
Dense matter equation of state and phase transitions from a generalized
Skyrme model

Christoph Adam , Alberto García Martín-Caro , Miguel Huidobro , and Ricardo Vázquez
Departamento de Física de Partículas, Universidad de Santiago de Compostela

and Instituto Galego de Física de Altas Enerxias (IGFAE) E-15782 Santiago de Compostela, Spain

Andrzej Wereszczynski
Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków, Poland

(Received 25 January 2022; accepted 31 March 2022; published 22 April 2022)

Skyrmion crystals are the field configurations which minimize the energy per baryon in the infinitely
large topological charge sector of the Skyrme model, at least for sufficiently high density. They are,
therefore, an important tool to describe the ground state of cold, symmetric nuclear matter at high density
regimes. In this work, we analyze different crystalline phases and the existence of phase transitions between
them within the generalized Skyrme model, with the ultimate goal of describing symmetric nuclear matter
in a wide regime of densities. Furthermore, we propose a new energy-minimizing phase for densities lower
than the nuclear saturation point (n0) that also presents a good qualitative behavior in the zero density limit,
thereby improving the description of strongly interacting matter in the region n < n0.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the non-Abelian
gauge theory that describes strongly interacting matter in
terms of its fundamental degrees of freedom, namely quark
and gluon fields. Despite the great success of QCD at high
energy scales, in which it becomes a weakly interacting
theory, its nonperturbative character at the low energy scale
makes calculations of nucleons and nuclear matter proper-
ties extremely difficult, and other alternatives to the usual
perturbative approach must be considered, like lattice QCD
or phenomenological nuclear physics models, such as the
Skyrme model [1].
Similarly to other effective approaches to strongly

interacting matter, like chiral perturbation theory (ChPT)
of relativistic mean-field theory, the basic fields of the
Skyrme model are given by the fields that provide the
physical, asymptotic particle states, concretely the meson
fields. At variance with ChPT, however, a chiral expansion
in powers of the typical momentum or energy of a physical
process is not assumed. Instead, terms in the Lagrangian
with different scaling dimensions are treated on an equal
footing, allowing for a balance between oppositely scaling
terms and evading the Derrick theorem [2]. As a

consequence of this balance, it is sufficient to introduce
the mesonic fields as the basic degrees of freedom (d.o.f.),
because the baryons emerge as collective excitations or
topological solitons (“skyrmions”) from the nonlinear
interactions of the mesons [3]. The Skyrme model was,
in fact, originally proposed by T. Skyrme in 1961 precisely
with the aim of describing baryons within a self-interacting
pion field theory. The Skyrme model differs in this respect
from both ChPT and relativistic mean-field theory, where
the baryons must be introduced as independent d.o.f..
Furthermore, both the conservation of baryon number—
which is identified with the topological charge of the
skyrmions—and the extended character of baryons are
built-in properties of the Skyrme model.
Later, it was shown that QCD in the large Nc (the

number of colors) limit reduces to a weakly interacting
mesonic field theory in which baryons share the properties
of topological solitons [4,5]. Independent support for the
Skyrme model is provided by its derivation from holo-
graphic QCD, both for the original [6,7] and for the
generalized Skyrme model [8].
First attempts of reproducing the properties of nucleons

and nuclei within the Skyrme model were partially suc-
cessful, but with a typical precision of only about 30%. In
addition, there remained some relevant discrepancies, like
the too large nuclear binding energies and the shell-like
matter distribution of the Skyrme model solutions [9].
Recent results, however, demonstrate that both a quantiza-
tion procedure beyond the rigid rotor approximation and
the addition of new terms in the Skyrme Lagrangian can
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solve many of these problems [10–14] and lead to much
more precise results. Concretely, generalized Skyrme
models that lead to realistic binding energies are discussed,
e.g., in [10–13], whereas in [14] it is demonstrated that the
inclusion of the rho meson allows us to find the known
cluster structures of light nuclei. Finally, in [15,16], the
excitation spectra of carbon-12 and oxigen-16 are repro-
duced with an astonishing precision where, in the latter
case, the quantization of both rotational and vibrational
d.o.f. has been taken into account. There has also been
important progress in the Skyrme model description of the
nucleon-nucleon forces [17].
On the other hand, neutron stars (NSs) have become our

most useful resource for studying the behavior of nuclear
matter at ultrahigh densities [18]. Indeed, with the advent of
gravitational wave astronomy, a deeper insight in the
equation of state (EOS) of strongly interacting matter
has been provided by recent gravitational wave events
involving binary neutron star mergers [19]. Despite the
large theoretical and observational effort employed in the
last decades, the EOS of nuclear matter at a range of
densities much higher than the nuclear saturation density is
still not fully understood. From all the different approaches
to the study of dense nuclear matter, the Skyrme model
stands out as a relatively simple effective model with a low
number of free parameters. Moreover, an equation of state
based on this model (and its generalization) has been
recently proposed in [20] and shown to yield reasonable
results in predicting the properties of neutron stars such as
the mass-radius relations or the quasiuniversal relations
between the moment of inertia, the deformability and the
quadrupolar moment of slowly rotating and tidally
deformed stars [21,22].
However, the EOS proposed in [20] was based on the

interpolation between two different submodels of the
general Skyrme model, namely, the standard Skyrme
model, that predicts a crystalline state of the dense nuclear
matter, and the BPS (Bogomol'nyi-Prasad-Sommerfield)
submodel, in which matter behaves as a perfect fluid [23].
The transition between the crystal and fluid phases was
modeled as a smooth crossover, where an additional free
parameter describing the point at which the transition takes
place had to be introduced.
Moreover, within the Skyrme model literature it has been

established that the configurations that minimize the energy
per baryon at large baryon number correspond to crystalline
solutions, in which skyrmions (or half-skyrmions, see
Sec. III) are arranged in a periodic fashion respecting some
particular (discrete) symmetries. Indeed, configurations
with different symmetries and energies have been proposed
in order to find the one with minimal energy. However,
some symmetries could be more energetically favourable
than others at different density regimes. This is indeed what
was found for the standard Skyrme model in [24], in which
the existence of a phase transition between different
crystalline configurations is predicted at a certain density.

In the present paper, our goal is to construct different
solutions both of crystalline and noncrystalline types of the
full generalized Skyrme model and to study their behavior
for a wide range of densities. The main aim is to determine
which configurations minimize the energy per baryon in the
different regimes, and to find the corresponding EOS. The
resulting classical skyrmionic matter and its EOS should
provide an interesting starting point for the description of
strongly interacting matter. For a completely realistic
description, however, most likely further modifications
like quantum corrections or the effects of additional fields
have to be taken into account.
This paper is organized as follows: in the second section

we introduce the general Skyrme model, from which we
will construct the crystalline solutions. In the third section
we review the procedure of how to construct crystal-like
solutions following [25] and calculate the resulting crystal
solutions of the general Skyrme model for different
densities. In Sec. IV, we study the problem of the
inhomogeneous phase for nuclear matter at intermediate
densities, in which the skyrmion crystal ceases to be a good
ansatz for the field, as the energy per baryon starts to grow.
Then we use these solutions to obtain an EOS for classical
skyrmionic matter. Finally we end with some conclusions
and possible future directions. We always assume units
such that the speed of light c ¼ 1. Further, we use the
mostly minus metric convention.

