(G1) can be occupation numbers nγðxÞ, arbitrary products

of the occupation numbers, or more generally arbitrary real
functions of occupation numbers. Here occupation num-
bers all refer to the same time t for which the density matrix
ρ̂ðtÞ is taken in Eq. (G2). The “diagonal observables” (G1)
therefore include all equal-time correlation functions of
occupation numbers at t. The time evolution of expectation
values is encoded in the time evolution of the density
matrix. This corresponds to the Schrödinger-picture of
quantum mechanics For the special case of a pure state
density matrix ρ̂τρðtÞ ¼ qτðtÞqρðtÞ one obtains the quantum
rule for expectation values in terms of the wave function

hAðtÞi ¼ hqðtÞÂqðtÞi ¼ qτðtÞÂτρqρðtÞ: ðG4Þ

This follows by inserting the pure state density matrix into
the quantum rule (G2). So far we discuss here “real
quantum mechanics” with real ρ̂ and q. We will introduce
a complex structure in the next section. For operators that
are compatible with the complex structure the quantum rule
for observables will then take the familiar form in terms of a
Hermitian density matrix and Hermitian operators associ-
ated to observables.

2. Observables at different times

The density matrix ρ̂ðtÞ contains sufficient probabilistic
information for a computation of expectation values of
observables at different times. As an example, we consider
observables Aðt0Þ that are functions of occupation numbers
at the time t0 ¼ t − ε. We can associate to these observables
the operators

Âðt0; tÞ ¼ Ŝðt − εÞÂŜTðt − εÞ; ðG5Þ

or

Âðt0; tÞτρ ¼
X
σ

AσŜðt − εÞτσŜðt − εÞρσ: ðG6Þ

The expectation value of Aðt0Þ can be evaluated by use of
the quantum rule (G2) from the density matrix ρ̂ðtÞ

hAðt0Þi ¼ trfÂðt0; tÞρ̂ðtÞg: ðG7Þ

Here the first time-argument t0 in Âðt0; tÞ refers to the time t0
for the occupation numbers nγðt0; xÞ for which Aðt0Þ is
defined as a function, while the second time argument t
indicates the reference time t for which the density matrix
ρ̂ðtÞ is taken in Eq. (G2). Equation (G7) follows from
Eq. (G2) at t − ε and the evolution law (F23) for the density
matrix,

hAðt0i ¼ trfÂ ρ̂ðt0Þg ¼ trÂŜTðt − εÞρ̂ðtÞŜðt − εÞg
¼ trfŜðt − εÞÂŜTðt − εÞρ̂ðtÞg: ðG8Þ
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The use of time dependent operators Âðt0; tÞ corresponds to
the Heisenberg picture in quantum mechanics. In general
both the time evolution of ρ̂ðtÞ and the t0-dependence of
Âðt0; tÞ contribute to the time dependence of the expectation
value hAðt0Þi.
For a general ŜðtÞ the operator Âðt0; tÞ for t0 ≠ t is no

longer diagonal and does not commute with Â. This is
related to the fact that the step evolution operator is not a
diagonal matrix. The operators Â and Ŝ do, in general, not
commute. For the particular case where Â and Ŝ commute
one has Âðt0; tÞ ¼ Â and therefore hAðt0Þi ¼ hAðtÞi. If ŜðtÞ
is independent of t and commutes with Â, the observable A
is a conserved quantity with the same expectation value for
arbitrary t0 and t,

½Â; Ŝ� ¼ 0 ⇒ hAðt0Þi ¼ hAðtÞi: ðG9Þ

Nonconserved observables are represented by operators
that do not commute with Ŝ. Nevertheless, for the particular
case of cellular automata for which Ŝ is a unique jump
operator the operator Âðt0; tÞ is found to be diagonal. It
therefore commutes with Â ¼ Âðt; tÞ. Examples for non-
commuting operators will be given later.
The construction of Heisenberg operators Âðt0; tÞ is not

limited to t0 ¼ t − ε. It can be done for the whole range of t0
for which the step evolution operator is known in the range
between t0 and t. In particular, one has for constant Ŝ and
t0 ¼ tþ nε

Âðtþ nε; tÞ ¼ Ŝ−nÂŜn; ðG10Þ

where we recall Ŝ−1 ¼ ŜT . This permits the definition of the
time-derivative of observables as

