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Proton decay is a major prediction of grand-unified theories (GUT) and its observation would indicate
baryon number violation that is required for baryogenesis. Many decades of searching for proton decay
have constrained its rate and ruled out some of the simplest GUT models. Apart from the baryon number-
violating interactions, this rate also depends on transition amplitudes between the protons and mesons
or leptons produced in the decay, which are matrix elements of three-quark operators. We report the
nonperturbative calculation of these matrix elements for the most studied two-body decay channels into a
meson and antilepton done on a lattice with physical light and strange quark masses and lattice spacings
a ≈ 0.14 fm and 0.20 fm. We perform nonperturbative renormalization and excited state analysis to control
associated systematic effects. Our results largely agree with previous lattice calculations done with heavier
quark masses and thus remove ambiguity in ruling out some simple GUT theories due to quark mass
dependence of hadron structure.
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I. INTRODUCTION

Proton decay is a jΔBj ¼ 1 baryon number-violating
process that has been predicted by grand-unified theories
(GUT) [1–3] but has not been observed so far. The Standard
Model Lagrangian does not contain baryon number-
violating interactions, and although sphaleron processes
can convert baryons into antileptons, such transitions are
highly suppressed at temperatures below the electroweak
phase transition [4,5]. Discovery of proton decay may
potentially fulfil one of the three prerequisites to explain
the baryon asymmetry in the Universe [6],1 and also
demand extension of the Standard Model to accommodate
baryon number violation [8], potentially involving super-
symmetry [9,10].
There have been several experiments aimed at observing

proton decay: KOLAR [11], NUSEX [12], Frejus [13],
SOUDAN [14], Kamiokande [15], IMB [16], and Super
Kamiokande [17]. The most recent experiment, Super

Kamiokande, has been operating for more than two decades
and has set proton partial-lifetime limits τ=Brðp →
eþπ0Þ ≥ 1.6 × 1034 years [17] and τ=Brðp → νKþÞ ≥
5.9 × 1033 years [18]. The next generation of experiments
to look for decay of the proton, DUNE [19] and Hyper
Kamiokande [20], are expected to start observation in 2024
and 2027, respectively, and to improve these limits by
roughly an order of magnitude. Hyper-Kamiokande is a
water Cherenkov detector and is best suited to constrain the
pion decay mode; it will improve the bound on τ=Brðp →
eþπ0Þ to ≳1035 in 8 years of operation (4 Mt*year
exposure) [21]. DUNE, a LArTPC detector, is expected
to produce the best limit on the kaon decay mode
τ=Brðp → ν̄KÞ≳ 6 × 1034 years [22] in two decades of
running. JUNO is another neutrino experiment to be
installed in China [23]. It is a 20 kt liquid scintillator
(LS) detector buried 700 m under a granite mountain,
which can detect proton decays in the p → Kþν̄ channel.
First it detects Kþ decay with kinetic energy of 105 MeV
from proton decay, and then it traces the subsequent μ
decay. With an efficiency of 64% and the background of 0.5
event per 20 kt year, it can reach a sensitivity of 1.9 ×
1034 years in 10 years of operation.
Grand unified theories [1–3] and supersymmetric

grand unified theories (SUSY-GUTs) [24–26] hypothesize
the existence of larger gauge groups that unify all the
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1There are viable alternatives such as leptogenesis [7].
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interactions at some energy scale ΛGUT ≈ 1016 GeV that
may lead to effective quark-lepton interactions causing the
proton to decay. At the hadronic scale, these effective
interactions are the lowest, dimension-six operators com-
prised of four fermion fields [27,28],

Leff ¼
X
I

CIOI þ H:c:;

OI ¼ ϵabcðq̄aCPχI q
bÞðl̄CPχ0I q

cÞ; ð1Þ

where fq̄; l̄gC ¼ fq;lgTC are charge-conjugated fields,2

and the chirality projectors are Pχð0Þ¼R;L ¼ 1�γ5
2
. The inter-

acting quark fields q ¼ u, d, s and the Wilson coefficients
CI depend on the character and the scale of an underlying
unified theory. In the simplest case, such an interaction
describes proton decay into a lepton and one or more
mesons. Neglecting for now the lepton massml̄ ≪ mN , the
partial decay width of the channel p → Πl̄ is equal to

Γðp → Πl̄Þ ¼ mN

32π

�
1 −

�
mΠ

mN

�
2
�
2
����
X
I

CIWI
l̄

����
2

; ð2Þ

where the meson states are Π ¼ π, K, the final leptons are
l̄ ¼ eþ; ν̄; μþ, and the Wl̄ are the p → Π transition matrix
elements of the quark component of the operators OI (1),
which are classified below. The decay rates are deter-
mined by effective interactions induced by particular
GUT hypotheses at scale ΛðGUTÞ and encoded in the

Wilson coefficients CI ¼ c̃I
Λ2, where c̃I is a dimensionless

Oð1Þ coupling renormalized to the nuclear scale. However,
the hadronic matrix elements hΠljOIjpi are determined
by nonberturbative quark dynamics and have to be
evaluated either in a model or, preferably, in an ab initio
QCD calculation. From dimensional analysis, WI

l ∝ Λ2
QCD

and the proton decay rate is suppressed as Γ ∝
mN jcIj2ðΛQCD=ΛðGUTÞÞ4 ∝ Λ5

QCD=m
4
X where mX is the

mass of a unified-theory boson. Using ΛQCD ¼ 0.2 GeV
yields a reasonable estimate for the form factors value
jWl̄j ≈ 0.04 GeV2 and an estimate for the partial lifetime

τ=Brðp → πl̄Þ ≈ 1.4 × 1033 years ·
�

ΛGUT

1015 GeV

�
4

·
1

jc̃Ij2
:

ð3Þ

Prior to lattice QCD, matrix elements of these effective
operators were estimated using the nonrelativistic quark
model of the nucleon [30], the chiral lagrangian [31], and
the MIT bag model [32,33]. Eliminating model uncertainty
requires ab initioQCD calculations on a lattice, which have

been pursued with improving methodology since nucleon
structure calculations became possible. Amplitudes of
transitions from a nucleon to a meson state can be
approximated using proton-to-vacuum (annihilation) decay
constants determined on a lattice and Chiral perturbation
theory (ChPT) [34] (the so-called “indirect method”).
Alternatively, these amplitudes can be computed on a
lattice directly, which enables better control of systematic
effects. The former method was used quenched-QCD
calculations with Wilson valence quark action [35–37]
and domain wall fermion (DWF) action [38], as well as in
unitary QCD with dynamical DWF action [39]. Direct
calculation of proton-to-meson transition matrix elements
was performed in quenched QCD with Wilson valence
quarks [40] and DWF quarks [38], as well as in unitary
QCD with Nf ¼ 2þ 1 dynamical domain wall fermions
[41,42]. In Refs. [38,40,42], results from the indirect
method were also reported.
Although significant progress has been made in improv-

ing calculations of proton decay amplitudes, some impor-
tant systematic uncertainties are still remaining. The most
recent direct calculation [42] reports uncertainty 20%–40%
in the proton decay amplitudes, and also reports disagree-
ment between the direct and the indirect methods. Since
the indirect method relies on ChPT, it is plausible that the
pion masses mπ ≳ 340 MeV used in that calculation were
too heavy for the ChPT to work. However, direct-method
transition amplitudes computed with unphysical heavy
pion masses also require chiral extrapolation, which may
also result in systematic uncertainty. In particular, in the
framework of the chiral-bag proton model, it has been
suggested that the proton-decay matrix elements may
depend dramatically on the quark mass [33]. If this is
the case, some GUT models [e.g., SUSY- and regular
SUð5Þ] may evade constraints even with the presently
available experimental data. It is also important to note that
the effective proton decay operators (1) contain chiral quark
fields, and preserving chiral symmetry is particularly
challenging in lattice calculations. Some of the (valence)
quark actions used in earlier calculations [35–37,40] break
chiral symmetry explicitly.
In this work, we study proton decay matrix elements

using chirally symmetric dynamical Nf ¼ 2þ 1 and
valence domain wall fermions with physical quark masses.
We compute these matrix elements with both the direct and
indirect methods and compare their results. A formidable
progress has been made towards lattice calculations with
chiral fermions at the physical point [43–45]. We use
two ensembles with lattice spacings a ¼ 0.20 fm and
a ¼ 0.14 fm and explore different kinematics in order to
obtain reliable interpolation to the physical decay kinematic
points. Together with nonperturbative renormalization and
analysis of nucleon and meson excited states, our calcu-
lation aims to eliminate common lattice QCD systematic
effects.

2Throughout the paper, we use Euclidean conventions for
γ-matrices (see, e.g., Ref. [29]), so that C ¼ γ2γ4.
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Another potential proton decay channel is into three
leptons or a lepton and one or more photons [46–48].
Such processes can occur either through effective dimen-
sion-nine operators [47], which may only be relevant
if the BSM physics scale ΛBSM ≪ ΛGUT, or through
emission of a photon from quark or charged lepton
involved into effective dimension-six interaction (1).
Decays into three leptons have also been constrained with
data from Super Kamiokande; for example, τ=Brðp →
ll̄0l̄00Þ ≥ ð0.9…3.4Þ × 1034 years for l ¼ eμ [49]. Rates
of such processes depend on the same proton decay
constants hvacjOIjpi as the ones in the indirect calculation
of proton decay amplitudes p → Πl mentioned above. We
report results of nonperturbative lattice calculations of both
proton-meson and proton-vacuum amplitudes that are
important to proton decay phenomenology.
Another baryon-number violating process that could be

responsible for baryogenesis is the six-quark interaction
leading to nonconservation of the (B − L) number and
jΔBj ¼ 2 transitions. Such events are potentially observ-
able as neutron-antineutron oscillations [50], and their
matrix elements have been recently computed on a lattice
with chirally symmetric action at the physical point [29,51].
The paper is organized as follows. In Sec. II, we

introduce our conventions and notations, and describe
our methodology and lattice QCD setup for computing
nucleon-meson matrix elements. A detailed discussion of
nonperturbative renormalization methodology and results
is presented in Sec. III. In Sec. IV, we show details of our
analysis and present our results for proton and meson
spectra, proton decay amplitudes, and proton decay con-
stants obtained on the two lattice QCD ensembles as well
as in the continuum limit. Finally, in Sec. V we compare
our results to previous calculations, discuss systematic
errors in our calculation, discuss the impact of our results,
and suggest further directions to improve systematic
uncertainties.

