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Using recent and updated world data on polarized structure functions g1 and g2 we perform an analysis
based on quantum chromodynamics (QCD) as a theory of strong interactions at next-next-to-leading-order
accuracy. We include also target mass corrections and higher twist effects to get more precise results in our
fitting procedure. To confirm the validity of our fitting results several sum rules are examined and we do a
comparison for them with results from other models. In our analysis we employ the Jacobi polynomials
approach to obtain analytical solutions of the Dokshitzer-Gribov-LipatovAltarelli-Parisi evolution
equations for parton distribution functions (PDFs). Using the extracted PDFs from our data analysis as
input, we also compute the x- and pT-dependence of some transverse momentum dependence PDFs in
polarized case, based on covariant parton model. These functions are naively even time-reversal at twist-
two approximation. The results for transverse momentum dependences indicate proper and acceptable
behavior with respect to what are presented in other literatures.
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I. INTRODUCTION

The determination of the nucleon’s spin into its quark and
gluon components is still an important challenge in particle
physics. The deep-inelastic scattering (DIS) experiments
performed at DESY, SLAC, CERN, and JLAB have refined
our understanding of the spin distributions and revealed
the spin-dependent structure functions of the nucleon. The
polarized structure functions g1ðx;Q2Þ and g2ðx;Q2Þ are
measured in deep-inelastic scattering of a longitudinally
polarized lepton on polarized nuclear targets. We do the
required analysis on the polarized structure function to extract
the desired parton densities at the initial energy scale, Q0.
In exact consideration of inclusive processes it is

required to take into account the distributions in which
the role of transverse momentum is embedded. These
distributions are known as transverse momentum depen-
dent (TMD) distributions. TMDs are the generalization of
PDFs which provide us an extensive knowledge to

investigate the hadron structure function. In a native parton
model in which the effect of transverse momentum of a
quark is not outstanding, there is a proper computational
frame which is called the infinite momentum frame (IMF)
[1,2]. In this frame the target (nucleon) is moving fast,
comparable to speed of light and because of Lorentz
contraction the nucleon seems like a flat disc. In this case
one can imagine a transverse space position of quark inside
the disk with respect to the moving direction of the target.
This space coordinate is called the impact parameter and
is denoted usually by bT. Corresponding to the impact
parameter in coordinate space we can attribute to a quark
inside the target a transverse momentum, kT , that is
perpendicular to moving direction of nucleon. This
momentum component is ignorable against the quark
longitudinal momentum. This model then gives oversim-
plified relations between structure and distribution func-
tions. In an another model, which is called the covariant
parton model (CPM) [3], more exact but much more
complex relations between structure and distribution func-
tions are given. The original assumptions of this model are
based on covariance of relations together with a spherically
symmetric quark momenta distribution in the nucleon rest
frame where one photon exchange is used in a charged
lepton-quark interaction. The output of this model is such
that the quark transverse momentum is as important as the
longitudinal one and the transverse momentum depend-
ences of parton densities are obtained analytically [4].
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The extended PDF is then describing the parton dis-
tribution with respect to both x and kT variables. In other
words quarks can have transverse momentum with respect to
the motion of the parent hadron. The transverse momentum
of parton at initial state and inside the parent hadron is called
the intrinsic transverse momentum, denoted by kT. In the
final state the transverse momentum of parton with respect to
the momentum of produced hadron is denoted by pT. TMDs
have outstanding effect on the momentum feature of
produced hadron. They also have a crucial role to describe
the spin asymmetry in produced hadron [5] by analysing the
semi inclusive DIS (SIDIS) processes [6,7]. To achieve the
three dimensional (3D) picture of nucleon, some processes
like SIDIS are required in which one can measure the
effect of transverse momentum of partons in created hadron.
It is therefore required to consider the spin dependence of
PDFs. Early applications to polarized structure functions
were made by [8–10].
The PDFs in the polarized case are two types. The first

one is related to the longitudinal polarized quark inside the
longitudinal polarized nucleon, denoted by g1ðxÞ that is
called helicity function. The second one is related to trans-
verse polarized quark inside the transverse polarized
nucleon, denoted by h1ðxÞ and is called the transversity
function. The type of polarization is determined with respect
to moving direction of nucleon. If the parton transverse
momentum as an extra degree of freedom is also considered
then total number of PDFs, involving polarized cases, are
arising to eight ones [11]. In this article the polarized TMDs

which are even time reversal functions, based on the
covariant parton model, are investigated.
The organization of this paper is as follows. In Sec. II an

overview on theoretical aspects of polarized structure
function is done. In Sec. III the theoretical framework of
Jacobi polynomials approach is reviewed. Section IV is
devoted to discussing the target mass correction for g1 and
g2 structure functions. Additionally, in Sec. V the higher
twist effect is demonstrated for polarized structure func-
tions. In Sec. VI, which includes also some subsections, we
illustrate our QCD data analysis which we call it as MA22
analysis. To get more validation of our MA22 results, we
examine in Sec. VII several sum rules. In Sec. VIII our
predictions for polarized PDFs and structure functions
are presented. Using the results of our MA22 analysis,
some polarized TMDs can be calculated. We do it in Sec. IX.
In the last part that is Sec. X our conclusions are given.

II. LEADING TWIST SPIN DEPENDENCE OF
STRUCTURE FUNCTION

To achieve the main goal of this article to calculate the
polarized TMDs we first need to consider the DIS structure
function in the polarized case. For this purpose linear
combination of polarized parton densities and coefficient
functions can be used to express the leading twist spin-
dependent proton and neutron structure functions,
gp1ðx;Q2Þ at the next-next-to-leading-order (NNLO) accu-
racy as it follows [12–14]:

gp1ðx;Q2Þ ¼ 1

2

X
q
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�
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2π
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�
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�
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�
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�
⊗ Δgðx;Q2Þ ð1Þ

HereΔqv,Δqs, andΔg are the polarized valence, sea, and
gluon densities, respectively. The pQCD evolution kernel
for PPDFs is now available at the NNLO accuracy in

Ref. [15–17]. The ΔCð1Þ
q and ΔCð1Þ

g in Eq. (1) are denoting
to the NLO spin-dependent quark and gluon hard scattering
coefficients, calculable in pQCD [18]. We now apply the
hard scattering coefficients, extracted at NNLO approxima-
tion. At this order the Wilson coefficients are different for
quarks and antiquarks. They are presented in Eq. (1) by

ΔCð2Þ
ns and ΔCð2Þ

s respectively and their analytical relations
have been reported in [19]. The symbol ⊗ in Eq. (1) is
representing typical convolution integral in Bjorken x-space.
The neutron structure function, gn1ðx;Q2Þ, can be

obtained from the proton one by considering isospin

symmetry. Hence the deuteron structure function at leading
twist would be available, utilizing the gp1 and gn1 structure
functions such as:

gτ2ðdÞ1 ðx;Q2Þ ¼ 1

2
fgp1ðx;Q2Þ þ gn1ðx;Q2Þg × ð1 − 1.5wDÞ;