_AðtÞ ¼ 1

4ε
ðAðtþ 2εÞ − Aðt − 2εÞÞ; ðG11Þ

which is represented by the operator

_̂AðtÞ ¼ 1

4ε
½Ŝ−2ÂŜ2 − Ŝ2ÂŜ−2�: ðG12Þ

The expectation value of the time-derivative of the observ-
able A follows from the general rule (G2)

h _AðtÞi ¼ trf _̂AðtÞρ̂ðtÞg: ðG13Þ

We can further represent products of observables at
different times by time-ordered operator products. For time
t0 ¼ t − nε, n > 0, one has

AðtÞBðt0Þ ¼ ÂŜnB̂Ŝ−n; ðG14Þ

such that the unequal time correlation function reads

hAðtÞBðt0Þi ¼ trfÂŜnB̂Ŝ−nρ̂ðtÞg: ðG15Þ

This is precisely the value that one obtains if we interpret
the probabilistic cellular automaton as an overall statistical
system for all times [1]. It can then be seen as a particular
generalized two-dimensional Ising model with boundary
conditions. Again, the rule (G15) follows from the standard
rule for expectation values in classical statistics.

3. Change of basis

The quantum rule (G2) is invariant under a change of
basis

ρ̂ → ρ̂0 ¼ Dρ̂D−1; Â → Â0 ¼ DÂD−1: ðG16Þ

We focus here on orthogonal D, DTD ¼ 1, such that a
symmetric density matrix remains symmetric in every
basis. We can view the density matrix at t − ε as a basis
change of ρ̂ðtÞ, withD ¼ Ŝ−1. In the new basis the operator
Âðt0; tÞ in Eq. (G5) becomes

Â0ðt0; tÞ ¼ DŜ Â Ŝ−1D−1 ¼ Â;

ρ̂0ðtÞ ¼ Dρ̂ðtÞD−1 ¼ ρðt − εÞ: ðG17Þ

In this basis the expectation value hAðt0Þi follows directly
by evaluating Eq. (G2) at t − ε.
This simple observation leads to a probabilistic inter-

pretation of the diagonal elements of the transformed
density matrix. The diagonal elements ρ̂ττ correspond to
the probabilities to find the value Aτ for an observable that
is represented in this basis by a diagonal operator Â0 of the
form

Â0
ρσ ¼

X
τ

Aτδτρδτσ: ðG18Þ

This statement is equivalent to the generalization of the
quantum rule to observables that are represented by
arbitrary symmetric operators

hAi ¼
X
τ

ρ̂0ττAτ ¼ trfρ̂0Â0g ¼ trfρ̂ Âg: ðG19Þ

Indeed, an arbitrary symmetric matrix Â can be diagonal-
ized by an orthogonal transformation (G16) with suit-
able D.
For a positive symmetric density matrix ρ̂ (all eigenval-

ues positive semidefinite) also ρ̂0 is a positive symmetric
matrix. This implies ρ̂0ττ ≥ 0. The normalization of the
probabilities follows from trρ̂0 ¼ 1. In every basis the
diagonal elements ρ̂0ττ have therefore the properties of a
probability distribution. For the choices of basis which
diagonalize the operators discussed above the probabilistic
interpretation of ρ̂0ττ follows from the classical statistical
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rule for expectation values, employing a complete set of
observables. We will not enter here a discussion of the
classical statistical origin of the probabilistic interpretation
of ρ̂0ττ for an arbitrary choice of basis.

APPENDIX H: COMPLEX STRUCTURE FOR
OPERATORS

In this Appendix, we extend the complex structure to
operators. This completes the quantum formalism for
cellular automata in the usual complex setting.

1. Complex operators

For real symmetric operators Â that are compatible with
the complex structure (135) the quantum rule (G2) for
expectation values translates in the complex formulation to
the familiar form

hAðtÞi ¼ trfAρðtÞg: ðH1Þ

With Eqs. (144), (145) we define

ρ ¼ ρR − iρI; ρR ¼ ρ0 þ ρc; ρI ¼ ρ̃T − ρ̃ ðH2Þ

where

ρTR¼ ρR; ρTI ¼−ρI; AT
R ¼AR; AT

I ¼−AI: ðH3Þ

Insertion into Eq. (G2) yields the standard relation for
complex quantum mechanics,

hAi ¼ trfÂ ρ̂g ¼ trfARρR þ AIρIg ¼ trfAρg: ðH4Þ

The expression (H1) is independent of the choice of basis.
It defines the expectation value for a large class of
observables beyond the diagonal observables formed from
functions of occupation numbers at a fixed time. General
time-local observables are represented by Hermitian oper-
ators AðtÞ ¼ A†ðtÞ [1].
Among the diagonal operators only those are compatible