II. METHODOLOGY

A. Operator definitions

The minimal complete set of the lowest-dimension effec-
tive proton decay operators symmetric under SUð3Þc ×
SUð2ÞEW ×Uð1Þ has been constructed in Refs. [27,28,52].
Using notation of Refs. [40,52], these operators are

Oð1Þ
abcd ¼ ðD̄C

iaUjbÞRðQ̄C
αkcLβdÞLϵijkϵαβ; ð4Þ

Oð2Þ
abcd ¼ ðQ̄C

αiaQβjbÞLðŪC
kcldÞRϵijkϵαβ; ð5Þ

Ōð4Þ
abcd ¼ ðQ̄C

αiaQβjbÞLðQ̄C
γkcLδdÞLϵijkϵαδϵβγ; ð6Þ

Oð5Þ
abcd ¼ ðD̄C

iaUjbÞRðŪC
kcldÞRϵijk; ð7Þ

where a, b, c, d are generation indices, i, j, k are SUð3Þc
indices, α, β, γ, δ are the indices of the left-handed
SUð2ÞEW fermion doublets, and 2-spinors of the indicated
chirality (R, L) are contracted inside the parentheses.
From now on, we will omit the color indices and imply
contraction with the antisymmetric tensor ϵijk. These
operators conserve the (B − L) number, and the outgoing
antilepton (eþ, μþ, ν̄) may have only electroweak inter-
action with quark fields present in the initial and final
states, which may be neglected at the hadronic scale. The
amplitude p → Πl may then be factorized into

Mðp → ΠlÞ ¼ v̄Clαðq⃗ÞhΠðp⃗0Þjðq̄1Cq2Þχq3χ0αjNðk⃗Þi; ð8Þ

where χð0Þ ¼ R, L denotes chirality and v̄Cl is the spinor of

the antilepton in the final state with momentum q⃗ ¼ k⃗ − p⃗.
To avoid redundancy due to parity symmetry, we will only
consider combinations ðχ; χ0Þ ¼ ðL;LÞ and ðR;LÞ below.
The following quark combinations q1;2;3 are possible for
the initial proton N ¼ p and the energy-allowed final
meson Π ¼ π0, πþ, K0, Kþ, and η states,

hπ0jðūCdÞχuLÞjpi;
hπþjðūCdÞχdLÞjpi ¼ U1χ ;

hK0jðūCsÞχuLÞjpi ¼ S1χ ;

hKþjðūCsÞχdLÞjpi ¼ S2χ ;

hKþjðūCdÞχsLÞjpi ¼ S3χ ;

hKþjðd̄CsÞχuLÞjpi ¼ S4χ ;

hηjðūCdÞχuLÞjpi ¼ S5χ : ð9Þ

Similar quark combinations can be enumerated for neutron
decays, and their relation to the proton matrix elements
under isospin symmetry can be found in Ref. [41]. In
addition, isospin symmetry requires that

hπ0jðūCdÞχuLjpi ¼
1ffiffiffi
2

p hπþjðūCdÞχdLjpi ¼
1ffiffiffi
2

p U1χ ; ð10Þ

which is precisely fulfilled in our SUð2Þf-symmetric
calculation at the contraction level. Computing amplitudes
of η-channel decays (S5χ) require disconnected quark
contractions. Such calculation is challenging with DW
fermions at the physical point, and we omit these ampli-
tudes in the present work.
Matrix elements between the proton and the mesonþ

lepton pair in Eq. (8) may be decomposed into linear
combinations of two form factors W0;1 [40],3

3The conventions for on-shell nucleon uN and antilepton v̄Cl
states can be found in Appendix A.
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v̄Clαðq⃗ÞhΠðp⃗ÞjOχχ0
α ðqÞjNðk⃗Þi

¼
�
v̄Cl ðq⃗ÞPχ0

�
WO

0 ðQ2Þ − i=q
mN

WO
1 ðQ2Þ

�
uNðk⃗Þ

�

≈ ½v̄Cl ðq⃗ÞPχ0uNðk⃗Þ�W0ð−m2
lÞ þOðml=mNÞ; ð11Þ

where Q2 ¼ −q2 ¼ −ðEN − EΠÞ2 þ ðk⃗ − p⃗Þ2 and v̄Cl ðq⃗Þ is
the spinor of the antilepton in the final state. In the last line,
the contribution of the form factor W1 can be neglected in
decays into positrons and antineutrinos but not for anti-
muons with ml=mN ≈ 0.1. Also, unless the outgoing
antilepton is ultrarelativistic, there is interference between
left- and right-handed amplitudes, and the decay rate (2)
takes the form

Γðp → Πl̄Þ ¼ 1

8π

Eljq⃗lj
mN

�
A −

ml

El
B
�
; ð12Þ

where El and q⃗l are the outgoing antilepton energy and
momentum, and

A ¼ jWL
l̄
j2 þ jWR

l̄
j2; ð13Þ

B ¼ 2Re½WL
l̄ðWR

l̄Þ��; ð14Þ

and the on-shell antilepton helicity matrix elements are4

WL
l̄ ¼

X
i;χ

�
Ci;χLWi;χL

0 −
ml

mN
Ci;χRWi;χR

1

�
Q2¼−m2

l

;

WR
l̄ ¼

X
i;χ

�
Ci;χRWi;χR

0 −
ml

mN
Ci;χLWi;χL

1

�
Q2¼−m2

l

; ð15Þ

[the summation over i does not include the χ; χ0 helicities
(8), unlike I in Eqs. (1) and (2)]. In the ml → 0 limit, the
interference contribution B disappears, and the decay rate
(12) is simplified to Eq. (2).
For indirect evaluation of the p → Πl̄ amplitudes using

chiral perturbation theory, as well as computing 3l- or lγ-
channel decay amplitudes, one needs the nucleon decay
constants from the following matrix elements

hvacjðūCdÞRuLjNi ¼ αPLuN;

hvacjðūCdÞLuRjNi ¼ −αPRuN;

hvacjðūCdÞLuLjNi ¼ βPLuN;

hvacjðūCdÞRuRjNi ¼ −βPLuN: ð16Þ

Combinations of these constants

hvacjðūCγ5dÞujNi ¼ ðα − βÞuN; ð17Þ

hvacjðūCdÞγ5ujNi ¼ −ðαþ βÞuN; ð18Þ

yield the overlap of the positive-parity nucleon ground state
with nonrelativistic (scalar diquark and upper u-quark) and
relativistic (pseudoscalar diquark and lower u-quark)
nucleon interpolating fields, respectively. In the nonrela-
tivistic limit corresponding to calculations with unphysical
heavy u, d quark masses, it is expected that jαþ βj ≪
jα − βj. In the “indirect” method, proton decay amplitudes
are combinations of the low-energy constants α, β, quark
contributions to the baryon spin, and the meson decay
constants fπ;K [40,42]. These formulas are collected in
Appendix B for completeness.

B. Lattice setup

For our calculation, we use physical-point ensembles of
gauge fields on 243 × 64 [43] and 323 × 64 [53] lattices
ensembles with spatial volumes ≈ð4.8 fmÞ3 and ð4.6 fmÞ3,
respectively. These ensembles have been generated by
the RBC/UKQCD collaboration using I-DSDR gauge
action and Nf ¼ 2þ 1 flavors of dynamical quarks with
Möbius domain wall fermion (MDWF) action. These
MDWF fermions possess chiral symmetry due to the
additional fifth dimension of L5 ¼ 24 and L5 ¼ 12,
respectively, which are sufficient to suppress chiral sym-
metry breaking effects otherwise present in lattice fermion
actions. To soften explicit chiral symmetry breaking effects
due to the relatively large lattice spacing, these ensembles
also employ the dislocation-suppressing-determinant-ratio
(DSDR) [54]. Lattice spacings, bare quark masses, pseu-
doscalar meson masses, and other parameters are summa-
rized in Table I. The masses of mesons and of the proton
are reported below in Sec. IVA. As our lattices are nearly
precisely at the physical point, our results below will not
require chiral extrapolation. Slight deviations of the pion
and kaon masses from their physical values can be, in
principle, rectified by ChPT-inspired corrections to our
results, but the precision we aim for in this work does not
warrant such a step.
In order to make the numerical calculation affordable, we

perform “all-mode-averaging” (AMA) sampling [57], in
which we approximate the light and strange quark propa-
gators with truncated solutions to the MDWF operator [58].
On the 24ID ensemble, the MDWF operator itself is
approximated with “z-Möbius” operator, in which complex
coefficients b5, c5 are varied along the fifth dimension so
that it can be reduced to L5s ¼ 12 while keeping the
residual mass mres the same. For a better approximation of
the low-eigenmode space of the light-quark Dirac operator,
we augment the truncated conjugate-gradient (CG) solver
with deflation using a combination of exact and coarse-
blocked eigenvectors, which are computed with multigrid
Lanczos algorithm [59]. On each gauge configuration, we

4TheOðW1Þ correction to the two-body decay amplitude given
in Ref. [42] is oversimplified and confusing. The correct formulas
are given here.
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compute 32 approximate (“sloppy”) samples with such
truncated quark propagators. In order to correct for any
potential bias, we recompute one sample on each configu-
ration using exact quark propagators. We find that with our
parameters the AMA approximation is very efficient, i.e.,
the statistical variance of the difference between the
approximate and exact samples is negligible, and the
statistical precision is always dominated by fluctuations
in the approximate samples.

C. Nucleon-meson correlators on a lattice

In order to compute the matrix elements in Eqs. (11)
and (16) on a lattice, we evaluate three-point correlation
functions of proton creation N̄, proton decay Oχ

α ¼
ðq̄C1 q2Þχq3Lα, and meson annihilation JΠ operators,

CΠON
αβ ðp⃗; q⃗; t2; t1Þ ¼

X
y⃗;z⃗

e−ip⃗ y⃗−iq⃗ z⃗þik⃗ x⃗·

· hJΠðy⃗; x4 þ t2ÞOχχ0
α ðz⃗; x4 þ t1ÞN̄βðxÞi:

ð19Þ
The spin indices are contracted with polarization
matrices P

CΠON
P ¼ PβαCΠON

αβ ; ð20Þ
that yield nontrivial combinations of proton decay
form factors W0;1 The nucleon and meson interpolating
operators are

N ¼ ϵijkðũiTCγ5d̃jÞũk; ð21Þ

Jπþ ¼ ¯̃dγ5ũ; ð22Þ

Jπ0 ¼
1ffiffiffi
2

p ð ¯̃uγ5ũ − ¯̃dγ5d̃Þ; ð23Þ

JKþ ¼ ¯̃sγ5ũ; ð24Þ

JK0 ¼ ¯̃sγ5d̃; ð25Þ

Jη ¼
1ffiffiffi
6

p ð ¯̃uγ5ũþ ¯̃dγ5d̃ − 2¯̃sγ5s̃Þ; ð26Þ

where the component quark fields ũ; d̃; s̃ are smeared
with gauge-invariant Wuppertal smearing [60] using
APE-smeared gauge links. The smearing parameters are
collected in Table II.
In the case of π and K mesons in the final states,

contractions of quark fields in the operators (19) generate
only connected diagrams, while in the case of the η meson,
there are combinations of both connected and disconnected
diagrams. At the physical point, contributions from dis-
connected diagrams in the η correlators can be large; since
we do not evaluate disconnected contractions in this work,
decays in the η-channel are not studied here. We use the
standard sequential propagator technique to compute con-
nected contributions to the three-point function (19). First,
we compute a forward quark propagator from a smeared
source located at the origin of a particular sample x on the
time slice t0 ¼ x4. Then, we compute a backward propa-
gator from a sequential source that is constructed with one
of the momentum-projected meson interpolation operators
e−ip⃗ y⃗ð ¯̃q2Γq̃1Þy⃗ restricted to the “sink” time slice t0 þ t2.
Finally, the backward propagator is contracted with the two
forward propagators at the operator insertion point, and the
result is projected on momentum q⃗.
With two momentum projections in Eq. (19), the initial

nucleon momentum k⃗ ¼ p⃗þ q⃗ is determined by the
momentum conservation after averaging over a gauge
ensemble. We select kinematic points ðp⃗; q⃗Þ so that 1.
the lepton is close to being on-shell, jq2j ¼ jðk − pÞ2j≲
m2

l, 2. the nucleon spatial momentum is small to minimize
statistical fluctuations, and 3. the decay kinematic point
q2 ≈ 0 is bracketed enabling a reliable interpolation. The
selected initial and final state momenta combinations are
shown in Table III. Since the physical volumes on both
lattice ensembles are very close, so are the quanta 2π=ðaLÞ
of spatial momentum, which result in identical selections of

TABLE II. Parameters for covariant Gaussian smearing of
quark sources and APE smearing of the gauge fields used in
their construction.

