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Inspired by the newly observed T, state, we systematically investigate the S-wave triple-charm
molecular states composed of D*D*D and D*D*D*. We employ the one-boson-exchange model to derive
the interactions between D(D*) and D* and solve the three-body Schrddinger equations with the Gaussian
expansion method. The S-D mixing and coupled channel effects are carefully assessed in our study. Our
results show that the /(J”) = 1(07,17,27)D*D*D and I(J*) = (07, 17,27,37)D*D*D* systems could
form bound states, which can be viewed as three-body hadronic molecules. We present not only the binding
energies of the three-body bound states, but also the root-mean-square radii of D-D* and D*-D*, which
further corroborate the molecular nature of these states. These predictions could be tested in the future at

LHC or HL-LHC.
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I. INTRODUCTION

As important members of the hadron family, exotic states
have always interested both theoreticians and experimen-
talists. By definition, exotic states contain more complex
quark and gluon contents than the conventional gg mesons
and ggq baryons. Given their peculiar nature, studies of
exotic states have been a hot topic in hadron physics.

Among the various exotic states, hadronic molecules are
quite distinct. They are loosely bound states composed of two
or several conventional hadrons and provide a good laboratory
to study hadron structure and nonperturbative strong inter-
actions at hadronic level. In 2003, the BABAR Collaboration
observed a charmed-strange state D*,(2317) in the D;z°
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channel [1]. Soon after, the CLEO Collaboration not only
confirmed its existence, but also found a new charmed-strange
state D', (2460) in the D;z° mass spectrum [2]. In the same
year, the Belle Collaboration reported a hidden-charm state
X(3872) in the J/wn*zn~ channel [3]. The D},(2317),
D’ (2460), and X(3872) states have two peculiar features.
The first is that their masses are about 100 MeV below the
potential model predictions, which implies that it is difficult to
categorize them as conventional mesons. The second is that
D?,(2317), D’,(2460), and X (3872) are close to and lower
than the DK, D*K, and DD* thresholds, which strongly hints
at their molecular nature. Although there are still many
controversies, hadronic molecules are one of the most popular
interpretations of these exotic hadrons [4—15]. The observa-
tions of D%,(2317), D', (2460), and X(3872) opened a new
era in searches for exotic states. In the following years, a
plethora of hidden-charm XY Z and P,. states were observed in
experiments (for reviews, see Refs. [16-22]).

Very recently, the LHCb Collaboration observed a T,
state in the DD’z channel [23,24], whose mass and
width obtained from a Breit-Wigner fit are
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mpw = (mp+ +mp) —273 £ 61 £571) keV,
Tpw = 410 £ 165 + 43738 keV. (1)

On the other hand, the pole position is given as [24]

Mpoe = (Mp+ + mpn) — 360 +407] keV,
Cpote = 48 £ 277, keV. (2)

From the decay products of T, one can infer its
minimum quark component to be cciid. Since the mass
of the T, is very close to the D* D threshold, it could well be
interpreted as a D* D molecular state [25-30] as predicted in
many previous works [31-34]. As early as in the 1980s, the
likely existence of stable tetraquark states has attracted the
interests of theorists [35-40]. Latter, various models with
different quark-quark interactions were employed to study
the mass spectrum of tetraquark states with the QQg g
configuration [41-50]. It should be noted that the T, is the
first observed double-charm exotic state. It is interesting to
note that the decay width obtained from the Breit-Wigner fit
and that derived from the pole position are quite different.
The latter strongly supports its nature being a hadronic
molecule of DD*, as stressed, e.g., in Ref. [51].

The single-charm, hidden-charm, and double-charm
molecular candidates have been established in experiments.
In Fig. 1, we choose the D%,(2317), X(3872), and T,
states as examples and present the corresponding possible
substructure. However, until now, there was no signal of
triple-charm molecular states. In the future, experimental
searches for triple-charm molecular states will be an
interesting topic in exploring exotic hadrons.

In this work, we investigate the likely existences of triple-
charm molecular states composed of D*D*D and D*D*D*.
There are three reasons for studying such systems. First, we
notice that single- and double-charm molecular candidates
in Fig. 1 contain one and two charmed mesons, respectively.
Thus it is natural to ask whether there exist hadronic
molecular states composed of three charmed mesons.
Second, the observation of the T}, state provides a way
to fix the interaction between two charmed mesons. In
Ref. [30], we successfully reproduced the binding energy of
the T, state, with the DD* interaction provided by the one-
boson-exchange (OBE) model. This makes the numerical
results more reliable when dealing with systems containing

Triple-charm

Single-charm Hidden-charm Double-charm

D¥(2327) X(3872) T, ?