II. GENERALIZED SKYRME LAGRANGIAN

The general Skyrme model is described by the following
Lagrangian density,

L ¼ LSk þ LBPS ¼ ðL2 þ L4Þ þ ðL6 þ L0Þ

¼ −
f2π
16

TrfLμLμg þ 1

32e2
Trf½Lμ; Lν�2g

− λ2π4BμBμ þm2
πf2π
8

TrfU − Ig: ð1Þ

Apart from the specific choice for the potential term L0—
the pion mass term—which could be replaced by a more
general expression, the above Lagrangian density is the
most general one in terms of the pion field only which is
both Poincare invariant and at most quadratic in time
derivatives, such that a standard Hamiltonian can be
defined.
We find it useful to regroup the full generalized model L

into the standard part LSk and the BPS part LBPS, because
some solutions of these submodels for large baryon number
B are relatively simple and have been widely studied,
which will allow us to compare our full solutions to these
limiting cases. The second part LBPS is a BPS model, i.e., it
has solutions saturating the corresponding Bogomol’nyi
energy bound [10]. The Lagrangian has three free param-
eters (fπ; e; λ2) that will be used to fit the ground state of the
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solutions. The pion mass is set to its physical value
mπ ¼ 140 MeV. This model represents the dynamics of
a SUð2Þ field U, which always appears in the Lagrangian
in terms of the Maurer-Cartan left-invariant current
Lμ ¼ U†∂μU, except for the potential term L0. Static
configurations of the field U constitute maps from R3 to
the target space manifold, which can be identified with the
three sphere S3.
For usual solitonic configurations, the requirement of

finite energy implies that the field must take values in the
vacuum manifold at spatial infinity, which, due to the
potential term, corresponds to Uðjxj → ∞Þ ¼ I. This
boundary condition, in turn, implies that finite energy
configurations correspond to mappings from one-point
compactified real space, R3 ∪ f∞g ∼ S3 to S3. These maps
are classified by the third homotopy group of S3,
π3ðS3Þ ¼ Z, so they can be labeled by an integer.
Hence, the Skyrme model allows for topological soliton
solutions, called skyrmions, carrying an integer valued
charge. This integer, the so-called topological degree, is
identified with the baryon number B, and can be calculated
as an integral of the topologically conserved current Bμ:

B ¼
Z

d3B0; Bμ ¼ 1

24π2
ϵμναβTrfLνLαLβg; ð2Þ

which is the same expressions that appears in the sextic
term (L6) of the Lagrangian (1).
Solutions of the standard Skyrme model in the B ¼ 1

sector with [26] and without pion mass term [27], and
including the contributions from the zero mode quantiza-
tion, have been found to reproduce the nucleon properties
reasonably well. Later, these calculations were extended for
higher values of B [28] within the rational map approxi-
mation. This has also be done in the BPS model [29,30],
obtaining quite accurate results according to experimental
data, and with no approximation since the symmetries of
the BPS model allow an analytical treatment of the
solutions. The generalized Skyrme Lagrangian (1) was
used to reproduce nucleons as well [31]. These last results
will be compared to the ones we obtain from the condition
to reproduce infinite nuclear matter.
To describe NS, on the other hand, we need to find

solutions for B of the order of B ∼ 1057, the number of
baryons in the Sun. Then, we should think about how
skyrmions arrange under these conditions. It was Klebanov
[24] who proposed a kind of crystalline solution with the
aim of describing the highly compressed interiors of
neutron stars. As usual, when considering crystalline
configurations, we will define a unit cell for each symmetry
and work with it. Hence, in order to describe these
solutions, we may define the Skyrme fields as mappings
from the finite size unit cell (which has finite energy) to the
target manifold.

We would like to remark that, although the boundary
conditions imposed on the Skyrme fields are different from
those of regular solitonic solutions, the topological proper-
ties of the field configurations remain the same. Indeed, a
cubic lattice with periodic boundary conditions is math-
ematically equivalent to a three torus, T3, so that crystalline
configurations are described by mapsUcrystal∶ T3 → S3. As
T3 is still a compact and oriented manifold, mappings from
T3 to S3 are still characterized by their topological degree,
as ensured by Hopf’s degree theorem [32].
Then, in the standard Skyrme model, the solution that

minimizes the energy is a crystalline configuration. On the
other hand, we know that the BPS model solutions behave
like a perfect fluid, due to the symmetry under volume
preserving diffeomorphisms of LBPS (in fact, one can
exactly identify the field configurations in the BPS sub-
model LBPS with a perfect fluid, as can be shown from a
careful analysis of the corresponding stress-energy tensor
[10]). However, since the sextic term is only important at
high densities [20], we expect that the crystal solution is
still the ground state solution in the generalized Skyrme
Lagrangian.
In order to construct Skyrme crystal solutions it is useful

to define dimensionless units of length and energy
(r⃗ ¼ ðx; y; zÞt)

r⃗ ¼ 1

fπe
⃗r̃; E ¼ 3π2fπ

e
Ẽ: ð3Þ

These units are frequently used in the Skyrme model, so
they are useful to compare the results. It is commonly
known that the energy of the B ¼ 1 skyrmion in the
standard Skyrme model is Ẽ ¼ 1.23, whereas the topo-
logical (Skyrme-Faddeev) bound [3,33] on the energy reads
Ẽ ≥ 1 in these units.
The field U can be parametrized as an expansion in the

SUð2Þ Lie algebra generators:

U ¼ σ þ iπkτk; ð4Þ

where the πk (k ¼ 1, 2, 3) represent the pions, τk are the
Pauli matrices, and the fields satisfy the unitarity condition
σ2 þ πiπi ¼ 1. Wewill work with static solutions ∂0U ¼ 0,
then the energy is simply E ¼ −

R
d3xL. Inserting (4) in (1)

and (2) we can calculate the energy and the baryon number:

Ẽ ¼ 1

24π2

Z
d3x̃

�
−
1

2
TrfLiLig −

1

4
Trf½Li; Lj�2g

þ 8λ2π4f2πe4B0B0 þ m2
π

f2πe2
TrfI −Ug

�

¼ 1

24π2

Z
d3x̃½∂ina∂ina þ ð∂ina∂jnb − ∂inb∂jnaÞ2

þ C6ðϵabcdna∂1nb∂2nc∂3ndÞ2 þ C0ð1 − σÞ�; ð5Þ
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B ¼ −
1

2π2

Z
d3x̃ϵabcdna∂1nb∂2nc∂3nd; ð6Þ

where we have defined the unit vector na ¼ ðσ; πiÞ, and the
constants C6 ¼ 2λ2f2πe4, C0 ¼ 2m2

π

f2πe2
.

III. CRYSTAL SOLUTIONS IN THE SKYRME
MODEL

Two B ¼ 1 skyrmions are in the maximally attractive
channel if the second skyrmion is isorotated by π relatively
to the first one, about an axis perpendicular to the distance
vector between the two skyrmions. It can be checked easily
that the maximally attractive orientation of skyrmions can
be extended to a cubic arrangement, such that all skyrmions
forming the cubic lattice are maximally attracted by all their
nearest neighbors. This led Klebanov [24] to consider a
Skyrme crystal based on an infinite periodic lattice with
cubic symmetry. At low densities, the solution is described
by spherically symmetric skyrmions located in the corners
of the cube. The fact that nearest neighbors must be
mutually isorotated to be in the maximally attractive
channel translates into a particular set of symmetries for
the field in the unit cell (simple cubic and periodic) that
must be imposed. Then, the solution is found by minimiz-
ing the static energy functional (5).
Most Skyrme crystal calculations have been performed

for the standard Skyrme model LSk. We shall, therefore,
briefly review these crystals and their symmetries before
presenting our own results. In all cases, skyrmions (or half-
skyrmions) are located at the vertices of a cubic lattice, and
we call the distance between two nearest neighbors L (or L̃
in dimensionless units). The Skyrme fields, however, are
not periodic under a lattice translation by L, because of the
necessity to isorotate nearest neighbors. They are, however,
periodic for 2L translations. The unit cell of the crystal is,
therefore, a cube with sidelength 2L (or 2L̃) in all cases.
The total energy of a crystal is infinite since it is, by

construction, infinitely extended. Nevertheless, the energy
per baryon number (here Ẽcell is the dimensionless energy
of the unit cell, and Ncells is its baryon number),

Ẽ
B
¼ NcellsẼcell

NcellsBcell
; ð7Þ

remains finite. Then we can work with a single unit cell,
which has finite energy, and calculate its baryon number
and energy. The unit cell is characterized by the sidelength
2L̃, whereas its energy changes for different values of L̃.
The curve ẼðL̃Þ is always found to have a minimum Emin ¼
EðLminÞ for a certain finite Lmin, which for the case of the
cubic symmetry of [24] takes the value Ẽmin=B ¼ 1.08.
This value is only an 8% higher than the Skyrme-Faddeev
bound, which indicates that a crystalline arrangement of

skyrmions is probably the field configuration with lowest
energy (per baryon) for an infinite baryon number.
Different symmetries were computed to get closer to the