AAPE NAPE αWup NWup

24ID 2.85 25 2.5 10
32ID 2.85 25 2.5 40

TABLE I. Lattice parameters for the 24ID and 32ID ensembles. Both ensembles have I-DSDR gauge and (zMöbius) domain wall
fermion actions. The pion and kaon masses are determined in our analysis (see Sec. IVA). Lattice spacings and residual masses are
computed elsewhere [45,55,56]. In the last group of columns, we show the number of light-quark deflation eigenvectors, the numbers of
conjugate gradient (CG) iterations to compute light-quark and strange-quark propagators for approximate samples, and the number of
gauge configurations analyzed.

L3
x × Lt a−1½GeV� β L5fðL5sÞ M5 amres aml ams amπ amK mπL NEVðNbasisÞ Nu=d

CG
Ns

CG Ncfg

243 × 64 1.023(2) 1.633 32=12 1.8 0.00228(1) 0.00107 0.0850 0.1378(7) 0.5004(25) 3.31 2000(1000) 300 200 140
323 × 64 1.378(5) 1.75 12=12 1.8 0.00189(1) 0.0001 0.0450 0.1008(5) 0.3543(6) 3.25 2000(250) 200 200 112
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lattice momenta and only slightly different q2 values for the
two ensembles. In order to further reduce the cost of our
computation, we use the “coherent trick”, in which back-
ward propagators for two maximally separated samples are
computed simultaneously from the sum of their respective
sequential sources.
Meson and nucleon two-point functions,

CΠΠðk⃗; tÞ ¼
X
x⃗

e−ip⃗ x⃗hJΠðxÞJ†Πð0Þi; ð27Þ

CNN̄þ ¼ Tr

�
1þ γ4

2
CNN̄

�
;

CNN̄
αβ ðk⃗; tÞ ¼

X
x⃗

e−ik⃗ x⃗hNαðxÞN̄βð0Þi; ð28Þ

are also evaluated to compute their energies as well as
overlaps of their interpolating operators (21)–(26) with their
respective ground states. Similarly to the three-point func-
tions, only the correlators with η mesons require discon-
nected diagrams, which are not studied in the present work.
For the nucleon, we use the positive-parity projected spinor
for all momenta k⃗. Althoughwith k⃗ ≠ 0 the nucleon does not
have definite parity, our momenta are small enough for it to
be a good approximation for the ground-state nucleon.

D. Proton decay matrix elements

In the large-time limit ft1; ðt2 − t1Þg → ∞, the three-
point correlation functions (20) are dominated by the
ground-state proton-meson amplitude. However, in our
lattice calculation the time separations may be not large
enough to neglect contributions from their excited states.
The spectral decomposition of a three-point correlation
function yields

CΠON̄
αβ ðp⃗; q⃗; t2; t1Þ ¼

X
m;n;s

hΩjJΠjΠmðp⃗Þi
e−EΠ;mðt2−t1Þ

2EΠ;m
·

· hΠmðp⃗ÞjOαjNðsÞ
n ðk⃗Þi e

−EN;nt1

2EN;n

× hNðsÞ
n ðk⃗ÞjN̄βjΩi; ð29Þ

where indicesm, n denote the ground (m, n ¼ 0) and excited
meson (m > 0) and nucleon (n > 0) states. The ground state

matrix elements M00
α;sðqÞ ¼ hΠ0ðp⃗ÞjOαjNðsÞ

0 ðk⃗Þi dominate
this sum for ft1; ðt2 − t1Þg → ∞. Lattice interpolating fields
for the meson JΠ and the nucleon N may have arbitrary
normalizations due to quark smearing, which are reflected in
their overlap factors ZΠ and ZN ,

hΩjJΠjΠ0ðp⃗Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZΠðp⃗Þ

p
; ð30Þ

hNðsÞ
0 ðk⃗ÞjN̄αjΩi ¼ ūðsÞα

ffiffiffiffiffiffiffiffiffiffiffiffi
ZNðk⃗Þ

q
: ð31Þ

These momentum-dependent factors may obtained from
ground-state terms in their respective two-point correlation
functions,

CΠΠðp⃗; tÞjg:s: ¼
ZΠðp⃗Þ
2EΠ

e−EΠt; ð32Þ

CNN̄þ ðk⃗; tÞjg:s: ¼
ZNðk⃗Þ
2EN

Tr½Pþð−i=kþmNÞ�e−ENt

¼ ZNðk⃗Þ
EN þmN

EN
e−ENt: ð33Þ

Weperform two-state fits toCΠΠðtÞ andCþ ¼ Tr½PþCNN̄jðtÞ

CΠΠðp⃗; tÞ ¼ CΠ;0e−EΠ;0t þ CΠ;1e−EΠ;1t; ð34Þ

CNN̄þ ðk⃗; tÞ ¼ CN;0e−EN;0t þ CN;1e−EN;1t; ð35Þ

independently for each momentum p⃗, k⃗ and extract the
ground-state overlap factors for the meson and the nucleon

ZΠðp⃗Þ ¼ 2EΠ;0CΠ;0; ZNðk⃗Þ ¼
EN;0

EN;0 þmN
CN;0: ð36Þ

In order to compute the form factors (11), we project the
three-point function Tr½PCΠON̄ � ¼ CΠON̄

P with a set of
suitable projectors

fPg ¼ fPþ; Pþγjg; where j ¼ 1; 2; 3; Pþ ¼ 1þ γ4
2

:

ð37Þ
Similarly to the meson and nucleon two-point functions
(32), (33), the ground-state contribution to a spin-projected
three-point function (20) can be written as

CΠON̄
P ðp⃗; q⃗; t2; t1Þjg:s:
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ZΠZN

p
4EΠEN

e−EΠðt2−t1Þ−ENt1 ·

· Tr

�
PPχ

�
WO

0 −
i=q
mN

WO
1

�
ð−i=kþmNÞ

�
; ð38Þ

TABLE III. Initial and final momenta in the three-point
functions selected for close-to-physical kinematics jq2j ≲m2

l
using masses determined from fits on a lattice (see Sec. IVA).

Q2ðGeV2Þ
Π n⃗Π n⃗N (24ID) (32ID)

π [1 1 1] [0 0 0] −0.011 0.020
[1 1 1] [0 1 0] −0.117 −0.089
[0 0 2] [0 0 0] 0.120 0.150

K [0 1 1] [0 0 0] 0.038 0.047
[0 1 1] [0 1 0] −0.057 −0.052
[0 0 1] [0 0 0] −0.074 −0.070
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where the matrix element M00
α;sðqÞ is decomposed into

decay form factors W0;1. However, before these form
factors can be extracted, the ground-state matrix element
M00

α;sðqÞ must be isolated from excited-state contamination.
For this purpose, we study the time dependence of the
projected three-point function (38) with two methods
described below.
The plateau method is based on a ratio of correlation

functions

RO
P ðp⃗; q⃗; t2; t1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZΠðp⃗ÞZNðk⃗Þ

q
CΠON̄
P ðp⃗; q⃗; t2; t1Þ

CΠΠðp⃗; t2 − t1ÞCNN̄þ ðk⃗; t1Þ
; ð39Þ

where the ZΠ;N overlap factors (36) are extracted from the
fits to the two-point functions (34), (35). The values of this
ratio near the center of the plateau, t1 ≈ t2=2, must converge
to the ground-state matrix element for large time separation
t2. Deviations from the ground state are suppressed as
Oðe−ΔEΠðt2−t1Þ; e−ΔENt1Þ, and the plateaus are expected to
converge to ground-state values faster for t1 > t2=2, i.e.,
closer to the meson sink rather than the proton source
because of the larger energy gap of the former. However,
the noise is also expected to be larger in this region due to
the much larger nucleon mass. For each value of t2, we
calculate the average of two or three central plateau points
R̄ðt2Þ and estimate statistical errors using bootstrap.
Convergence of the R̄ðt2Þ values with increasing t2 indi-
cates suppression of excited states and allows us to estimate
related systematic effects.
The two-state fit method is intended to take into account

the excited states in a systematic fashion and reduce the
bias associated with them. Similarly to the two-point
function fits [see (34)and (35)], we include single excited
states for both the meson and the proton, and perform
correlated least-χ2 fits

CΠON̄
P ðp⃗; q⃗; t2; t1Þ ¼

X
m;n¼0;1

CΠON̄
P;mne

−EΠ;mðt2−t1Þ−EN;nt1 : ð40Þ

Discarding the excited state contributions, we define the
equivalent of the ratio (39) that contains only the ground-
state contributions

RΠON̄
P;00 ðp⃗; q⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZΠðp⃗ÞZNðk⃗Þ

q
CΠON̄
P;00

CΠ;0CN;0
; ð41Þ

and must be equal to the converged value of Eq. (39) at
ft1; ðt2 − t1Þg → ∞. Systematic uncertainties in this
method are estimated by comparing fit results performed
in ranges tNskip ≤ t1 < ðt2 − tΠskipÞ with varying tN;Π

skip . tskip ¼
2 and tskip ¼ 3, all of which yielded reasonable χ2 values.
These methods are applied independently to each com-

bination of initial and final momenta in Table III and for all

nontrivial spin projections P of the tree-point correlation
functions.