FIG. 1. Various types of hadronic molecular candidates. Here,
we choose D¥,(2317), X(3872), and T, as examples.

more charmed mesons in the following study. Third, in
Ref. [30], we have studied the DD D* system and found that
ithasaI(J”) = 1 (1) bound state solution. Compared with
the DDD* system, the D*D*D and D*D*D* systems can
have more spin configurations. Therefore, it is likely that
there exist more hadronic molecular states in the D*D* D and
D*D*D* systems.

In the past several years, the LHCb Collaboration has
achieved great success in discovering exotic states, includ-
ing several P, states [52,53], P, [54], X(1(2900) [55,56],
and X(6900) [57]. These observations demonstrated the
capacity of the LHCb detector in searching for exotic states.
With the upgrade of the LHCb detector [58], one can expect
that more exotic states will be observed in the future. The
predictions of molecular states with the configurations of
D*D*D and D*D*D* may inspire more experimental
works along this line.

This paper is organized as follows. In Sec. II, we
introduce the interactions between D* and D™*) and present
the details of the Gaussian expansion method. Next in
Sec. III, we present the binding energies and root-mean-
square radii of the D*D*D and D*D*D* systems. Finally,
this paper ends with a short summary in Sec. I'V.

II. FORMALISM

In order to study the D*D*D and D*D*D* systems, we
should first derive the effective potentials of the D*-D* and
D-D* pairs. For this purpose, we adopt the OBE model of
Ref. [33]. In the OBE model, the D*-D®™) interactions occur
by the scattering process as shown in Fig. 2, where we
should consider the exchanges of 7, o, p, and ® mesons.
Then, in the momentum space, the effective potential
related to the scatting amplitude can be written as

Mh|h2—>h3h4 ((I)
VI2m]12my
where M'h=hshi(q) is the scattering amplitude. The m;
and m £ are masses of the initial and final states. To take into

the finite size of the exchanged mesons, a monopole form
factor is introduced

yhihi(q) = ©)

2 _ 2
N —my

Flg*mi) =~
A2_q2

(4)
where g and my are the mass and momentum of the
exchanged meson, respectively. The effective potentials in
the coordinate space can be obtained by the following
Fourier transformation:

3
Viha=hihi () :/ d’q ey hla~hihi () F2 (g2 m2). (5)
(2z)?
In the following, we present the effective potentials of the
D* — D) interactions explicitly, i.e.,
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VDD —-DD* _ _gtzfolYa + Eﬁzg%/(ol((jl (I)Yp + Co(I)Ya,)7

D P . 2 A A

yPD DD = 39? (0P + 0, Q)1 (1)Y 1 +5£63(20:P = 03 Q) (CL DY,y + Co(D)Y ).
pp _ T A . 2 A A

VoD = o (0P + 05Q)C (1Y 2 + 3G COP = OQ)(C DY+ Col1)Y o).

Ty Ty Ty 1 2 A o
V=Dt — 2Oy, + Eﬁzg%/(%(cl (Y, +Co(1)Y,) - 39?(077) + O03Q)C, ()Y,

2 A A
=379 (20,P = OsQ)(Ci(1)Y, + Co(D)Y.)- (6)
In Eq. (6), the O,’s are spin-dependent operators, which are defined as

O, :€Z-€2,

0, :e‘;-ez,

O; = S(r, €l ¢,),

O, = €} - (i€} x ),
Os = S(r, eé iel X €7),
O = ( §'€1)(€Z " €),

0; = (eg xe€;)- (ejl X €,),

Oy = S(r,€] x €,€}; x €,), ()
where
3(a-r)(b-
T o
r

is the tensor operator. Here, €; (i = 1, 2) and ej (i =3, 4) are initial and final polarization vectors of the D* mesons,

respectively, and Cg)(l ) and C(ll) (I) are flavor-dependent factors given by

3 1 1
GO)=+5.  CO)=+5.  G0)=~7.

The function Y; in Eq. (6) is written as'

'In momentum space, the effective potentials share a common part, i.e.,

1
= (10)
e +m%—q°2

V(a)

where the ¢ is energy component of the exchanged momentum, whose explicit expression could be found in Ref. [32]. Without a form
factor, the Fourier transformation of Eq. (10) is

3
V(r) = / (d Cor 11 i, (11)

21 Q@+ mi— g

After introducing the form factor, the Fourier transformation is

V)= [ e g ) (12)
(2n’)3 q2 + m% _ q02

After performing the integration, one could obtain the function Y; given in Eq. (13).
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FIG.2. The Feynman diagrams for the /2,1, — hzhy process. In
this work, the hy, h,, h3, and hy are D) mesons.

e~ Meir e—A,-r AlZe—Air mIZ?ie—A,»r

Y. = — - 13
! 87[/\1' + SJTAI' ( )

with A; = \/A? — ¢7 and mg; = \/m% — g?. The g; is the

energy component of the exchanged momentum. We
employ ¢, =mp- —myp and g, = (mp. —mp)/(4mp:)
for the DD* — D*D and DD* — D*D* processes, respec-
tively. The operators P and O only act on Y; and the
expressions are

9 4 919

To evaluate the above potentials, we also need the values of
the coupling constants and the masses of the mesons, which
are collected in Table 1.