ð2Þ

where wD ¼ 0.05� 0.01 is the probability to find the
deuteron in a D− state [20–22]. Using the Wandzura
and Wilczek (WW) relation [23] the leading twist polarized
structure function of gτ22 ðx;Q2Þ can be fully determined via
gτ21 ðx;Q2Þ structure function:
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gτ22 ðx;Q2Þ ¼ gWW
2 ðx;Q2Þ

¼ −gτ21 ðx;Q2Þ þ
Z

1

x

dy
y
gτ21 ðy;Q2Þ: ð3Þ

This relation that is in the leading twist approximation
can also be used when target mass correction (TMC) is
included [23].
The gτ21 ðx;Q2Þ and gτ22 ðx;Q2Þ structure functions at the

leading twist order have valid definition in the Bjorken
limit, i.e., Q2 → ∞, x ¼ fixed. But at the a moderate low
Q2 (∼1–5 GeV2) and W2ð4 GeV2 < W2 < 10 GeV2)
where W2 is the invariant mass of the hadronic system,
both TMC along with higher twist corrections should be
considered. We investigate them in Sec. IV and Sec. V.
The next section is devoted to illustrating the nucleon

and deuteron structure functions, based on the Jacobi
polynomial approach which yield us finally the evolved
functions in Bjorken x-space.

III. JACOBI POLYNOMIALS EXPANSION
TECHNIQUE

To achieve the nucleon structure function in Bjorken
x-space we resort to a method that is based on the Jacobi
polynomials expansion. Practical aspects of this method
including its major advantages are presented in our pre-
vious studies [12,13,24–29]. According to this method,
one can easily expand the polarized structure functions
xgQCD1 ðx;Q2Þ, in terms of the Jacobi polynomials Θα;β

n ðxÞ,
as it follows [30–42],

xgτ21 ðx;Q2Þ ¼ xβð1 − xÞα
XNmax

n¼0

anðQ2ÞΘα;β
n ðxÞ; ð4Þ

where Nmax is the maximum order of expansion. The
parameters α and β are Jacobi polynomials free parameters
which normally fixed on their best values. These param-
eters have to be chosen so as to achieve the fastest
convergence of the series on the right-hand side of
Eq. (4). In the polynomial fitting procedure, the evolution
equation is combined with the truncated series to perform a
direct fit to the structure functions.
The Jacobi moments, anðQ2Þ are codifying the Q2-

dependence of the polarized structure functions. The
x-dependence will be provided by the weight function
wα;βðxÞ≡ xβð1 − xÞα and the Jacobi polynomials Θα;β

n ðxÞ
which can be written as,

Θα;β
n ðxÞ ¼

Xn
j¼0

cðnÞj ðα; βÞxj; ð5Þ

where the coefficients cðnÞj ðα; βÞ are combinations of
Gamma functions in terms of n, α, and β. The above

Jacobi polynomials are satisfying the following orthonor-
mality condition:

Z
1

0

dxxβð1 − xÞαΘα;β
n ðxÞΘα;β

l ðxÞ ¼ δn;l: ð6Þ

Consequently the Jacobi moments, anðQ2Þ, can be
obtained, using the above relation such as,

anðQ2Þ ¼
Z

1

0

dxxgτ21 ðx;Q2ÞΘα;β
n ðxÞ

¼
Xn
j¼0

cðnÞj ðα; βÞM½xgτ21 ; jþ 2�ðQ2Þ; ð7Þ

where the Mellin transform M½xgτ21 ;N� is given by,

M½xgτ21 ;N�ðQ2Þ≡
Z

1

0

dxxN−2xgτ21 ðx;Q2Þ: ð8Þ

Using the QCD expressions for the Mellin moments,
M½xgτ21 ;N�ðQ2Þ, the polarized structure function
xgτ21 ðx;Q2Þ, can be constructed. Therefore, based on the
method of Jacobi polynomial expansion, the xgτ21 ðx;Q2Þ is
given by:

xgτ21 ðx;Q2Þ ¼ xβð1 − xÞα
XNmax

n¼0

Θα;β
n ðxÞ

×
Xn
j¼0

cðnÞj ðα; βÞM½xgτ21 ; jþ 2�ðQ2Þ: ð9Þ

By setting Nmax ¼ 9, α ¼ 3, and β ¼ 0.5, as we have
shown in our previous analyses [12,13,24–29], it is possible
to obtain the optimal convergence of above expansion
through the whole kinematic region that is constrained by
the polarized DIS data.
In the next section we improve our analysis of DIS

polarized data, considering the TMC correction to the
nucleon structure functions.

IV. TARGET MASS CORRECTIONS
IN POLARIZED CASE

Power suppressed corrections to the structure
functions can have important contributions in some kin-
ematic regions. Hence nucleon mass correction cannot be
neglected in low Q2 region. The TMCs can be calculated
via an expression which is different from higher twist (HT)
effects in dynamical case. In the case of polarized structure
function we follow the suggested method by Blumlein and
Tkabladze [43] which is in fact the generalized one that was
established by Georgi and Politzer [44] for the unpolarized
structure function.
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Mellin inversion to x-space or the integer moments of
structure function can be used to present these corrections.
Leading twist-two expression for g1, that is containing
TMC, is given explicitly by [43]:

gτ2þTMCs
1 ðx;Q2Þ

¼ xgτ21 ðξ;Q2;M ¼ 0Þ
ξð1þ 4M2x2=Q2Þ3=2

þ 4M2x2

Q2

ðxþ ξÞ
ξð1þ 4M2x2=Q2Þ2

Z
1

ξ

dξ0

ξ0
gτ21 ðξ0;Q2;M ¼ 0Þ

−
4M2x2

Q2

ð2− 4M2x2=Q2Þ
2ð1þ 4M2x2=Q2Þ5=2

×
Z

1

ξ

dξ0

ξ0

Z
1

ξ0

dξ00

ξ00
gτ21 ðξ00;Q2;M ¼ 0Þ: ð10Þ

The twist-two contribution for the g2 structure function,
including TMC is similarly presented by [43]:

gτ2þTMCs
2 ðx;Q2Þ

¼ −
xgτ21 ðξ; Q2;M ¼ 0Þ
ξð1þ 4M2x2=Q2Þ3=2

þ xð1 − 4M2xξ=Q2Þ
ξð1þ 4M2x2=Q2Þ2

Z
1

ξ

dξ0

ξ0
gτ21 ðξ0; Q2;M ¼ 0Þ

þ 3

2

4M2x2=Q2

ð1þ 4M2x2=Q2Þ5=2

×
Z

1

ξ

dξ0

ξ0

Z
1

ξ0

dξ00

ξ00
gτ21 ðξ00; Q2;M ¼ 0Þ; ð11Þ

Numerical illustrations for the target mass effects in g1 and
g2 have been given in [45]. In both above equations M is the
nucleon mass and ξ is called Nachtmann variable that is
defined by [46]:

ξ ¼ 2x

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p : ð12Þ

It can be seen that by choosing the maximum value for
the x-Bjorken variable, the maximum kinematic value of ξ
variable would be less than unity. This means that the target
mass corrected structure functions at leading twist in both
the polarized and unpolarized cases, as it is expected, do
not vanish at maximum x ¼ 1 value.
As we referred before, in addition to target mass

correction, higher twist effects would also be dominant
at low Q2 values and make a contribution to nucleon
structure function in a related kinematic region. The next
section is devoted to these effects.