E. Proton decay form factors

While only the W0 form factor is necessary for comput-
ing width of decays into eþ and ν̄, the W1 form factor is
also necessary for decays into μþ. In order to disentangle
form factors W0;1, one needs at least two independent
matrix elements M00

α;sðqÞ in Eq. (29) or, equivalently, two
independent nontrivial projections of the three-point func-
tions (38). Evaluating the spin traces in Eq. (38) leads to the
following (ground-state) contributions to the ratios [(39)
and (41)]

RΠON̄
Pþ ¼ 1

2
W0 þ

�
ΔE
2mN

−
k⃗ · q⃗

2mNðEN þmNÞ
�
W1; ð42Þ

RΠON̄
Pþγi ¼ −iki

2ðEN þmNÞ
W0

þ −iðEN þmNÞqi þ iΔEki � ðq⃗ × k⃗Þi
2mNðEN þmNÞ

W1; ð43Þ

where ΔE ¼ EN − Eπ and the (�) sign corresponds to the
decay operator helicity χ0 ¼ R, L, respectively. These
equations take into account nonzero nucleon momentum
k⃗, which is useful for a better approximation of the
physical kinematic point q2 ≈ 0. All previous proton decay
calculations were done with zero nucleon momentum
k⃗ ¼ 0 [41].
We take a projection of Eq. (43) on the spatial vector q⃗ in

order to simplify computing the form factors and obtain

RPþðiq⃗·γ⃗Þ ¼
X
i

iq⃗iRPþγi ¼
k⃗ · q⃗

2ðEN þmNÞ
W0

þ
�

q⃗2

2mN
−

ΔEðk⃗ · q⃗Þ
2mNðEN þmNÞ

�
W1: ð44Þ

While it is possible to perform “overdetermined” fits by
considering Pþγi polarization projections separately,
doing so would accomplish only a check of the rotational
symmetry.

III. RENORMALIZATION

A. Nonperturbative renormalization scheme

The bare hadronic matrix elements computed on a lattice
have to be converted to a continuum renormalization
scheme such as MS that is used in proton decay phenom-
enology. Operators are defined on a lattice at a relatively
low scale of a−1 ≈ 1–2 GeV, where the strong coupling αS
is large. Nonperturbative renormalization avoids major
systematic effects due to truncation of perturbative series
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on a lattice and is required to achieve reliable and precise
results. In a typical approach called Rome-Southampton
method [61], one computes correlators of a bare operator
with bare external quark and gluon fields carrying large
virtual momenta in a fixed gauge and compares their
behavior to a perturbative prediction, resulting in a finite
conversion factor from lattice to a perturbative renormal-
ization scheme, e.g., to MS. The Landau gauge is typically
employed as straightforward to implement consistently
between lattice and continuum.
Such an intermediate scheme requires an additional

perturbative conversion to the MS scheme; in addition,
lattice field correlators may have nonperturbative
infrared contributions. Systematic effects from both of these
sources depend on the configuration of external field
momenta. In the case of some quark-bilinear operators,
selecting a nonexceptional momentum configuration
(“SMOM” scheme) is crucial for avoiding large nonpertur-
bative effects that may appear if the operator carries zero
momentum (“MOM” scheme) [62]. In the case of the three-
quark operators, momenta can be arranged in even more
ways. The two choices discussed in the literature are either
with all three quarks carrying the same momentum p [38] or
carrying momenta of the same magnitude p2 ¼ k2 ¼ r2 that
add to zero vertexmomentumpþ kþ r ¼ 0 [63]; belowwe
will refer to these momentum arrangements as “MOM3q”
and “SYM3q”, respectively, to discriminate from the
schemes used for quark-bilinear operators.
In order to avoid both discretization and nonperturbative

effects, the momenta of the fields must satisfy the “scale
window” condition

ΛQCD ≪ p ≪ ðπ=aÞ: ð45Þ

The three-quark operator in the correlator following the
MOM3q scheme will carry momentum ð3pÞ2 and may
require a wider scale window, which is challenging on
coarse lattice ensembles that are used in the present work.
Additionally, the large vertex momentummay result in large
perturbative conversion factors to the MS scheme and,
consequently, larger systematic uncertainties. Indeed, the
amputated Green’s function of the three-quark operator
at the OðαSÞ order is larger5 in the MOM3q scheme
[38,64] compared to the SYM3q scheme [63,65] (see also
Appendix C)

½ΛMS
3q �MOM3q ≈ 1þ ð−4.060Þ αs

4π
þOðα2SÞ; ð46Þ

½ΛMS
3q �SYM3q ≈ 1þ ð0.989Þ αs

4π
þOðα2SÞ: ð47Þ

The SYM3q Green’s function (47) is available up to Oðα2SÞ
order [63], while the MOM3q Green’s function (46) is
available only up to OðαSÞ [38,64]. The large difference
at the OðαSÞ order indicates that the unknown Oðα2SÞ
correction to the former may also be larger compared
to the latter, which has been computed and can be used
for more accurate perturbative matching. On the other hand,
in the SYM3q scheme, the vertex carries zero momentum
q ¼ pþ kþ r ¼ 0, which might result in a nonpertur-
bative contribution from the nucleon pole ∼ðq2 þm2

NÞ−1.
However, the overlap of a point-localized three-quark oper-
ator with the nucleon state is suppressed due to the nonzero
nucleon size. Sincemost of the nucleonmass comes from the
glue (as shown by the momentum sum-rule in deep inelastic
scattering experiments [66]) and the nucleon remains mas-
sive in the chiral limit, such a pole contribution should be
negligible. Therefore, we select the SYM3q scheme because
it enables better control of these systematic uncertainties.

B. Renormalization of decay operators

In order to determine nonperturbative renormalization
factors, we compute Green’s functions of operators (9)
with three external quark fields carrying definite Euclidean
4-momenta. There are two flavor structures

½OðudÞs
ΓΓ0 �δ ¼ ϵabcðūTaΓdbÞΓ0scδ; ð48Þ

½OðudÞd
ΓΓ0 �δ ¼ ϵabcðūTaΓdbÞΓ0dcδ; ð49Þ

with ten linearly-independent Lorentz-invariant choices of
ðΓ ⊗ Γ0Þ ¼ fSS; PP; AA; VV; TT; SP; PS; AV; VA; TQg,6
of which five are positive parity and five are negative parity.
The labels S; P; V; A; T;Q stand for Γð0Þ ¼ 1; γ5; γμ; γμγ5;
σμν; σμνγ5, respectively, with Lorentz indices μ, ν con-
tracted in ðΓ ⊗ Γ0Þ.
We perform calculations with equal, SUð3Þf symmetric

quark masses and extrapolate to the chiral limit mu;d;s → 0.
The 10 OðudÞs operators can then be further classified by
the symmetry of the diquark factor [38] (see Table IV).
Since the relevant operators are

O3q
RR ¼ 1

4
ðO3q

SS þO3q
SP þO3q

PS þO3q
PPÞ ¼ O3q

þ ;

O3q
RL ¼ 1

4
ðO3q

SS −O3q
SP þO3q

PS −O3q
PPÞ ¼ O3q

− ; ð50Þ

where R, L correspond to to Γð0Þ ¼ 1
2
ð1� γ5Þ, the only

potential mixing is between operators fOSS;OPP;OAAg.
5It is worth noting that the complete conversion factors may

also include perturbative corrections due to the quark fields
depending on their renormalization scheme. In particular, the
SMOMγμ scheme that we use below requires OðαSÞ correction
comparable in magnitude to the one in Eq. (46), while SMOM
and MOM do not.

6Operators with permuted quark fields can be reduced to the
forms (48), (49) using Fierz identities.
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Equivalently, one can study mixing and renormalization
of operators fOSP;OPS;−OAVg, which is identical.7 In the
case ofOðudÞd operators, Fierz identities reduce the number
of independent operators to the following four,

OðudÞd
AA ¼ OðudÞd

PP −OðudÞd
SS ¼ OðudÞd

VV ; ð51Þ

OðudÞd
AV ¼ OðudÞd

SP −OðudÞd
PS ¼ OðudÞd

VA ; ð52Þ

OðudÞd
TT ¼ OðudÞd

SS þOðudÞd
PP ; ð53Þ

OðudÞd
TQ ¼ OðudÞd

SP þOðudÞd
PS ; ð54Þ

and any potential mixing is respectively simplified.
The nonperturbative Green’s functions are computed

using quark propagators with point-sources and momen-
tum-projected sinks in the Landau gauge,

Sqðx; pÞ ¼
X
y

eipðx−yÞhqðxÞq̄ðyÞi; ð55Þ

which are contracted at the source x (spin and color indices
are omitted)

G3q
ΓΓ0 ðx;p; k; rÞ ¼

X
y1y2y3

eiqx−ipy1−iky2−iry3 ·

· hO3q
ΓΓ0 ðxÞs̄ðy3Þd̄ðy2Þūðy1Þi; ð56Þ

where q ¼ pþ kþ r, and equivalently for the OðudÞd
operators. These Green’s functions are then amputated
with the same point source propagators after averaging over
an entire ensemble,

ΛðudÞs
ΓΓ0 ðp; k; rÞ ¼ ⟪GðudÞs

ΓΓ0 ðp; k; rÞ⟫·
·½⟪SsðrÞ⟫−1⟪Su=dðkÞi−1⟪Su=dðpÞ⟫−1�: ð57Þ

We evaluate 32 low-precision samples and one high-
precision sample per configuration to correct for potential
bias and use jackknife resampling to estimate statistical
uncertainty. We perform these calculations with three
values of equal quark masses mu;d;s varied between mu=d

and ms on each ensemble (see Table V). We observe very
weak quark mass dependence in the diagonal renormaliza-
tion constants. The figures below refer to the lightest quark
mass, and final renormalization results are obtained by
linear extrapolation with mu;d;s → 0. The only statistically
significant mixing is observed between AA and PP
operators, which vanishes towards the massless quark limit
indicating that chiral symmetry is preserved (see Fig. 1).
The tree-level vertices of the three-quark operators

OSS;PP;AA have the following spin/color structure

½Λ3q
SS�abcαβγδ ¼ ϵabcðCÞαβð1Þγδ;

½Λ3q
PP�abcαβγδ ¼ ϵabcðCγ5Þαβðγ5Þγδ;

½Λ3q
AA�abcαβγδ ¼ ϵabcðCγμγ5Þαβðγμγ5Þγδ; ð58Þ

and the corresponding projectors for the amputated Green’s
functions,

½P3q
SS�abcαβγδ ¼

1

96
ϵabcðC−1Þβαð1Þδγ;

½P3q
PP�abcαβγδ ¼

1

96
ϵabcðγ5C−1Þβαðγ5Þδγ;

½P3q
AA�abcαβγδ ¼

1

384
ϵabcðγ5γμC−1Þβαðγ5γμÞδγ; ð59Þ

are used to form a 3 × 3 amputated Green’s function matrix

Λ3q
XYðp; k; rÞ ¼ ðΛ3q

X ðp; k; rÞÞ · P3q
Y ; ð60Þ

where X; Y ¼ fSS; PP; AAg and the dot indicates summa-
tion in all color and spin indices. From this matrix,
the nonperturbative renormalization/mixing matrix Z3q

XY is
determined as

Z−3=2
q Z3q

XYΛ
3q
YZ ¼ δXZ: ð61Þ

The arrangement of momenta ðp; k; rÞ defines a particular
subtraction scheme for the three-quark operator; we will

TABLE IV. Classification of operators by parity and diquark
symmetry [38]. Switching symmetry is determined by Γ; SðΓ ¼
S; P; AÞ ¼ −1 and SðΓ ¼ V; TÞ ¼ þ1, while parity P ¼
−PðΓÞPðΓ0Þ is determined by both PðΓð0Þ ¼ S; V; TÞ ¼ þ1

and PðΓð0Þ ¼ P; A;QÞ ¼ −1.