To solve the three-body Schrodinger equation, we
employ the Gaussian expansion method [63,64], which
was widely used in studies of baryon systems [65-67],
multiquark states [68—72], and multibody hadronic molecu-
lar states [30,73-76] (for reviews on this latter topic, see,
e.g., Refs. [77,78]). The three-body Schrodinger equation
reads

[T+ V(r) + V() + V(r3)¥ = E¥y.  (15)
where T is the kinetic energy operator, and V(r;), V(r,),

and V(r;) are pairwise potentials. ¥, is the total wave
function, which can be written as

Yiu = ZCC.a‘PyA’/Iw’ (16)
c,a
TABLE 1. Values of the coupling constants [33,59-61] and
meson masses [62].
Coupling Constants Values Mesons  Mass (GeV)
] 0.6 z 0.140
Iz 0.132 GeV c 0.600
s 34 P 0.770
Pav 5.2 w 0.780
Agy 3.133 GeV~! D 1.867
D* 2.009

FIG. 3. Jacobi coordinates of the D*D*D™) systems.

where

Wi = He L (T b R, (17)

is the basis, and C.. , is the coefficient of the corresponding
basis, which can be obtained by the Rayleigh-Ritz varia-
tional method. The ¢ (¢ =1, 2, 3) represents the three
channels in Fig. 3 and @ = {7, sS, nN, ILA} is the quan-
tum number of the basis. H ET is the flavor wave function,
where 7 is isospin in the r,. degree of freedom and T is the
total isospin. y§ ¢ is the spin wave function, where the s, S
are spin in the r. degree of freedom and total spin,
respectively. ¢, (r.) and ¢yppy, (R,) are spatial wave
functions, which read

¢nlm,(rc) = anrlce_y"r% Ylm (fc)’
dnem, (Re) = NNLRge_ANR%YLM<ﬁc)v (18)

where N,; and Np; are normalization constants. In
Eq. (18), The r,. and R, are Jacobi coordinates, and v,
and Ay are Gaussian ranges. After the above preparations,
we can calculate the kinetic, potential, and normalization
matrix elements (see Refs. [63,79] for more details), i.e.,

a a,a) |4 b,o
T, = (W | 1w,

a aa b,
veb, = (B v () ),

a a,a b,
N, = (Wi w0y, (19)

Then, Eq. (15) could be further expressed as the following
general eigenvalue equation:

3
(Tgf, + Z ng,c> Cpw = EN,C, . (20)
c=1

III. NUMERICAL RESULTS

With the effective potentials of Eq. (6), we could solve
the three-body Schrodinger equation with the Gaussian
expansion method. We not only calculate the binding
energies, but also obtain the root-mean-square radii of
D*-D* and D-D*. In general, orbitally excited hadronic
molecular states are more difficult to be formed because of
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the repulsive centrifugal potential of the discussed systems.
It is more likely to find bound state solutions from the
S-wave (I = L = 0) configurations in most situations. In
the first step, we only consider the S-wave contributions.
Then the S-D mixing effect is included in the realistic
calculation. When the S-D mixing effect is introduced, the
tensor terms from the z, p, and @ contribute to the potential
matrix elements. In the nuclear system, the tensor terms
play an important role in the nucleon-nucleon interactions
[80-83]. Similar results could be found in the charmed
baryon-charmed baryon system [84], where the tensor force
from the S-D mixing is necessary for obtaining the bound
state solutions. Thus, in this work, we also consider the
tensor terms. Besides the S-D mixing and tensor terms, the
coupled channel effect cannot be ignored when calculating
the binding energy of a bound state [32,85]. Since both the
D*D*D and D*D*D* systems can have the quantum
numbers /(J*) =1(07,17,27) and I(J?) =3 (07,17, 27),
we should consider the D*D*D-D*D*D* coupled channel
effect, which plays a role in the DD* — D*D* or the
D*D* — DD* process.