(unattainable) Skyrme-Faddeev bound. In [34], Manton
and Goldhaber proposed an additional symmetry to the
Klebanov crystal, motivated by the dynamics of the two-
skyrmion configuration. This introduced a new solution
based on half-skyrmions, which can be thought of as a
body-centered cubic (BCC) arrangement, in which one
half-skyrmion solution is located in the center of the cube
and the other half-skyrmions in the corners.
Finally, in two different but almost simultaneous papers

[25,35] a new phase was proposed. They computed a crystal
with face-centered cubic (FCC) symmetry of half-skyrmions
using two different approaches. The resulting crystal is
believed to be the crystal of lowest energy and is a good
candidate for the ground state of the standard Skyrme model
for infinite baryon number, with a minimal energy Emin per
baryon which is only 3.8% above the energy bound.
The influence of the sextic and potential terms in the

crystalline phases of the Skyrme model was already
investigated in [36] from a more formal point of view.
In our paper, we extend these studies, considering physical
values of the parameters of the Skyrme model and focusing
on the extraction of an equation of state for the ground state
of symmetric nuclear matter.
All the crystals mentioned above have the cubic sym-

metries in common. They are given by the following
combined transformations,

A1∶ ðx; y; zÞ→ ð−x; y; zÞ;
ðσ;π1;π2;π3Þ→ ðσ;−π1;π2;π3Þ; ð8Þ

A2∶ ðx; y; zÞ → ðy; z; xÞ;
ðσ; π1; π2; π3Þ → ðσ; π2; π3; π1Þ: ð9Þ

The simple cubic crystal of Klebanov has an additional
periodicity symmetry,

A3∶ ðx; y; zÞ → ðxþ L; y; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π2;−π3Þ: ð10Þ

This symmetry locates the center of the skyrmions in the
corners of the cube, isorotated with respect to their nearest
neighbours. Owing to the translational invariance of A3, the
energy and baryon densities are periodical in L. Since each
skyrmion contributes 1=8 to the baryon number and the
cube has eight corners, the baryon number of this cube is 1.
However, the fields are periodical in 2L (as follows from
the symmetry A3), and the unit cell is a cube of length 2L.
The BCC half-skyrmion phase shares the same sym-

metries of the simple cubic phase (A1, A2, A3), plus one
additional symmetry,
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B4∶ ðx; y; zÞ → ðL=2 − z; L=2 − y; L=2 − xÞ;
ðσ; π1; π2; π3Þ → ð−σ; π2; π1; π3Þ: ð11Þ

In this phase, the cube of length L has in its center a half
skyrmion (with σ ¼ −1 at the center) and eight other half
skyrmions (with σ ¼ þ1) in the corners. An interesting
result obtained from this half-skyrmion symmetry is that
the mean value of σ over the unit cell, denoted by hσi,
vanishes identically. From this property it is obvious that
the potential term in the Lagrangian will exactly scale as L3

in this phase (remember that L0 ∼ σ − 1). Again, the unit
cell has length 2L, therefore the integrals (5) and (6) are
performed between −L and L. It is easy to deduce that the
baryon number of the unit cell is 8. A typical energy density
plot is shown in Fig. 1, where blue regions correspond to
low density and yellow regions to high density.
The FCC symmetry of single skyrmions has two differ-

ent symmetries besides A1 and A2,

C3∶ ðx; y; zÞ → ðx; z;−yÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π3;−π2Þ; ð12Þ

C4∶ ðx; y; zÞ → ðxþ L; yþ L; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1;−π2; π3Þ: ð13Þ

The energy, baryon number and the fields are periodical
in 2L in this case, a typical plot is shown in Fig. 2.
The FCC half-skyrmion symmetry shares C3 and

additionally:

D4∶ ðx; y; zÞ → ðxþ L; y; zÞ;
ðσ; π1; π2; π3Þ → ð−σ;−π1; π2; π3Þ: ð14Þ

We can recover the FCC phase symmetry C4 applying
two D4 transformations. In this phase, the energy and
baryon number are periodic in L, but the fields have period
2L, and it has, in fact, the appearance of a simple cubic
phase of half-skyrmions, see Fig. 3. The baryon number per
unit cell ð2LÞ3 is Bcell ¼ 4 for both FCC crystals. Further,
as in the BCC phase, hσi vanishes, so the potential term

contribution is already known and scales like L3, like in the
BCC phase.
From now on we will refer to the FCC phase of half-

skyrmions as FCC½.
Following [25], we find that the cubic symmetries (8)

motivate the following Fourier-like expansion of the fields,

σ̄ ¼
X∞

a;b;c¼0

βabc cos

�
aπx
L

�
cos

�
bπy
L

�
cos

�
cπz
L

�
; ð15Þ

π̄1 ¼
X∞

h;k;l¼0

αhkl sin

�
hπx
L

�
cos

�
kπy
L

�
cos

�
lπz
L

�
: ð16Þ

Then, the fields π2 and π3 can be constructed applying the
transformation A2 on π1. The bars over the fields denote
that these fields do not satisfy the SUð2Þ condition, hence
we have to normalize them,

na ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̄2 þ π̄kπ̄k
p ðσ̄; π̄kÞ: ð17Þ

Once the particular symmetries of a crystalline ansatz
have been specified, the problem is reduced to a finite-
dimensional optimization problem for the coefficients βabc
and αhkl, which must be adequately chosen in order to
minimize the energy (5) of the solution. Furthermore the

FIG. 1. Energy contour plots for the unit cell of the BCC
crystal. The plots show energy density surfaces for different
heights within the unit cell.

FIG. 2. Energy contour plots for the unit cell of the FCC crystal
of skyrmions. The plots show energy density surfaces for
different heights within the unit cell. Here we choose z ¼
0; L=2; L for the heights because in this case also the energy
density has a 2L periodicity.

FIG. 3. Energy contour plots for the unit cell of the face-
centered cubic crystal of half-skyrmions (FCC½). The plots show
energy density surfaces for different heights within the unit cell.
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symmetry properties associated to each phase can be used
to reduce the number of independent parameters, since they
result in some constraints between the coefficients.
In the BCC phase, the following coefficients βabc and

αhkl may be nonzero

(i) h, k are odd, l is even.
(ii) a, b and c are even.
(iii) βabc ¼ βbca ¼ βcab.

(iv) αhkl ¼ −ð−1Þhþkþl
2 αkhl.

(v) βabc ¼ −ð−1Þaþbþc
2 βbac.

For both the FCC and the FCC½ phases, the following
coefficients are allowed

(i) h is odd, k and l are even.
(ii) a, b, c are all odd.

The FCC phase permits, in addition

(i) h is even, k and l are odd.
(ii) a, b, c are all even.

As we can see from these constraints, the FCC and FCC½
phases share many Fourier coefficients. The FCC phase,
however, has additional coefficients that are set to zero in
the half-skyrmion phase. FCC½ solutions are, therefore, at
the same time particular FCC solutions. This implies that
the ground state energy per baryon number of a FCC½
solution can never be smaller than the ground state energy
per baryon number of a FCC solution. The standard
Skyrme model LSk is compatible with the FCC½ sym-
metries (it respects the symmetry σ → −σ), so it allows
both for a FCC½ ground state which is symmetric with
respect to σ → −σ and for a FCC ground state with a
spontaneously broken symmetry. It turns out that for
sufficiently large L the FCC ground state is realized,
whereas the system settles in the more symmetric FCC½
ground state at higher densities. The two phases are
separated by a second-order phase transition at a certain
critical LPT, where the additional coefficients allowed by
FCC approach zero. The pion mass term, on the other hand,
is not compatible with the symmetry σ → −σ, therefore the
system is always in the FCC phase. At large densities,
however, the pion mass term becomes irrelevant and the
additional nonzero coefficients of the FCC phase are
suppressed in the limit of small L [37].

