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We propose a new mechanism of the heavy-quark spin polarization (HQSP) in quark matter induced by
the Kondo effect under an external magnetic field. The Kondo effect is caused by a condensate between a
heavy and a light quark called the Kondo condensate leading to a mixing of the heavy- and light-quark
spins. Thus, the HQSP is driven through the Kondo effect from light quarks coupling with the magnetic
field in quark matter. For demonstration, we employ the Nambu-Jona-Lasinio type model under a magnetic
field and investigate the HQSP within the linear response theory with vertex corrections required by the
Uð1ÞEM electromagnetic gauge invariance. As a result, we find that the HQSP arises significantly with the
appearance of the Kondo effect. Our findings are testable in future sign-problem-free lattice simulations.
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I. INTRODUCTION

The Kondo effect is known as one of the important
phenomena in the quantum many-body system [1,2]. This
effect arises when heavy impurities exist in matter coupling
with itinerant fermions through non-Abelian interactions
such as the spin exchange. The Kondo effect changes
transport properties significantly; e.g., it turns the electrical
resistivity from decrement to increment with the temper-
ature lowered.
Recently, it has been discussed that the Kondo effect

persists universally in high-energy physics as well, although
the effect was originally discovered in condensed-matter
physics. For example, in the context of quantum chromo-
dynamics (QCD), the effect is driven when heavy quarks
(c, b) exist as an impurity in dense quark matter formed by
light quarks (u, d) [3,4]. This is particularly referred to as the
QCD Kondo effect. In this case, the non-Abelian interaction
is supplied by SUðNcÞ color exchange (Nc ¼ 3 is the
number of colors). The Kondo effect is expected to arise

also in the hadronic phase at lower density. In fact, it was
shown that the Kondo effect arises in nuclear matter when Σc

and Σ�
c baryons or D̄ and D̄� mesons exist as impurities,

where the spin and/or isospin exchange serves as the non-
Abelian interaction [3,5–7]. In addition, many works on the
Kondo effect in a relativistic system have been done in the
literatures [8–26]. In this way, the interdisciplinary study
bridging condensed-matter physics and QCD/hadron phys-
ics focused on the Kondo effect is attracting attention.
In a field-theoretical treatment, the Kondo effect is

caused by a condensate (a hybridization) formed by a
light itinerant fermion and a heavy impurity called Kondo
condensate. This condensate not only provides a gap of
the itinerant fermions near the Fermi level but also causes
a mixing between the itinerant fermion and the heavy
impurity as induced by an s-d interaction in the Anderson
model [27]. In quark matter, due to the mixing, in Ref. [25],
the magnetically induced axial current of light quarks in
quark matter, namely, the chiral separation effect (CSE)
[28–30], was found to be enhanced under the Kondo effect.
In solid states, in Ref. [23], the magnetic responses of a
Dirac and nonrelativistic bands with their hybridizations
were investigated, showing that the spin-orbit crossed part
of the magnetic susceptibility of the Dirac (nonrelativistic)
band is enhanced (suppressed) due to the presence of the
hybridizations. Those findings show that the Kondo con-
densate (hybridization) has a great impact on magnetic
responses of the fermions.
In this paper, we propose a new mechanism of the heavy-

quark spin polarization (HQSP) induced by the Kondo
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effect under a magnetic field. When the Kondo effect is
absent, the HQSP does not arise significantly, since the
Zeeman interaction of a heavy quark is of order 1=mQ (mQ

is the mass of a heavy quark) and is suppressed for
sufficiently large mQ. In particular, it vanishes at
mQ → ∞. On the other hand, when the Kondo effect is
present, the HQSP can arise without 1=mQ suppression.
The Kondo condensate correlates the heavy-quark spin
with the light-quark spin coupling to the magnetic field in a
medium. In other words, the condensate converts the
magnetic response of the light-quark spin into that of
heavy-quark spin. Schematically this effect is depicted in
Fig. 1. This new mechanism of the HQSP is expected to be
testable in future sign-problem-free lattice simulations.
This paper is organized as follows. In Sec. II, we

introduce the model for demonstration and derive the
Green’s function of the fermions. In Sec. III, we show
the analytic evaluation for the HQSP within the linear
response theory with the vertex corrections. In Sec. IV, we
study the HQSP response function in the so-called dynami-
cal and static limits in detail, toward a better understanding
of the HQSP in the timelike and spacelike momentum
regions. Referring to it, in Sec. V, we present numerical
results of the HQSP in both the momentum regions. In
Sec. VI, we compare the HQSP induced by the Kondo
effect with that by the ordinary Zeeman effect, and in
Sec. VII, we conclude the present work.

II. MODEL

Here, we present our effective model to study the HQSP
induced by the Kondo effect under a magnetic field. One
of the most useful models for the demonstration is the
Nambu-Jona-Lasinio (NJL) type model including a four-
point interaction between a light and a heavy quark [9,13].
Namely, we start with the following Lagrangian:

L ¼ ψ̄ði=Dþ μγ0Þψ þ Ψ†
viD0Ψv − λðΨ†

vΨv − nQÞ
− g½ðψ̄ΨvÞðΨ†

vψÞ þ ðψ̄γiΨvÞðΨ†
vγiψÞ�: ð1Þ

In this Lagrangian, ψ is the light quark described by the
ordinary Dirac theory, while Ψv is the heavy one described
by the heavy-quark effective theory (HQET) [31–34].
Thus, Ψv is defined by Ψv ¼ eimQt 1þγ0

2
Ψ, with Ψ being

the relativistic heavy fermion in Dirac theory, and μ is the
chemical potential of the light quark included to access
finite density. It should be noted that λ is a Lagrange
multiplier included to impose a conditionΨ†

vΨv ¼ nQ, with
nQ a space-averaged heavy-quark density. In the following
analysis, we examine the HQSP for the λ ¼ 0 case as a
clear demonstration. The common coupling g for the scalar
and vector interactions is derived by the Fierz transforma-
tion from the one-gluon exchange interaction [35]. In
Eq. (1), the covariant derivatives are defined by

Dμψ ¼ ð∂μ þ ieqAμÞψ ;
D0Ψv ¼ ð∂0 þ ieQA0ÞΨv; ð2Þ

where the electromagnetic gauge field Aμ ¼ ðA0;AÞ is
introduced to incorporate interactions with the magnetic
field. The coupling constants eq and eQ are electric
charges of the light and heavy quarks, respectively. We
take eq ¼ þ 2

3
e for the u quark, eq ¼ − 1

3
e for the d quark,

and eQ ¼ þ 2
3
e for the c quark, with the elementary

charge e.
For the Lagrangian (1), we introduce the Kondo con-

densate made of the light and heavy quarks to describe
the ground state governed by the Kondo effect. For this
purpose, we make use of the mean field approximation for
ψ̄Ψv and ψ̄γiΨv by rewriting the Lagrangian (1) as

L ¼ ψ̄ði=Dþ μγ0Þψ þ Ψ†
viD0Ψv

− g½hψ̄ΨviΨ†
vψ þ hψ̄γiΨviΨ†

vγiψ þ ðH:c:Þ�
þ g½hψ̄ΨvihΨ†

vψi þ hψ̄γiΨvihΨ†
vγiψi�; ð3Þ

with λ ¼ 0 taken. In the previous works [9,13], it was found
that the reasonable ground state is realized by assuming the
so-called hedgehog ansatz provided by

hψ̄Ψvi ¼
1

g
Δ; hψ̄γiΨvi ¼

1

g
Δp̂i; ð4Þ

with p̂i ≡ pi=jpj defined in momentum space, where p is
identical to the momentum of the heavy and light quarks.1

In Eq. (4), Δ serves as the Kondo condensate made of a
light quark and a heavy quark. The value of Δ should be

FIG. 1. A schematic picture of the HQSP induced by the Kondo
effect under a magnetic field. The HQSP is absent without the
Kondo effect in a heavy-quark mass limitmQ → ∞ (left), while it
significantly emerges in the presence of the Kondo effect (right).
In this figure, we have assumed that the electric charge of light
quarks is positive.

1Thus, p̂i in Eq. (4) is not used to minimize the thermodynamic
potential.
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determined by a variational method on the free energy
of the system. Despite the violation of Oð3Þ rotational
invariance due to the magnetic field, we employ the
ansatz (4) as an appropriate configuration of the Kondo
effect since we make use of the linear response theory for a
weak magnetic field.
The nontrivial phase characterized by Δ ≠ 0 is called the

Kondo phase, whereas the trivial phase by Δ ¼ 0 is called
the normal phase.2

From the Lagrangian (3) together with the ansatz (4), the
inverse of Green’s function of the fermions in the absence
of a gauge field is read as

iG−1
0 ðp0; pÞ ¼

0
B@

p0 þ μ −p · σ Δ�

p · σ −p0 − μ −Δ�p̂ · σ

Δ Δp̂ · σ p0

1
CA: ð5Þ

This Green’s function is a 6 × 6 matrix since the light
and heavy quarks are four-component and two-component
spinors, respectively. The inverse of Eq. (5) yields the
Green’s function which is of the form [25]

G̃0ðp0; pÞ ¼
 

G̃ψ̄ψ
0 ðp0; pÞ G̃ψ̄Ψv

0 ðp0; pÞ
G̃Ψ†

vψ
0 ðp0; pÞ G̃Ψ†

vΨv
0 ðp0; pÞ

!
; ð6Þ

with the elements

G̃ψ̄ψ
0 ðp0; pÞ ¼ i

�
UþðpÞ
p0 − Eþ

p
þ U−ðpÞ
p0 − E−

p

�
Λp þ i

UaðpÞ
p0 − Ea

p
Λa;