In our approach, the cutoff A is a crucial parameter when
searching for the bound state solutions of these discussed
systems. With the measured binding energy of the T state,
we obtained A = 0.976, 0.998, and 1.013 GeV in Ref. [30],
which are close to the suggested values in previous works
[32,86-90]. The D*D*D and D*D*D* systems can be
related to the DDD* system via heavy quark spin sym-
metry. As a result, in this work we will take the same
strategy as that of Ref. [30]; i.e., we scan the range of A
from 0.90 to 3.0 GeV to search for bound states of D*D*D
and D*D*D*. If a system has a bound state solution with
A =1 GeV, we view this state as a good molecular
candidate.

In the study of hadronic molecular candidates composed
of two charmed mesons [32], it was found that systems with
lower isospins are more likely to bind. In this work, we find
that this is also true for systems composed of three charmed
mesons.

A. D*D*D system

For the S-wave only D*D*D system, allowed spin
parities are 07, 17, and 2~ with / =1 and 3. In the S-D
mixing scheme, we require [+ L <2 to restrict the
maximum orbital angular momentum. It should be noted
that for the D*-D* pair, the sum of 7+ s + [ should be
odd. In Table II, we present the configurations of the
D*D*D-D*D*D* system. For the S-wave only and the S-D
mixing schemes of the D*D*D system, we calculate the
binding energies and root-mean-square radii for I(J") =
1(07,17,27) and I(J*) =3(07,17,27). In the coupled-
channel case of D*D*D-D*D*D*, we present the binding
energies and probabilities of the D*D*D and D*D*D*. The
numerical results are shown in Table III.

For the S-wave only D*D*D system with I(JF) =
% (07), we can obtain bound state solutions when the cutoff
A reaches about 0.98 GeV. The binding energy is on the
order of MeV and the root-mean-square radii are several fm.
If we increase the cutoff A, the binding energy increases
while the root-mean-square radii decrease. We note that the
consideration of S-D mixing and the coupled-channel
(D*D*D*) effect increases the binding energy, which is
reflected by the fact that a slightly smaller cutoff is needed
to obtain a binding energy similar to the case for which only
the S-wave interaction is taken into account. For the cutoff
range studied, the probability of the D*D*D* configuration
is small and at the order of a few percent. Since the binding
energy and root-mean-square radii are reasonable from the
perspective of hadronic molecules, this state could be
viewed as a good hadronic molecular candidate.

For the S-wave only D*D*D system with I(J*) =
2(17), we can also obtain bound state solutions with the
cutoff A = 0.98, 1.03, and 1.08 GeV. Further consideration
of the S-D mixing and D*D*D* coupled-channel effect
does not change the overall picture. According to the
calculated binding energy and root-mean-square radii, this
state could also be treated as an ideal hadronic molecular
candidate.

For the S-wave only D*D*D system with I(JF) =
1

5(27), one can also find weakly bound states for the same

cutoff A as that of I(J*) = 1 (07, 17). Similar to the case of
P.(4440) and P.(4457), for the same cutoff, the 0—, 17,2~
states have different binding energies at the order of several
hundred keV. With increased experimental precision, it is
likely that these states can be distinguished from each other
in future experiments. The contribution of the S-D mixing
and coupled-channel effect is also similar to the case
of I(J?) =1(0-,17).

We also study the D*D*D system for I(JF) =
3(07,17,27). There are no bound state solutions for a
cutoff A below 1.013 GeV. In order to obtain bound state
solutions for the S-wave only D*D*D systems with
1(JP) =3(07,1727), we increase the cutoff A to 1.76-
1.86 GeV, 1.85-1.95 GeV, and 1.49-1.59 GeV, respec-
tively. Here, we increase the cutoff in steps of 0.05 GeV
when scanning the cutoff A. Similar results are also
obtained when the S-D mixing and coupled channel effect
are taken into account. Considering that the needed cutoff
A is out of the range of 0.976-1.013 GeV (the range
determined in Ref. [30]), we are a bit reluctant to view the
1(JF) =3(0-,17,27)D*D*D bound states as good had-
ronic molecular candidates.