V. TWIST-THREE CONTRIBUTION

The long-range nonperturbative multiparton correlations
which have outstanding contributions at low values of Q2

will lead to higher twist (HT) terms. A proper analysis of
this effect can be found in [47]. For a developing phe-
nomenological analysis an advantageous parametrization
is made by the Braun-Lautenschlager-Manashov-Pirnay
(BLMP) model [48] for HT terms. Following that HT
distributions are constructed from convolution integrals
that are containing light-cone wave functions. In this
connection a simple model based on three valence quark
and one gluon distributions with the total zero angular
momentum are assumed.
Accordingly, we utilize the parametrized form, suggested

by the BLMP model at the twist-three order for g2 structure
function in an initial scale Q0 as it follows [48,49]:

gτ32 ðxÞ ¼ A

�
lnðxÞ þ ð1 − xÞ þ 1

2
ð1 − xÞ2

�

þ ð1 − xÞ3½B − Cð1 − xÞ þDð1 − xÞ2
− Eð1 − xÞ3�: ð13Þ

The unknown coefficients in Eq. (13) are extracted by fitting
the data. Since higher twist contributions are important in a
region with large-x values, a nonsinglet evolution equation
is employed. The results of this approach can be compared
with exact evolution equations where a gluon-quark-
antiquark correlation is considered [48]. It is expected that
these two results are in good agreement with each other.
The twist-three part of different spin-dependent structure

functions, gτ31 and gτ32 , are related by the following integral
relation [43].

gτ31 ðx;Q2Þ ¼ 4x2M2

Q2

�
gτ32 ðx;Q2Þ − 2

Z
1

x

dy
y
gτ32 ðy;Q2Þ

�
;

ð14Þ

The Q2-dependence of the gτ32 can be achieved within
nonsinglet perturbative QCD evolution as

gτ32 ðn;Q2Þ ¼ MNSðn;Q2Þgτ32 ðnÞ: ð15Þ

Finally the spin-dependent structure functions, considering
the TMCs and HT terms are given by,

xg1;2Full¼pQCDþTMCþHTðx;Q2Þ
¼ xgτ2þTMCs

1;2 ðx;Q2Þ þ xgτ31;2ðx;Q2Þ: ð16Þ

One of the particular feature of xgFull1;2 ðx;Q2Þ function is
that the twist-three term is not suppressed there by inverse
powers of Q2. Consequently, to describe this function this
contribution is as important as the twist-two contribution.
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Since the required theoretical inputs are accessed by us,
we now can do the concerned data analysis which is done in
the next section.

VI. FITTING CONTENTS IN QCD ANALYSIS

The fitting procedure, including the recent and updated
data for polarized structure functions which we do in our
QCD analysis, contain the following parts.

A. Parametrization

We start the QCD analysis considering the following
parametrization at the initial scale of Q2

0 ¼ 1 GeV2 where
q ¼ fuv; dv; q̄; gg:

xΔqðx;Q2
0Þ ¼ N qηqxaqð1 − xÞbqð1þ cqxÞ: ð17Þ

The normalization constant N q,

N −1
q ¼

�
1þ cq

aq
aq þ bq þ 1

�
Bðaq; bq þ 1Þ; ð18Þ

is determined such that ηq in Eq. (17) is the first moment of
the polarized parton distribution functions (PPDFs). Here
Bða; bÞ is the Euler beta function. Considering SU(3) flavor
symmetry, we assume Δq̄≡ Δū ¼ Δd̄ ¼ Δs ¼ Δs̄.
The unknown free parameters can be extracted through a

fit which involves a large degree of flexibility. Some of
parameters can be determined via the existing constrains, as
describing in below:

(i) The weak matrix elements F and D as measured in
neutron and hyperon β decays [50] can be related to
the first moments of the polarized valence quark
densities. Considering these constrains, the numeri-
cal values ηuv ¼ 0.928� 0.014 and ηdv ¼ −0.342�
0.018 are obtained.

(ii) Due to the present accuracy of the data, the cq̄ and cg
parameters are set to zero. Considering nonzero
values for them, there would not be observed any
improvement in the fit.

(iii) The large-x behavior of the polarized sea quarks and
gluons are controlled by bq̄ and bg parameters. In a
region that is dominated by the valence distributions,
these parameters have large uncertainties.

(iv) Due to higher twist effect to the g2;fp;n;dg and
consequently g1;fp;n;dg, there are unknown parame-
ters fA;B; C;D; Eg, see Eq. (13). By a simultaneous
fit to the all polarized structure function data of g1
and g2, these parameters can be determined.

(v) The values of some parameters are frozen in the first
minimization procedure. They involve fηuv ; ηdv ; cq̄;
cgg and finally the b parameter. As demonstrated in
Tables I and II the fbq̄; bg; cuv ; cdvg and fA;B;C;
D; Eg parameters are then fixed in the second
minimization. Nine unknown parameters, including

αsðQ2
0Þ, are left which are determined in the fit. They

have enough flexibility to perform a reliable fit.
(vi) The numerical value αsðM2

ZÞ¼0.112804�0.001907
would be achieved in which we changed the energy
scale in αsðQ2

0Þ to the Z boson mass. It is while for the
present world average, the value αsðM2

ZÞ ¼ 0.1179�
8.5 × 10−6 is reported [51].

To extract the unknown parameters, it needs
access to all available concerned datasets which we
describe below.

B. Overview of datasets

In our recent analysis which we call it MA22 we focus
on the polarized DIS data samples. The required DIS data
for all PPDFs are coming from the experiments at electron-
proton collider and also in fixed-target including proton,
neutron and heavier targets such as deuteron.

TABLE I. Final parameter values and their statistical errors at
the input scale Q2

0 ¼ 1 GeV2 determined from two different
global analyses.

Parameters Full scenario pQCD scenario

δuv ηuv 0.928a 0.928a

auv 0.898� 0.022 0.277� 0.0072
buv 3.218� 0.035 2.725� 0.029
cuv 3.88a 28.95a

δdv ηdv −0.342a −0.342a

adv 0.217� 0.027 0.150� 0.012
bdv 2.947� 1.45 2.591� 0.087
cdv 9.335a 31.75a

δq̄ ηq̄ −0.0288� 0.002 −0.0356� 0.0033
aq̄ 1.227� 0.068 1.991� 0.041
bq̄ 3.364a 11.163a

cq̄ 0.0a 0.0a

δg ηg 0.0921� 0.022 0.178� 0.014
ag 10.2� 1.22 26.33� 0.49
bg 46.32a 99.95a

cg 0.0a 0.0a

αsðQ2
0Þ 0.3362� 0.002 0.4688� 0.0008

χ2=ndf 1111.789=957 ¼ 1.161 1580.751=957 ¼ 1.651
aThose marked with (*) are fixed.

TABLE II. Parameter values for the coefficients of the twist-
three corrections at Q2 ¼ 1 GeV2 obtained in the full scenario.