G̃ψ̄Ψv
0 ðp0; pÞ ¼ i

�
V�þðpÞ
p0 − Eþ

p
þ V�

−ðpÞ
p0 − E−

p

�
ΛpH;

G̃Ψ†
vψ

0 ðp0; pÞ ¼ i

�
VþðpÞ
p0 − Eþ

p
þ V−ðpÞ
p0 − E−

p

�
ΛHp;

G̃Ψ†
vΨv

0 ðp0; pÞ ¼ i

�
WþðpÞ
p0 − Eþ

p
þ W−ðpÞ
p0 − E−

p

�
1: ð7Þ

The matrices Λp and Λa are the projection operators for
positive- and negative-energy states of the light quark
defined by

Λp ≡ 1þ p̂ · α
2

γ0; Λa ≡ 1 − p̂ · α
2

γ0; ð8Þ

with α ¼ γ0γ, respectively, and 1 in Eq. (7) is a 2 × 2 unit
matrix. Similarly, ΛpH and ΛHp are the operators mixing the
positive-energy states of light and heavy quarks defined by

ΛpH ≡
�

1

p̂ · σ

�
; ΛHp ≡ ð 1 −p̂ · σ Þ; ð9Þ

respectively. The dispersion relations Eþ
p , E−

p , and Ea
p are

given by

Eþ
p ¼ 1

2

�
jpj − μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − μÞ2 þ 8jΔj2

q �
;

E−
p ¼ 1

2

�
jpj − μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − μÞ2 þ 8jΔj2

q �
;

Ea
p ¼ −jpj − μ: ð10Þ

In the following analysis, the modes carrying the disper-
sions Eþ

p , E−
p , and Ea

p are referred to as the Kondo
quasiparticle (“q.p.”), the Kondo quasihole (“q.h.”), and
the light antiparticle (“a.p.”), respectively. The factors
UðpÞ’s, VðpÞ’s, and WðpÞ’s in Eq. (7) are

UþðpÞ ¼
2ðjΔj2 þ jpjEþ

p Þ
ðE−

p − Eþ
p ÞðEa

p − Eþ
p Þ

;

U−ðpÞ ¼
2ðjΔj2 þ jpjE−

p Þ
ðEþ

p − E−
p ÞðEa

p − E−
p Þ

;

UaðpÞ ¼ 1;

VþðpÞ ¼
Δ

E−
p − Eþ

p
; V−ðpÞ ¼

Δ
Eþ
p − E−

p
;

WþðpÞ ¼
Eþ
p − jpj þ μ

Eþ
p − E−

p
; W−ðpÞ ¼

E−
p − jpj þ μ

E−
p − Eþ

p
: ð11Þ

The dispersion relations (10) and the factors (11) clearly
show that only the positive-energy component of light
quarks couples to the Kondo condensate. It should be noted
that U�ðpÞ and W�ðpÞ satisfy UþðpÞ þ U−ðpÞ ¼ 1 and
WþðpÞ þW−ðpÞ ¼ 1, respectively.
A schematic picture of the dispersion relations of q.p.

(red solid line), q.h. (blue dashed line), and a.p. (purple
dotted line) is shown in Fig. 2. This figure shows that q.p.
always lives above the Fermi level, while q.h. and a.p. are
below the Fermi level. The energy gap between q.p. and
q.h. at the identical momentum p satisfies

δE≡ Eþ
p − E−

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − μÞ2 þ 8jΔj2

q

≥
ffiffiffiffiffiffiffiffiffiffiffi
8jΔj2

q
; ð12Þ

where the minimum value is given at jpj ¼ μ. In other
words, the threshold energy of pair creation or pair

2Due to the ansatz (4), only positive-energy parts of light and
heavy quarks are correlated to form the Kondo condensate, as is
explicitly shown in Eq. (10). Such a condensate is reasonable
since the heavy quark carries only positive-energy parts due to its
heavy mass, and for the light quark, the Fermi sea is sufficiently
formed where antiparticle contributions are rather suppressed.
Therefore, the Kondo phase with the ansatz (4) is expected to be
one of the thermodynamically preferred phases [13].

HEAVY-QUARK SPIN POLARIZATION INDUCED BY THE … PHYS. REV. D 105, 074028 (2022)

074028-3



annihilation of q:p:þ q:h: at rest frame is found to be
δEmin : ¼

ffiffiffiffiffiffiffiffiffiffiffi
8jΔj2

p
as indicated in Fig. 2.

From the Lagrangian (3) with the ansatz (4) inserted, the
thermodynamic potential in the absence of the gauge field
is given by

Ω=V ¼ −Nc

X
ζ¼þ;−;a

Z
Λ d3p
ð2πÞ3

�
Eζ
p þ 2

β
lnð1þ e−βE

ζ
pÞ
�

þ 2

g
jΔj2; ð13Þ

with the three-dimensional volume and the inverse temper-
ature, V and β ¼ 1=T, respectively. The cutoff parameter Λ
is included to regularize the integral, and Nc is the number
of colors which is taken to be Nc ¼ 3. By taking a
derivative of the thermodynamic potential (13) with respect
to Δ, the gap equation that the Kondo condensate satisfies
is derived as

2Nc

Z
Λ d3p
ð2πÞ3

fFðEþ
p Þ − fFðE−

p Þ
Eþ
p − E−

p
þ 1

g
¼ 0; ð14Þ

with the Fermi-Dirac distribution function fFðϵÞ ¼ 1=
ðeβϵ þ 1Þ. At zero temperature, fFðEþ

p Þ − fFðE−
p Þ → −1,

and hence, an approximate solution of Eq. (14) at T ¼ 0
can be found as [9,13]

Δ ∼ Λ exp

�
−

1

NcgρðμÞ
�
; ð15Þ

with the density of states of a massless quark at the Fermi

level, ρðμÞ ¼ μ2

2π2
, under assumptions of Δ ≪ μ;Λ and

NcgρðμÞ ≪ 1. The solution (15) shows that the Kondo
condensate Δ significantly appears in cold dense quark
matter. The integration in Eq. (14) is mostly governed by
modes near the Fermi sphere for the noninteracting case
jpj ∼ μ. This fact allows us to estimate the temperature
dependence of Δ in an easy way. Namely, the factor by

distribution functions fFðEþ
p Þ − fFðE−

p Þ at the Fermi
sphere turns into

½fFðEþ
p Þ − fFðE−

p Þ�jpj∼μ ∼ 2fFð
ffiffiffi
2

p
jΔjÞ − 1: ð16Þ

Here, if T ≪
ffiffiffi
2

p
Δ, then thermal fluctuations are rather

suppressed, leading to

½fFðEþ
p Þ − fFðE−

p Þ�jpj∼μ → −1; ð17Þ

which is the same value as that at T ¼ 0. In other words,
because of the gapped nature of q.p. and q.h., at lower
temperature, the magnitude of Δ does not change signifi-
cantly from that at zero temperature. Numerically, such a
tendency was found in Ref. [14].
We employ the gap equation (14) to determine the size of

the Kondo condensate in the following analysis, since the
magnetic field is treated perturbatively based on the linear
response theory.

III. ANALYTIC EVALUATION

In this section, we give analytic evaluation of the HQSP
induced by the Kondo effect under a magnetic field with
vertex corrections required by theUð1ÞEM gauge symmetry.

A. General properties

The emergence of the HQSP is described by a thermo-
dynamic expectation value of a spin polarization of the
heavy quarks. For this purpose, we define

hS̃iHðq0; qÞiβ ≡
Z

d4xhΨ†
vðt; xÞSihΨvðt; xÞiβeiq·x; ð18Þ

with Sih ¼ σi

2
being a spin operator of heavy quarks.

Introducing six-component spinors Φ and Φ̄ containing
the light- and heavy-quark fields,

Φ≡
�

ψ

Ψv

�
; Φ̄≡ ð ψ̄ Ψ†

v Þ: ð19Þ

Equation (18) can be expressed in terms of Φ and Φ̄ as

hS̃iHðq0; qÞiβ ¼
Z

d4xhΦ̄ðt; xÞSiHΦðt; xÞiβeiq·x; ð20Þ

where SiH is the 6 × 6 matrix spin operator of heavy quark

SiH ¼
�
0 0

0 Sih

�
: ð21Þ

One of the useful ways to calculate the expectation value
(20) is the analytic continuation from the imaginary-time
formalism [36]. Namely, first we calculate the expectation

FIG. 2. A schematic picture of the dispersion relations of q.p.,
p0 ¼ Eþ

p (red solid line); q.h., p0 ¼ E−
p (blue dashed line); and

a.p., p0 ¼ Ea
p (purple dotted line).
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value of hS̃i
Hðiω̄n; qÞiβ with ω̄n ¼ 2nπT the Matsubara

frequency for bosons (n is an integer), and next, we
evaluate Eq. (20) by the following relation:

hS̃i
Hðq0; qÞiβ ¼ hS̃i

Hðiω̄n; qÞiβjiω̄n→q0þiη: ð22Þ

In this equation, η is an infinitesimal positive number.
With the help of linear response theory, hS̃i

Hðiω̄n; qÞiβ at
the leading order of the gauge field can be given as

hS̃i
Hðiω̄n; qÞiβ ¼ −NcT

X
m

Z
Λ d3p
ð2πÞ3

× tr½SiHG̃0ðiω0
m; pþÞΓμG̃0ðiωm; p−Þ�

× Ãμðiω̄n; qÞ; ð23Þ

in which we have defined Ãμðiω̄n; qÞ as the Fourier trans-
formation of Aμðt; xÞ within the imaginary-time formalism.
Here, ωm ¼ ð2mþ 1ÞπT is the Matsubara frequency
for fermions (m is an integer), and iω0

m ≡ iωm þ iω̄n,
p� ≡ p� q

2
.3 Note that Γμ in Eq. (23) is the vertex function

responsible for the coupling between the fermions and
the gauge field. Regarding the spin polarization (23), the
response function of the HQSP to a magnetic field
Π̃Hðiω̄n; qÞ is defined by

hS̃i
Hðiω̄n; qÞiβ ¼ eB̃iðiω̄n; qÞΠ̃Hðiω̄n; qÞ; ð24Þ

where B̃iðiω̄n; qÞ is the magnetic field generated by the
gauge field Ãμðiω̄n; qÞ.