with the complex structure associated to the particle-hole
transformation that act in the same way on q0 and qc.
Diagonal operators are described by diagonal AR with
AI ¼ 0, such that the structure (135) is block diagonal with
the same operator acting on q0 and qc. This generalizes to
all operators that do not mix q0 and qc. Some simple
observables as particle numbers for separate species cannot
be represented by operators that are compatible with the
complex structure. The particle numbers for q0 and qc

differ. For such observables the translation to the complex
pictures results in operators that mix φ and φ�. There
remain, however, many interesting observables that are
compatible with the complex structure. A simple example
is the position operator for single particle states that we will
discuss in Sec. X.

As expected, the Grassmann functional integral for
fermions entails all rules of quantum mechanics. What is
perhaps more surprising at first sight is that the same holds
for the associated cellular automaton. It follows, however,
from the fact that the implementation of boundary con-
ditions in terms of wave functions and, more generally, the
density matrix, can be implemented in complete corre-
spondence to the fermionic model. This becomes even
more apparent if we formulate the probabilistic cellular
automaton as a generalized Ising model [10].

2. Involution for Grassmann variables

The complex structure for the wave function, density
matrix and operators can be associated to an involution
in the Grassmann algebra. This involution maps
ψαðtÞ → ψ̄αðtÞ. In order to recall that this involution is
related to complex conjugation we write somewhat for-
mally

ψ�
αðtÞ ¼ ψ̄αðtÞ: ðH5Þ

This relation resembles the relation (C18), (C19) with
α ¼ ðx; γÞ ¼ ðx; η; aÞ, e.g.,

ψ†
a ¼ ðψ�

Ra;ψ
�
LaÞ ¼ ðψ̄Ra; ψ̄LaÞ: ðH6Þ

It is compatible with the Lorentz transformations. In
contrast to the complex Grassmann variables ζ, ζ̄ in
Eqs. (C18), (C19) the Grassmann variables ψ , ψ̄ remain
“real” objects.
On the level of the Grassmann wave function the

involution g → g� maps g½ψðtÞ� to ĝ½ψ̄ðtÞ� and vice versa

g�½ψðtÞ� ¼ ĝ½ψ̄ðtÞ� ¼ q̃τðtÞg0τ½ψ̄ðtÞ�: ðH7Þ

This operation includes the total reordering R such that

g�τ ½ψðtÞ� ¼ Rðgτ½ψ̄ðtÞ�Þ ¼ g0τ½ψ̄ðtÞ�: ðH8Þ

We recover for the Grassmann density matrix the trans-
formation (F14) including the reordering R,

ρ̃�½ψ̄ðtÞ;ψðtÞ� ¼ ρ̂τρðtÞgρ½ψðtÞ�g0τ½ψ̄ðtÞ�
¼ ρ̂0τρðtÞgτ½ψðtÞ�g0ρ½ψðtÞ�: ðH9Þ

Comparison with Eq. (F3) establishes again Eq. (F18)

ρ̂0ðtÞ ¼ ρ̂TðtÞ: ðH10Þ

The complex conjugate Grassmann element g�½ψ � ¼ ĝ½ψ̄ �
is related to the hole wave function ḡ½ψ � by Eq. (F19).
Observing that ḡτ½ψ � and gcτ ½ψ � only differ by possible
minus signs we infer the close relation of the involution
for Grassmann variables (H5) with the particle-hole
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transformation.By a suitable choice of signs one can have the
two involutions coincide. We could choose a definition
of gcτ ¼ ḡτðεcτ ¼ 1Þ.

APPENDIX I: TRANSPORT OPERATORS IN
TERMS OF FERMIONIC ANNIHILATION AND

CREATION OPERATORS

In this Appendix, we derive the expression of the right-
and left-transport operators in terms of annihilation and
creation operators. It contains a specific ordering of
operators which is necessary in order to maintain the
unique jump property for the transport operators. The
proof is somewhat involved and takes advantage of the
relation between annihilation and creation operators on one
side and multiplication of Grassmann elements with
Grassmann variables on the other side.