A. Numerical procedure

In order to solve the optimization problem explained
above, we have to fix the value of the length L̃ of the unit
cell, which is an input of the crystal ansatz, and then the
energy is minimized varying the Fourier coefficients using
a Nelder-Mead algorithm [38] with the GSL C++ library.
Once this process has been repeated for many different
lattice length values, we will obtain a curve ẼðL̃Þ (energy of
the unit cell) for each phase.
Such a procedure constitutes an efficient solution to the

problem, because higher terms in the expansions (15), (16)

only give very small contributions. We can, therefore,
safely truncate the series to a certain finite number of
terms (Nt) and neglect higher-order terms. We take Nt such
that we reproduce the results in [25] up to a precision of
1‰, concretely an energy Ẽ=B ¼ 1.038 for an FCC half-
skyrmion unit cell of length L̃ ¼ 4.7, for which Nt ¼ 32
terms are needed in total. This last assumption is numeri-
cally checked: the first two coefficients in that symmetry
are α100 ¼ 0.982 and β111 ¼ −1.110, the next-to-leading-
order coefficients are a 5% of the first and the next order is a
0.4%. Due to this quick convergence, even the solution of
the crystal with only two Fourier coefficients already
provides a rather good approximation.
Once the values of the curve ẼðL̃Þ have been obtained,

we fit them with the following function

Ẽ
B
¼ kþ k2L̃þ k4

L̃
þ C6

k6
L̃3

þ C0k0L̃3; ð18Þ

which is motivated from the scaling behavior of the
different terms that appear in the Lagrangian. An interest-
ing observation is that the contribution to the energy of each
term individually can be approximately parametrized as
ẼiðL̃Þ ¼ KiL̃3−i, at least for L≲ Lmin. Here Ki is almost a
constant, and i is the scaling dimension of each term. Then
the energy can be expressed as the sum of the individual
contributions of each term in the Lagrangian. This suggests
that, at least in the high density regime (which is the one of
interest), there is an approximate perfect scaling of each
term. The precision of this approximation is given by the
differencesKi ≠ ki and k ≠ 0. This perfect scaling property
at lower densities will be useful to fit the values of the
constants fπ and e in the next sections.
To obtain the perfect scaling parametrization, we calcu-

late the energy for a single value of L̃ and obtain the
contribution of the different terms individually to extract
the constants Ki (we calculate the constants Ki in the case
C6 ¼ C0 ¼ 1 for simplicity). Then, the curve ẼðL̃Þ can be
approximated by

ẼPS

B
¼ K2L̃þ K4

L̃
þ C6

K6

L̃3
þ C0K0L̃3: ð19Þ

This procedure is applied in the generalized Skyrme
model. However, the inclusion of the sextic and the mass
terms forces us to give numerical values for the parameters
even when choosing dimensionless units, as now not all the
parameters can be factored out in the Lagrangian. We
choose the parameter values such that we reproduce the
energy density of infinite nuclear matter at saturation,
which is given by (here p is the pressure and n is the
thermodynamical, average baryon density)

E
B

����
p¼0

¼923.3MeV; nðp¼0Þ¼n0¼0.16 fm−3; ð20Þ
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and the point p ¼ 0 is identified with the minimum Ẽmin of
the curve ẼðL̃Þ (see next section).
The baryon density of the unit cell is the number of

baryons per unit cell divided by its volume, n ¼ Bcell=
ð2LÞ2. Here an important point is that the BCC and FCC
unit cells have different baryon numbers, such that the same
baryon density corresponds to different lattice parameters L
for different phases,

n ¼ BFCC
cell

8L3
FCC

¼ BBCC
cell

8L3
BCC

→
LBCC

21=3
¼ LFCC: ð21Þ

Further, if we want to compare the ðE=BÞðLÞ curves of
different phases, these comparisons should be done for the
same baryon density. We shall, therefore, assume that L ¼
LFCC ¼ LBCC=

ffiffiffi
23

p
whenever such a comparison is made

like, e.g., in Fig. 4 below.
To satisfy conditions (20) at the minimum, we have to

find the correct values for the physical constants, and this
process must be repeated iteratively until a reasonable
convergence is reached. The value of the pion mass will be

fixed to its physical value mπ ¼ 140 MeV. We take the
value of λ2 ¼ 7 MeV=fm3 motivated by the ω meson
coupling [22], then this coupling constant is not varied
in the iteration procedure. On the other hand, the values of
fπ and e are given as initial seeds. Since the initial values of
fπ and e will not reproduce (20), they must be varied until
we match this condition.
This iterative process of fitting the constants in the

generalizedmodel hugely increases the time of computation,
since the curve ẼðL̃Þ must be reproduced to find the
minimum each time that fπ and e are changed. To avoid
this computational cost, we can now take advantage of the
(approximate) perfect scaling property of the curve ẼðL̃Þ
near the minimum to solve this problem much faster. In this
approximation, the constantsKi are already known, and only
C6ðfπ; eÞ and C0ðfπ; eÞwill change. This approach is much
faster and reproduces (20) with a sufficient accuracy of a few
percent. Therefore, this approximation is used to fit the
values of fπ and e at the minimum. We just have to find the
phase of minimum energy for each choice of the Lagrangian,
then we only need the constants Ki for that specific phase.

FIG. 4. Energy per baryon as a function of the lattice length parameter for the four different models considered in this paper. Here, the
energy per baryon is plotted in the dimensionless units of Table II. Further, remember that L ¼ LFCC ¼ LBCC=

ffiffiffi
23

p
.
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B. Results

The values of the physical constants resulting from the
perfect scaling are given in Table I.
We show the curves Ẽ=B for the different symmetries

and for different models in Fig. 4. The left upper plot
(model L24 ≡ LSk) reproduces the known results described
at the beginning of this section. A more detailed discussion
of the remaining plots will be given below, where we
describe the resulting phases of skyrmionic matter at
different densities. In Fig. 4 we also use the fact that for
all models except for the simplest model LSk there exist
topological energy bounds [39] which are tighter than the
Skyrme-Faddeev bound. We plot these topological energy
bounds for each model. Although the crystals do not reach
the bound, they are very close to it at the minimum. We
show the values of these bounds and how far the crystals are
above it in Table II (both the bounds and the plots in Fig. 4
are given for the values of the parameters specified in
Table. I).
Further, we find that the half-skyrmion phases are well

fitted to the proposed parametrization (18) even for
L ≥ Lmin. However, this parametrization breaks down for
large L for the FCC phase, and a more complicated
behavior is observed in this region. Indeed, hσi does not
vanish for large L in the FCC phase, but has a nontrivial
dependence on L which could be fitted to a hyperbolic
tangent. However, for small L the FCC phase is either
exactly equal to the FCC½ phase (a phase transition occurs)
or very close to it. In particular, the region where the FCC
phase differs significantly from the FCC½ phase is always
beyond the minimum, i.e., for L > Lmin. As we shall argue
below, in this region the FCC crystal is not relevant for the

nuclear EOS. We will, therefore, ignore this problem and
use the parameters of the fit ki that reproduce the half-
skyrmion curves, which are given in Table III. The fit for
the FCC½ phase serves as a good approximation for the
FCC phase in the small L region.
Furthermore, the constants Ki that result from the perfect

scaling are given in Table IV.
The values of fπ and e which reproduce (20) can, in fact,

be calculated exactly, since the dimensionless Lagrangian
L24 does not depend on them,

�
1.28
Bcell

�
1=3

L̃min ¼ fπe;
923.3
3π2

Bcell

Ẽmin
¼ fπ

e
; ð22Þ

where L̃min and Ẽmin denote the values of the length and
energy at the minimum, and Bcell is the baryon number of
the unit cell (here we have used that the volume of the unit
cell is 8L̃3). In the FCC½ phase, Bcell ¼ 4, and for the
model L24 the exact values are fπ ¼ 137.77 MeV, and
e ¼ 4.59, which are quite close to those obtained within the
perfect scaling approximation. These values are in fact
similar to those obtained from fitting the hedgehog solution
to the proton [31]. For the other models, we do not attempt
to calculate fπ and e exactly. Instead, we calculate them
from the exact scaling, see Table I, and then use (22) to find
L̃min and Ẽmin.
In Fig. 4 we also see that the different terms that we

include in the Lagrangian have the expected impact on the
energy per baryon curve. The sextic term, due to its

TABLE I. Values of the parameters that fit the infinite nuclear
matter for each model.

fπ (MeV) e λ2 (MeV=fm3) mπ (MeV)

137.83 4.59 0 0
118.83 4.32 0 140
160.32 8.59 7 0
136.85 6.46 7 140

TABLE II. The topological bound for each model, in dimen-
sionless units and with C0, C6 chosen to reproduce infinite
nuclear matter. In the right column we show
½ðEmin − EboundÞ=Ebound� × 100, i.e., the percentage deviation of
the minimum crystal energy from the bound for the FCC lattice,
which provides the lowest minimum.