B. Gauge invariance and vertex corrections

As pointed out in our previous work [25], naive adoption
of the bare vertex read by the Lagrangian in Eq. (1) or
Eq. (3) leads to the violation of Uð1ÞEM gauge symmetry.
One useful way to cure this problem is to correct the vertex
Γμ in an ad hoc manner such that it recovers the Uð1ÞEM
invariance. Here, we show the detailed procedure of this
treatment in the real time.
The Uð1ÞEM gauge invariance of the Lagrangian (1)

yields the Ward-Takahashi identity for the vertex (Γμ)
between the fermions and the gauge field as [37]

qμΓμ ¼ iG̃−1
0 ðpþ

0 ; pþÞQ −QiG̃−1
0 ðp−

0 ; p−Þ; ð25Þ

with p�
0 ¼ p0 � q0

2
, where G̃−1

0 ðp0; pÞ has been defined in
Eq. (5), and Q is the charge matrix

Q≡
�
eq 0

0 eQ

�
: ð26Þ

Therefore, by denoting the vertex by

Γμ ≡
 

Γμ
Aψ̄ψ Γμ

Aψ̄Ψv

Γμ

AΨ†
vψ

Γμ

AΨ†
vΨv

!
; ð27Þ

the identity (25) is explicitly given by

qμΓ
μ
Aψ̄ψ ¼ eq=q; ð28Þ

qμΓ
μ
Aψ̄Ψv

¼ Δ�
�

eQ − eq
−eQp̂þ · σ þ eqp̂− · σ

�
; ð29Þ

qμΓ
μ

AΨ†
vψ

¼ Δð eq − eQ eqp̂þ · σ − eQp̂− · σ Þ; ð30Þ

qμΓ
μ

AΨ†
vΨv

¼ eQq01: ð31Þ

Equations (28) and (31) show that we can safely employ the
bare vertex as

Γμ
Aψ̄ψ ¼ eqγμ; Γμ

AΨ†
vΨv

¼ eQδμ0; ð32Þ

for the diagonal components of Eq. (27). On the other
hand, the off-diagonal ones no longer vanish and have to be
corrected to satisfy Eqs. (29) and (30).
In a later analysis, we study the HQSP for a small

external momentum q ≪ p. This restriction is reasonable
since the loop integral in Eq. (23) is dominated by modes
around jp−j ∼ jpþj ∼ μ or those having sufficiently large
density of states; the modes close to p ∼ 0 do not contribute
to the HQSP significantly. Hence, we expand the right-hand
sides (rhs’s) in Eqs. (29) and (30) up to Oðq1Þ.4 In this
approximation, the identities (29) and (30) are reduced to

qμΓ
μ
Aψ̄Ψv

≈ Δ�ðeQ − eqÞ
�

1

p̂ · σ

�

− Δ�ðeq þ eQÞ
�

0
q·σ−ðp̂·σÞðp̂·qÞ

2jpj

�
; ð33Þ

and

qμΓ
μ

AΨ†
vψ

≈ Δðeq − eQÞð 1 p̂ · σ Þ

þ Δðeq þ eQÞ
�
0

q·σ−ðp̂·σÞðp̂·qÞ
2jpj

�
; ð34Þ

3Here, we have defined the spatial part of loop momenta
symmetrically as p� ≡ p� q

2
. This symmetric choice is useful in

deriving the vertex corrections for Γμ in Sec. III B.

4In order to treat this expansion symmetrically, we have defined
the spatial part of loop momenta as in Eq. (23): p� ¼ p� q

2
.
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respectively. When we take a qμ → 0 limit in Eqs. (33) and
(34), the second terms of the rhs’s vanish while the first
terms survive. The nonvanishing behavior of the first term
implies that radiative contributions by a massless mode
couple to the vertices. Namely, the first terms in Eqs. (33)
and (34) are responsible for the Nambu-Goldstone (NG)
mode contributions [37]. In fact, such contributions arise
only when the Kondo condensate is electrically charged
(eq ≠ eQ) where the Uð1ÞEM symmetry is spontaneously
broken.5 On the other hand, the second terms in Eqs. (33)
and (34) are important even when the condensate is
electrically neutral (eq ¼ eQ) since they are proportional
to eq þ eQ. Namely, regardless of the spontaneous break-
down of the Uð1ÞEM symmetry, the vertex corrections are
necessary. Those contributions appear due to the nontrivial
momentum dependence of the hedgehog ansatz in Eq. (4).
According to discussions in Appendix B, general sol-

utions of Eqs. (33) and (34) relevant to the magnetic
response are given by

Γμ
Aψ̄Ψv

¼ Δ�ðeq þ eQÞ
2jpj3 δμj

�
0

ðpþ · pÞσj − ðpþ · σÞpj

�

þ δμjΓ̂−
Aψ̄Ψv

�
0

ðp · qÞσj − ðq · σÞpj

�
; ð35Þ

and

Γμ

AΨ†
vψ

¼ −
Δðeq þ eQÞ

2jpj3 δμjð 0 ðp− · pÞσj − ðp− · σÞpj Þ

− δμjΓ̂þ
AΨ†

vψ
ð 0 ðp · qÞσj − ðq · σÞpj Þ; ð36Þ

respectively. In these equations, Γ̂−
Aψ̄Ψv

and Γ̂þ
AΨ†

vψ
are

arbitrary scalar functions of p and q which cannot be fixed
(for more detail, see Appendix B). They appear because
the identities (33) and (34) include the combinations of
qμΓ

μ
Aψ̄Ψv

and qμΓ
μ

AΨ†
vψ
. In other words, Γ̂−

Aψ̄Ψv
and Γ̂þ

AΨ†
vψ

could be regarded as “integration constants”. In the
following analysis, we choose those values to be zero:

Γ̂−
Aψ̄Ψv

¼ Γ̂þ
AΨ†

vψ
¼ 0: ð37Þ

This choice preserves the Hermiticity of the HQSP by the
vertex corrections. Here, we note that the vertices propor-
tional to qj have not been included in Eqs. (35) and (36)
since such contributions vanish due to the transversality of
the vertices as explained in Appendix A. For the same
reason, the NG mode contributions disappear because they
are longitudinal.

In this subsection, we have shown that the Uð1ÞEM
invariance requires us to employ the corrected vertices (35)
and (36) in addition to the bare ones (32). Based on them, in
Sec. III C, we proceed with evaluation of the HQSP (23).

C. Evaluation of Eq. (23)

Here, we proceed with analytical evaluation of the HQSP
in Eq. (23) with the corrected vertices obtained in Sec III B.
Since the magnetic field enters only the spatial compo-

nents of Aμ, we take A0 ¼ 0. Thus, using Eq. (27), Eq. (23)
is given by the following two parts:

hS̃i
Hðiω̄n; qÞiβ ¼ hS̃i

0Hðiω̄n; qÞiβ þ hS̃i
δHðiω̄n; qÞiβ: ð38Þ

Here, hS̃i
0Hðiω̄n; qÞiβ stands for the HQSP obtained through

the bare vertex in Eq. (32) as

hS̃i
0Hðiω̄n;qÞiβ ¼ Nc

Ajðiω̄n;qÞ
2

T
X
m

Z
Λ d3p
ð2πÞ3

× tr½σiG̃Ψ†
vψ

0 ðiω0
m;pþÞΓj

Aψ̄ψ G̃
ψ̄Ψv
0 ðiωm;p−Þ�;

ð39Þ

and hS̃i
δHðiω̄n; qÞiβ through the vertex corrections in

Eqs. (35) and (36) with Eq. (37) inserted as

hS̃i
δHðiω̄n;qÞiβ¼Nc

Ajðiω̄n;qÞ
2

T
X
m

Z
Λ d3p
ð2πÞ3

×tr½σiG̃Ψ†
vψ

0 ðiω0
m;pþÞΓj

Aψ̄Ψv
G̃Ψ†

vΨv
0 ðiωm;p−Þ

þσiG̃Ψ†
vΨv

0 ðiω0
m;pþÞΓj

AΨ†
vψ
G̃ψ̄Ψv
0 ðiωm;p−Þ�:

ð40Þ

Correspondingly, the HQSP response function to the
magnetic field given in Eq. (24) is separated as

Π̃Hðiω̄n; qÞ ¼ Π̃0Hðiω̄n; qÞ þ Π̃δHðiω̄n; qÞ; ð41Þ

with each response function defined by

hS̃i
0Hðiω̄n; qÞiβ ¼ eB̃iðiω̄n; qÞΠ̃0Hðiω̄n; qÞ; ð42Þ

hS̃i
δHðiω̄n; qÞiβ ¼ eB̃iðiω̄n; qÞΠ̃δHðiω̄n; qÞ: ð43Þ

In Eqs. (39) and (40), the contribution proportional

to G̃Ψ†
vΨv

0 Γj
AΨ†

vΨv
G̃Ψ†

vΨv
0 does not exist. This means that the

magnetic field does not couple to the heavy quark directly;
the HQSP in the absence of Kondo condensate vanishes. It
is also easily understood by the lack of magnetic coupling
between the heavy quark and the gauge field in Eq. (1).
In the following calculation, we treat the bare-vertex

part (39) in detail as a demonstration. From the Green’s
5The vertices stemming from the NG mode contributions are

explicitly given in Eqs. (B4) and (B5).
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function in Eq. (7) together with the bare vertex in Eq. (32),
the calculation of Eq. (39) is further proceeded as

hS̃i
0Hðiω̄n; qÞiβ ¼ −eqNc

Ajðiω̄n; qÞ
2

X
ζ;ζ0¼�

Z
Λ d3p
ð2πÞ3

× Iζζ0
0Hðpþ; p−Þtr½σiΛHpðpþÞγjΛpHðp−Þ�;