S ¼ −1 S ¼ þ1

P ¼ −1 SS, PP, AA VV, TT
P ¼ þ1 SP, PS, AV VA, TQ

TABLE V. Quark masses used for computing light and strange
quark propagators for nonperturbative renormalization. The
numbers of configurations used are shown in the second column.

Ensemble mNPRð1Þ
q

Ncfg mNPRð2Þ
q

Ncfg mNPRð3Þ
q

Ncfg

24ID 0.00107 16 0.04 18 0.085 27
32ID 0.0001 22 0.02 0 .045 21

7We note that discussion of renormalization and mixing is
more natural in the spin-structure basis OSS;OPP;OAA, in
which the symmetry constraints are straightforward. The
results, however, are reported in the phenomenological “permu-
tation” basis fðudÞs; ðusÞd; ðsdÞugRR;RL (9). The latter basis is
not orthogonal, which would complicate the pattern of non-
perturbative mixing, e.g., due to chiral symmetry breaking by
lattice discretization.
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use notation jpj to indicate the subtraction point defining
the scale. It is difficult to select lattice momenta satisfying
the SMOM and SYM3q conditions exactly. We select
momenta with the following criteria (1) p2, k2, r2 values are
within 10% of each other, and (2) p, k, r momenta satisfy
the “democratic” orientation [67]P

μp
4
μ

ðPμp
2
μÞ2

≤ 0.4: ð62Þ

(a)

(b)

FIG. 1. Quark mass and scale dependence of the mixing

Green’s functions ΛðudÞs
AA;PP (top) and ΛðudÞd

PP;SS (bottom). Only two
quark masses, the highest and the lowest, are shown for the 32ID
ensemble.

(a)

(b)

FIG. 2. Amputated Green’s functions three-quark operators

OðudÞs
SS andOðudÞs

PP with varying virtual momentum of the operator.
Only diagonal entries (i.e., projected on SS and PP, respectively)
are shown.
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This ratio estimates the “diagonality” of the momentum, and
the constraint avoids directions close to a single axis, which
are expected to produce larger discretization effects. For the
MOM and MOM3q schemes, we explore momenta along
axes as well as 2-d, 3-d, and 4-d diagonals of the lattice.
Wherever possible, amputated correlators are averaged over
reflections and rotations of the external momenta.
In Fig. 2, we compare the amputated and projected

Green’s functions of the three-quark operators in MOM3q
and SYM3q momentum schemes and find that they are
different by ≈30% − 35%. Although some difference is
expected due to kinematics, it turns out to be substantially
larger than expected from perturbative calculations (46),
(47), which is ≈12% at jpj ¼ 2 GeV [see Eqs. (46) and
(47)]. Since we observe only weak dependence of Green’s
functions on the momentum scale as jpj → 0, this discrep-
ancy is unlikely to be caused by nonperturbative effects
such as a nucleon pole ðp2 þmNÞ−1, and may indicate
large Oðα2SÞ perturbative corrections in the MOM3q
scheme. We have also briefly explored Green’s functions
in alternative schemes with quark momenta p ¼ �k ¼ �r
and jpþ kþ rj ¼ jpj (“asym1,2,3”) shown in Fig. 2,
which confirm the strong dependence of the vertex func-
tions on the external quark momentum configuration.
These observations validate our choice of the SYM3q
scheme for renormalizing the three-quark operators.
To eliminate the quark field renormalization factor Zq,

we use Green’s functions of quark axial-vector current

ΛΓðp; p0Þ ¼ h½q̄Γq�qðpÞq̄ðp0Þiamp: ð63Þ

with nonexceptional momenta p2 ¼ p02 ¼ ðp − p0Þ2. This
Green’s function is projected according to the “SMOMγμ”

scheme,

Z
SMOMγμ
q ðjpjÞ ¼ ½ΛA�SMOMγμ

ZWI
A

¼ 1

48

X
μ

Tr½γ5γμΛγμγ5 �ZWI
A : ð64Þ

While such scheme is incompatible with the Ward identity
for the axial current [62], it is more practical on a lattice
because it does not depend on components of virtual
external quark momenta and accompanying discretization
effects. We use the values of the renormalization factors
ZWI
A ¼ 0.73457ð11Þ (24ID) and 0.68779(11) (32ID) deter-

mined in Refs. [55,56] and perturbative calculations in the
SMOMγμ scheme [68] (seeAppendixC for details). In Fig. 3,
we show lattice renormalization constants of quark bilinears
in the SMOMγμ scheme

ZΓ ¼ ZA
Λ
SMOMγμ

A ðjpjÞ
ΛΓðjpjÞ

; ð65Þ

for Γ ¼ 1ðSÞ; γ5ðPÞ; γμðVÞ; γμγ5ðAÞ; σμνðTÞ in Fig. 3.
Combining Eq. (61) with the axial-vector renormaliza-

tion (64), we find the SYM3q renormalization matrix of
three-quark operators

Zlat
X;YðjpjÞ ¼ ½ZAΛAðjpjÞ�3=2½Λ3qðjpjÞ�−1X;Y; ð66Þ

and show the results for the diagonal and off-diagonal
components in Fig. 4. In previous calculations, MOM
scheme with exceptional momenta was used to renormalize

(a)

(b)

FIG. 3. Lattice renormalization factors of quark-bilinear oper-
ators (65) in the SMOM scheme.
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the quark fields. To emphasize the difference, we will refer
to our scheme as SYM3q=SMOMγμ , and to the previously
used scheme in Refs. [39,41,42] as MOM3q=MOM. All
the off-diagonal components are negligible compared to the
diagonal components. The most important observation is
that mixing with the O3q

AA operator may be neglected as its
matrix elements have not been computed. Below, we study
only the diagonal factors ZX;X and refer to them simply as
ZX for X ¼ SS; PP; AA.

C. Perturbative matching

In order to extract lattice to MS-conversion coeffi-
cients, we divide SYM3q=SMOMγμ renormalization fac-

tors (66) by their perturbative evolution. Specifically, we
use continuum-QCD conversion factor from SYM3q=
SMOMγμ scheme with Nf ¼ 3 flavors at the momentum-

subtraction point jpj to our final MS scheme with Nf ¼ 4

flavors at scale μ0 ¼ 2 GeV,

(a) (b)

FIG. 4. Diagonal renormalization (top) and off-diagonal mixing (bottom) components of the SYM3q renormalization matrix (66).
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Ctotðμ0; jpjÞ ¼
ZMSð4Þðμ0Þ

ZSYM3q=SMOMγμ ð3ÞðjpjÞ ¼
�
ZMSð4Þðμ0Þ
ZMSð3Þðμ0Þ

�
·

·

�
ZMSð3Þðμ0Þ
ZMSð3ÞðjpjÞ

�
·

�
ZMSðjpjÞ

ZSYM3q=SMOMγμ ðjpjÞ

�
;

ð67Þ

where the last factor is computed with Nf ¼ 3 flavors as
summarized in Appendix C.
Since there is perturbative mixing between SS and PP

operators starting at Oðα2SÞ, the anomalous dimension
matrix has to be diagonalized. This results in two different
anomalous dimensions γ� for operators (50) [63,65].8 We
integrate these Oðα3SÞ anomalous dimensions [63] using

the four-loop αMS
S ðμÞ running derived from αMS

S ðMZÞ ¼
0.11823ð81Þ and matched to the Nf ¼ 3 QCD at m̄b

and m̄c thresholds [69]. The complete conversion factor
is shown in Fig. 5, as well as all the factors separate factors
in the right-hand side of Eq. (67). The correction from
Nf ¼ 3 dynamical flavors used in lattice calculations to
Nf ¼ 4 active flavors at scale μ0 is smaller than 10−3 and
thus may be neglected. Also, the difference in evolution of
operator normalization with Oðα2SÞ and Oðα3SÞ anomalous
dimensions are very small. Finally, we compare the

complete conversion factors in the SYM3q=SMOMγμ

and MOM3q=MOM schemes in Fig. 5 (bottom right).
The αS and α2S orders contribute respectively ≈7.1% and
≈2.6% to perturbative SYM3q → MS conversion factors
[63], and we estimate the perturbative systematic uncer-
tainty as half of the Oðα2SÞ contribution at ≈1.3%. Such
uncertainty is negligible compared to uncertainties from
other sources, in particular, stochastic and discretization
effects.
Conversion factors from lattice to MSðNf ¼ 4; μ0Þ are

products of the perturbative running (67) and lattice
renormalization factor (66) in the O� basis (50)

ZMS←latðμ0; jpjÞ ¼ Ctotðμ0; jpjÞZlatðjpjÞ; ð68Þ

which should be scale independent of the intermediate
scale jpj within the window (45). Indeed, as shown in

Fig. 6, the variation of ZMS←latðμ0; jpjÞ with the lattice
scale jpj is insignificant compared to our target preci-
sion. Final renormalization numbers are determined as
simple averages of central values in the range jpj ¼
1.8…2.1 GeV for both ensembles. While data at larger
scales are available for the 32ID ensemble, we use the
same scale window in physical units to ensure consis-
tency of our continuum extrapolation below. The sys-
tematic uncertainties are estimated as half of the maximal
variation in the averaging range, and are subdominant
compared to the perturbative uncertainty discussed above;

FIG. 5. (Top left) perturbative running and conversion from SYM3q=SMOMγμ (solid lines) and MOM3q=MOM (dashed lines) to MS
scheme at scale jpj; (top right) MS running from scale jpj to μ0 ¼ 2 GeV at Oðα3SÞ used in this work (solid) and Oðα2SÞ used previously
(dashed); (bottom left) conversion from Nf ¼ 3 to Nf ¼ 4 flavors; (bottom right) all factors collected (67).

8Using parity, we take the average the opposite chirality
operators Oþ ¼ 1

2
ðORR þOLLÞ and Oþ ¼ 1

2
ðOLR þORLÞ.
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combined systematic uncertainties are ≲1.6%. The stat-
istical uncertainties are estimated with jackknife resam-
pling and are ≲0.2%. The final renormalization constants
are collected in Table VI.

IV. RESULTS

A. Hadron spectrum

The first step of the analysis is to extract energies of
proton and meson states and their overlaps with the lattice
operators from their two-point correlators. We perform
multi-state fits in order to control systematic effects arising
from hadron excited states. Statistical precision of our data
and coarse step in the time direction are sufficient to
constrain effectively only one excited state in each case.
Energy gaps between the ground and the excited state
have the most impact on correct removal of excited-state
contamination from matrix elements determined from
three-point correlation functions.
To find approximate values of the ground state param-

eters, we first perform 1-state fits with tmin sufficiently large
to yield good p-values for all momenta p2 ¼ ð0…4Þ×
ð2π=LÞ2. We then perform series of two-state fits (32), (33)
with varying time ranges ½tmin; tmax�. We use values of the
ground-state overlaps C0 and the energies E0 from the one-
state fits with tmin ¼ 6a for 24ID and tmin ¼ 7a for 32ID to
impose Gaussian prior constraints in order to stabilize the
two-state fits. To ensure that these priors are noninforma-
tive, we set their normal widths equal to ð3…5Þ× their
statistical uncertainties in the one-state fits. In addition, we
impose priors on the energy gap ΔE1 with a wide log-
normal prior distribution

plog -NðΔE1Þ ¼ exp

�
−
1

2
Plog -NðΔE1Þ

�

¼ exp

�
−

1

2λΔE1

�
log

ΔE1gΔE1

�
2
�
; ð69Þ

with the mode gΔE1 ¼ 0.5 GeV and the log-width
λΔE1

¼ 3. We also impose constraints on the excited-state
overlaps C1 > 0, since the source and the sink operators are
the same.
To perform the fits, we use the “augmented” χ̃2 function

χ̃2 ¼ χ2 þ
X
k

PkðpkÞ;

χ2 ¼
X
t;t0

ðyt − C̃2ptðtÞÞS−1t;t0 ðyt0 − C̃2ptðt0ÞÞ; ð70Þ

(a)

(b)

FIG. 6. Diagonal conversion factors from SYM3q=SMOMγμ to
MSð2 GeVÞ scheme (68), in which perturbative running with
intermediate scale jpj has been removed. In absence of discre-
tization, nonperturbative, and higher-order perturbative effects, it
should be independent of jpj. The green bands indicate averages
over the same momentum range on both ensembles, which is
necessary for consistent continuum extrapolation.