We note an interesting scenario in the S-D mixing
scheme for the /(JP) =3(17) case. When the cutoff A
changes from 1.85 GeV to 1.90 GeV, rp-p- decreases from
11.98 fm to 1.88 fm, while rp-p increases from 8.80 fm to
14.38 fm. For the S-D mixing I(J*) = 3 (17)D*D*D state,
there are more than one bound states. For convenience, we
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TABLE III. Binding energies, root-mean-square radii, and probabilities of the D*D*D system.
S-wave S-D mixing coupled channels
A B I'p*p* 'p'D A B I'p*D* p*D A B Pppp Pppp
I J°  (GeV) (MeV) (fm) (fm)  (GeV) (MeV) (fm) (fm) (GeV)  (MeV) (%) (%)
% 0~ 0.98 0.45 7.73 6.11 0.95 0.44 7.64 6.08 0.92 0.84 99.34 0.66
1.03 3.60 391 3.03 1.00 3.38 3.81 2.98 0.97 5.44 97.95 2.05
1.08 9.65 2.55 1.99 1.05 9.10 2.51 1.97 1.02 14.79 95.86 4.14
1~ 0.98 0.86 3.52 3.88 0.95 0.44 5.11 5.25 0.93 0.81 99.29 0.71
1.03 6.84 1.55 1.82 1.00 5.16 1.81 2.11 0.98 6.22 97.95 2.05
1.08 17.43 1.10 1.31 1.05 14.21 1.23 1.46 1.03 18.03 95.50 4.50
2 0.97 0.82 4.36 3.67 0.94 0.57 5.34 4.45 0.90 0.48 99.26 0.74
1.02 6.30 2.00 1.71 0.99 5.04 2.28 1.94 0.95 7.05 96.32 3.68
1.07 16.19 1.41 1.22 1.04 13.54 1.56 1.35 1.00 22.16 91.42 8.58
% 0~ 1.76 0.41 5.26 4.44 1.75 0.37 5.33 4.52 1.76 0.63 99.99 0.01
1.81 1.94 3.27 2.70 1.80 1.81 3.31 2.74 1.81 2.28 99.98 0.02
1.86 4.48 2.50 2.03 1.85 4.21 2.52 2.06 1.86 491 99.98 0.02
1~ 1.85 0.46 11.75 8.68 1.85 0.54 11.98 8.80 1.85 0.57 ~100 ~0
1.90 2.20 11.23 8.09 1.90 241 1.88  14.38 1.90 241 ~100 ~0
1.95 4.97 10.93 7.81 1.95 5.61 1.35 14.26 1.95 5.61 ~100 ~0
2 1.49 0.86 2.26 2.29 1.48 0.66 2.48 2.51 1.47 0.31 99.97 0.03
1.54 5.16 1.32 1.34 1.53 4.48 1.39 1.42 1.52 3.68 99.96 0.04
1.59 12.46 0.98 1.00 1.58 11.10 1.03 1.04 1.57 9.70 99.96 0.04

use s; to denote the bound state solution with rp:p- &
11 fm and rp-p = 8 fm, and s, to label the bound state
solution with rp-p- & 2 fm and rp-p = 14 fm. The depend-
ence of the two solutions s; and s, on the cutoff A is found
to be different. However, in Table III, we only show the
bound state solutions with the largest binding energy. With
A = 1.85 GeV, we found that By, > Bj,; thus, we show
the bound state solution s;. While for A =1.90 and
1.95 GeV, we present the bound state solution s,
since By < By,.

If only the S-wave interaction had been considered for
the I1(J7)=3(17)D*D*D state, only the bound state
solution s; would have been obtained. Thus, the S-D
mixing effect plays a significant role for this state. Further
studies of the S-D mixing effect shows that the bound state
solution s, is highly correlated to the configuration
Ripos H }% (see Table II). This could be diagnosed in

the following steps:

(1) In the S-D mixing scheme without the Ry, .| 5
configuration, the bound state solution s; exists bu
not the s, solution.

(2) In the S-wave only combing with the Ry,
configuration, both solutions s; and s, exist.

(3) If only the configuration Rg,,y5,H] ; is considered,
only the solution s, exists. K

From the above analysis, we conclude that the R{,,y3 ,H %%

configuration affects the results and contributes dominantly
to the bound state solution s,.

How to search for D*D*D molecular candidates is also
an interesting question. One possible decay mode is that the
triple-charm molecules decay into a double-charm molecu-
lar state and a charmed meson. The other possible mode is
that they directly decay into multibody final states bypass-
ing intermediate states. Here, we summarize these channels
as follows.

(i) If the binding energies are extremely small, they
could first decay into 7'5.D*, and then T, can decay
into DDz, and D* could be seen in the Dz and Dy
channels. In this case, the molecular candidates may
be observed in the DD Dz and DD Dy final states.
If the masses of the molecular candidates are below
the T7.D* threshold, the kinematically allowed
channel is T/.D. The D*D*D molecular candidates
could be studied in the DDDx channel.

If the D* D* hadronic molecular state exists, the D*D* D
molecular candidates may decay into a D* D* molecular
state and D. The D*D* molecular state could be
observed in the D*D, DDz, and DDy final states.