ð44Þ

with

Iζζ0
0Hðpþ;p−Þ≡

VζðpþÞV�
ζ0 ðp−Þ

iω̄n−Eζ
pþ þEζ0

p−

½fFðEζ0
p−Þ−fFðEζ

pþÞ�: ð45Þ

In getting Eq. (44), we have made use of the Matsubara
summation formula,

T
X
m

1

ðiω0
m − ϵpþÞðiωm − ϵp−Þ

¼ fFðϵp−Þ − fFðϵpþÞ
iω̄n − ϵpþ þ ϵp−

: ð46Þ

The constituent (45) includes information on the quantum
and thermal fluctuations of each process upon the Kondo
effect, which is not specific to the response to a magnetic
field. Namely, the constituent (45) always appears when we
evaluate such fluctuations at one loop regardless of the
detail of interactions. On the other hand, the kinetic factor
tr½σiΛHpðpþÞγjΛpHðp−Þ� in Eq. (44) reflects information on
the couplings among the spins of the light quark, heavy
quark, and gauge field, contributing to the HQSP.
By making use of a trace formula,

tr½σiΛHpðpþÞγjΛpHðp−Þ� ¼ 2iϵijkðp̂k
− − p̂kþÞ; ð47Þ

Eq. (44) turns into

hS̃i
0Hðiω̄n; qÞiβ ¼ −ieqNcϵ

ijkAjðiω̄n; qÞ
X
ζ;ζ0¼�

Z
Λ d3p
ð2πÞ3

× Iζζ0
0Hðpþ; p−Þðp̂k

− − p̂kþÞ

¼ eB̃iðiω̄n; qÞ
X
ζ;ζ0¼�

êqNc

jqj2
Z

Λ d3p
ð2πÞ3

× Iζζ0
0Hðpþ; p−Þðp̂− · q − p̂þ · qÞ: ð48Þ

In obtaining the second equality, we have used B̃iðiω̄n; qÞ ¼
iϵijkqjÃkðiω̄n; qÞ and defined êq via eq ¼ êqe. Therefore,
comparing Eqs. (42) and (48), the response function from the
bare-vertex part Π̃0Hðiω̄n; qÞ is evaluated as

Π̃0Hðiω̄n; qÞ≡
X
ζ;ζ0¼�

Π̃ζζ0
0Hðiω̄n; qÞ; ð49Þ

with

Π̃ζζ0
0Hðiω̄n; qÞ ¼

êqNc

jqj2
Z

Λ d3p
ð2πÞ3

× I ζζ0
0Hðpþ; p−Þðp̂− · q − p̂þ · qÞ: ð50Þ

In a similar way, the response function from the
corrected-vertex part Π̃δHðiω̄n; qÞ in Eq. (43) reads

Π̃δHðiω̄n; qÞ≡
X
ζ;ζ0¼�

Π̃ζζ0
δHðiω̄n; qÞ; ð51Þ

with

Π̃ζζ0
δHðiω̄n; qÞ ¼

ðêq þ êQÞNc

2jqj2
Z

Λ d3p
ð2πÞ3

×

�
Δ�Iζζ0

δHþðpþ; p−Þ
ðpþ · pÞðp̂þ · qÞ

jpj3

− ΔI ζζ0
δH−ðpþ; p−Þ

ðp− · pÞðp̂− · qÞ
jpj3

�
; ð52Þ

where êQ is defined via eQ ¼ êQe. In Eq. (52), we have
defined the constituent

Iζζ0
δHþðpþ; p−Þ≡ VζðpþÞWζ0 ðp−Þ

iω̄n − Eζ
pþ þ Eζ0

p−

× ½fFðEζ0
p−Þ − fFðEζ

pþÞ�;

Iζζ0
δH−ðpþ; p−Þ≡

WζðpþÞV�
ζ0 ðp−Þ

iω̄n − Eζ
pþ þ Eζ0

p−

× ½fFðEζ0
p−Þ − fFðEζ

pþÞ�; ð53Þ

that accounts for only quantum and thermal fluctuations
stemming from the vertex corrections as an analogue of
Eq. (45). As explained in Sec. III B, the vertex corrections
are necessary, although the NG mode does not couple to a
magnetic field, because of the momentum dependence of
the Kondo condensate. Indeed, Eq. (52) accounts for such
corrections to the HQSP.
The Feynman diagrams for Π̃þþ

H , Π̃−−
H , Π̃þ−

H , and Π̃−þ
H

are depicted in Fig. 3. These contributions correspond to
(i) q:p: → q:p. scattering, (ii) q:h: → q:h. scattering,
(iii) q:p:þ q:h. pair annihilation, and (iv) q:p:þ q:h. pair
creation, respectively. The diagrams (i) and (ii) are often
referred to as the intraband processes, while the remaining
(iii) and (iv) are as the interband processes.6 In this figure,
blobs represent the corrected vertices.
The HQSP hS̃iHðq0; qÞiβ in the real time can be obtained

via the analytic continuation in Eq. (22). In the same
manner, the response function Π̃Hðq0; qÞ in the real time

6The intraband process means that exclusively either q.p. or
q.h. participates in the loops. On the other hand, the interband
process means that both q.p. and q.h. participate.
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can be evaluated. In our present paper, we investigate the
HQSP response functions with vertex corrections,

Π̃Hðq0; qÞ ¼ Π̃0Hðq0; qÞ þ Π̃δHðq0; qÞ; ð54Þ

and without them Π̃0Hðq0; qÞ, to examine the importance of
gauge invariance clearly. In what follows, we take a phase
of Δ such that Δ is always real without loss of generality.

IV. THE HQSP IN THE DYNAMICAL
AND STATIC LIMITS

In our present paper, we investigate the HQSP response
function for vanishing spatial momentum Π̃0Hðq0; 0Þ and
Π̃Hðq0; 0Þ (timelike) and for vanishing frequency Π̃0Hð0; qÞ
and Π̃Hð0; qÞ (spacelike) toward understanding of the
HQSP in the two distinct momentum regions in the
clearest way. Physically, the former (latter) describes
the HQSP whose time dependence is faster (slower) than
the equilibration of the spatial part of the system. In
particular, it is useful to examine the response function
in the dynamical limit,

Π̃dyn
0H ≡ lim

q0→0
Π̃0Hðq0; 0Þ;

Π̃dyn
H ≡ lim

q0→0
Π̃Hðq0; 0Þ; ð55Þ

and in the static limit,

Π̃sta
0H ≡ lim

q→0
Π̃0Hð0; qÞ;

Π̃sta
H ≡ lim

q→0
Π̃Hð0; qÞ; ð56Þ

in detail to see differences in the two momentum regimes
[38]. Before moving on to numerical computations, in this
section, we analytically study the dynamical and static
response functions in Eqs. (55) and (56).

A. The bare-vertex parts Π̃0H

Here, we evaluate analytically the HQSP response
functions Π̃0Hðq0; qÞ from the bare-vertex parts. The q0
(or iω̄n in the imaginary time) dependence of the response
functions is rather trivial as can be seen from Eq. (45), and

hence, we expand Π̃0Hðq0; qÞ with respect to a small
momentum q.
From Eq. (45), I ζζ0

0Hðpþ; p−Þ with small q for the intra-
band processes described by ζ ¼ ζ0 can be evaluated as

Iζζ
0Hðpþ; p−Þ ≈ −

VζðpÞVζðpÞ
iω̄n −

∂Eζ
p

∂jpj ðp̂ · qÞ
∂fFðEζ

pÞ
∂jpj ðp̂ · qÞ; ð57Þ

while for the interband ones described by ζ ≠ ζ0 as

Iζζ0
0Hðpþ; p−Þ ≈

VζðpÞVζ0 ðpÞ
iω̄n − Eζ

p þ Eζ0
p

½fFðEζ0
p Þ − fFðEζ

pÞ�: ð58Þ

Besides, the common kinetic factor p̂− · q − p̂þ · q is
expanded as

p̂− · q − p̂þ · q ¼ ðp̂ · qÞ2 − jqj2
jpj þOðq3Þ: ð59Þ

Hence, the response functions with a small momentum q
are of the forms

Π̃ζζ
0Hðiω̄n; qÞ ≈ êqNc

Z
Λ d3p
ð2πÞ3

VζðpÞVζðpÞ
iω̄n −

∂Eζ
p

∂jpj ðp̂ · qÞ

×
1 − ðp̂ · q̂Þ2

jpj
∂fFðEζ

pÞ
∂jpj ðp̂ · qÞ ð60Þ

for the intraband processes, while

Π̃ζζ0
0Hðiω̄n; qÞ ≈ −êqNc

Z
Λ d3p
ð2πÞ3

VζðpÞVζ0 ðpÞ
iω̄n − Eζ

p þ Eζ0
p

×
1 − ðp̂ · q̂Þ2

jpj ½fFðEζ0
p Þ − fFðEζ

pÞ� ð61Þ

for the interband processes.
Equation (60) shows that the HQSP response functions

in the real time for the intraband processes lead to distinct
results in the dynamical and static limits,

lim
q0→0

Π̃ζζ
0Hðq0; 0Þ ¼ 0; ð62Þ

FIG. 3. The Feynman diagrams contributing to the HQSP. Blobs represent the corrected vertices required byUð1ÞEM gauge invariance.
The diagrams (i) and (ii) correspond to the intraband processes, while (iii) and (iv) the interband ones.
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and

lim
q→0

Π̃ζζ
0Hð0; qÞ ¼ −êqNc

Z
Λ

0

djpj
3π2

jpj

× VζðpÞVζðpÞ
∂fFðEζ

pÞ
∂Eζ

p
: ð63Þ

Equation (62) indicates that Π̃ζζ
0H in the dynamical limit is

always zero. In the static limit, at zero temperature
∂fFðEζ

pÞ=∂Eζ
p in Eq. (63) becomes zero since the density

of states of q.p. or q.h. vanishes at the Fermi level, and
hence,

lim
q→0

Π̃ζζ
0Hð0; qÞ ¼T¼0

0: ð64Þ

At finite temperature, the factor ∂fFðEζ
pÞ=∂Eζ

p begins to
collect contributions around the Fermi level by thermal
fluctuations. In the present Kondo system, due to the
flatness of the dispersion relation of q.p. or q.h. as shown
in Fig. 2, the thermal fluctuations can pick up modes
slightly far from the Fermi sphere but having a large density
of states. As a result, Π̃ζζ