TABLE VI. Final renormalization factors from lattice to MSðNf ¼ 4; μ ¼ 2 GeVÞ with statistical (1), and
systematic uncertainties from momentum scale (2) and perturbative matching (3).

ZðudÞs
þþ ZðudÞs

−− ZðudÞd
þþ ZðudÞd

−−

24ID 0.6671(7)(60)(87) 0.6674(7)(51)(87) 0.6671(7)(60)(87) 0.6672(7)(49)(87)
32ID 0.5895(11)(32)(77) 0.5896(9)(29)(77) 0.5893(11)(33)(77) 0.5897(9)(36)(77)
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where PkðpkÞ are log-likelihood weights of the prior
constraints imposed on parameters pk, and the regular
χ2 is computed with the sample covariance matrix S.
The fits are performed by minimizing this “augmented
least-squares” with trusted-region Levenberg-Marquardt
algorithm.
The fits for pion, kaon, and nucleon at all relevant

momenta are summarized in Figs. 7 and 8. In the bottom
panels, we compare the resulting energies E2ðp2Þ to the
continuum dispersion relation E2 ¼ m2 þ p2 using masses
m ¼ Eð0Þ obtained on the lattice. Uncertainties in all fits
are estimated using bootstrap resampling with Nboot ¼ 256
samples.
The kaon correlation functions are the most statistically

precise and their two-state fits exhibit remarkable consis-
tency between fits with tmin ¼ ð2…4Þa on 24ID and tmin ¼
ð2…3Þa on 32ID ensembles; the corresponding ground-
state energies align perfectly with the continuum dispersion
relation. We observe that the pion correlation functions are
less statistically precise, and they display especially large
fluctuations at the largest momentum (0, 0, 2). Most likely,
this indicates that our scheme for approximating light-
quark propagators, the low-eigenmode deflation combined
with the truncated conjugate-gradient, does not perform
equally well for high-momentum light hadron states,
compared to low-momentum ones. Fortunately, since the
high-momentum pion data are used only in one of the three
kinematic points, their statistical fluctuations have only

small adverse effect on the final results. For all the lower
momenta, the data are precise, the fits are stable, and their
agreement with the continuum dispersion relation is
remarkable. The nucleon data are the least precise and
the fits show some dependency on the fitting range. On the
24ID ensemble, all fits with tmin ¼ ð2…4Þ produce con-
sistent results that agree with the continuum dispersion
relations. On the 32ID ensemble, however, the results at
some of the momenta depend on the fit range, albeit within
statistical fluctuations. We attribute this difference to over
smearing of the light-quark propagator sources on the 32ID
ensemble, where the larger statistical fluctuations make it
difficult to constrain the smaller excited-state contributions
and specifically their energy gaps. Although suppressing
excited-state contributions is generally advantageous,
poorly constrained energy gaps may lead to larger fluctua-
tions in the ground state matrix elements to be determined
in the next step. For subsequent fitting of the three-point
functions on both 24ID and 32ID ensembles, we select
parameters from two-state fits with tmin ¼ 2a, which all
have satisfactory p-values. These energies are collected in
Table VII.
Since we use the sample covariance matrix that may be

poorly determined, assessing the fit quality with the usual
χ2 distribution may be misleading. Instead, we judge the
quality of the fits in two ways: (a) as p-values computed
from the Hotelling distributions of the optimal “χ2” values,
and (b) using empirical cumulative distribution of “χ2”

(a) (b) (c)

FIG. 7. Two-state fits to pion, kaon, and nucleon two-point correlation functions shown as effective energies (top) and ground-state
dispersion relations (bottom) on the 24ID ensemble. The continuum dispersion relations E2ðpÞ ¼ E2ð0Þ þ p2 for ground-state energies
are shown with horizontal lines in the top panels and with dashed lines in the bottom panels.
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computed with bootstrap variation of the data around the
optimal fit curve as detailed in Ref. [70]. Since the prior
constraints are used only to stabilize the search of the
optimal point, they are not included in computing the “χ2”
or the number of degrees of freedom.

B. Proton decay form factors

Values of the proton decay form factors W0 and W1 are
extracted from the three-point correlation functions (19) as
follows:
(1) The projected lattice three-point functions (20) are

fitted to the two-state Ansatz (40) with proton and
meson ground and excited state energies fixed at
values determined in the two-point function fits
described above. This linear fit yields nucleon-
meson decay matrix elements up to the hadron-
operator normalization factors ZN;Π, which are also
determined from the two-point function fits.

(2) Form factors W0;1ðQ2Þ are computed From the
ground-state matrix elements, at three kinematic
points.

(3) On each ensemble, form factor data are interpolated
to the points Q2

e ¼ −m2
e ≈ 0 and Q2

μ ¼ −m2
μ that

correspond to the N → Πe and N → Πμ decays,
respectively (see Fig. 11).

(4) At each physical-decay kinematic point Q2
μ;e, linear

extrapolations in a2 are performed to obtain the
continuum-limit value (also shown in Fig. 11).

Due to the coarse lattice spacings, the fit ranges resulting in
stable fits of the excited state energy are very limited.We find
that nucleon and meson excitation energies ΔE1 obtained
from fitswith tmin ¼ 2 lead to themost robust fits of the three-
point functions on both ensembles. In order to minimize
excited state effects in the three-point functions, we omit
tNskip ¼ 2 points at the proton source and tΠskip ¼ 4 points at
the meson sink, although results are stable with respect to

(a) (b) (c)

FIG. 8. Two-state fits to pion, kaon, and nucleon two-point correlation functions shown as effective energies (top) and ground-state
dispersion relations (bottom) on the 32ID ensemble. See caption to Fig. 7 for description.

TABLE VII. Ground-state energies of the pion, the kaon, and the nucleon extracted from the two-state fits of the two-point functions
with tmin ¼ 2 and used in three-point function fits. The columns correspond hadron momenta p2 ¼ ð2π=LÞ2n2.

n2 ¼ 0 n2 ¼ 1 n2 ¼ 2 n2 ¼ 3 n2 ¼ 4

24ID π 0.13983(72) 0.29951(95) 0.3997(18) 0.4799(39) 0.531(22)
K 0.5079(25) 0.5719(28) 0.6285(33) 0.6788(41) 0.7232(66)
n 0.953(19) 0.971(19) 0.998(22) 1.041(19) 1.073(25)

32ID π 0.13889(68) 0.3049(11) 0.4085(19) 0.4913(41) 0.566(37)
K 0.48817(76) 0.55725(78) 0.61868(97) 0.6746(15) 0.7260(30)
n 0.936(20) 0.983(15) 1.032(11) 1.067(13) 1.115(11)
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varying these numbers by �1. To avoid unrealistic large
fluctuations in χ2 values and fit parameters, the covariance
matrix for the fit is “shrunk” to its diagonal part

S̃ðλÞ ¼ ð1 − λÞSþ λdiagðSÞ; ð71Þ

with “shrinkage” parameter λ ¼ 0.1. This is necessary due to
strong correlations of data with different t2 that lead to
poorly-conditioned correlation matrices with eigenvalues as
small as 10−5.
In each channel and at each momenta, we study two

projections [(42) and (44)], from which the two form
factorsW0;1 factors are computed directly. Using parity, we
take the average the left- and right-handed matrix elements,
i.e., LL with RR, and LR with RL.9 Separate fits are

performed independently for all channels and kinematic
points. In Figs. 9 and 10 we show example results of
these fits in terms of the form factor W0;1 values in the
MSð2 GeVÞ scheme and using physical units GeV2 (fit
figures for other channels and ensembles are enclosed as
Supplemental Materials [71]). The time-dependent “ratio”
data points are computed using Eq. (39), and the plateau
averages are computed over t1 ¼ ð3…5Þa. To examine the
agreement between the data and the fits, we also show
similar ratios reconstructed from the fit functions (34), (35),
(40). In each panel, we also show Hotelling p-values along
with the respective values of χ2=d:o:f: we use to assess the
fit quality.
We observe close agreement between the plateau and

the ground-state fit values indicating that excited-state
contributions are negligible. The statistical uncertainties
of the ground-state fit values are close to those of the
plateau values at the largest source-sink separation and are
thus conservative. In channels with the final state πð0; 0; 2Þ
on the 24ID ensemble, fluctuations are larger due to
the larger uncertainty in the corresponding two-point
functions. Systematic uncertainties due to excited states

FIG. 9. Two-state fits of renormalized N → π correlation functions for form factor W0 (top) and W1 (bottom) at the three kinematic
points on the 24ID lattices with a ≈ 0.20 fm. The data points show the ratio (39) and the bands show the corresponding fit functions as
described in the text. The horizontal gray bands represent ground-state form factor values. All error bars are statistical and evaluated
using bootstrap. Fit quality (p-value) is estimated using the Hotelling distribution.

9On the 24ID ensemble, the precision of the AMA approxi-
mation is different for the left-handed and right-handed compo-
nents due to the asymmetric zMöbius-action coefficients in the
fifth dimension. To accommodate that, we compute the average
of the left- and right-handed matrix elements weighted with
∝ σ−2, where σ is the statistical fluctuation.
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FIG. 10. Two-state fits of the N → K form factor W0 on 24ID. For explanation, see caption to Fig. 9.
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FIG. 11. Linear interpolation of form factor data to the decay kinematic points Q2 ¼ −m2
e ≈ 0 and Q2 ¼ −m2

μ (bands) for W0 in the
left column and W1 in the right column followed by continuum extrapolation in a2 (black stars). The 24ID and 32ID lattice data are
shown with statistical uncertainties only, and the final extrapolated results are shown with statistical (smaller error bars) and the total
(larger error bars) uncertainties including those from excited states and the continuum limit extrapolation as described in the text.
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are conservatively estimated from the differences between
values obtained from the fits and the plateau averages at the
largest source-sink separation t2 ¼ 10a. These systematic
errors are propagated forward to the final Q2- and con-
tinuum-extrapolated results.