A B C D E

gtw−32;p 0.0879 1.0196 −0.8832 −2.3765 2.4234

gtw−32;n 1.0086 0.3009 −0.6583 0.3466 −2.7571
gtw−32;d 0.8878 1.3430 −2.1334 0.1878 2.2293
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Although it is not possible to separate quarks from
antiquarks, nonetheless it is the inclusive DIS data that are
included in the fit. Additionally we take into our MA22
fitting procedure the g2 structure function. Due to the
technical difficulty in operating the required transversely
polarized target, these data have been traditionally
neglected before.
One of the important quantities which is used as a criteria

to indicate the validation of fit, is the chi-square (χ2) test
which is assessing the goodness of fit between observed
values and those expected theoretically. We discuss it in the
following subsection.

C. χ 2 minimization

The χ2globalðpÞ quantifies the goodness of fit to the data for
a set of p independent parameters. To determine the best fit,
it is needed to minimize the χ2global function with the free
unknown parameters. We do it for PPDFs at the NNLO
approximation which additionally includes the QCD cut off
parameter,ΛQCD which finally specifies the polarized PDFs
at Q2

0 ¼ 1 GeV2.
This function is presented as it follows:

χ2globalðpÞ ¼
XNexp

n¼1

wnχ
2
n: ð19Þ

In this equation, wn is a weight factor for the nth experi-
ment and χ2n is defined by:

χ2nðpÞ ¼
�
1 −N n

ΔN n

�
2

þ
XNdata

n

i¼1

�N ng
Exp
ð1;2Þ;i − gTheoryð1;2Þ;i ðpÞ
N nΔg

Exp
ð1;2Þ;i

�2

:

ð20Þ

The minimization of the above χ2globalðpÞ function is done
using the CERN program library MINUIT [75]. In the above
equation, the main contribution comes from the difference
between the model and the DIS data within the statistical
precision. In the χ2n function, gTheory indicates the theoreti-
cal value for the ith data point and gExp, ΔgExp represent the
experimental measurement and the experimental uncer-
tainty (statistical and systematic combined in quadrature)
respectively.
To do a proper fit an over normalization factor for the

data of experiment n is needed which is denoted byN n. An
uncertainty ΔN n is attributed to this factor which should
be considered in the fit. These factors, considering the
uncertainties, quoted by the experiments are used to relate
different experimental datasets. In fact they are taken as free
parameters which are determined simultaneously with
the other parameters in the fit. They are obtained in the
prefitting procedure and then fixed at their best values
in further steps. Numerical results for the unknown

parameters, resulted from χ2 minimization, are listed in
Tables I and II. Different datasets which are used in the fit,
are presented in Table III.
Now we are at the stage to do some analytical compu-

tations for a more confirmation of the fitting validation,
taken into account the several sum rules as we do it in the
next section.

VII. THE SUM RULES

Sum rules like total momentum fraction carried by
partons or the total contribution of parton spin to the spin
of the nucleon are important tools to investigate some
fundamental properties of the nucleon structure. Inclusion
of TMCs and HT terms into the NNLO polarized structure
function analysis leads to an improvement for the precision
of PPDF determination as well as QCD sum rules and we
are exploring herein their effects. In what are following by
utilizing available experimental data, we describe some
important polarized sum rules.

A. Bjorken sum rule

The polarized Bjorken sum rule expresses the integral
over the spin distributions of quarks inside the nucleon in
terms of its axial charge, gA (as measured in neutron β
decay), times a coefficient function, CBj½αsðQ2Þ� [76],
and considering higher twist (HT) corrections, it is
given by

ΓNS
1 ðQ2Þ ¼ Γp

1 ðQ2Þ − Γn
1ðQ2Þ

¼
Z

1

0

½gp1 ðx;Q2Þ − gn1ðx;Q2Þ�dx

¼ 1

6
jgAjCBj½αsðQ2Þ� þ HT corrections: ð21Þ

Bjorken sum rule potentially provides a very precise handle
on the αs as strong coupling constant. The value of
coupling can be extracted via CBj½αsðQ2Þ� expression from
experimental data. This function has been calculated in
four-loop pQCD corrections in the massless [77] and very
recently massive cases [78]. As previously reported in
Ref. [79], determination of αs from the Bjorken sum rule
suffers from small-x extrapolation ambiguities.
The αs is also available form accurate methods to

compute the width decay of τ-lepton and the Z-boson into
hadrons [80,81]. An important test of QCD consistency can
be offered by comparing these values.
Our results for the Bjorken sum rule can be compared

with experimental measurements such as E143 [52], SMC
[74], HERMES06 [57] and COMPASS16 [59]. The com-
parisons indicate an adequate consistency as we list them
in Table IV.
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TABLE III. Summary of published polarized DIS experimental data points with measured x and Q2 ranges and the number of data
points.

Experiment References [xmin, xmax] Q2 (GeV2) Number of data points χ2 N i

SLAC/E143(p) [52] [0.031–0.749] 1.27–9.52 28 19.0218 0.99705
HERMES(p) [53] [0.028–0.66] 1.01–7.36 39 55.2816 0.99982
SMC(p) [54] [0.005–0.480] 1.30–58.0 12 8.9328 1.00009
EMC(p) [55] [0.015–0.466] 3.50–29.5 10 3.8416 1.00592
SLAC/E155 [56] [0.015–0.750] 1.22–34.72 24 41.7453 0.99915
HERMES06(p) [57] [0.026–0.731] 1.12–14.29 51 21.0559 0.99915
COMPASS10(p) [58] [0.005–0.568] 1.10–62.10 15 23.1003 1.00073
COMPASS16(p) [59] [0.0035–0.575] 1.03–96.1 54 52.6140 1.00296
SLAC/E143(p) [52] [0.031–0.749] 2-3-5 84 122.0060 0.99578
HERMES(p) [53] [0.023–0.66] 2.5 20 35.2073 0.99726
SMC(p) [54] [0.003–0.4] 10 12 14.8138 1.00071
Jlab06(p) [60] [0.3771–0.9086] 3.48–4.96 70 99.6438 1.00127
Jlab17(p) [61] [0.37696–0.94585] 3.01503–5.75676 82 171.5716 1.00282

gp1 501

SLAC/E143(d) [52] [0.031–0.749] 1.27–9.52 28 38.3735 1.00210
SLAC/E155(d) [62] [0.015–0.750] 1.22–34.79 24 20.0319 1.00228
SMC(d) [54] [0.005–0.479] 1.30–54.80 12 18.3574 1.00006
HERMES06(d) [57] [0.026–0.731] 1.12–14.29 51 44.4642 1.00654
COMPASS05(d) [63] [0.0051–0.4740] 1.18–47.5 11 7.3430 1.00760
COMPASS06(d) [64] [0.0046–0.566] 1.10–55.3 15 8.4408 1.00052
COMPASS17(d) [65] [0.0045–0.569] 1.03–74.1 43 36.2019 1.01090
SLAC/E143(d) [52] [0.031–0.749] 2–3–5 84 127.5502 0.99981