0H in the static limit at finite
temperature becomes nonzero.
On the other hand, from Eq. (61), we can find that the

HQSP response functions for the interband processes in the
two limits yield the identical result,

lim
q→0

Π̃ζζ0
0Hð0; qÞ ¼ lim

q0→0
Π̃ζζ0

0Hðq0; 0Þ

¼ −êqNc

Z
Λ

0

djpj
3π2

jpj

×
VζðpÞVζ0 ðpÞ
Eζ0
p − Eζ

p

½fFðEζ0
p Þ − fFðEζ

pÞ�: ð65Þ

The integrand for the interband processes (65) is dominated
by contributions near the Fermi sphere jpj ∼ μ due to the
factor fFðEζ0

p Þ − fFðEζ
pÞ, which is in contrast to the intra-

band ones. Besides, because of this factor, Eq. (65) is less
temperature dependent similarly to the Kondo condensate
as explained around Eq. (16).

B. The corrected-vertex parts Π̃δH

The dynamical and static limits for the corrected-vertex
parts Π̃δHðq0; qÞ can be evaluated in a similar way to
Sec. IVA. Expressions for Π̃δHðq0; qÞ with a small momen-
tum q and resultant dynamical and static response functions
are so lengthy that we show them in Appendix C. Here, we
only give important comments on them.
The significant difference from the bare-vertex parts is

that the kinetic factor originating from the spin couplings
between the fermions is now proportional to ðp� ·pÞðp̂� ·qÞ
which is of Oðq1Þ, whereas that for the bare-vertex parts in

Eq. (59) is of Oðq2Þ. Complexity of the evaluation of
Π̃δHðq0; qÞ with small q essentially stems from this differ-
ence, but qualitative properties are similar to those for the
bare-vertex parts. In fact, as seen from Eqs. (C4) and (C5),
for the intraband processes, the response function in the
dynamical limit vanishes, and the result in the static limit is
proportional to the derivative ∂fFðEζ

pÞ=∂Eζ
p.

For the interband processes, as seen from Eq. (C6), both
the dynamical and static limits for the corrected-vertex
parts yield the identical response similarly to the bare-
vertex parts,

lim
q0→0

Π̃ζζ0
δHðq0; 0Þ ¼ lim

q→0
Π̃ζζ0

δHð0; qÞ: ð66Þ

Unlike the bare-vertex parts in Eq. (65), the corrected-
vertex parts for the interband processes include contribu-

tions proportional to ∂fFðEζð0Þ
p Þ=∂jpj in addition to those

proportional to fFðEζ0
p Þ − fFðEζ

pÞ. Thus, the corrected-
vertex parts in the dynamical limit can be rather temper-
ature dependent compared to the bare-vertex ones.
Before closing this section, we summarize important

properties of the HQSP response function Π̃H in the static
and dynamical limits. At zero temperature, Π̃H in the static
and dynamical limits coincide since the density of states at
the Fermi level are absent. On the other hand, at finite
temperature, the intraband processes are allowed due to the
thermal excitations, and the resultant Π̃H in the static and
dynamical limits can differ.

V. NUMERICAL RESULTS

In Sec. III C, we have presented analytic evaluation of
the HQSP response function induced by the Kondo effect
under a magnetic field. In this section, based on it, we show
the numerical results of the response functions.
First, in Sec. VA, we show the resultant HQSP response

function in the timelike regime. Next, in Sec. V B, we show
the result in the spacetime regime. For all computations,
the value of the Kondo condensate Δ at a given μ and T
is determined by solving the gap equation (14), with
g ¼ 9.47 GeV−2 and Λ ¼ 0.65 GeV [9,13]. We note that
in our present paper we assume c quark as impurities, and
hence, êQ ¼ þ 2

3
. Throughout this paper, we show the

calculated values of the response functions in the unit
GeV for clarity of discussion. The response of 1 GeV
corresponds to the HQSP of the density 7.70 × 1030 m−3

induced under a magnetic field of 1T.

A. The HQSP response function in the timelike regime

Here, we show the μ dependence of the HQSP response
function in the timelike regime.
First, we examine the response function in the dynamical

limit defined in Eq. (55). In this limit, the contributions
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from intraband processes, or the diagrams (i) and (ii) in
Fig. 3, vanish. This reduction allows us to interpret the
numerical results in an easier way. Figure 4 represents the
results at T ¼ 0, T ¼ 0.01 GeV and T ¼ 0.03 GeV, where
the electric charge of light quarks is êq ¼ þ 2

3
, meaning

that quark matter is filled by u quarks. In this figure, we
show Π̃dyn

0H (dashed purple line) and Π̃dyn
H (solid blue line).

Similarly, Fig. 5 represents the results of Π̃dyn
0H (dashed

purple line) and Π̃dyn
H (solid red line) with êq ¼ − 1

3
, where d

quarks compose matter.
The figures show that the HQSP is significantly driven

by the Kondo effect under a magnetic field.7 Besides, the
vertex corrections lead to an enhancement of the HQSP for
êq ¼ êQ as seen from Fig. 4, while they suppress the HQSP
for êq ≠ êQ from Fig. 5. Interestingly, the magnitude of the
HQSP response function does not depend on the chemical
potential significantly, while this tendency cannot be seen
easily by analytic evaluation. We note that the nonanaly-
ticity at μ ≈ 0.36 GeV for T ¼ 0.03 GeV corresponds to
the phase transition from the normal phase (Δ ¼ 0) to the
Kondo phase (Δ ≠ 0). Thus, the HQSP vanishes in the
normal phase.

In the figures, we have shown the spin polarization of c
quarks regarded as impurities in u quark matter and in d
quark matter separately. When quark matter is composed of
both u and d quarks, we expect that the Kondo condensates
made of c and u quarks are more favored than those of c
and d quarks, because the condensates become electrically
neutral in this choice. In this case, the HQSP response
function is mostly given by Fig. 4. Even when both the
electrically neutral and charged Kondo condensates equally
contribute, the resultant HQSP response function is given
by the averaged value of Figs. 4 and 5, yielding a finite
negative response.
Next, we show numerical results of q0 dependence of the

response function for vanishing q at μ ¼ 0.5 GeV. Figure 6
represents the results of Π̃0Hðq0; 0Þ (dashed purple line)
and Π̃Hðq0; 0Þ (solid blue line) for êq ¼ þ 2

3
at T ¼ 0 and

T ¼ 0.03 GeV. Similarly, in Fig. 7, we show Π̃0Hðq0; 0Þ
(dashed purple line) and Π̃Hðq0; 0Þ (solid red line) for
êq ¼ − 1

3
. Note that we plot the result for only q0 > 0, since

the response function is symmetric with respect to an
inversion of q0 → −q0 as Π̃Hðq0; 0Þ ¼ Π̃Hð−q0; 0Þ, due to
time-reversal symmetry of the Kondo phase.
In what follows, we discuss the divergent behaviors

near q0 ∼ 0.2 GeV in Figs. 6 and 7, where the difference
between Π̃0ðq0; 0Þ and Π̃Hðq0; 0Þ becomes more signifi-
cant. The reason is as follows. The threshold energy for
the pair annihilation and pair creation of q.p. and q.h.
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FIG. 5. The μ dependence of the HQSP response function in the dynamical limit. In this figure, Π̃dyn
0H (dashed purple line) and Π̃dyn
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; êq ¼ − 1
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are plotted.
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7In order to clarify significance of the HQSP driven by the
Kondo effect, we compare the results with those from the Zeeman
interaction in Sec. VI.
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[the diagrams (iii) and (iv) in Fig. 3] is given by δEmin ¼ffiffiffiffiffiffiffiffi
8Δ2

p
, as indicated in Fig. 2. Thus, when q0 becomes larger

than δEmin ¼
ffiffiffiffiffiffiffiffi
8Δ2

p
, the imaginary part corresponding to

the above physical processes appears. The value of thresh-
old energy is δEmin ≈ 0.239 GeV for T ¼ 0 and δEmin ≈
0.210 GeV for T ¼ 0.03 GeV, at μ ¼ 0.5 GeV. Above this
threshold, we encounter a divergence that cannot be
regulated by the UV cutoff Λ, when we include the vertex
corrections as well. This divergence stems from the inter-
band processes of corrected-vertex parts of the form

Π̃ζζ0
δHðq0; 0Þ

¼ Δ
ðêq þ êQÞNc

2

Z
d3p
ð2πÞ3

1

ðq0 þ iη − Eζ
p þ Eζ0

p Þ2
ð� � �Þ

þ ðother termsÞ; ð67Þ

[see Eq. (C3) for the explicit expression]. Namely, the
divergence arises from the factor 1=ðq0 þ iη − Eζ

p þ Eζ0
p Þ2

and cannot be removed by, e.g., making use of the principal
value integral. For this reason, in Figs. 6 and 7, we have
shown the results where q0 is smaller than the threshold.
In more realistic situations, the problematic factor

1=ðq0 þ iη − Eζ
p þ Eζ0

p Þ2 is replaced by 1=ðq0 þ iτ−1R −
Eζ
p þ Eζ0

p Þ2 due to a finite relaxation time τR. In this
case, the divergence will be smeared. In field-theoretical

treatments, the relaxation time τR can be evaluated by a
self-energy of the Green’s function of fermions beyond the
perturbative calculation. Namely, for a feasible treatment in
the higher frequency regime, we need to employ a non-
perturbative method to determine the self-energy, such as
the Dyson-Schwinger equations coupling with the Ward-
Takahashi identity (25). Although the behavior above the
threshold is problematic in our present treatment, we can
see a significant enhancement of the HQSP as the fre-
quency q0 approaches the threshold from below, which is a
universal behavior of response functions.