In the above three scenarios, the D*D*D molecular
candidates ultimately decay into three charmed
mesons together with 7 and y. We should also
emphasize that these final states can originate not
only from the intermediate double-charm molecular
states with D(*), but also from nonresonant processes.
In addition, the D*D*D molecular candidates can
also decay into three charmed mesons via fall apart
or quark rearrangement mechanisms. The typical
channels are D*DD and DDD.

(i)

(iii)

@iv)

)
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TABLE IV. Binding energies and root-mean-square radii of
D*D*D* system.

S-wave S-D Mixing
A B r'p+p* A B I'p*p*
I J°  (GeV) MeV) (fm) (GeV) MeV) (fm)

0~ 1.02 0.67 9.75 1.00 0.84 9.92
1.07 4.48 9.06 1.05 4.57 9.17
1.12 10.72 8.81 1.10  10.63  8.88

1~ 1.00 0.67 5.52 0.97 0.44 6.02
1.05 5.02 2.51 1.02 4.30 2.61
1.10 12.83 1.73 1.07 1152 1.78

2 0.98 0.37 4.71 0.96 0.51 4.53
1.03 5.94 1.79 1.01 5.80 1.87

(SIS

1.08 16.33 1.25 1.06  15.55 1.31
3" 1.84 0.51 9.74 1.02 0.35 12.19
1.89 2.39 9.18 1.07 4.03 11.72
1.94 5.38 8.90 1.12 1023 11.63

1~ 1.80 0.20 7.82 1.81 0.46 7.21
1.85 1.40 6.11 1.86 1.89 5.59
1.90 3.59 4.92 1.91 4.37 4.45

2- 1.85 0.81 9.60 1.84 0.61 9.89
1.90 2.89 9.13 1.89 2.51 9.29
1.95 6.13 8.88 1.94 5.53 8.98

3 1.48 0.23 2.95 1.48 0.78 2.31
1.53 4.21 1.38 1.53 4.90 1.34
1.58 11.28 1.00 1.58 11.93 1.00

[S1IP8)

According to the discussions above, the D*D*D molecular
candidates could be studied with the three-, four-, and five-
body final states in future experiments.

B. D*D*D* system

Since the D*D*D* system contains three identical
mesons, the ¢ = 1, 2, 3 channels share the same configu-
rations. In addition, for all the channels, (—1)*+s++1 =1,
which restricts allowed combinations of ¢, s, and /. For the
S-wave only D*D*D* system with | = l the allowed spin
parities are 07, 17, 27, and 3~. For [ = 1n S-wave, the
allowed spin parities are 17, 27, and 3~ For all the D*D*D*
states, we also consider the S-D mixing effect. As shown
in Table III, the coupled-channel -effects between
D*D*D-D*D*D* are small and thus could be neglected.
We notice that the threshold of D*D*D* is about 140 MeV
higher than that of D*D*D, and therefore the D*D*D
component is difficult to be bounded in the D*D*D*-
predominate states. In general, the coupled-channel effects
of D*D*D-D*D*D* mainly affect the decay behaviors of
the D*D*D* states. Since we focus primarily on the
existences of the bound states of D*D*D*, the coupled-
channel effects of D*D*D-D*D*D* are not considered
here. The binding energies and root-mean-square radii are
presented in Table IV.

For the S-wave only D*D*D* system with I(JF) =
1(07), we find a bound state solution for a cutoff A larger
than 1.02 GeV. The root-mean-square radii decrease slowly
with the increase of the cutoff A. The radius rp«p- is
estimated to be about 9 fm with A ~ 1 GeV, which is a bit
larger than that of 7}, but similar to those of the DDD*
states. Judging from the binding energy and root-mean-
square radii, this state could be viewed as a good hadronic
molecular candidate.

For the S-wave only D*D*D* system with I(JF) =
1(17), we obtain a binding energy in the range of 0.67-
12.83 MeV for a cutoff A between 1.00 and 1.10 GeV.
While the root-mean-square radii decrease from 5.52 to
1.73 fm with the increase of the cutoff A.

For the S-wave only D*D*D* system with I(JF) =
1(27), the system becomes bound when the cutoff A
reaches about 0.98 GeV. Since the obtained binding energy
is on the order of MeV and the root-mean-square radii are
several fm, this state is also an ideal hadronic molecular
candidate.

For the three configurations studied, turning on the S-D
mixing only has a small effect but, in general, slightly
increases the binding energy of the system of interest (for
the same cutoff).