gd1 268

SLAC/E142(n) [66] [0.035–0.466] 1.10–5.50 8 8.0235 0.99881
HERMES(n) [53] [0.033–0.464] 1.22–5.25 9 2.7585 0.99995
E154(n) [67] [0.017–0.564] 1.20–15.00 17 14.6888 0.99908
HERMES06(n) [68] [0.026–0.731] 1.12–14.29 51 18.1873 0.99913
Jlab03(n) [69] [0.14–0.22] 1.09–1.46 4 1.803e-2 0.99950
Jlab04(n) [70] [0.33–0.60] 2.71–4.8 3 2.2174 1.05642
Jlab05(n) [71] [0.19–0.20] 1.13–1.34 2 3.2639 0.98666

gn1 94

E143(p) [52] [0.038–0.595] 1.49–8.85 12 7.1338 1.00074
E155(p) [72] [0.038–0.780] 1.1–8.4 8 11.9908 0.99886
Hermes12(p) [73] [0.039–0.678] 1.09–10.35 20 22.6010 0.99898
SMC(p) [74] [0.010–0.378] 1.36–17.07 6 1.6804 1.00000

gp2 46

E143(d) [52] [0.038–0.595] 1.49–8.86 12 8.3504 1.00010
E155(d) [72] [0.038–0.780] 1.1–8.2 8 1.9800 1.00296

gd2 20

E143(n) [52] [0.038–0.595] 1.49–8.86 12 8.87903 1.00001
E155(n) [72] [0.038–0.780] 1.1–8.8 8 6.0324 1.01893
E142(n) [66] [0.036–0.466] 1.1–5.5 8 3.8955 0.99999
Jlab03(n) [69] [0.14–0.22] 1.09–1.46 4 0.9362 0.99337
Jlab04(n) [70] [0.33–0.60] 2.71–4.83 3 3.9915 1.10299
Jlab05(n) [71] [0.19–0.20] 1.13–1.34 2 15.5600 0.98986

gn2 37

Total 966 1111.7891
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B. Proton helicity sum rule

This sum rule is related to the extrapolation of proton
spin among its constituents that is completing our knowl-
edge in the field of nuclear physics [82]. An accurate
picture of the quark and gluon helicity density are obtained,
considering proton’s momentum sum rule that needs a
precise extraction of PPDFs.
The spin of the nucleon is carried by its constituents that

is generally represented by

1

2
¼ 1

2
ΔΣðQ2Þ þ ΔGðQ2Þ þ LðQ2Þ: ð22Þ

Here ΔΣðQ2Þ ¼ P
i

R
1
0 dxðΔqðx; Q2Þ þ Δq̄ðx; Q2ÞÞ

denotes spin contribution of the singlet flavor,
ΔGðQ2Þ ¼ R

1
0 dxΔgðx;Q2Þ is interpreted as the gluon spin

contribution and finally LðQ2Þ represents the total con-
tribution from quark and gluon orbital angular momentum.
Each individual term in Eq. (22) is a function of Q2 but
the sum is not. Finding a way to measure them is a real
challenge. Describing the measurement methods is the
beyond the scope of this paper.
In Table V the amount of first moment for the singlet-

quark and gluon are listed at Q2 ¼ 10 GeV2. Our results
are compared to those from the NNPDFpol1.0 [83],
NNPDFpol1.1 [84] and DSSV08 [85] at both truncated
and full x region.
In Table VI our results, MA22, are presented and

compared with the results of DSSV08 [85], BB10 [47],
LSS10 [86], NNPDFpol1.0 [83] and KTA17 [13] at
Q2 ¼ 4 GeV2.
As can be seen from the Tables V and VI for the ΔΣ,

our MA22 results are consistent, within uncertainty, with

those of other groups. It is back to this reason that the first
moment of polarized densities are mainly fixed by semi-
leptonic decays. Very different values are reported by
various groups when we turn to the gluon. Considering
their large uncertainty are avoiding us to reach a firm
conclusion about the full first moment of gluon.
Based on the extracted values presented in Table VI we

can finally discuss the proton spin sum rule. Hence the
amount of quark and gluon orbital angular momentum to
the spin of the proton would be

LðQ2 ¼ 4 GeV2Þ ¼ 0.3591� 0.0779: ð23Þ

A definite conclusion about the contribution of the total
orbital angular momentum to the spin of the proton can not
be done because of the large uncertainty that is mainly
originating from the gluons. To obtain a precise determi-
nation of each individual contribution, it is required to
improve the current level of experimental accuracy.

C. The twist-three reduced matrix element d2
One of the quantities which is not considered as a sum

rule but its numerical evaluation is remarkable to inves-
tigate the higher twist effect is the twist-three reduced
matrix element and is denoted by d2. Details of higher twist
analyses for g1 polarized structure function have been
performed in [47]. In operator product expansion (OPE)
theorem [87] the effect of quark-gluon correlations can
be studied through the moments of g1 and g2 structure
functions. These moments lead to definition of reduced
matrix element, d2ðQ2Þ, as it follows

TABLE IV. Comparison our computed MA22 result for the Bjorken sum rule, ΓNS
1 , with world data from E143 [52], SMC [74],

HERMES06 [57] and COMPASS16 [59]. Only HERMES06 [57] results are not extrapolated in full x range (measured in region
0.021 ≤ x ≤ 0.9).

E143 [52]
Q2 ¼ 5 GeV2

SMC [74]
Q2 ¼ 5 GeV2

HERMES06 [57]
Q2 ¼ 5 GeV2

COMPASS16 [59]
Q2 ¼ 3 GeV2

KTA17 [13]
Q2 ¼ 5 GeV2

MA22
Q2 ¼ 5 GeV2

ΓNS
1

0.164� 0.021 0.181� 0.035 0.148� 0.017 0.181� 0.008 0.167� 0.005 0.171� 0.001

TABLE V. Results for the full and truncated first moments of the polarized singlet-quark ΔΣðQ2Þ ¼ P
i

R
1
0 dx½ΔqiðxÞ þ Δq̄iðxÞ� and

gluon distributions at the scale Q2 ¼ 10 GeV2 in the MS–scheme. The recent polarized global analysis of NNPDFpol1.0 [83],
NNPDFpol1.1 [84], and DSSV08 [85] are also shown.

DSSV08 [85] NNPDFpol1.0 [83] NNPDFpol1.1 [84] KTA17 [13] MA22

Full x region [0, 1]
ΔΣðQ2Þ 0.242 þ0.16� 0.30 þ0.18� 0.21 0.2587� 0.044 0.2445� 0.0048
ΔGðQ2Þ −0.084 −0.95� 3.87 0.03� 3.24 0.2104� 0.034 0.1205� 0.03

Truncated x region [10−3; 1]
ΔΣðQ2Þ 0.366� 0.017 þ0.23� 0.15 þ0.25� 0.10 0.2661� 0.038 0.2551� 0.0066
ΔGðQ2Þ 0.013� 0.182 −0.06� 1.12 0.49� 0.75 0.2104� 0.034 0.1205� 0.03
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d2ðQ2Þ ¼ 3

Z
1

0

x2ḡ2ðx;Q2Þdx

¼
Z

1

0

x2½3g2ðx;Q2Þ þ 2g1ðx;Q2Þ�dx: ð24Þ

In this equation ḡ2 ¼ g2 − gWW
2 where gWW

2 is given by the
Wandzura and Wilczek (WW) relation as in Eq. (3). The
d2ðQ2Þ that is in fact the twist-three reduced matrix element
of spin dependent operators in the nucleon can be used
to measure the deviation of g2 from gτ22 . Due to the x2

weighting factor in Eq. (24), this matrix element is
especially sensitive to the large-x behavior of ḡ2. Some
insights into the size of the multiparton correlation terms
can be obtained by extracting the d2 which indicates its
important.
The significance of higher twist terms in QCD analyses

is revealed by having nonzero value for d2. To achieve
precise information on the higher twist operators and to
improve model prediction, a much more accurate exper-
imental measurement for d2 is required. In Table VII we
present our results for d2 which are compared with the other
theoretical predictions and also experimental values.