1. Discrete transport operators

We concentrate first on the right movers and omit the
index ðRaÞ. The evolution of the Grassmann wave function
from gðtÞ ¼ q̃τðtÞgτ½ψðtÞ� to gðtþ ε̃Þ ¼ ŜτρqρðtÞgτ½ψðtþ
ε̃Þ� can be described either by the evolution of the wave
function q̃τðtþ ε̃Þ ¼ Ŝτρq̃ρðtÞ at fixed basis functions gτ, or
equivalently by a transformation of basis functions,

gτ½ψðtþ ε̃Þ� → gðtÞτ ½ψðtþ ε̃Þ� ¼ gρ½ψðtþ ε̃Þ�Ŝρτ; ðI1Þ

at fixed q̃τ. Note that for this transformation the operators
multiply the basis functions from the right, see the
Appendix for details. For right movers the new basis

functions gðtÞτ obtain by a replacement of all factors ψðxÞ
in gτ by ψðxþ ϵÞ. We obtain the expression

gρ½ψ �Ŝρτ ¼
Z

Dψ 0Y
x

δðψ 0ðxÞ − ψðxþ εÞÞgτ½ψ 0�: ðI2Þ

The same expression holds if we replace gτ by ḡ0τ. Insertion
of the expression for ḡ0τŜτρ into Eq. (11) for K̃ðtÞ reproduces
indeed K̃R according to Eq. (36).
The δ-function for Grassmann variables can be expressed

as

δðψ 0ðxÞ − ψðxþ εÞÞ
¼ ψ 0ðxÞ − ψðxþ εÞ

¼
Z

dψ̂ðxþ εÞ expfψ̂ðxþ εÞ½ψ 0ðxÞ − ψðxþ εÞ�g; ðI3Þ

or

Y
x

δðψ 0ðxÞ − ψðxþ εÞÞ

¼
Z

Dψ̂ exp

�X
x

ψ̂ðxþ εÞ½ψ 0ðxÞ − ψðxþ εÞ�
�
; ðI4Þ

such that

ðŜgÞτ½ψ �¼gρ½ψ �Ŝρτ
¼
Z

Dψ̂Dψ 0exp
�X

x

ψ̂ðxþεÞ½ψ 0ðxÞ−ψðxþεÞ�
�

×gτ½ψ 0�: ðI5Þ

The integral over the product with an arbitrary Grassmann
element g̃½ψ � obeys

Z
Dψ g̃½ψ �ðŜgÞτ½ψ �

¼
Z

DψDψ̂Dψ 0g̃½ψ �

× exp

�X
x

ψ̂ðxþ εÞ½ψ 0ðxþ εÞ − ψðxþ εÞ�
�

× exp

�X
x

ψ̂ðxþ εÞ½ψ 0ðxÞ − ψ 0ðxþ εÞ�
�
gτ½ψ 0�: ðI6Þ

We next employ the general identity [66],

Z
Dψ g̃½ψ �FN

� ∂
∂ψ

;ψ

�
gτ½ψ �

¼
Z

DψDψ̂Dψ 0g̃½ψ �

× exp

�X
x

ψ̂ðxþ εÞ½ψ 0ðxþ εÞ − ψðxþ εÞ�
�

× FN ½ψ̂ ;ψ 0�gτ½ψ 0�: ðI7Þ

Here FN ½ψ̂ ;ψ 0� orders a function F½ψ̂ ;ψ 0� such that all
factors ψ̂α are on the left of factors ψ 0

α. The function
FN ½ ∂∂ψ ;ψ � obtains from FN ½ψ̂ ;ψ 0� by the replacements

ψ̂α → ∂=∂ψα, ψ 0
α → ψα, keeping the ordering of ∂=∂ψα

to the left of ψα. In particular, each factor of ψ̂α for a given
α can appear in FN at most once, since ψ̂2

α ¼ 0. Thus
∂=∂ψα can occur in FN at most once. The same holds for
ψ 0
α in FN and ψα in FN . We recognize in Eq. (I6) the

structure of Eq. (I7), with FN given by the second
exponential after reordering. In consequence, we find the
relation
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Z
Dψ g̃½ψ �ðŜgÞτ½ψ �

¼
Z

Dψ g̃½ψ �

× N

�
exp

�X
x

∂
∂ψðxþ εÞ ½ψðxÞ − ψðxþ εÞ�

��
gτ½ψ �:

ðI8Þ

Here the ordering operation N applied to the exponential
puts for a Taylor expansion expðxÞ ¼ P∞

n¼0 x
n=n! all

factors ∂=∂ψα to the left, without changing their relative
order. Furthermore, each term in this Taylor expansion is
multiplied by a sign ð−1Þn−1 for n ≥ 2. This minus sign
results from the anticommutation with factors ψ 0

α when
bringing the factors ψ̂α to the left for the function FN in
Eq. (I7). Since the relation (I8) holds for arbitrary g̃½ψ � we
conclude