For the S-wave only D*D*D* system with I(J¥) =
1(37), there is no bound state solution with a A ~ 1 GeV.
But if the S-D mixing is taken into account, we can obtain
loosely bound state solutions for a cutoff A~ 1 GeV. By
carefully studying the configurations in the S-D mixing
scheme for the case of I(J¥) = é (37)D*D*D*, we find that

the configurations of R,y | H 0] and R, x| ,2H8% (c=1

2, 3) play a key role in forming bound states. Similar to the
analysis performed in studying the /(J*) =3 (27)D*D*D
state, the above conclusion is obtained in the following way
(1) In the S-D mixing scheme without R,,x{ | H 04 and
RGxx1 2 0, (¢ =1, 2, 3), there are no bound’state

solutions with A =~ 1 GeV.
(2) In the S- wave only combing with R{,,y{ 1H01 and
Ry ,H 04 (c =1, 2, 3), it is easy to find bound

state solutlons with A= 1 GeV and the binding
energies are approximate to those in the S-D mixing
scheme given in Table IV.

(3) If the RypxS 1H0l or Ropoxi,Hy, (¢ =1, 2, 3)
configuration is considered, nearly tfle same binding
energy is obtained as that of the S-D mixing scheme
in Table IV when A~ 1 GeV.

Because of the complexity of the three-body problem, it
is difficult to present a precise interpretation for this
phenomenon, but some qualitative analyses are helpful
to understand the numerical results. For the configurations

R 1H 1 and Rx1 8.% (c =1, 2, 3), the isospin and

spin in the r. degree of freedom are t =0 and s =1,
respectively, and the flavor and spin factors of the =

074033-8
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exchange are C;(0) = =3/2 and (O;) =1 [33], respec-
tively. In this spin-isospin configuration, the D*-D* force
from the 7 exchange is attractive and about 3 times of that
in the S-wave only scheme with = 1 and s = 2. We notice
that Riyx5,H }% in the D*D*D system and Ry} (H,

and Rgzz)(f’zH(C)‘%_ (c =1, 2, 3) in the D*D*D* system are

R _.-mode excited configurations, i.e., [ =0, L =2 (I =2,
L =0 for the r.-mode D-wave excited configuration.)
Since the reduced mass of the R, degree of freedom is
larger than that of the r, degree of freedom, if we take the
same Gaussian variational parameters as inputs, the R_.-
mode excited configuration has a smaller kinetic matrix
element than that of the r.-mode excited configuration,
which is beneficial to form a R.-mode excited state. This
might be the reason why some R_.-mode excited configu-
rations in the D*D*D and D*D*D* systems play a
significant role in the S-D mixing scheme.

The three-body system contains two spatial degrees of
freedom. If we introduce S-D mixing, a large number of
configurations are included in the calculation. For some
specific spin-isospin configurations, the 7 exchange force is
attractive. If such spin-flavor configurations emerge in the
S-D mixing scheme but not in the S-wave only scenario, we
should carefully investigate the S-D mixing effect.

According to the above analysis, it is possible to find
D-wave bound state solutions. But in the present work, we
mainly focus on molecular states in the S-wave only or S-D
mixing scenarios.

For the S-wave only I(J*)=3(17,27,37)D*D*D*
systems, a larger cutoff is needed for them to bind.
More specifically, we only find bound state solutions when
the cutoff A reaches around 1.8 GeV for I(J) =3 (17,27).
We also obtain shallow bound states in the S-wave only
I(JP) =3(37)D*D*D* system if the cutoff A is close to
1.5 GeV. Since the needed cutoff A is much larger than our
expectation, we prefer not to view these states as good
hadronic molecular candidates. For all the 7 = 3/2 con-
figurations, the S-D mixing effect is relatively small and
plays a minor role.

Since the D*D*D* molecular candidates have larger
masses than that of the D*D*D system, much more
complex decay modes can be anticipated. Here, the decay
channels are summarized as the following:

(1) In principle, all the decay modes of the D*D*D
molecular candidates are also kinematically allowed
for the D*D*D* system.

(i1) There are also some modes specific for the D*D*D*
system. For example, the channel of a D*D*
molecular candidate with a D* meson is only
kinematically allowed for the D*D*D* system.

However, although there are more decay channels for the
D*D*D* system, the decay patterns are similar for
the DDD* [30], D*D*D, and D*D*D* molecular states.

In the future, these states could be searched for by

measuring three charmed mesons together with pions
and photons in the final states.