D. Burkhardt-Cottingham (BC) sum rule

Considering dispersion relations for virtual Compton
scattering in all Q2, Burkhardt and Cottingham predicted
that the zeroth moment of g2 goes to zero [95] such as:

Γ2 ¼
Z

1

0

dxg2ðx;Q2Þ ¼ 0: ð25Þ

This relation is called Burkhardt-Cottingham (BC) sum rule
and is trivial consequence of the WW relation for gτ22 [see
Eq. (3)]. It should be noted that zeroth moment of structure
function does not exist in the light cone expansion and
hence cannot be described by local operator product
expansion [96]. Even if the target mass corrected structure
function is used, this sum rule is still established [43].
Consequently any violation of the BC sum rule is an
evidence for the presence of HT contributions [73].
Our MA22 results for Γ2 together with data from

E143 [52], E155 [72], HERMES2012 [73], RSS [97],
E01012 [89] groups for proton, deuteron, and neutron are
listed in Table VIII. The low-x behavior of g2 which is not
yet precisely measured, has considerable effect on any
conclusion which we might be get.
The BC sum rule can be obtained analytically from the

covariant parton model as it is discussed in [98].

E. Efremov-Leader-Teryaev (ELT) sum rule

Considering the valence part of g1 and g2 structure
functions and integrating them over x variable the Efremov-
Leader-Teryaev (ELT) sum rule is obtained. The ELT sum
rule is derived like the Bjorken sum rule since the sea
quarks are assumed to be identical in protons and neutrons.
Hence it appears as:

TABLE VI. Same as Table V, but only for the full first moments of the polarized singlet-quark and gluon distributions at the scale
Q2

0 ¼ 4 GeV2 in the MS–scheme. Those of DSSV08 [85], BB10 [47], LSS10 [86] and NNPDFpol1.0 [83] are presented for
comparison.

DSSV08 [85] BB10 [47] LSS10 [86] NNPDFpol1.0 [83] KTA17 [13] MA22

ΔΣðQ2Þ 0.245 0.193� 0.075 0.207� 0.034 0.18� 0.20 0.1774� 0.029 0.2607� 0.0065
ΔGðQ2Þ −0.096 0.462� 0.430 0.316� 0.190 −0.9� 4.2 0.1882� 0.0294 0.1095� 0.027

TABLE VII. d2 moments of the proton, neutron and deuteron polarized structure functions from the SLAC E155x [88], E01-012 [89],
E06-014 [90], Lattice QCD [91], CM bag model [92], JAM15 [93], JAM13 [94], KTA17 [13] compared with MA22 results.

References Q2 [GeV2] 102dp2 105dn2 103dd2

MA22 5 1.0929� 0.0106 209.095� 3.96 7.206� 0.078
KTA17 [13] 5 0.718� 0.01 105.36� 74.58 5.16� 0.02
E06-014 [90] 3.21 −421.0� 79.0� 82.0� 8.0 � � �
E06-014 [90] 4.32 −35.0� 83.0� 69.0� 7.0 � � �
E01-012 [89] 3 � � � −117� 88� 138 � � �
E155x [72] 5 0.32� 0.17 790� 480 � � �
E143 [52] 5 0.58� 0.50 500� 2100 5.1� 9.2
Lattice QCD [91] 5 0.4(5) −100ð−300Þ � � �
CM bag model [92] 5 1.74 −253 6.79
JAM15 [93] 1 0.5� 0.2 −100� 100 � � �
JAM13 [94] 5 1.1� 0.2 200� 300 � � �
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Z
1

0

dxx½gV1 ðxÞþ 2gV2 ðxÞ�

¼
Z

1

0

dxx½gp1 ðxÞ− gn1ðxÞþ 2ðgp2 ðxÞ− gn2ðxÞÞ� ¼ 0: ð26Þ

This sum rule is only valid in the case of massless quarks
and receives corrections from the quark mass but under
presence of target mass corrections is preserved [96]. Like
the BC sum rule, the ELT sum rule can be obtained by
analytical considerations of CPM. More details can be
found in [98].
By combining the data of E143 [52] and E155 [72] the

numerical value for this sum rule at Q2 ¼ 5 GeV2 is
−0.011� 0.008 and what we obtain at the same energy
scale would be 0.01017� 0.00004.

VIII. COMPARISON FOR THE SPIN
STRUCTURE FUNCTIONS

Since our QCD analysis has been validated by extracting
the PPDFs via the fitting processes and also obtaining their
evolved outputs and in continuation by considering several
sum rules, we are now at the position to investigate the
polarized structure functions. In this regard, we first back to
what we got before. Our results, MA22 PPDFs, as a
function of x at Q2

0 ¼ 1 GeV2 along with the corresponding
uncertainty bounds, is presented in Fig. 1.
The evolution of MA22 polarized parton distributions

for a selection of Q2 values indicates in Fig. 2 while for
comparison various parametrizations of KTA17 [13],
KATAO11 [24], TKAA16 [12], NAAMY21 [29] at the
NLO approximation are illustrated there. It is seen that by
increasingQ2, except for the gluon density, the evolution of
all distributions tends to flatten out the peak.
Now for the structure functions, we see that in different

panels of Fig. 3, our MA22 predictions for the polarized
structure functions of the proton xgp1 ðx;Q2Þ, neutron
xgn1ðx;Q2Þ and deuteron xgd1ðx;Q2Þ are compared with
respect to the fixed-target DIS experimental data from
E143. As we mentioned, MA22 refers to “pQCD+TMC
+HT” scenario, that is called full scenario. The results from
KATAO11 analysis in NLO approximation [24], TKAA16
analysis in NNLO approximation [12], KTA17 analysis in
NNLO approximation [13], THK14 analysis in NLO

approximation [100] and finally NAAMY21 analysis in
NLO approximation [29] are also depicted there. We find
our results are in good agreement with the experimental
data and in accord with other determinations over the entire
range of x at Q2 ¼ 5 GeV2.
Further illustrations of the fit quality are presented in

different panels of Fig. 4, for the xgi¼p;n;d
2 ðx;Q2Þ polarized

TABLE VIII. Comparison of the result of BC sum rule for Γp
2 , Γd

2 , and Γn
2 with world data from E143 [52], E155 [72], HERMES2012

[73], RSS [97], E01012 [89].