Model Bound Crystal value (%)

L24 1 3.7
L240 1.07 5.8
L246 1.57 6.2
L2460 1.37 8.0

TABLE III. Fitting constants for the numerically obtained ẼðL̃Þ
curves.

Model k k2 k4 k6 k0

LFCC
24

0.029 0.11 2.38 0 0

LFCC
240

0.005 0.11 2.40 0 0.008

LFCC
246

0.31 0.089 2.56 0.85 0

LFCC
2460

0.55 0.050 1.61 0.89 0.012

LBCC
24

0.014 0.096 3.00 0 0

LBCC
240

0.011 0.096 3.00 0 0.004

LBCC
246

0.195 0.087 2.96 0.239 0

LBCC
2460

0.139 0.084 3.05 1.68 0.005

TABLE IV. Fitting constants for perfect scaling approximated
curves.

Model K2 K4 K6 K0

L
FCC1=2

24
0.111 2.43 0 0

LFCC1

240
0.114 2.41 0 0.0082

L
FCC1=2

246
0.111 2.43 1.24 0

LFCC1

2460
0.115 2.41 1.13 0.0079
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repulsive behavior, shifts the length of the minimum to
larger values, whereas the attractive potential term has the
opposite effect. From the four models that we have studied,
the same qualitative behavior is observed for the different
crystalline phases in those models which do not include the
potential term, i.e., L24 and L246. Indeed, for these two
models, the lowest energy phase corresponds to the FCC of
single skyrmions at low densities, eventually suffering a
phase transition and becoming an FCC½. Such a transition
was already found in [40]. On the other hand, for the
models including a pion mass potential, this transition only
occurs asymptotically, as the symmetries of the FCC½
phase are not compatible with a nonvanishing pion mass.
Also, in all models a (first-order) phase transition from the
FCC½ to the BCC phase is observed at high densities, as we
shall explain in more detail below. Such a transition is also
expected by symmetry considerations [34].
In the rest of this section we will comment on the

different density regimes at which each of these different
phases become relevant, and the possible existence of phase
transitions between them.

C. The high density phase: transition to a fluidlike
configuration

As stated above, the BPS model shares the properties of a
perfect fluid [11]. The inclusion of the sextic term in the
Skyrme Lagrangian should, therefore, lead to a Skyrme
matter that reflects this fluidity, at least in the high density
regime where the contribution from this term to the energy
becomes relevant. More concretely, we will find that in the
range of densities we consider, a perfect fluid is never
reached exactly. Instead, the sextic term has the effect of
homogenizing the energy densities in the unit cell of a
crystal configuration at high densities. A measure of this
homogeneity may be obtained by comparing the exact,
field-theoretic energy density and its mean value over the
unit cell. Since the sextic term scales as 1=L3, we expect
that at the energy minimum the density still approaches that
of the FCC½ crystal, whereas for decreasing values of L a
more homogeneous energy density (fluidlike behavior) will
appear, i.e., the field configuration will get closer to a
perfect fluid with homogeneous energy density, without
exactly reaching it.
As a measure for this effect, we define the radial energy

profile (REP), i.e., the energy enclosed by a sphere of
radius r,

EðrÞ ¼
Z

r

0

d3xε; ð23Þ

where ε is the field theoretic energy density [the integrand
in (5)]. For this concrete calculation, we only consider the
BCC phase, because (i) this is the relevant phase for high
densities, and (ii) the effect of homogenization is stronger
for this phase. Further, we use the smaller “unit cell” of size

L (because the energy density has periodicity L), sur-
rounded by vacuum. The resulting REP will grow with the
radius until r ¼ ffiffiffi

3
p

L and take a constant value equal to the
energy of the unit cell for r ≥

ffiffiffi
3

p
L. In the case of a fluid,

εfluid is a constant, therefore we also compute the REP (23)
for a unit cell of the same energy but with a constant energy
density. The ratio χ between these two radial energy
profiles tells us how far we are from the fluidlike behavior.
In Fig. 5 we can see that the homogeneity of the energy

density strongly increases with density, i.e., with decreas-
ing values of the lattice parameter, when the sextic term is
included. For the model L24 without the sextic term, on the
other hand, the ratio χ between the lattice and the fluid
REPs is almost independent of the density and strongly
deviates from unity. In other words, without the sextic term
skyrmionic matter remains in a crystalline phase with an
essentially unchanged rigidity up to very high densities.
When the sextic term is included, instead, the resulting
crystal becomes less rigid against volume-preserving
deformations at high densities, transforming into a kind
of “jelly” but without completely losing its crystalline
structure. We remark that the pion mass term is irrelevant
for these high-density effects. Our findings are further
illustrated by the three-dimensional energy density plots in
Fig. 6. There it can be seen that regions of small energy
density are almost completely expelled from the unit cell
for small L (high density) if the sextic term is included,
leading to a much more homogeneous energy density.
Without the sextic term, on the other hand, the relative sizes
of the regions of small and large energy density remain
almost unchanged when L is varied.
In contrast to the volume-preserving deformations, the

inclusion of the sextic term is known to lead to much more

FIG. 5. Influence of the sextic term on the ratio between the
REPs for the crystal and the fluid, at Lmin (solid), 23Lmin (dashed),
and 1

2
Lmin (dot line). The radial coordinate is rescaled by the

lattice length r̄ ¼ r=L.
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resistance against volume-changing deformations like com-
pressions, resulting in a much stiffer EOS for skyrmionic
matter at high densities [41]. The stiffer EOS of the
generalized model is important, since it allows for more
realistic neutron star maximum masses than the standard
Skyrme model. This observation lead us to consider an
EOS based on an interpolation between the standard
Skyrme crystal at intermediate densities and the perfect
fluid of the BPS model at high densities in [20]. The
resulting NS are compatible with all observational con-
straints. On the other hand, the nature of the transition
between the crystalline and the fluid phases remained
undetermined in [20]. Our current results imply that the
fluid phase is approached asymptotically rather than via a
phase transition.
In fact, one of our main results in this paper consists in

the numerical confirmation of the hypothesis made in [20]
about the smooth transition between a pure skyrmion
crystal and a perfect fluid phase at higher densities,
which is crucial to be able to describe the most massive
ðM ∼ 2.3 M⊙Þ neutron stars within the (generalized)
Skyrme model. We have identified the two principal factors
that provide this effect, namely, the inclusion of the sextic
term in the generalized model, whose repulsive character
tends to homogenize the energy density, and the transition
from the FCC to BCC half skyrmion phase (see below),
which actually accelerates this process.