ðŜgÞτ½ψ �¼N

�
exp

�X
x

∂
∂ψðxþεÞ½ψðxÞ−ψðxþεÞ�

��
gτ½ψ �:

ðI9Þ

We finally employ the relation (171) between Grassmann
variables and annihilation/creation operators,

gρ½ψ �Ŝρτ¼gρ½ψ �N
�
exp

�X
x

a†ðxþεÞ½aðxÞ−aðxþεÞ�
��

ρτ

;

ðI10Þ

where the ordering operation orders now the creation
operators a† to the left. Multiplication of Eq. (I10) with
ḡτ½ψ � and integrating over ψ yields a δ-function according
to Eq. (12). This concludes the proof of Eq. (201) for right
movers. For left movers we replace in Eq. (I2) ε → −ε. This
results in ε → −ε for Eq. (201).

2. Ordering and unique jump property

The ordering operation N is important for the orthogon-
ality of Ŝ, which guarantees the unitary evolution. This can
be seen if we expand the exponential to second order (using
periodicity in x)

ŜR ¼ N

�
exp

�X
x

a†ðxþ εÞ½aðxÞ − aðxþ εÞ�
��

¼ 1þ
X
x

a†ðxþ εÞaðxÞ −
X
x

a†ðxÞaðxÞ þ T2 þ � � � ;

ðI11Þ

where

T2 ¼ −
1

2

X
x

X
y

a†ðxþ εÞa†ðyþ εÞ

× ½aðxÞ − aðxþ εÞ�½aðyÞ − aðyþ εÞ�: ðI12Þ

We can apply these operators on states with different
particle numbers. For the vacuum state only the term 1
contributes, and the vacuum is time-translation invariant.
For a single particle located at z, with a sharp wave

function q̃1ðxÞ ∼ δx;z, only terms with a single factor aðzÞ
contribute in the sums in Eq. (I11). This eliminates the
contribution T2 in Eq. (I11) which contains two annihila-
tion operators on the right, yielding zero when applied to a
single particle state. The same holds for higher order terms
in the expansion. From the first terms only the ones with
x ¼ z contribute in the sums,

ŜRq̃1 ¼ ½1þ a†ðzþ εÞaðzÞ − a†ðzÞaðzÞ�q̃1: ðI13Þ

For the one particle state one has a†ðzÞaðzÞ ¼ nðzÞ ¼ 1,
which cancels the term 1. The particle at z is therefore
transported to zþ ε by the term a†ðzþ εÞaðzÞ, and ŜRq̃1 is
indeed again a one particle state, with the particle located
now precisely at zþ ε. This simple property would not
hold without the ordering operation N. We can write

T2 ¼
1

2

X
x;y

a†ðxþ εÞ½aðxÞ− aðxþ εÞ�

× a†ðyþ εÞ½aðyÞ− aðyþ εÞ� þ T2;c;

T2;c ¼
1

2

X
x

a†ðxþ εÞ½2aðxÞ− aðxþ εÞ− aðx− εÞ�: ðI14Þ

The first term corresponds to the expansion of the exponen-
tial without the ordering operation. Without the ordering
operation one would therefore have to replace in Eq. (I12)
T2 → T2 − T2;c. The contribution −T2;c would replace the
jump from z to zþ ε by half the wave function staying at z,
and the other half jumping to zþ 2ε. For an exponential
without the ordering there would be further terms modifying
the evolution and broadening the wave function. The action
of ŜR would no longer be a unique jump operation.
For the ordered exponential the term T2 accounts for the

propagation of two particles at two distinct sites z1 and z2.
They both jump by one site, to z1 þ ε and z2 þ ε,
respectively. This term also contains contributions that
cancel the effect of the first terms in Eq. (I11) on the two
particle state.

APPENDIX J: CONTINUUM EVOLUTION AND
SMOOTHNESS OF PROBABILISTIC

INFORMATION

In this Appendix, we derive the continuum time evolu-
tion in a real formulation, starting from the discrete step
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evolution operator. This highlights more formally the
conditions for a valid continuum limit. We also map to
the complex formulation of the time evolution in quantum
mechanics.
The evolution law (103) is a discrete Schrödinger

equation in a real representation. We can write it in a
more familiar form by introducing the discrete “time-
derivative”