E143 [52]
0.03 ≤ x ≤ 1

Q2 ¼ 5 GeV2

E155 [72]
0.02 ≤ x ≤ 0.8
Q2 ¼ 5 GeV2

HERMES2012 [73]
0.023 ≤ x ≤ 0.9
Q2 ¼ 5 GeV2

RSS [97]
0.316 < x < 0.823
Q2 ¼ 1.28 GeV2

E01012 [89]
0 ≤ x ≤ 1

Q2 ¼ 3 GeV2

KTA17 [13]
0.03 ≤ x ≤ 1

Q2 ¼ 5 GeV2

MA22
0.03 ≤ x ≤ 1

Q2 ¼ 5 GeV2

Γp
2 −0.014� 0.028 −0.044� 0.008 0.006� 0.029 −0.0006� 0.0022 � � � −0.0196� 0.0011 −0.01554� 0.00033

Γd
2

−0.034� 0.082 −0.008� 0.012 � � � −0.0090� 0.0026 � � � −0.0036� 0.0005 −0.00401� 0.00006

Γn
2 � � � � � � � � � −0.0092� 0.0035 0.00015� 0.00113 0.0060� 0.0001 0.00721� 0.00033
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FIG. 1. Our MA22 results for the polarized PDFs at Q2
0 ¼

1 GeV2 as a function of x in the NNLO approximation. It is
indicated by a solid curve along with their Δχ2 ¼ 1 uncertainty
bands which is computed, based on the Hessian approach [99].
The recent results of TKAA16 (dashed-dotted) [12] is also shown
in the NNLO approximation without inclusion of HT terms and
TMCs. Additionally the KTA17(dashed) [13] in the NNLO
approximation is presented including the HT terms and TMCs.
The KATAO11(dashed-dotted-dotted) in the NLO approximation
[24] is furthermore indicated. Finally the results of NAAMY21
(dashed-dashed-dotted) [29] in the NLO approximation is also
plotted.
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structure functions, obtained from Eq. (16). In comparison
with the g1 data, the g2 data have generally larger
uncertainties which indicates the lack of knowledge for
the g2 structure function. At the current level of accuracy,
MA22 is in agreement with data within their uncertainties.
We need a large number of data with higher precision to
get a precise quantitative extraction of the xg2ðx;Q2Þ. In
fact we concentrate on the general characteristic of the
xg2ðx;Q2Þ structure function.
Figure 5 is presenting our MA22 prediction for the

polarized structure functions of the proton, xgp1 ðx;Q2Þ
while a comparison with the fixed-target DIS experimental
data from JLAB17 [61] is done there.
Figure 6 represents our xgτ31 ðx;Q2Þ with the results from

LSS [101] and JAM [94] groups. Analysis of the LSS group
is based on splitting the measured x region into seven bins
to determine the HT correction to g1. The HT contribution
has been extracted by LSS group in a model-independent
way while its scale dependence is ignored. On the other
side an analytical form for the twist-three part of g2 is
parametrized by the JAM group where using integral
relation of Eq. (14) they calculated gτ31 at the NLO accuracy
in a global fit.
E143 collaboration at SLAC reported the twist-three

contribution to proton spin structure function xgp2 structure
function with relatively large errors [52]. We employ them
and present our MA22 results for twist-three part of g2 in
Fig. 7 which are accompanied with those of JAM [94] and
BLMP [48] groups.
However, within experimental precision the g2 data

are well described by the twist-two contribution but the
precision of the current data is not sufficient enough to

distinguish model precision. Hence we compute twist-
three part of g2 for different targets and depict them
in Fig. 8 which has significant contribution even at large
Q2 values.
In continuation to have a comparison, we compute the

xgτ31 and indicate them in Fig. 9. We find that these
functions vanish rapidly at Q2 > 5 GeV2 where in the
limit of Q2 →;∞, the xgτ32 remains nonzero.
Up here we focused on longitudinal polarized parton

densities and structure functions. In next section we utilize
our MA22 analysis which we have done before to illustrate
the transversal case which are including the polar-
ized TMDs.
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FIG. 2. Our results, MA22 polarized parton distributions as a
function of x and for some selected value of Q2 ¼ 10, 100 GeV2.
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FIG. 3. The spin-dependent proton, neutron, and deuteron
structure functions as a function of x and Q2. Our results,
MA22, at the NNLO approximation (solid curve) are compared
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IX. PREDICTIONS FOR POLARIZED TMDs

Since we achieved to sufficient information on longi-
tudinal polarized parton distributions and structure func-
tion, we are now at a situation to utilize the covariant parton
model [4,102] and extract the transverse momentum
dependent (TMD) distributions in polarized case. Indeed

TMDs provide us new insight toward a more complete
understanding of the quark-gluon structure in a nucleon
[103–109]. Without a more accurate and realistic picture in
three dimensions of the nucleon which includes naturally
transverse motion, it would be hard to explain some
experimental observations. In fact TMDs provide such
pictures and their necessities feel more and more in nucleon
investigations.
The first and simplest example of quark TMD is

fq1ðx; kTÞ. It arises when an unpolarized beam scatters
off an unpolarized target hadron, and therefore does not
carry quark/hadron spin information. The function
fq1ðx; kTÞ provides the probability that a beam particle
strikes a target quark of momentum fraction x and

FIG. 4. The spin-dependent proton, neutron and deuteron
structure functions, xg2, as a function of x and Q2. Our results,
MA22, at the NNLO approximation (solid curve) are compared
with KTA17 at the same approximation (dashed) [13].
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transverse momentum kT . It is related to the traditional DIS
PDF fq1ðxÞ by

R
d2kTf

q
1ðx; kTÞ ¼ fq1ðxÞ.

Similarly to fq1ðx; kTÞ, we get the gq1ðx; kTÞ as longi-
tudinal polarized TMD and hq1ðx; kTÞ as transverse

polarized TMD, whose integrals are denoted respectively
by gq1ðxÞ [presented before by ΔqiðxÞ] and hq1ðxÞ that we
know them as quark longitudinal polarized (helicity)
distribution and the quark transversity distribution.
In addition to the three above TMDs for quarks which are

direct extension of the DIS PDFs, there are five other quark
TMDs which depend not only on the magnitude of kT , but
also on its direction. Therefore these TMDs vanish if simply
integrated over kT, and do not directly connect to DIS PDFs.
They are
(1) The Sivers distribution f⊥;q

1T which expresses, in a
transversely polarized hadron, the asymmetric dis-
tribution of the quark transverse momentum, pz,
around the center of the px and py plane [110]. The
appearance of azimuthal asymmetric quark distri-
bution in the transverse momentum space is often
called the “Sivers effect.” This TMD has opposite
signs in semi-inclusive DIS (SIDIS) with respect to
Drell-Yan processes and it is therefore an odd time
reversal function(T-odd function).

(2) The Boer-Mulders function h⊥;q
1 ðx; kTÞ characterizes

the distribution of longitudinal polarized quarks in
an unpolarized hadron [111]. It is also a T-odd
function, like f⊥;q

1T . The rest tree TMDs are
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(3) Function h⊥;q
1T ðx; kTÞ which is describing a trans-

verse polarized quark inside a transverse polarized
nucleon while its direction is perpendicular to a
polarized nucleon. It is called the pretzelosity
function.