C. Sensitivity of binding energies to the
coupling constants

In addition to the cutoff A, the coupling constants which
determine the strength of the potentials are also important
to determine whether the three mesons can form bound
states. In Eq. (6), there are five coupling constants, i.e., g,
Js» 9y, B, and A. Among them, only the coupling constant g
is determined by the experimental partial decay width
D* — Dx. All the others are taken from models. For
example, g, is estimated by the quark model [59], and S
is obtained from the vector meson dominance mechanism
[61]. Since there exist uncertainties for the involved
coupling constants, it is relevant to study the sensitivity
of our results to the adopted values of the coupling
constants. We notice that the p and @ exchange potentials
share a common coupling constant gy,. In order to study the
sensitivity of the bound state solutions to the coupling
constants, we introduce an about 10% uncertainty to them,
which is somehow arbitrary but nevertheless reasonable.

The numerical results for the D*D*D and D*D*D*
systems are presented in Tables V and VI, respectively.
We note that the binding energies are highly dependent on
the square of the coupling constants, which is easy to
understand since all the potentials in Eq. (6) are propor-
tional to the square of the coupling constants. Meanwhile,
since the changes of the coupling constants could be
viewed as perturbations to the potentials, we estimate
the binding energies in perturbation theory. Here, we
employ the S-wave only D*D*D system with I(JF) =
2(07) as an example to illustrate this point. As shown in
Table V, we obtain a binding energy B = 3.60 MeV with a
cutoff A = 1.03 GeV. The expectation value of the poten-
tial from the z exchange is —16.81 MeV. If we allow g to
vary by 10% (0.9-1.1), the square of the ratio is in the
range 0.81-1.21. Then the expectation value of the =z
exchange potential is estimated to be in the range of
—13.63— —20.34 MeV. The resulting binding energy is
then 0.41-7.13 MeV, which is consistent with the exact
result 1.08-7.92 MeV. Following the same approach, when
95> P9y, and Agy are varied by 10%, the estimated binding
energies in leading order perturbation theory are in the
ranges of 0.57-6.95 MeV, 2.84-4.44 MeV, 3.29-3.94 MeV,
respectively, which are all consistent with the exact
values 1.27-7.87 MeV, 2.87-4.47 MeV, 3.30-3.95 MeV,
respectively.

The message from the above sensitivity study is that
although the exact binding energies are sensitive to the
values of the coupling constants, the overall picture remains
unchanged, i.e., whether there exist some good three-body
hadronic molecules.
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IV. SUMMARY

In recent years, the LHCb Collaboration achieved
remarkable success in discovering new hadronic states,
including many of exotic ones, which cannot fit into the
conventional quark model. These observations enriched the
members of the exotic hadronic family and improved our
understandings of nonperturbative strong interactions. Very
recently, the LHCb Collaboration observed a new state 77,
in the D°D%z* channel [24]. The T}, state could well be
interpreted as a DD* molecular state and it is the first
double-charm exotic state ever observed.

The observation of the T}, state enabled us to derive the
interaction between two charmed mesons. In Ref. [30], by
reproducing the binding energy of 7., we determined the
cutoff A in the OBE model. This allows us to study
hadronic molecular states composed of several charmed
mesons. In this work, we studied the existence of triple-
charm molecular states composed of D*D*D and D*D*D*.
Using the cutoff A obtained by the binding energy of the
Ti., we find that the I(J*) =1(0",17,27)D*D*D and
1(JP) =4(07,17,27,37)D*D*D systems have loosely
bound state solutions, which could be viewed as good
hadronic molecular candidates. We suggest to search for the
D*D*D and D*D*D molecular states in the following
decay modes:

(a) a double-charm molecular state and a charmed meson,

(b) three charmed mesons,

(c) three charmed mesons together with a number of pions
and photons.

On the other hand, we find that the I(JF)=

3(07,17,27)D*D*D and I(JP)=3(1",27,37)D*D*D*

systems are more difficult to form bound states.

The present framework can be extended to study the
BB*B* — B*B*B* and BBB* systems. The former has been
studied in Ref. [91] and a bound state with I(J¥) =
1/2(27) and a binding energy of 90 MeV below the lowest

strong decay threshold was found. The latter has been
studied in Ref. [92], where loosely bound states were found
for both I = J and I = 3. The three-body systems studied in
Ref. [91] are similar to those of this work, but the number
of bound state solutions is far fewer than that obtained in
this work. It should be noted that in the present work,
we deduced the meson-meson potentials in the one-
boson-exchange model, while in Ref. [91], the two-
body interactions are deduced from the ¢ matrices of
Refs. [93-96]. The different meson-meson potentials are
responsible for the different three-body results. In future
experiments, searching for hadronic molecular candidates
could help distinguish the different meson-meson
interactions.

It is no doubt that the LHCb Collaboration has played an
important role in searches for exotic states. The observation
of the T, state once again shows the capability of the
LHCb detector in this area. With anticipated data accu-
mulation [58], more exotic states can be expected in the
future.
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