B. The HQSP response function in the spacelike regime

In this subsection, we show the μ dependence of the
response function in the spacelike regime.
First, we examine the response function in the static limit

defined in Eq. (55). In this limit, the intraband processes in
addition to the interband ones, namely, all of the diagrams
in Fig. 3, contribute. Figure 8 represents the results of Π̃sta

0H

(dashed purple line) and Π̃sta
H (solid blue line) for êq ¼ þ 2

3

at T ¼ 0, T ¼ 0.01 GeV, and T ¼ 0.03 GeV. Similarly, in
Fig. 9, we show Π̃sta

0H (dashed purple line) and Π̃sta
H (solid red

line) for êq ¼ − 1
3
.

As in the dynamical limit, the vertex corrections enhance
the HQSP response function for êq ¼ êQ, while they
suppress the HQSP for êq ≠ êQ. At finite temperature,
the HQSP in the static limit is suppressed compared to that
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; êq ¼ − 1

3
are plotted.

HEAVY-QUARK SPIN POLARIZATION INDUCED BY THE … PHYS. REV. D 105, 074028 (2022)

074028-11



in the dynamical limit for any electric charges. This
suppression shows that the intraband processes driven by
the mechanism explained in Sec. IVare considerably large. It
is worth noting that such intraband contributions at finite
temperature were also found in the CSE with the Kondo
effect [25]. In addition, we can see that the vertex corrections
becomes relatively insignificant at T ¼ 0.03 GeV.
Here, we summarize differences between the HQSP with

vertex corrections in the dynamical limit (Figs. 4 and 5) and
that in the static limit (Figs. 8 and 9). At zero temperature,
the Π̃dyn

H and Π̃sta
H coincide, while at finite temperature

they differ, which is consistent with the properties found
analytically in Sec. IV. Besides, numerically, we have

found that the magnitude of Π̃dyn
H is always larger than

that of Π̃sta
H for êQ ¼ êq ¼ þ 2

3
. On the other hand, for

êQ ¼ þ 2
3

and êq ¼ − 1
3
, the difference of magnitudes

depends on temperature.
Next, we show numerical results of jqj dependence of the

response function for vanishing q0 at μ ¼ 0.5 GeV.
Because of the Gauss’s law for the magnetic field, the
momentum q is transverse to the field: qiB̃ið0; qÞ ¼ 0.
Figure 10 represents the results of Π̃0Hð0; qÞ (dashed purple
line) and Π̃Hð0; qÞ (solid blue line) for êq ¼ þ 2

3
at T ¼ 0

and T ¼ 0.03 GeV. Similarly, in Fig. 11, we show
Π̃0Hð0; qÞ (dashed purple line) and Π̃Hð0; qÞ (solid red
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T=30MeV
Static limit

R
es

po
ns

e 
fu

nc
tio

n 
Π~

H
st

a  [G
eV

]

Chemical potential μ [GeV]

Π~0H (w/o ver. cor.)
Π~H (w/ ver. cor.)

FIG. 9. The μ dependence of the HQSP response function in the static limit. In this figure, Π̃sta
0H (dashed purple line) and Π̃sta

H (solid red
line) with êQ ¼ þ 2
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êQ = êq = +2/3
T=30MeV
μ=0.5GeV, q0=0

R
es

po
ns

e 
fu

nc
tio

n 
Π~

H
 [G

eV
]

Momentum q [GeV]

Π~0H (w/o ver. cor.)
Π~H (w/ ver. cor.)

FIG. 10. The q dependence of the HQSP response function for vanishing q0 at μ ¼ 0.5 GeV (q≡ jqj). In this figure, Π̃0H (dashed
purple line) and Π̃Hðq0; 0Þ (solid blue line) with êQ ¼ êq ¼ þ 2
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line) for êq ¼ − 1
3
. It should be noted that we have plotted

the results for the momentum up to q ¼ 0.3 GeV, while we
assumed that q is sufficiently small compared to μ.
Unlike the frequency dependence of the HQSP response

function studied in Sec. VA, Figs. 10 and 11 show that the
magnitude of Π̃Hð0; qÞ does not change significantly. This is
because there is no notable kinetic effects such as the
existence of thresholds in the spacelike region. In particular,
for the small jqj regime, such a stable behavior is understood
well. Namely, since the loop integrals in Eqs. (50) and (52)
are dominated by modes at jpþj ∼ jp−j ∼ μ or those having a
sufficiently large density of states, the small q does not
change the HQSP significantly.

VI. THE HQSP FROM THE ZEEMAN
INTERACTION

Up to this point, we have investigated the HQSP induced
by the Kondo effect under a magnetic field which arises
at Oð1=m0

QÞ within the HQET. When we go beyond this
order, the ordinary Zeeman interaction (ZI) at Oð1=m1

QÞ is
expected to become another source of the HQSP. Hence, in
this section, we discuss the HQSP induced by the ZI in the
absence of the Kondo effect and compare its magnitude
with that driven through the Kondo effect of Oð1=m0

QÞ. In
the following analysis, we employ the grand canonical
picture such that the chemical potential of heavy quarks
measured within the nonrelativistic framework is always
zero as done for the Kondo effect in this paper.
In the Lagrangian (1), we have described the heavy quark

within the leading order of the HQET, where only terms of
Oð1=m0

QÞ have been taken into account. When we include
contributions of Oð1=m1

QÞ as well, the Lagrangian for the
heavy quark can be given by

LZI ¼ Ψ†
v

�
i∂0 þ

∇2

2mQ
þ eQ
mQ

Sh · B

�
Ψv: ð68Þ

Here, we have left only the kinetic and ZI terms with the
spin operator for the heavy quark Sh ¼ σ

2
. As done in

Sec. III, from Eq. (68), the HQSP by the ZI under the
weak magnetic field within the linear response theory is
evaluated as

hS̃ZI;i
H ðiω̄n; qÞi ¼ Nc

eQ
mQ

B̃jðiω̄n; qÞT
X
m

Z
d3p
ð2πÞ3

× tr½SihGNRðiω0
m; p0ÞSjhGNRðiωm; pÞ�;

ð69Þ

where

GNRðiωm; pÞ ¼
i

iωm − ENR
p

ð70Þ

is the Green’s function for the heavy quark in the non-
relativistic framework with ENR

p ¼ jpj2=ð2mQÞ, and
p0 ¼ pþ q. Performing the Matsubara summation with
Eq. (46), the HQSP (69) with a small q reads

hS̃ZI;iH ðiω̄n; qÞi ≈ Nc
eQB̃iðiω̄n; qÞ

2mQ

Z
d3p
ð2πÞ3

×
1

iω̄n −
∂ENR

p

∂jpj ðp̂ · qÞ
∂fFðENR

p Þ
∂jpj ðp̂ · qÞ:

ð71Þ

Thus, defining the response function Π̃ZI
H ðiω̄n; qÞ via

hS̃ZI;iH ðiω̄n; qÞi ¼ eB̃iðiω̄n; qÞΠ̃ZI
H ðiω̄n; qÞ; ð72Þ

Π̃ZI
H ðiω̄n; qÞ in the dynamical and static limits in the real

time are evaluated as

lim
q0→0

Π̃ZI
H ðq0; 0Þ ¼ 0; ð73Þ

and
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lim
q→0

Π̃ZI
H ð0;qÞ¼−Nc

êQ
2mQ

Z
d3p
ð2πÞ3

∂fFðENR
p Þ

∂ENR
p

¼Nc
êQBð2πmQTÞ1=2

8π2
ð1−

ffiffiffi
2

p
Þζð1=2Þ; ð74Þ

respectively. In Eq. (74), ζð1=2Þ ¼ −1.46035 � � � is the
Riemann zeta function ζðnÞ for n ¼ 1=2.
Equation (73) shows that Π̃ZI

H in the dynamical limit
vanishes, because interband processes for the HQSP driven
by the ZI are absent. In other words, the emergence of
HQSP in the dynamical limit can be regarded as a peculiar
phenomenon induced by the Kondo effect under magnetic
field. From Eq. (74), we can see that Π̃ZI

H in the static limit is
always positive for finite T. The positive Π̃ZI

H is understood
as follows: from the ZI term in Eq. (68), the corresponding
ZI Hamiltonian is always negative when the heavy-quark
spin and the magnetic field are parallel for eQ ¼ þ 2

3
. Thus,

the positive spin polarization is thermodynamically favored
more than the negative one, resulting in the positive HQSP.
Besides, Π̃ZI

H at T ¼ 0 is zero, since in the three-
dimensional space Π̃ZI

H is of OðB3=2Þ and can be neglected
within the linear response theory.
In Fig. 12, we compare the T dependence of the HQSP

response function induced by the Kondo effect and that by
the ZI in the static limit. The solid blue line corresponds to
the result by the Kondo effect (Π̃H) with êQ ¼ êq ¼ þ 2

3
,

while the solid red one with êQ ¼ þ 2
3
; êq ¼ − 1

3
, at μ ¼

0.5 GeV (recall that this μ is the chemical potential for
light quarks). The dotted pink line shows the result by the
ZI (Π̃ZI

H ) for the c quark with mQ ¼ 1.27 GeV. Figure 12
shows that the HQSP is clearly dominated by the con-
tribution from the Kondo effect at lower temperature
particularly for êQ ¼ êq ¼ þ 2

3
even in the static limit.