(4) Function g⊥;q
1T ðx; kTÞ that is describing the longi-

tudinal polarized quark inside a transverse polarized
nucleon and is named as Worm-gear-I function.
And finally:

(5) Worm-gear-II function, denoted by h⊥;q
1L ðx; kTÞ and

is describing the transverse polarized quark inside a
longitudinal polarized nucleon,

Similarly to quark TMDs, gluon TMDs allow access to
the gluonic orbital angular momentum, another possibly
important contribution to the nucleon spin. Just as
there are eight TMDs for quarks, there are eight gluon
TMDs [112]. Gluon TMDs were first proposed in
2001 [113].
Here we only consider the quark TMDs that are twist-

two naively and time-reversal even (T-even) functions.
They have been extracted via the covariant parton model
(CPM) which is based on the Lorentz invariance and the
assumption of a rotationally symmetric distribution of
parton momenta in the nucleon rest frame [114]. From
now on to liken and equalize the symbol for transverse
momentum with other literatures, we utilize pT instead
of kT .
As a result of CPM, T-even polarized TMDs can be

obtained at the leading twist approximation, in terms
of a single “generating function” Kqðx;pTÞ. They are
given by [115,116]

gq1ðx;pTÞ ¼
1

2x

��
xþ m

M

�
2

−
p2
T

M2

�
× Kqðx;pTÞ;

hq1ðx;pTÞ ¼
1

2x

�
xþ m

M

�
2

× Kqðx;pTÞ;

g⊥;q
1T ðx;pTÞ ¼

1

x

�
xþ m

M

�
× Kqðx;pTÞ;

h⊥;q
1L ðx;pTÞ ¼ −

1

x

�
xþ m

M

�
× Kqðx;pTÞ;

h⊥;q
1T ðx;pTÞ ¼ −

1

x
× Kqðx;pTÞ: ð27Þ

According to [114]) Kqðx;pTÞ as generating function is
defined in compact notation by

Kqðx;pTÞ ¼ M2x
Z

dfp1g ð28Þ

dfp1g≡ dp1

p0

Hqðp0Þ
p0 þm

δ

�
p0 þ p1

M
− x

�
: ð29Þ

It can be shown that due to rotational symmetry the
following relations hold [115]:

Kqðx;pTÞ ¼ M2
Hqðp̄0Þ
p̄0 þm

; p̄0 ¼ 1

2
xM

�
1þ p2

T þm2

x2M2

�
;

ð30Þ

πx2M3Hq

�
M
2
x

�
¼ 2

Z
1

x

dy
y
gq1ðyÞ þ 3gq1ðxÞ − x

dgq1ðxÞ
dx

:

ð31Þ
In deriving Eq. (31) the limit m → 0 has been taken.
Consequently the following result in that limit would be
obtained for the generating function [115]:

Kqðx;pTÞ ¼
HqðM

2
ξÞ

M
2
ξ

¼ 2

πξ3M4

�
2

Z
1

ξ

dy
y
gq1ðyÞ þ 3gq1ðξÞ− x

dgq1ðξÞ
dξ

�
;

ξ ¼ x

�
1þ p2

T

x2M2

�
: ð32Þ

Substituting the above relations in Eq. (27), the following
result for the gq1ðx;pTÞ would be obtained:

gq1ðx;pTÞ ¼
2x − ξ

πξ3M3

�
2

Z
1

ξ

dy
y
gq1ðyÞ þ 3gq1ðξÞ − ξ

dgq1ðξÞ
dξ

�
:

ð33Þ
Based on above relation and using the MA22 analysis which
we did in this paper for gq1ðxÞ at 4 GeV2 in the NNLO
approximation, we could obtain the result for gq1ðx;pTÞ
which has been shown in Fig. 10 for u and d quarks.
Using Eq. (27) and in the limit m → 0 the other TMDs

can be obtained. They are presented in below which which
are different by simple x-dependent prefactors [115]:

hq1ðx;pTÞ ¼
x
2
Kqðx;pTÞ;

g⊥;q
1T ðx;pTÞ ¼ Kqðx;pTÞ;

h⊥;q
1T ðx;pTÞ ¼ −

1

x
Kqðx;pTÞ: ð34Þ

The result for hq1ðx;pTÞ is depicted in Fig. 11. In Fig. 12 the
result for g⊥q

1T with respect to x and pT=M is shown. It does
not need to plot h⊥q

1L since in the used approach this TMD is
equal to −g⊥q

1T [114]. As can be seen from Fig. 10, gq1ðx;pTÞ
is the only TMD which has positive and negative values.
The other TMDs in other figures do not change sign which
follows from Eqs. (27), (34).
We should note that among all TMDs, as we see from

Fig. 13, h⊥q
1T ðx;pTÞ as the pretzelosity function has the

largest absolute value which is due to the prefactor 1=x.
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This function has its own worth since in some quark
models [117,118], including the utilized approach in
[119,120], this function is related to quark orbital angular
momentum.
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X. CONCLUSIONS

Determining the nucleon spin structure functions
g1ðx;Q2Þ and g2ðx;Q2Þ and their moments is the main
goal of our present MA22 analysis. They are essential to
test QCD sum rules and to evaluate the TMDs.We provided
a unified and consistent PPDF through an achievement,
containing an excellent description of the fitted data while
we employed TMC and HT effects in our analysis. Within
the known very large uncertainties arising from the lack of
constraining data, our helicity distributions are in good
consistency with other extractions. Here the TMCs and
HT effects, which are relevant in the region of low Q2,
have also been studied for the several sum rules at the
NNLO approximation. Our results for the reduced matrix
element d2 at the NNLO approximation have also been
presented. We also studied Burkhardt-Cottinghan and
Efremov-Leader-Teryaev sum rules. To scrutinize them,
more accurate data are needed.
Finally we studied the behavior of the TMD structure

functions which are time-reversal even with respect to x and
pT=M variables at the NNLO approximation, based on
the covariant parton model. Our MA22 results, containing
analysis of up to date and last data on nucleon spin structure
functions, with respect to what we did in [13], can be
compared with the results from [115] which indicated
adequate and acceptable behaviors.
This study can be extended to include other TMDS while

higher twist effect is employed. We hope to report on this
issue in our further research.

The available data which we use in our recent analysis
are up to date and including more data than we employed in

our pervious analysis [13]. In fact we use all available gp1
data from E143, HERMES98, SMC, EMC, E155,
HERMES06, COMPASS10, COMPASS16, JLAB06, and
JLAB17 experiments [52–61], and gn1 data from
HERMES98, E142, E154, HERMES06, Jlab03, Jlab04,
and Jlab05 [53,66–71] and finally the gd1 data from E143,
SMC, HERMES06, E155, COMPASS05, COMPASS06,
and COMPASS17 [52,54,57,62–65]. The DIS data for
gp;n;d2 from E143, E142, Jlab03, Jlab04, Jlab05, E155,
Hermes12, and SMC [52,66,69–74] also are included.
These datasets are summarized in Table III. The kinematic
coverage, the number of data points for each given target,
and the fitted normalization shiftsN i also presented in this
table. Our MA22 analysis algorithm computes the Q2

evolution and extracts the structure function in x space
using Jacobi polynomials approach. It corresponds to the
fitting programs on the market which solve the Dokshitzer-
Gribov-LipatovAltarelli-Parisi (DGLAP) evolution equa-
tions in the Mellin space.
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