D. The medium density phases and phase transitions

1. FCC to FCC½ phase transition

In Fig. 4 we see that the effect of a nonvanishing pion
mass potential has a big qualitative effect on the behavior of
the EðLÞ curve of the skyrmion crystal at low densities.
Indeed, without potential term the FCC and FCC½ curves
join around LPT ¼ 7.7 and LPT ¼ 15.5 with and without
sextic term, respectively, and they have the same energy

from there on. In other words, a second-order phase
transition from FCC to FCC½ occurs at these values of
the lattice parameter L. When we include the potential term,
on the other hand, this joining never occurs exactly since
the FCC½ symmetries are not respected by the Lagrangian.
The FCC curve approaches the FCC½ curve in the chiral
limit, when hσi → 0. But even in this case, the two curves
are essentially indistinguishable for L ≤ Lmin.
The phase transition in the chirally symmetric case

(without pion mass potential) has been previously reported
in the literature [40], and the vanishing of the mean value of
the σ field has been proposed as an order parameter
signaling this transition, since it vanishes in the half-
skyrmion crystal due to the symmetry properties of the
unit cell in this phase. The physical significance of such a
transition has also been extensively studied [37,42].
Moreover, this transition, which involves a topology
change—in the sense that the four skyrmions of a unit
cell must split into eight half-skyrmions with the same total
baryon number—[43] has been argued to be a genuine
prediction of the Skyrme crystal model for dense nuclear
matter, and to have nontrivial observational effects in the
EOS of neutron stars.
In these investigations, the Skyrme model (and Skyrme

crystal) is typically embedded into a larger effective model
motivated by QCD, containing, e.g., the dilaton field in
order to recover the scale invariance of Yang-Mills theory at
high density. Here we want to argue, however, that at least
for the pure Skyrme model without these additional d.o.f.,
the physical relevance of this phase transition is question-
able. First, this phase transition always occurs at an
LPT > Lmin, i.e., in a region where the energy per baryon
E=B grows with L. But this corresponds to a thermody-
namically unstable region with negative pressure, as was
already pointed out in [25].
Second, in the next section we will show that there exists

another skyrmion lattice phase with lower energy per
baryon than the FCC crystal of skyrmions in the region
L ≥ Lmin. Further, this phase evolves naturally towards a
half-skyrmion phase without involving any sort of change
in the topology of the field configurations. Concretely, this
phase describes a cubic lattice of B ¼ 4 skyrmions, i.e., α
particles. In this phase, the individual α particles are free to
occupy their preferred volume within the B ¼ 4 unit cell,
and we find that, indeed, for large L they only occupy a
small fraction of the total volume. This is in accordance
with the physical picture that at low densities nuclear matter
clusters into larger substructures (nuclei) and not just
individual nucleons. α particles are good candidates for
these substructures, because they are strongly bound, both
in nature and in the Skyrme model.

2. FCC½ to BCC phase transition

The energies per baryon number of the FCC and BCC
phases have been compared in Fig. 4. We appreciate in the

FIG. 6. Evolution of the energy density of a unit cell in the BCC
half-skyrmion phase with (lower row) and without (upper row)
sextic term for L ¼ Lmin,

2
3
Lmin, and

1
2
Lmin.
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plots of this figure that the intersections of the BCC and
FCC curves, marked by a cross in all cases, always occur
for rather small values of L and, in particular, always for
L < Lmin. In this region, the FCC and FCC½ curves are
indistinguishable, and we use the numerical FCC½ results
for our calculations. In order to obtain the correct ground
state of the crystal, we have to compare the energies per
baryon number at the same baryon density. This implies
L ¼ LFCC ¼ LBCC=

ffiffiffi
23

p
, as explained above. From Fig. 4

we find that the minimum of the energy is always given by
the FCC phase, but then at some L̃ ¼ L̃T the E=B curves
for the FCC and the BCC phases intersect. The two curves
have different slopes at their crossing, which implies that
the phase transition is of first order and must be treated by a
Maxwell construction, where the two phases are connected
by a region of phase coexistence at constant pressure [25].
This implies that both the baryon density and the energy
density suffer a sudden jump in the phase coexistence
region when expressed as functions of the pressure.
The values L̃T at which the intersections of the two

curves occur are given in Table V. In the same table, we also
compare L̃T to L̃min (which gives the density of nuclear
matter at saturation), and we provide the pressure at the
phase transition (at phase coexistence) and the jumps
suffered by the energy density and the baryon density.
The values of the physical coupling constants for the
different models are given in Table I.
The transition to the BCC phase was expected, since the

symmetries of this phase are mainly motivated at high
densities. However, the transition can be produced at such
high densities that they are unreachable inside NSs. It is
clearly seen that the inclusion of the sextic term decreases
the density at which the transition is produced, making it
more likely that this phase transition can occur inside NSs.

E. The low density phase: a lattice of B= 4 skyrmions

The energy per baryon of the Skyrme crystal ansatz is
bounded from below, by construction. In fact, there is a
topological bound which must be satisfied at any length
scale. Furthermore, although E=B gets rather close to the
topological bound at the minimum—as can be seen in
Fig. 4—which corresponds to the nuclear saturation density
n0 (see next section), the fact that the energy per baryon
grows with L for n < n0 shows that this particular ansatz is

not valid for densities lower thann0. Itwas first argued in [44]
that the correct minimum energy phase in this regime should
correspond to an inhomogeneous phase in which skyrmions
collapse into lumps with most of the space filled with
vacuum. Further, in [45] a concrete realization of such a
phasewas proposed, constructed in terms of planar structures
from theAtiyah-Manton instanton ansatz [46]. However, this
phase lacks the isotropy symmetry that one would expect
from infinite nuclear matter. We now argue that there is an
even simpler phase which may play the role of such an
inhomogeneous phase while keeping the cubic symmetry of
the unit cell, namely, the α-particle lattice phase.
The key point is that when the parameter L grows, the

distance between half-skyrmions uniformly increases, and
so does the unit cell as well as its energy. Nevertheless, we
may assume that for distances larger than that of minimum
energy, it is more energetically favourable for each unit cell
to collapse into a lump with the same baryon charge, so that
the Skyrme crystal fragments into a lattice of well defined
B ¼ 4 skyrmions (one per unit cell) interacting with their
neighbors. This fact was actually reported in [47] for the
standard Skyrme model. Once the field has reached this
phase, the length scale of each unit cell will not be given by
the size of each skyrmion anymore, but by the distance
between them, so that decreasing the density will not
necessarily imply a change in the skyrmion size.
A simple way to take into account the effect of finite

density is to consider skyrmions on the three torus (i.e.,
imposing periodic boundary conditions). In a first approxi-
mation, we will describe the low energy skyrmion lattice
using skyrmions that preserve the cubic symmetry of the
unit cell [i.e., symmetries (8), (9)], the simplest of them
being the cubic B ¼ 4 skyrmion (the α particle). We then
numerically obtain the energy per baryon number of alpha
particles in the three torus as a function of the torus size
parameter L, where now 2L represents the distance
between nearest-neighbor unit cells of the physical sky-
rmion lattice. We have done this calculation with the help of
a gradient flow algorithm for energy minimization, on a
cubic grid with n3 points, with n ¼ 2L=δþ 5, δ being the
distance between points in the grid. The extra points are
needed due to the periodic boundary conditions, which
were imposed by identifying the first and last two points of
the grid in each dimension. The initial condition for the
fields was generated from the B ¼ 4 rational map ansatz
[9], but using a rescaled radial coordinate for the profile
function, of the form fðrÞ ¼ π

1þðαr=LÞ2, to account for the

squeezing of the cell. The constant α is freely chosen so that
the initial ansatz is well behaved within the unit cell. In our
case, it is sufficient to take α ¼ 5. Once the initial condition
was obtained, we run the gradient flow algorithm until an
error of ∼10−4 in the baryon number and a convergence up
to the same order in the total energy was reached.
In our numerical calculations, we only consider the

model L240 without the sextic term. The technical reason is

TABLE V. FCC to BCC phase transition.