Using data at the three kinematic points, we perform linear
interpolation in Q2 to obtain values at Q2 ¼ −m2

e ≈ 0 and
Q2 ¼ −m2

μ. The decay-kinematic data points are then extra-
polated to the continuum limit as WðaÞ ∼Wcont þW0a2.
Such expected scaling of discretization errors is justified by

TABLE VIII. Results for the form factors W0;1 on the two ensembles and in the continuum limit at the two
kinematic points Q2 ¼ 0 (first line) and Q ¼ −m2

μ (second line) renormalized to MSð2 GeVÞ. The first uncertainty
is statistical, the second is systematic due to excited states, and the third is the uncertainty of the continuum
extrapolation.

W0½GeV2�
24ID 32ID Cont.

hπþjðudÞLdLjpi 0.1032(86)(26) 0.1252(48)(50) 0.151(14)(8)(26)
0.1050(87)(36) 0.1271(49)(50) 0.153(14)(7)(26)

hπþjðudÞLdRjpi −0.1125ð78Þð41Þ −0.134ð5Þð11Þ −0.159ð15Þð20Þð25Þ
−0.1139ð78Þð45Þ −0.136ð5Þð12Þ −0.161ð15Þð20Þð26Þ

hK0jðusÞLuLjpi 0.0395(22)(36) 0.0411(13)(25) 0.0430(38)(12)(19)
0.0397(22)(36) 0.0411(13)(25) 0.0427(37)(12)(16)

hK0jðusÞLuRjpi 0.0688(37)(19) 0.0764(17)(36) 0.0854(57)(55)(90)
0.0693(36)(20) 0.0769(17)(36) 0.0860(56)(55)(91)

hKþjðusÞLdLjpi 0.0263(19)(6) 0.0273(9)(11) 0.0284(30)(17)(12)
0.0266(19)(6) 0.0278(9)(11) 0.0293(30)(18)(15)

hKþjðusÞLdRjpi −0.0301ð21Þð10Þ −0.0345ð9Þð14Þ −0.0398ð31Þð20Þð52Þ
−0.0307ð21Þð10Þ −0.0351ð8Þð15Þ −0.0403ð31Þð20Þð52Þ

hKþjðudÞLsLjpi 0.0923(48)(35) 0.0961(26)(46) 0.1006(80)(60)(46)
0.0932(47)(37) 0.0972(26)(48) 0.1019(79)(60)(47)

hKþjðudÞLsRjpi −0.0835ð58Þð3Þ −0.0954ð32Þð39Þ −0.109ð10Þð8Þð14Þ
−0.0846ð58Þð6Þ −0.0964ð32Þð40Þ −0.110ð10Þð8Þð14Þ

hKþjðdsÞLuLjpi −0.0651ð33Þð26Þ −0.0681ð18Þð33Þ −0.0717ð54Þð41Þð35Þ
−0.0658ð32Þð28Þ −0.0686ð18Þð34Þ −0.0720ð53Þð40Þð34Þ

hKþjðdsÞLuRjpi −0.0394ð22Þð20Þ −0.0417ð11Þð23Þ −0.0443ð35Þð26Þð27Þ
−0.0393ð21Þð21Þ −0.0416ð11Þð23Þ −0.0444ð35Þð26Þð27Þ

W1½GeV2�
24ID 32ID Cont.

hπþjðudÞLdLjpi −0.130ð10Þð17Þ −0.1316ð67Þð82Þ −0.134ð18Þð2Þð2Þ
−0.132ð10Þð17Þ −0.1335ð67Þð81Þ −0.136ð19Þð3Þð2Þ

hπþjðudÞLdRjpi 0.116(8)(11) 0.140(5)(14) 0.169(14)(18)(29)
0.118(8)(12) 0.142(5)(15) 0.170(14)(18)(28)

hK0jðusÞLuLjpi 0.0256(29)(4) 0.0264(18)(22) 0.0275(50)(53)(10)
0.0254(29)(4) 0.0265(19)(22) 0.0278(52)(52)(13)

hK0jðusÞLuRjpi −0.0250ð27Þð30Þ −0.0253ð9Þð18Þ −0.0258ð38Þð3Þð4Þ
−0.0254ð28Þð31Þ −0.0256ð9Þð19Þ −0.0259ð38Þð4Þð2Þ

hKþjðusÞLdLjpi −0.0448ð30Þð13Þ −0.0467ð17Þð27Þ −0.0489ð51Þð44Þð22Þ
−0.0453ð30Þð16Þ −0.0472ð16Þð28Þ −0.0496ð51Þð43Þð23Þ

hKþjðusÞLdRjpi 0.0452(31)(23) 0.0487(10)(25) 0.0529(45)(28)(42)
0.0458(31)(23) 0.0492(10)(26) 0.0532(45)(29)(40)

hKþjðudÞLsLjpi −0.0638ð54Þð24Þ −0.0691ð23Þð52Þ −0.0754ð82Þð86Þð63Þ
−0.0653ð54Þð32Þ −0.0701ð23Þð55Þ −0.0757ð80Þð82Þð57Þ

hKþjðudÞLsRjpi 0.0588(50)(11) 0.0687(28)(43) 0.080(9)(8)(12)
0.0605(50)(15) 0.0693(28)(43) 0.080(9)(8)(10)

hKþjðdsÞLuLjpi 0.0192(31)(15) 0.0213(13)(16) 0.0239(46)(18)(26)
0.0201(31)(19) 0.0217(13)(17) 0.0237(46)(15)(19)

hKþjðdsÞLuRjpi −0.0203ð31Þð5Þ −0.0231ð9Þð12Þ −0.0265ð42Þð32Þð34Þ
−0.0204ð31Þð7Þ −0.0233ð9Þð12Þ −0.0269ð42Þð33Þð35Þ
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the automaticOða2Þ improvement due to chiral symmetry of
the fermion action. Having only two values of the lattice
spacing, it is impossible to estimate systematic uncertainty of
such extrapolation in a robust way; therefore, we resort to a
conservative estimate from the discrepancy between the
continuum-extrapolated results and the results from the finer
32ID ensemble. The momentum interpolations are shown
in Fig. 11 for both ensembles, together with the final
continuum-extrapolated values. The individual lattice data
points and their Q2 fit bands are shown only with statistical
uncertainties, while the extrapolated values are shown with
statistical and total uncertainties. The latter include system-
atic uncertainties due to the excited states and the continuum
extrapolation.
Our final results for both form factors W0 and W1 are

collected in Table VIII. For completeness, we include
values on both ensembles as well as their continuum-
extrapolated values. We quote separate statistical, excited-
state and continuum-extrapolation systematic uncertainties
where appropriate.

C. Proton decay amplitudes

In this section, we present our determination of proton
decay constants (16). Combined with phenomenological
constants D and F from spin physics, these parameters
yield leading-order ChPT estimates of proton-meson decay
amplitudes (see Appendix B).
We determine the proton decay constants from the two-

point correlation functions of the proton creation and
proton decay operators,

CON̄þ ðk⃗; tÞ ¼
X
x⃗

e−ik⃗ x⃗
ð1þ γ4Þβα

2
hOαðx⃗; tÞN̄ð0Þi

¼t→∞ fNffiffiffiffiffiffiffiffiffiffiffiffi
ZNðk⃗Þ

q CNN̄þ ðk⃗; tÞ; ð72Þ

where fN ¼ fα; βg for O ¼ OðudÞu
RL;LL, respectively. We

extract these constants using the ratio

RON̄ðk⃗; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZNðk⃗Þ

q
CON̄þ ðk⃗; tÞ
CNN̄ðk⃗;tÞ
þ

¼t→∞
fN; ð73Þ

where ZNðk⃗Þ is obtained from two-state fits (36). These
ratios are shown in Fig. 12 for both ensembles for k⃗ ¼ 0.
Although the proton decay constants can be extracted from
correlators with any momentum k⃗, we study only zero-
momentum (k⃗ ¼ 0) data that has the highest statistical
precision. We observe much less excited-state effects in the
case of 32ID ensemble, which we attribute to over-
smearing of quark sources on this ensemble. This over-
smearing leads to stronger suppression of the excited states
in the “smeared-point” correlator (73), while its statistical

fluctuations are mostly cancelled in the combination with
the “smeared-smeared” two-point function (28) and its
parameter ZN. We estimate the decay constant values from
plateaus in the time range 5 ≤ t=a ≤ 8 for the 24ID
ensemble and 2 ≤ t=a ≤ 8 for the 32ID ensemble.
The proton decay constant results are collected in

Table IX. Continuum extrapolations ∼ðfN þ f0Na
2Þ of

the proton decay constants α, β are shown in Fig. 13.
Similarly to the proton decay amplitudes, uncertainties
from the continuum extrapolation are estimated as the
difference between the extrapolated results and the values
on the finer 32ID ensemble. For both constants, the

FIG. 12. Ratios (73) determining the proton decay constants
(−α) and β on 24ID (top) and 32ID (bottom) ensembles.

TABLE IX. Results for the proton decay constants α, β on the
two ensembles and in the continuum limit. The first uncertainty is
statistical, the second is systematic due to the continuum
extrapolation.

24ID 32ID Cont.

α −0.0999ð59Þ −0.01106ð39Þ −0.01257ð111Þ
β 0.01020(57) 0.01117(42) 0.01269(107)
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statistical as well as systematic uncertainties from con-
tinuum extrapolation are roughly 10%, so that the total
uncertainties are comparable to those in the direct deter-
mination of the proton decay form factors W0.

V. DISCUSSION

The main finding of our paper is that proton decay
amplitudes are not suppressed as the quark masses
decrease and approach their physical values, and thus
findings in previous lattice calculations (e.g., Ref. [42])
are valid. Using physical quark masses and absence of
chiral extrapolation have resulted in a dramatic improve-
ment of precision, yielding results that are perfectly
consistent with those of Ref. [42]. Therefore, dynamical
suppression of proton decay amplitudes due to nonper-
turbative QCD dynamics, as suggested in Ref. [33], is
unlikely, at least at the physical u-,d-quark masses, and the
stringent constraints on the grand-unified Theories remain
unchanged.
In this work, we have used the Nf ¼ ð2þ 1Þ-flavor

chirally-symmetric domain wall fermion action with physi-
cal quark masses on a lattice to compute transition matrix
elements from proton to pion or kaon (“direct method”).
We have omitted the η-channel decay amplitudes because
they require evaluation of disconnected contractions to the
two- and three-point functions, without which the results
would be totally misleading at the physical point. Lattice
calculations in this work have been performed in the exact
isospin limit and without QED corrections, which is
unlikely to introduce significant systematic bias compared
to the current level of precision. Respective matrix elements
for the neutron decays of which can also be potentially
observed inside nuclei are related to those of the proton by
isospin symmetry. Additionally, we have also calculated
the proton (neutron) decay constants that can be used for
computing rates of nonhadronic proton decays such
as p → 3l.