VII. CONCLUSIONS

In this paper, we have proposed a new mechanism of the
HQSP in quark matter induced by the Kondo effect under a

magnetic field. By employing the NJL type model, we
have indeed shown that the HQSP is driven through the
Kondo condensate from light quarks coupling with the
magnetic field, although a magnetic coupling of the heavy
quarks themselves is absent in the heavy-quark limit. In
particular, we have demonstrated the emergence of HQSP
in the distinct momentum regimes: the timelike and space-
like momentum regions. Physically, the former (latter)
describes the HQSP whose time dependence is faster
(slower) than the equilibration of the spatial part of the
system. The effects of vertex corrections required by the
Uð1ÞEM gauge symmetry have been also examined.
Our analysis shows that the response function of the

HQSP is significantly driven in both the momentum
regimes. Also, we have found that the vertex corrections
enhance the resultant HQSP compared to that with the bare
vertices, when the Kondo condensate is electrically neutral.
In addition, the timelike HQSP is significantly enhanced as
the frequency of the magnetic field approaches the thresh-
old of pair creation (annihilation) of the quasiparticle and
quasihole induced by the Kondo effect, whereas the space-
like one does not vary largely with the momentum.
We have also discussed the HQSP induced by the

Zeeman interaction of heavy quarks, as corrections from
violation of the heavy-quark limit. As a result, we have
found that the HQSP induced by the Zeeman interaction in
the dynamical limit (zero frequency and momentum limits
from the timelike regime) always vanishes and that in the
static limit (similar limit from the spacelike regime) at
lower temperature is largely suppressed. Therefore, emer-
gence of the HQSP particularly in such regimes can be a
useful signal of the Kondo effect.
Experimentally, the peripheral and low-energy heavy-

ion collisions (HICs) are expected to become a testing
ground to investigate the HQSP induced by the Kondo
effect. In fact, in such HICs, heavy quarks as impurities
are produced by hard processes mediated by gluons,
together with a magnetic field and a sufficient quark
chemical potential. In this case, the HQSP is converted
into the spin polarization of heavy hadrons which can be
observables [23].
The HQSP together with the emergence of the Kondo

condensate can be examined in detail in future lattice
simulations of QCD (or QCD-like theories). The HQSP is
measured by computing the operator hΨ†ðt; xÞ σ

2
Ψðt; xÞi,

where Ψðt; xÞ and σ are the heavy-quark field and the Pauli
matrix parallel to a magnetic field B, respectively. For the
lattice simulations, one has to introduce, in addition to the
usual QCD, the three additional backgrounds: (i) a nonzero
chemical potential for light quarks, (ii) a magnetic field,
and (iii) heavy impurities. For (i), although Monte Carlo
simulations for systems with a nonzero quark chemical
potential are usually useless due to the sign problem, one
may utilize other sign-problem-free systems, such as two-
color QCD, isospin chemical potential μI, and chiral
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Π~H (êq = −1/3 cor.)
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FIG. 12. The HQSP response function induced by the Kondo
effect and that by the ZI as functions of T. For details, see the text.
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chemical potential μ5.
8 Such simulations have been devoted

to elucidating the properties of dense QCD in a background
magnetic field [55–58], and model studies to intuitively
understand the simulations have been also done [59–65].
For example, our present analysis can be easily applied to
the two-color system by changing the number of colors
from Nc ¼ 3 to Nc ¼ 2. Namely, our proposal in this paper
is testable in two-color QCD simulations without major
changes. In particular, the static three-dimensional momen-
tum dependence of the HQSP response function within the
linear response regime can be directly measured by the
lattice simulations. For (iii), we note that inclusion of heavy
quarks as impurities does not spoil the sign-problem-free
advantage unless we introduce a “chemical potential” for
the heavy quarks as done in this paper. We expect that a
better understanding of the role of heavy impurities and
their properties under external fields in quark matter will be
promoted by such simulations in the future.
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APPENDIX A: TRANSVERSALITY OF THE
ELECTROMAGNETIC VERTEX

Here, we give a detailed explanation for the trans-
versality of the electromagnetic vertex Γμ.
In our present study, the gauge field only includes its

spatial parts Ãiðq0; qÞ since the magnetic field is
generated by

B̃iðq0; qÞ ¼ iϵijkqjÃkðq0; qÞ: ðA1Þ

In general the (three-dimensional) gauge field Ãiðq0; qÞ
can be decomposed into longitudinal and transverse
parts as

Ãiðq0; qÞ ¼ Pij
L Ã

jðq0; qÞ þ Pij
T Ã

jðq0; qÞ
≡ Ãi

Lðq0; qÞ þ Ãi
Tðq0; qÞ; ðA2Þ

and Ãi
L ¼ Pij

L Ã
j, Ãi

T ¼ Pij
T Ã

j with longitudinal and trans-
verse projection operators defined by

Pij
L ¼ qiqj

jqj2 ; Pij
T ¼ δij −

qiqj

jqj2 : ðA3Þ

Here, we can show that the Ãi
L and Ãi

T satisfy

ϵijkqjÃk
Lðq0; qÞ ¼ 0;

ϵijkqjÃk
Tðq0; qÞ ¼ ϵijkqjÃkðq0; qÞ; ðA4Þ

with ϵijkqjqk ¼ 0. Namely, the relation (A1) can be
rewritten to

B̃iðq0; qÞ ¼ iϵijkqjÃk
Tðq0; qÞ; ðA5Þ

showing that the magnetic field is generated solely by the
transverse part of the gauge field. In other words, in our
present study, we can replace the gauge field with its
transverse part,

Ãiðq0; qÞ → Ãi
Tðq0; qÞ: ðA6Þ

Equation (A6) shows that when the electro-
magnetic vertex Γμ is proportional to qμ the coupling turns
into

ΓμÃμðq0; qÞ ∝ qiÃi
Tðq0; qÞ ¼ 0; ðA7Þ

due to the transverse nature of Ãi
T : qiÃi

Tðq0; qÞ ¼ 0.
Therefore, in our present paper, longitudinal parts of the
vertex vanish, and only transverse parts survive.

APPENDIX B: SOLUTION OF THE IDENTITIES
IN EQS. (33) AND (34)

Here, we show solutions of the identities (33) and (34).
For convenience, we decompose the vertices Γμ

Aψ̄Ψv
and

Γμ

AΨ†
vψ

as

Γμ
Aψ̄Ψv

¼ ΓNG;μ
Aψ̄Ψv

þ Γ̂μ
Aψ̄Ψv

;

Γμ

AΨ†
vψ

¼ ΓNG;μ
AΨ†

vψ
þ Γ̂μ

AΨ†
vψ
; ðB1Þ

respectively. In these equations, ΓNG;μ
Aψ̄Ψv

and ΓNG;μ
AΨ†

vψ
are

the vertices stemming from the NG mode contributions,
while Γ̂μ

Aψ̄Ψv
and Γ̂μ

AΨ†
vψ

are from non-NG mode contribu-

tions. Namely, from Eqs. (33) and (34), those vertices
satisfy

8See, e.g., Refs. [39–46], for earlier works on lattice simu-
lations of two-color dense QCD, Refs. [47–50] for μI, and
Refs. [51–54] for μ5. See Refs. [20,21] for model studies of
the Kondo effect with μ5.
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qμΓ
NG;μ
Aψ̄Ψv

¼ Δ�ðeQ − eqÞ
�

1

p̂ · σ

�
;

qμΓ
NG;μ
AΨ†

vψ
¼ Δðeq − eQÞð 1 p̂ · σ Þ; ðB2Þ

and

qμΓ̂
μ
Aψ̄Ψv

¼ −Δ�ðeq þ eQÞ
�

0
q·σ−ðp̂·σÞðp̂·qÞ

2jpj

�
;

qμΓ̂
μ

AΨ†
vψ

¼ Δðeq þ eQÞ
�
0

q·σ−ðp̂·σÞðp̂·qÞ
2jpj

�
: ðB3Þ

First, from the identity (B2), the corrected vertices from
the NG mode contributions are easily found as

ΓNG;μ
Aψ̄Ψv

¼Δ�ðeQ−eqÞ
δμ0þvNGjqjα−2qjδμj

q0−vNGjqjα
�

1

p̂ ·σ

�
; ðB4Þ

and

ΓNG;μ
AΨ†

vψ
¼ Δðeq − eQÞ

δμ0 þ vNGjqjα−2qjδμj
q0 − vNGjqjα

ð 1 p̂ · σ Þ;