∂tqðtÞ ¼
1

4ε
ðqðtþ 2εÞ − qðt − 2εÞÞ: ðJ1Þ

The advantage of this choice as compared to Eq. (72) is that
qðtÞ, qðtþ 2εÞ and qðt − 2εÞ all involve lattice points with
the same x, in accordance to our restriction to the even
sublattice. (In the second formulation with blocks of four
lattice sites the blocks at t and tþ ε are shifted by one unit
in x, such that it is convenient to combine two time steps as
well.) We introduce the operator ŴðtÞ by

e2εŴðtÞ ¼ Ŝðtþ εÞŜðtÞ: ðJ2Þ

By definition, ŴðtÞ is antisymmetric for orthogonal ŜðtÞ,

ŴTðtÞ ¼ −ŴðtÞ; ðJ3Þ

since

e−2εŴðtÞ ¼ ½Ŝðtþ εÞŜðtÞ�−1 ¼ ½Ŝðtþ εÞŜðtÞ�T
¼ ½e2εŴðtÞ�T ¼ e2εŴ

TðtÞ: ðJ4Þ

In terms of ŴðtÞ and the discrete derivative (J1) the
evolution equation (103) takes the form

∂tqðtÞ ¼
1

4ε
½e2εŴðtÞ − e−2εŴðt−2εÞ�: ðJ5Þ

A continuum limit can be realized whenever qðtÞ is a
sufficiently smooth function of t such that for ε → 0 the
discrete derivative (J1) can be replaced by a partial
derivative ∂t acting on a differentiable real function qðtÞ.
Expanding Eq. (J5) for small ε yields

∂tqðtÞ ¼
1

2
½ŴðtÞ þ Ŵðt − 2εÞ�qðtÞ þ 0ðε2Þ; ðJ6Þ

and the continuum limit becomes

∂tqðtÞ ¼ WðtÞqðtÞ; ðJ7Þ

where

WðtÞ ¼ 1

2
ðŴðtÞ þ Ŵðt − 2εÞÞ: ðJ8Þ

We emphasize that the formal expansion (J6) has to be
handled with care since Ŝ is, in general, not close to the unit
operator. One has to specify in which sense εŴ is a quantity
of the order ε.
The antisymmetry ofWðtÞ guarantees that the continuous

evolution equation (J7) preserves the norm of qðtÞ.
Equation (J7) is the continuous Schrödinger equation in a
real representation. In a complex representation an antisym-
metric WðtÞ corresponds to a Hermitian Hamilton operator.
Weobserve that the evolution equations (103), (J5) or (J8) are
all linear in q such that the superposition principle for
amplitudes in quantum mechanics follows automatically.
The continuum limit leads to an important simplification.

In general ŜðtÞ and Ŝðtþ εÞ do not commute. Defining

ŜðtÞ ¼ eεW̃ðtÞ ðJ9Þ

one has

Ŝðtþ εÞŜðtÞ ¼ eεW̃ðtþεÞeεW̃ðtÞ

¼ eεðW̃ðtþεÞþW̃ðtÞÞ þ 0ðε2½W̃ðtþ εÞ; W̃ðtÞ�Þ:
ðJ10Þ

In the continuum limit the commutator term ∼ε2 can be
neglected, such that

ŴðtÞ ¼ 1

2
ðW̃ðtþ εÞ þ W̃ðtÞÞ;

WðtÞ ¼ 1

4
ðW̃ðtþ εÞ þ W̃ðtÞ þ W̃ðt − εÞ þ W̃ðt − 2εÞÞ:

ðJ11Þ

In the presence of a complex structure the antisymmetric
matrixWðtÞ is mapped to −iHðtÞwith Hermitian Hamilton
operator HðtÞ. The evolution equation (J7) becomes the
Schrödinger equation (222). For our generalized Thirring
model the Hamilton operator is given by Eq. (218). Indeed,
the relations between the step evolution operator and the
creation and annihilation operators hold as well if we
replace i by a matrix multiplication with I in the real
formulation. In the real formulation one hasW ¼ −IH. For
the kinetic part −IðHðRÞ þHðLÞÞ is a real antisymmetric
matrix, as obtained by multiplying Eq. (206) with −i.
The interaction part −IHint involves I, with expð−εIHintÞ
the interaction part of the step evolution operator. In the
complex formulation one replaces I → i, leading to
Eq. (218). The coefficients ∼ε−1 or ε−2 suggest at first
sight that the Hamilton operator diverges in the continuum
limit ε → 0. This divergence is absorbed, however, by a
field redefinition or the associated continuum normaliza-
tion (219) of the annihilation and creation operators. For
this continuum normalization the limit ε → 0 is straightfor-
ward since H does no longer involve ε.
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