We have obtained proton decay form factors at the
relevant kinematic points Q2 ¼ −m2

l by computing them
at three small values of the lepton 4-momentum squared
jQ2j≲ 0.15 GeV2 and performing linear interpolations.
Form factor values are reported at the kinematic points
with an electron and a muon in the final state, although the
differences are insignificant. Our results are nonperturba-
tively renormalized using a variant of SMOM scheme
suitable for our coarse lattice spacings and converted to the
MS scheme usingOðα3SÞ perturbative calculations, which is
expected to have only negligible systematic uncertainties.
We find no signs of mixing between operators constructed
from chiral fermion fields; absence of such mixing indi-
cates that chiral symmetry is preserved in our calculations.
We compare our results to earlier studies in Fig. 14,

where we show results from direct and indirect calculations
of the p → πl̄ and p → Kl̄ proton decay amplitudes
(assuming ml ≈ 0). Our results are in very good agreement
with earlier direct calculations that used dynamical domain
wall quark action at heavier pion masses [42]. Also,
our results are in reasonable agreement with quenched

FIG. 14. Comparison of our results (“NEW”) for the proton
decay amplitudes W0ð0Þ computed directly (filled symbols) and
indirectly (open symbols) to previous determinations [38,40,42].
All results are renormalized to the MSð2 GeVÞ scheme.

FIG. 13. Continuum Oða2Þ extrapolations of the proton decay
constants (−α) and β.
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calculations that used domain wall [38] and Wilson [40]
fermions. We have also found reasonable agreement of our
indirect determination of the amplitudes with the analogous
quenched results obtained earlier [38].
In comparison with the direct determination, the indirect

determination have been found to yield results systemati-
cally higher in magnitude; similar pattern was observed in
Ref. [38]. It is not a big surprise that there is difference
between these two methods. First, the leading-order chiral
perturbation theory should not be expected to produce
precise results in general. Second, the final meson momenta
are relatively high and the outgoing pion is not “soft”. Since
our results are obtained with physical quark masses, they
may present a challenge to the ChPT-based phenomenol-
ogy at relatively high momenta jpj ≈ 500 MeV. It is
important to calculate proton decay amplitudes using at
least the next-to-leading order ChPT to carry out a valid
comparison to the direct lattice QCD results.
The precision of our results can be improved with

additional statistics to reduce the stochastic uncertainty,
which would also help further constrain excited-stated
effects and systematic errors associated with them.
Although we generally observe nearly perfect agree-
ment between fits and “plateaus”, we opt to estimate
excited-state effects in a very conservative fashion. For
this reason, these effects dominate the total uncertainty in
some instances. Further, since we used relatively long
Euclidean time source-sink separations ðtΠ−tNÞ¼1…2 fm,
it is extremely unlikely that the true excited-state systematic
effects exceed our estimates.
Finite-volume effects may contribute to systematic

uncertainty because both our ensembles have similar lattice
volume ≈ð4.6 fmÞ3 that correspond to mπL ≈ 3.3. A naive
estimate suggests that these effects are of the order of
e−mπL≈ ¼ 0.04 which is substantially below the combined
quoted uncertainties in Table VIII. Until a study with a
different physical volume is performed, it is impossible to
estimate finite volume effects with better certainty. Another
related issue may be thermal effects due to a disconnected
“spectator” pion appearing from the heat bath. Although
assessing such contributions also requires a study on a larger
lattice, they should be suppressed even stronger than any
finite-volume effects, sinceLt ≥ 2Lx on the both ensembles.
The largest potential sources of systematic uncertainty

are discretization effects. We use two ensembles with
different, albeit coarse, values of the lattice spacing. Due
to our improved gauge action and chirally symmetric
fermion action, discretization effects must vanish as even
powers of the lattice spacing c2a2 þ c4a4 þ � � �. With two
lattice spacings, only Oða2Þ effects can be evaluated and
removed. Our results may be subject to the higher Oða4Þ
discretization effects, which are impossible to control
without additinoal calculations with different lattice spac-
ings. Although we observe very good scaling of our results,
indicating that discretization errors are generally small, we

estimate our discretization uncertainties in a conserva-
tive fashion, which is robust unless there is significant
cancellation between Oða2Þ and Oða4Þ or higher effects.
However, such scaling violations are extremely unlikely
since other observables computed on these lattices are
consistent with calculations on finer lattices [43,56], and
the hadron dispersion relations are accurately reproduced
on both ensembles (see Figs. 7 and 8).
Despite conservative and likely overestimated systematic

uncertainties, we have been able to determine the nucleon
decay constants α, β and form factors W0;1 with 10%–20%
precision, including the stochastic uncertainty. This finding
definitively excludes suppression of nucleon decay matrix
elements at light quark masses, and thus removes the
remaining systematic uncertainty in constraining some
grand-unified theories and completely excluding others
such as (SUSY) SUð5Þ.
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APPENDIX A: CONVENTIONS

In this section we summarize the conventions that clarify
definitions of operators and matrix elements throughout the
paper. The Euclidean γ-matrices we use, γμ ¼ γ†μ, satisfy
the same relations as in, e.g., Ref. [74]. Positive-parity
spinors are governed by the continuum limit of the lattice
Dirac equation,
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ði=pþmÞuðp⃗Þ ¼ 0; ūðp⃗Þði=pþmÞ ¼ 0; ðA1Þ

where ip ¼ −Eðp⃗Þγ4 þ iγ⃗ · p⃗ and EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
is

the on-shell energy, and the momentum states are defined in
accordance with Eqs. (19), (27), and (28).
The charge-conjugated spinors

vC ¼ C−1ðv̄ÞT; v̄C ¼ −vTC ðA2Þ

satisfy equations

ði=p −mÞvCðp⃗Þ ¼ 0; v̄Cðp⃗Þði=p −mÞ ¼ 0; ðA3Þ

where the Euclidean charge-conjugation matrix C ¼ γ2γ4
satisfies

CγμC−1 ¼ −γTμ ; CσμνC−1 ¼ −σTμν: ðA4Þ

Throughout the paper, we use the relativistic normali-
zation of the particle states and matrix elements, which is
compatible with Eq. (2) and is is typical for these quantities
(see, e.g., Ref. [42]) and

hNðk⃗0; s0ÞjNðk⃗; sÞi ¼
ffiffiffiffiffiffiffiffi
2Ek⃗

q
δð3Þðk⃗0 − k⃗Þδs0s; ðA5Þ

hlðq⃗0; s0Þjlðq⃗; sÞi ¼
ffiffiffiffiffiffiffiffi
2Eq⃗

q
δð3Þðq⃗0 − q⃗Þδs0s; ðA6Þ

hΠðp⃗0ÞjΠðp⃗Þi ¼ ffiffiffiffiffiffiffiffi
2Ep⃗

p
δð3Þðp⃗0 − p⃗Þ: ðA7Þ

With this convention, the form factorsW0;1 (11) have mass
dimension two, and the low-energy constants α, β (16) have
dimension three.

APPENDIX B: PROTON DECAY
AMPLITUDES IN ChPT

According to the chiral Lagrangian method [34,40], each
decay matrix element can be calculated using the proton
decay constants α, β as follows:

hπþjðudÞLdLjpi ¼
β

f
½1þDþ F�; ðB1Þ

hπþjðudÞLdRjpi ¼
α

f
½1þDþ F�; ðB2Þ

hK0jðusÞLuLjpi ¼
β

f

�
1 − ðD − FÞmN

mB

�
; ðB3Þ

hK0jðusÞLuRjpi ¼ −
α

f

�
1þ ðD − FÞmN

mB

�
; ðB4Þ

hKþjðusÞLdLjpi ¼
β

f

�
2D
3

mN

mB

�
ðB5Þ

hKþjðusÞLdRjpi ¼
α

f

�
2D
3

mN

mB

�
ðB6Þ

hKþjðudÞLsLjpi ¼
β

f

�
1þ

�
D
3
þ F

�
mN

mB

�
; ðB7Þ

hKþjðudÞLsRjpi ¼
α

f

�
1þ

�
D
3
þ F

�
mN

mB

�
; ðB8Þ

hKþjðdsÞLuLjpi ¼ −
β

f

�
1 −

�
D
3
− F

�
mN

mB

�
; ðB9Þ

hKþjðdsÞLuRjpi ¼
α

f

�
1þ

�
D
3
− F

�
mN

mB

�
; ðB10Þ

whereD¼0.8, F¼0.47,mN ¼0.94GeV,mB ¼ 1.15 GeV,
and af ¼ 0.13055.

APPENDIX C: PERTURBATIVE
RENORMALIZATION

Throughout the paper, the uniform convention for
renormalization factors of quark fields and operators is
to convert from bare to renormalized quantities,

ORðμÞ ¼ ZR½reg�
O ðμÞO½reg�; qRðμÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZR½reg�
q ðμÞ

q
q½reg�;

ðC1Þ

where μ is the scale associated with the renormalization
scheme R and “reg.” is the regulator ϵ (dim.reg.) or a
(lattice). The anomalous dimensions are defined as

γX ¼ d logZX

d log μ
ðC2Þ

for X ¼ O or q. These conventions differ from some of the
references.
To convert operators normalization from the SMOMγμ=

SYM3q to the MS scheme, we use the MS-renormalized
amputated Green’s function of the three-quark operator
with external quark fields with the SYM3q momenta
p2 ¼ k2 ¼ r2 ¼ μ2 [63]

½ΛMS
� �SYM3q¼1þ0.989426

�
αS
4π

�

þð41.53105∓1.69085−3.91418NfÞ
�
αS
4π

�
2

:

ðC3Þ

The multiplicatively renormalized (diagonal) Green’s
functions (C3) are obtained for operators O� ¼ O3q

SS �
O3q

PP with spin-color projectors Π� ¼ 1
2
ðΠ3q

SS � Π3q
PPÞ,
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respectively [see Eq. (59)]. Since the quark field is also MS-
renormalized in Eq. (C3), the difference from the lattice
scheme for Zq must be taken into account to get perturba-
tive conversion factors for the three-quark operators,

C
MS←SMOMγμ=SYM3q
� ¼

�
ZMS
� ðjpjÞ

Z
SMOMγμ=SYM3q
� ðjpjÞ

�

¼ ½ΛMS
� �SYM3q · C

MS←SMOMγμ
q ; ðC4Þ

where the field conversion factor has been computed in
Ref. [68]

C
MS←SMOMγμ=SYM3q
q ¼

�
ZMS
q

Z
SMOMγμ
q

�
¼ 1þ 4

3

�
αS
4π

�

þ ð9.59901þ 0.185185NfÞ
�
αS
4π

�
2

:

ðC5Þ

Finally, the anomalous dimensions for operators O3q
� are

also provided in Ref. [63] to the Oðα3SÞ order,

γMSþ ¼ −4
�
αS
4π

�
þ 2

9
ð−2Nf − 21Þ

�
αS
4π

�
2

þ 1

81
ð260N2

f

þ ð4320ζ3 − 4740ÞNf þ 2592ζ3 þ 22563Þ
�
αS
4π

�
3

;

ðC6Þ

γMS
− ¼ −4

�
αS
4π

�
þ 2

9
ð−2Nf − 81Þ

�
αS
4π

�
2

þ 1

81
ð260N2

f

þ ð4320ζ3 − 4572ÞNf þ 24399Þ
�
αS
4π

�
3

: ðC7Þ
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