ðB5Þ

where vNG is a constant related to a velocity of the NG
mode, and α is an integer. Equations (B4) and (B5)
show that the spatial parts of the vertices from NG mode
contributions are proportional to qj which is longitudinal.
Hence, due to the transversality of the coupling derived
in Eq. (A7), the contributions from the NG modes
disappear.
Next, we solve the identity for the vertices from the

non-NG mode contributions. From Eq. (B3), only the
lower component of Γ̂μ

Aψ̄Ψv
and the right component of

Γ̂μ

AΨ†
vψ

become nonzero. Thus, the solution of Eq. (B3) is of

the form

Γ̂μ
Aψ̄Ψv

¼ δμj
�

0

Γ̂sub;j
Aψ̄Ψv

�
;

Γ̂μ

AΨ†
vψ

¼ δμjð 0 Γ̂sub;j
AΨ†

vψ
Þ: ðB6Þ

In Eq. (B6), we have left only spatial components of the
vertices, since the time component vanishes as seen from
Eq. (B3) by inserting q ¼ 0. In our present paper, our goal
is to study the HQSP under a magnetic field. Namely, we
need to get a tensor structure ϵijkqjÃkðq0; qÞ in evaluating
the formula in Eq. (23). For this reason, Γ̂sub;j

Aψ̄Ψv
and Γ̂sub;j

AΨ†
vψ

must include only the terms proportional to one Pauli
matrix. By taking this consideration into account, general
forms of Γ̂sub;j

Aψ̄Ψv
and Γ̂sub;j

AΨ†
vψ

are given by

Γ̂sub;j
Aψ̄Ψv

¼ Γ̂σ
Aψ̄Ψv

σj þ Γ̂þ
Aψ̄Ψv

ðpþ · σÞpj þ Γ̂−
Aψ̄Ψv

ðp− · σÞpj;

Γ̂sub;j
AΨ†

vψ
¼ Γ̂σ

AΨ†
vψ
σj þ Γ̂þ

AΨ†
vψ
ðpþ · σÞpj þ Γ̂−

AΨ†
vψ
ðp− · σÞpj;

ðB7Þ
respectively. In this equation, Γ̂s

Aψ̄Ψv
and Γ̂s

AΨ†
vψ

(s ¼ σ;þ;−) are arbitrary scalar functions of p and q.
It should be noted that we have not included terms
proportional to qj in Eq. (B7) because such terms will
disappear due to the transversality as in Eq. (A7). Inserting
Eqs. (B7) and (B6) into Eq. (B3) and after some algebraic
calculation, Γ̂s

Aψ̄Ψv
and Γ̂s

AΨ†
vψ

are found to be

Γ̂σ
Aψ̄Ψv

¼ Δ�ðeq þ eQÞ
ðp · pþÞ
2jpj3 þ ðp · qÞΓ̂−

Aψ̄Ψv
;

Γ̂þ
Aψ̄Ψv

¼ −Δ�ðeq þ eQÞ
1

2jpj3 − Γ̂−
Aψ̄Ψv

; ðB8Þ

and

Γ̂σ
AΨ†

vψ
¼ −Δðeq þ eQÞ

ðp · p−Þ
2jpj3 − ðp · qÞΓ̂þ

AΨ†
vψ
;

Γ̂−
AΨ†

vψ
¼ Δðeq þ eQÞ

1

2jpj3 − Γ̂þ
AΨ†

vψ
; ðB9Þ

respectively. As found in Eqs. (B8) and (B9), it seems that
all Γ̂s

Aψ̄Ψv
and Γ̂s

AΨ†
vψ

cannot be fixed uniquely, which means

that the integration constant remains as a free parameter.
To summarize the above calculation, the corrected

vertices satisfying the identities (33) and (34) which survive
under a magnetic field are

Γμ
Aψ̄Ψv

¼ Δ�ðeq þ eQÞ
2jpj3 δμj

�
0

ðpþ · pÞσj − ðpþ · σÞpj

�

þ δμjΓ̂−
Aψ̄Ψv

�
0

ðp · qÞσj − ðq · σÞpj

�
; ðB10Þ

and

Γμ

AΨ†
vψ

¼ −
Δðeq þ eQÞ

2jpj3 δμjð 0 ðp− · pÞσj − ðp− · σÞpj Þ

− δμjΓ̂þ
AΨ†

vψ
ð 0 ðp · qÞσj − ðq · σÞpj Þ: ðB11Þ

APPENDIX C: THE STATIC AND
DYNAMICAL LIMITS FOR

CORRECTED-VERTEX PARTS Π̃δH

Here, we show detailed evaluation of the HQSP response
functions in the dynamical and static limits from the
corrected-vertex parts Π̃δHðq0; qÞ in Eq. (52).
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As done in Sec. IVA for Π̃0Hðq0; qÞ, we expand
Π̃δHðq0; qÞ in terms of a small momentum q. For
Π̃δHðq0; qÞ, the kinetic factor originating from the spin
couplings between the fermions is proportional to
ðp� · pÞðp̂� · qÞ. This factor is expanded as

ðpþ · pÞðp̂þ · qÞ ¼ jpjðp · qÞ � 1

2
jpjjqj2 þOðq3Þ; ðC1Þ

which is of Oðq1Þ, unlike that for the bare-vertex parts in
Eq. (59) of Oðq2Þ. Hence, we may need to expand the
numerators and denominators of I ζζ0

δH�ðpþ; p−Þ in Eq. (53)
up to of Oðq2Þ.
Keeping in mind the above remarks, after a lengthy but

straightforward calculation, Π̃ζζ0
δHðiω̄n; qÞ for the intraband

and interband processes with a small momentum q are
reduced to

Πζζ
δHðqÞ ≈ −Δ

ðêq þ êQÞNc

2

Z
d3p
ð2πÞ3

1

jpj3
VζðpÞWζðpÞjpj þ ½∂VζðpÞ

∂jpj WζðpÞ − VζðpÞ ∂WζðpÞ
∂jpj �ðp · q̂Þ2

q0 −
∂Eζ

p

∂jpj ðp̂ · qÞ
∂fFðEζ

pÞ
∂jpj ðp̂ · qÞ; ðC2Þ

and

Πζζ0
δHðqÞ ≈ Δ

ðêq þ êQÞNc

2

Z
d3p
ð2πÞ3

1

2jpj3
1

q0 − Eζ
p þ Eζ0

p

	
ðfFðEζ0

p Þ − fFðEζ
pÞÞ
�
ðVζðpÞWζ0 ðpÞ þWζðpÞVζ0 ðpÞÞjpj

þ
�∂VζðpÞ

∂jpj Wζ0 ðpÞ þWζðpÞ
∂Vζ0 ðpÞ
∂jpj −

∂WζðpÞ
∂jpj Vζ0 ðpÞ − VζðpÞ

∂Wζ0 ðpÞ
∂jpj

�
ðp · q̂Þ2

�
−
��∂fFðEζ0

p Þ
∂jpj þ ∂fFðEζ

pÞ
∂jpj

�

−
1

q0 − Eζ
p þ Eζ0

p

�∂Eζ
p

∂jpj þ
∂Eζ0

p

∂jpj
�
ðfFðEζ0

p Þ − fFðEζ
pÞÞ
�
ðVζðpÞWζ0 ðpÞ −WζðpÞVζ0 ðpÞÞðp · q̂Þ2



; ðC3Þ

respectively. It should be noted that unfamiliar contributions including 1=ðq0 − Eζ
p þ Eζ0

p Þ2 appear in Eq. (C3). They cause
divergences for higher q0 which cannot be removed by the UV cutoff Λ. Taking low momentum limits properly in Eq. (C2),
the response functions from the corrected-vertex parts for the intraband processes in the dynamical and static limits read

lim
q0→0

Π̃ζζ
δHðq0; 0Þ ¼ 0; ðC4Þ

and

lim
q→0

Π̃ζζ
δHð0; qÞ ¼ Δ

ðêq þ êQÞNc

2

Z
Λ

0

djpj
2π2

�
VζðpÞWζðpÞ þ

�∂VζðpÞ
∂jpj WζðpÞ − VζðpÞ

∂WζðpÞ
∂jpj

� jpj
3

� ∂fFðEζ
pÞ

∂Eζ
p

; ðC5Þ

respectively. The vanishing result in the dynamical limit and the contributions proportional to ∂fFðEζ
pÞ=∂Eζ

p in the static
limit are the same as those from the bare-vertex parts. Similarly, from Eq. (C3), the response function for the interband
processes in the dynamical and static limits are evaluated as

lim
q→0

Π̃ζζ0
0Hð0; qÞ ¼ lim

q0→0
Π̃ζζ0

0Hðq0; 0Þ

¼ Δ
ðêq þ êQÞNc

2

Z
Λ

0

djpj
4π2

1

Eζ0
p − Eζ

p

	
ðfFðEζ0

p Þ− fFðEζ
pÞÞ
�
ðVζðpÞWζ0 ðpÞ þWζðpÞVζ0 ðpÞÞ

þ
�∂VζðpÞ

∂jpj Wζ0 ðpÞ þWζðpÞ
∂Vζ0 ðpÞ
∂jpj −

∂WζðpÞ
∂jpj Vζ0 ðpÞ− VζðpÞ

∂Wζ0 ðpÞ
∂jpj

� jpj
3

�
−
��∂fFðEζ0

p Þ
∂jpj þ ∂fFðEζ

pÞ
∂jpj

�

−
1

Eζ0
p − Eζ

p

�∂Eζ
p

∂jpj þ
∂Eζ0

p

∂jpj
�
ðfFðEζ0

p Þ − fFðEζ
pÞÞ
�
ðVζðpÞWζ0 ðpÞ −WζðpÞVζ0 ðpÞÞ

jpj
3



: ðC6Þ

Namely, similarly to the bare-vertex parts, the interband processes yield the identical results in the two limits.
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