L24 L240 L246 L2460

L̃T 1.13 0.98 7.03 5.27
L̃min 4.7 3.8 10 6.5
L̃T=L̃min 0.24 0.26 0.72 0.80
pT (MeV=fm3) 6905 5833 108.2 53.7
Δρ (MeV=fm3) 669 484 41.9 25.8
Δn (fm−3) 0.26 0.19 0.03 0.02
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that the calculations with the sextic term included become
much more involved. The physical reason is that, at low
densities, where the α particle lattice is relevant, the
contributions of the sextic term are small and should not
qualitatively change our results. More precisely, in the
interior of the individual α particles, the sextic term will
have a certain influence, essentially consisting in the
expulsion of low energy density regions. The symmetries
of the α particles should remain unchanged, because the
sextic term is invariant under volume-preserving shape
changes (diffeomorphisms). In the large near-vacuum
regions between the α particles, on the other hand, the
sextic term can be safely neglected.
We emphasize that the symmetries (8), (9) of the α

particle lattice are a subset of the symmetries of all the
crystals which we considered. That is to say, the constraints
imposed on the α lattice field configurations form a subset
on the constraints imposed on all other lattices. This implies
that the energy-per-baryon curve of the α lattice is bounded
from above by all the other E=B curves, i.e., it is a better
approximation to the true minimum energy configuration
that the crystals. The physical expectation is that the α
particle lattice will lead to a strictly lower energy for
sufficiently low densities (large L), whereas the more
symmetric crystals will be recovered in the high-density
region, either asymptotically or via a second-order phase
transition.
In Fig. 7 we can see that the energy per baryon number of

α particles on T3 tends to the isolated B ¼ 4 skyrmion at
low densities, and that the α-lattice phase has less energy
per baryon than all the skyrmion crystal phases for
L > Lmin, so that the former is a strictly better ansatz
for the low density region than the rest. Indeed, our

numerical results indicate that there is a transition near
the minimum of energy, such that the interpolated curve
between the two phases (FCC crystal before Lmin and α
lattice just after) describes the correct behavior of the
skyrmion matter in this range of densities. The energy
density plots of Fig. 8 confirm the behavior described
above. For sufficiently large L, the α particle only occupies
a small fraction of the unit cell. For small L, instead, we
recover the half-skyrmion structure of the FCC½ lattice. To
appreciate that the energy density of Fig. 8 approaches that
of Fig. 3 in the limit of small L, we have to shift the energy
density plot of Fig. 3, left panel, by L=2 in the x and y
directions. The reason is that in Fig. 8 the α particle is
always placed in the center of the unit cell, whereas in
Fig. 3 the half-skyrmions are placed at the corners of the
unit cell. We would like to remark that the transition from
the α lattice to the FCC½ lattice happens quite naturally, and
no topology change occurs, since the half-skyrmion struc-
ture of the energy density is already present in the structure
of the α particles, as can be seen in Fig. 8.
Indeed, it is well known that already the single B ¼ 4

skyrmion first reported in [48], corresponding to the
L → ∞ limit of our α particles on T3, shows this half-
skyrmion substructure, see, e.g., [49]. We emphasize that
this half-skyrmion substructure of the α particles is not
imposed in the numerical procedure. Instead, it is a
property of the resulting solution.
Furthermore, this transition to the α particle lattice

renders the difference between the minimum energy and
the energy at L → ∞ not only finite, but very small (about
∼5%). Obviously, we could improve the minimization of
this difference even further by considering a larger unit cell
containing, e.g., the B ¼ 32 or B ¼ 108 solutions, which
have a slightly lower energy per baryon than the alpha
particle and share its cubic symmetry. However, this
difference would be rather small, of the order of 1% or

FIG. 7. EðLÞ curve for the skyrmion crystal phases and the α
particle lattice (asterisks).

FIG. 8. Energy density contours for the minimum energy field
configuration in T3 for different values of the torus length (L̃ ¼ 8,
5, 4, 2). The color scheme is as in Fig. 3.
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2%, so the α-lattice approximation, being significantly
simpler from the numerical point of view, already con-
stitutes a good candidate for the description of skyrmion
matter at low densities.

IV. THE SKYRME CRYSTAL EOS

Before discussing the EOS resulting from the crystals
which minimize the energy per baryon in the different
density regions, it is useful for our purposes to show a
figure similar to Fig. 4, but where the baryon density n is
used as the independent variable (horizontal axis) and the
E=B vs n curves are shown in physical units. That is to say,
the true minimum (the minimum of the FCC or FCC½
curve) is located at the saturation density n0 and takes the
value ðE=BÞ0 ¼ 923.3 MeV.
It is clearly visible from Fig. 9 that the increase in energy

per baryon with n is much steeper for models including the
sextic term, so that much bigger energies are reached at the
same baryon density. This implies a much stiffer EOS.
Further, the FCC-to-BCC phase transition occurs in a
region of 3–5 n0 when the sextic term is included, which
is clearly relevant for the interior of sufficiently heavy NS.
This is no longer the case without the sextic term. Also the
second-order phase transition from FCC to FCC½ for the
models without potential in the unstable region n < n0 can
be clearly identified. When the pion mass potential is
included, this phase transition turns into an asymptotic
approach.

The EOS ρðpÞ is the relation between the (thermody-
namical, average) energy density ρ of a system and the
pressure p applied to it. Both magnitudes ρ and p as well as
the baryon density n can be obtained from the crystal
energy, using their thermodynamical definitions

ρ ¼ E
V
¼ NcellsEcell

NcellsVcell
¼ Ecell

8L3
; ð24Þ

p ¼ −
∂Ecell

∂Vcell
¼ −

1

24L2

∂Ecell

∂L ; ð25Þ

n ¼ Bcell

Vcell
¼ Bcell

8L3
: ð26Þ

Again, all these quantities remain finite in the thermo-
dynamical limit. Since the energy of the unit cell is also a
function of L (18) we have to solve the equation LðpÞ to
finally obtain the EOS. For the standard Skyrme
Lagrangian it is possible to invert this function analytically.
But once the sextic and potential terms are included, this
inversion must be done numerically. Further, it is obvious
from the above definitions that the regions L > Lmin (or
n < n0), where E=B grows with L, correspond to thermo-
dynamically unstable regions of negative pressure. This
remains true even if the α-particle phase is included,
although this phase ameliorates the problem. We shall
exclude those regions from our plots for the EOS that are,
therefore, restricted to p ≥ 0 (n ≥ n0). In [20] the EOS was

FIG. 9. Energy per baryon of the unit cell vs baryon density of the different crystals in various models. The true (FCC) minima are
fitted to the energy and baryon density of symmetric, infinite nuclear matter at saturation.
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extended to n < n0 by a smooth interpolation to the
standard nuclear physics EOS of [50]. Below we shall
discuss possibilities to overcome this restriction and to
derive a purely Skyrme model EOS valid for all densities.
The EOS resulting from (24)–(26) are shown in Fig. 10,

in which the energy and baryon densities are plotted against
the corresponding pressure, for a range of values which
have been shown to be physically relevant for matter inside
neutron stars [22].
As explained in Sec. III A, the free parameters of each

model are fitted so that the minimum energy per baryon in
the crystal corresponds to that for saturated, infinite nuclear
matter. In particular, this implies that all the EOS depicted
in Fig. 10 must converge to the same point in the ðρ; pÞ
plane as p goes to zero. However, since we have deter-
mined the values of fπ and e using the perfect scaling
approximation, these curves do not reproduce exactly (20).
Nevertheless, the largest difference is produced for the L246

case and it is about 6%. Furthermore, as shown in the
previous section, a phase transition between the FCC½ and
BCC phases is expected to occur in the high density region.
Indeed, we take into account such a transition in the
equation of state by smoothly joining the corresponding
EOS of the two different phases via the Maxwell con-
struction, i.e., the points at which ∂Ecell∂Vcell

coincide for each
phase are joined through a straight line tangent to both
curves. This means that, at a certain value of the pressure,
the baryon and energy densities suffer a sudden jump,
which corresponds to a first-order phase transition.
In Fig. 10 we see that the inclusion of the sextic term in

the Lagrangian significantly stiffens the resulting EOS,
which was of course expected due to the incompressible
character of matter in the BPS Skyrme submodel, towards
which the generalized model tends at large pressures.
Another effect of the inclusion of the sextic term is that
the FCC-to-BCC first-order phase transition is shifted to

smaller densities which may become relevant for the core
region of heavy NS.

A. Towards a description of asymmetric nuclear matter
and NS crusts within the Skyrme model

Despite constituting only ∼1% of the total stellar mass,
the crust, defined as the external region of a neutron star
with densities ρ≲ 1014 g cm−3, plays an important role for
determining many observational properties, such as the
tidal deformability or the cooling rate via neutrino emis-
sion. It is also a crucial element to explain radio pulsar
glitches [51].
A good effective model for nuclear matter in neutron

stars, therefore, should be able to describe matter at such
(and lower) densities. However, it is precisely at these
density regimes where the Skyrme model approach to
nuclear matter becomes problematic, because the energy
density obtained from the thermodynamical definition in all
the phases studied above reaches a finite value at zero
pressure, due to the presence of a minimum in the
curve EðLÞ.
The presence of such a minimum in the binding energy is

a feature shared by all models of symmetric nuclear matter
[52–55], and signals the point at which nuclear matter is
most bounded, referred to as the nuclear saturation point in
standard nuclear physics literature. This is, in fact, the main
reason why we interpret the classical Skyrme crystal
configurations as models for symmetric nuclear matter
and identify the minimum of E=B with the nuclear
saturation point. This minimum, however, does not show
up in physical nuclear matter, and deviations from the
symmetric nuclear matter model become relevant near this
point. Indeed, our approach to nuclear matter has only
taken into account the classical properties of the skyrmion
crystals. In other words, we have not taken into account, for
example, the so-called symmetry energy—which in the
Skyrme model results from the quantization of isospin—
that is of great importance when describing nuclear matter
at these density regimes. The correct treatment of quantum
effects, such as isospin interactions due to the difference
between the proton and neutron number, as well as the
Coulomb forces, require a detailed analysis that will be
developed in a future publication.
It is expected [56], however, that the quantum correc-

tions to the skyrmion crystal will only be relevant precisely
in the intermediate density regime at which the EðLÞ curve
presents its minimum, and that such a minimum will
disappear when these quantum effects are properly taken
into account. Indeed, in [56] a correction of about 4% to the
energy at the minimum was obtained from the isospin
contribution in the half-skyrmion phase, to be compared
with the 5% difference in energy per baryon between the
minimum and the L → ∞ limit in the new α lattice phase.
To summarize, there are strong indications that a more

complete description of skyrmionic matter which includes

FIG. 10. Equations of state for all four models.
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both quantum and Coulomb effects can erase the minimum
in E=B and, therefore, lead to an EOS that is valid also at
low densities n < n0. In this case, we would be able to
construct a genuine equation of state for physical nuclear
matter and neutron stars from the Skyrme model alone,
valid for the full range of densities, hence able to describe
both the ultradense NS cores and the solid NS crusts within
a single effective model.

V. CONCLUSIONS

It was the main purpose of the present paper to provide a
detailed investigation of the different phases of Skyrme
crystals in the generalized Skyrme model defined in Eq. (1)
and the resulting EOS, having in mind mainly its appli-
cation to nuclear matter and the description of neutron stars.
More concretely, we
(1) Confirmed the importance of the sextic term in the

generalized Skyrme Lagrangian for describing nu-
clear matter at sufficiently high densities. As con-
jectured in [20], the inclusion of this term leads to an
EOS that behaves like the standard Skyrme crystal
for low densities but leads to a more fluidlike
behavior at high densities. We find that the perfect
fluid property of the sextic term is approached
asymptotically in the high-density limit. Further,
the sextic term is crucial to describe NS cores
because it allows us to describe NSs with masses
up to M ∼ 2.3 M⊙, which have been observed
recently.

(2) Presented a clear picture of the different known
crystalline phases of the Skyrme model, as well as
the possible transitions between phases, anddiscussed
whether or not they may appear as the true ground
states for symmetric nuclear matter at some given
density based on physical grounds. Specifically, we
found that the FCC-to-BCC phase transition, which
occurs at unrealistically high densities in the standard
Skyrme model, is shifted to densities of 3–5 n0 when
the sextic term is included. This density region is
certainly relevant for the inner core of sufficiently
heavy neutron stars. The FCC-to-FCC½ phase tran-
sition, on the other hand, is unlikely to be of relevance
for the nuclear matter EOS. First of all, it occurs in the
thermodynamically unstable region n < n0 of the
classical Skyrme crystal. Secondly, we found that
there exists another phase of a lattice of α particles
with strictly lower energy in this region.

(3) Described this new phase, the α-particle lattice,
which is obtained numerically using a gradient flow
procedure, and represents (to our knowledge) the
best approximation for the ground state of skyrmion
matter past the minimum of the energy-per-baryon
curve. Furthermore, this phase has some appealing
characteristics to make it a good model for nuclear
matter in neutron star crusts, which are believed to

consist of well-defined nuclei sparsely distributed in
a lattice.

In this paper, we only investigated classical Skyrme crystals
which, up to a certain degree, can be viewed as models for
symmetric nuclear matter. The resulting EOS could still be
used for sufficiently high densities, where it gives a
reasonable description, and matched to a standard nuclear
physics EOS at some density n� > n0 to calculate the
resulting neutron star EOS, as we did in [20]. However, our
ultimate objective is to achieve a good phenomenological
description of the nuclear matter EOS at all regimes of
density and pressure using only the Skyrme model—or
some extensions thereof—to represent baryonic d.o.f.
A next important step in this direction would be the

inclusion of both quantum corrections and Coulomb effects
into our Skyrme crystal calculations. These corrections,
which would, e.g., incorporate effects of the symmetry
energy, may lead to a Skyrme-model based EOS which is
valid for the whole density range of neutron stars, from the
inner core to the crust, thus providing us with an approxi-
mate EOS for asymmetric nuclear matter. As argued in the
previous section, preliminary results involving the addition
of isospin quantum corrections to the skyrmion crystal
energy per baryon are very encouraging.
Another important issue is the inclusion of further

degrees of freedom besides the pions. Indeed, the appear-
ance of hyperons and, in particular, the condensation of
kaons is expected to occur at sufficiently high densities in
the core of heavy NS, leading to a softer EOS. Previous
investigations suggest that in the standard Skyrme model,
kaon condensation sets in at about 3.5 n0 [57]. However,
the magnitude of its effect on the resulting EOS, as well as
the effect of the sextic term in the kaon condensation onset
are both worth investigating. Further, the importance of
vector mesons, concretely the rho meson, for the correct
formation of alpha particle clusters in light nuclei has been
demonstrated recently in [14]. It is perfectly conceivable
that the inclusion of rho mesons is also required for a
realistic description of nuclear matter. All these questions
require further studies.
At this point, it is interesting to recall the main

differences between the Skyrme model, on the one hand,
and other effective field theory approaches like ChPT, on
the other. In those theories, the nucleons are treated as
quantum mechanical point particles, and many resulting
properties of strongly interacting matter are related to the
corresponding quantum effects, like the degeneracy pressure
or the in-medium formation of Cooper pairs leading to a
neutron superfluid. In the Skyrme model, instead, the
nucleons are extended objects already classically, and the
most important question for the determination of the EOS is
how these finite chunks ofmattermust be arranged in order to
minimize the energy per baryon number. Quantum correc-
tions can, in principle, be included in the Skyrme model
description of nuclearmatter, but experience tells us that they
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are subleading in many cases. In other words, the Skyrme
model approach to nuclear matter assumes that, at least at
sufficiently high densities, the extended, nonpointlike char-
acter of the nucleons is their most important property.
Physical nucleons are extended objects and, in addition,
the nuclear force becomes strongly repulsive at short dis-
tances, therefore this assumption seems reasonable.
In any case, our point of view is that one should simply

develop the Skymemodel predictions for strongly interacting
matter properties as far as possible, work out its conse-
quences, and compare with the available data, especially
those extracted from neutron star observations, which cur-
rently seem tobe themost reliable ones at highdensities. Such
an open-minded approach is all the more justified because
(i) experimental results on strongly interacting matter above
saturation density are still quite scarce and (ii) more standard
approaches face some difficulties in explaining several
neutron star puzzles like, e.g., the rather high observed
maximum NS masses, or the so-called hyperon puzzle. In
addition, already a rather simple Skyrme-model based
approach to neutron stars leads to very reasonable results
for NS properties [20], as mentioned above.
To summarize, we think that our results present an

important next step towards the final goal of a realistic

description of nuclear matter and neutron stars within the
framework of the (generalized) Skyrme model.
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