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We study the weight or compositeness of the ππ − KK̄ and πη − KK̄ in the composition of the f0ð980Þ
and a0ð980Þ resonances, respectively. Either we use the saturation of the total width and compositeness, or
we use a Flatté parametrization taking also into account the spectral function of a near-threshold resonance.
We make connections and compare between these two methods. We take input values for the pole mass and
width and, in addition, for the total compositeness or the decay-width branching ratio to the lighter channel
for each resonance. It turns out that for the poles considered the meson-meson components are dominant for
the f0ð980Þ, while for the a0ð980Þ resonance they are subdominant. We also provide partial decay widths
and partial compositeness coefficients, so that the KK̄ component is the most important one for the
f0ð980Þ. Additionally, this study stresses the need to distinguish between the bare and dressed couplings
and widths in a Flatté parametrization. We elaborate on the connection between the partial-decay widths
calculated in terms of the dressed couplings and the actual measured ones. Due to the coupled-channel
dynamics when the pole lies near the heavier threshold in the second Riemann sheet some changes are
needed with respect to standard relations.
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I. INTRODUCTION

The nonperturbative meson-meson interactions and the
related scalar-meson spectroscopy is a topic of great
importance. The nature of scalar mesons is still under
debate, in spite of the efforts during several decades in the
past, particularly since the discovery of the resonances
f0ð980Þ [1] and a0ð980Þ [2]. The scalar mesons below
1 GeV, like the f0ð500Þ=σ; K�ð800Þ=κ; f0ð980Þ; a0ð980Þ,
are serious candidates to comprise a JPC ¼ 0þþ nonet as
required in Refs. [3–9]. These resonances with vacuum
quantum numbers are crucial for the deep understanding
of spontaneous chiral symmetry breaking of quantum
chromodynamics (QCD), its spectroscopy and, in general,
of its nonperturbative nature [10–15]. Along the decades
the lightest scalar resonances have been accommodated
within different models like tetraquark states [3,4,16–19],
molecular states [20–24], dynamically generated

resonances [25–30], unitarized quark models [5,31,32],
linear sigma models [33–36], etc.
For example, in Ref. [37] the a0ð980Þ is understood as a

Breit-Wigner resonance, not as a dynamically generated
resonance, while the f0ð980Þ is considered as a KK̄ bound
state. We also notice that in Ref. [38] the compositeness is
analyzed via the f0ð980Þ − a0ð980Þmixing intensity, and it
is found that the f0ð980Þ and a0ð980Þ cannot be simulta-
neously KK̄ bound states. The masses of the two reso-
nances are very close and the f0ð980Þ − a0ð980Þ mixing
could occur via the hadronic KK̄ loop [39–42]. Recently,
there is also interest in assessing the nature of the scalar
mesons by studying semileptonic decays [43–45]. For
some reviews, see Refs. [46–49].
In fact, a meson has typically several components [50],

such as the superposition of qq̄ and tetraquarks qqq̄ q̄ [51],
gluonium [52], meson-meson components, etc. The com-
positeness, usually denoted by X, refers to the weight in the
resonance state composition of the meson-meson compo-
nents in the continuum part of the free spectrum [53,54]
that are explicitly taken into account, e.g., as channels
participating in the associated coupled-channel meson-
meson scattering. Therefore, it is a fundamental concept
that is required for a quantitative analysis on the nature of
the resonance. In contrast, the elementariness, typically
called Z, is the weight of the bare (compact/short-range)
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degrees of freedom in the resonance constitution (like four
quarks or gluonium), that would also include closed-
channel meson-meson components not taken into account
as explicit degrees of freedom, and so that 1 ¼ Z þ X.
For a bound state case, the compositeness is a positive

real number [53] between 0 and 1 (as it should be), but its
straightforward extension to the resonance case gives rise to
complex-valued results [54]. Several extensions have been
proposed [55–61] to end with real sensible values for
the compositeness. In this work, we use the results of
Refs. [54,62] that allow a probabilistic interpretation of the
compositeness relation of the resonance into open channels.
Studies along these lines have also been extensively done
for the case of heavy-quark resonances [63–69]. In addi-
tion, we also employ the formalism based on the evaluation
of the spectral density function of the bare state associated
to the resonance [70] by using a Flatté parametrization [55].
We then compare between this formalism and the one
previously referred for the evaluation of the compositeness
and elementariness, finding compatible results between
them.
The f0ð980Þ and a0ð980Þ resonances couple mainly to

the channels ππ − KK̄ and πη − KK̄, respectively. Hence,
they are also the channels that dominate in the study for the
compositeness of the resonances. To proceed with this
study, the main equations stem from considering the
saturation of the compositeness relationship and the total
width of the resonance, from which we calculate the
couplings, partial compositeness coefficients, and partial-
decay widths. The implication of the branching ratio to the
lighter channel, which we call rexp, together with the
reproduction of the total width, is also explored within
our compositeness formalism. This setup allows us to
obtain more definite predictions for X, and the smaller
the branching ratio the larger the resulting X by a linear
relation. In particular, for the f0ð980Þ the branching ratio
rexp ¼ 0.52� 0.12 [71], the most recent one collected in
the Particle Data Group (PDG) [49] from B decays to Kππ,
implies the largest X ranging around 0.6–0.9 within errors.
In turn for the a0ð980Þ the branching ratios reported
recently [49,72], which also include the PDG average,
are much larger and then X calculated here is significantly
smaller, around 0.2–0.4, taking into account errors and
variations in the method of calculation. This indicates that
other components in addition to the meson-meson ones
play an important role in the constitution of the a0ð980Þ.1
We find that for the f0ð980Þ theKK̄ component has a much

larger partial compositeness coefficient than the ππ chan-
nel. For the a0ð980Þ it is obtained that still the KK̄
compositeness coefficient is also larger than the one of
the πη, but not overwhelmingly dominant. These results are
a verification of those already obtained in Refs. [25,29],
such that if the πη channel were removed the a0ð980Þ
would disappear, while the f0ð980Þ would keep appearing
as a KK̄ bound state.
In connection with our use of a Flatté parametrization we

stress the importance of distinguishing between bare and
renormalized couplings and widths. The former ones are
those appearing directly in the Flatté parametrization, while
the latter ones are associated to the actual residues of the
partial-wave amplitude of interest at the pole position in the
complex energy-plane. We also show that for the present
two-channel coupled scattering, when the pole lies in the
second Riemann sheet, one has to modify the interpretation
of the theoretically calculated partial-decay width to the
lighter channel in terms of renormalized couplings (resi-
dues), and give the proper interpretation. These two effects
explain why bare partial-decay widths, often found in the
literature, are much bigger than those actually measured.
For the rest of the paper, Sec. II is dedicated to elaborate

the formalism based on the saturation of the total com-
positeness and decay width of the resonance. In turn,
Sec. III develops the method based on the use of a Flatté
parametrization and introduces the spectral density func-
tion for a near-threshold resonance. Then, we apply these
methods to the study of the f0ð980Þ and a0ð980Þ reso-
nances, either by taking X as input in Sec. IV, or by using
rexp in Sec. V. In terms of them we typically provide the
resulting partial compositeness coefficients and partial-
decay widths. Finally, concluding remarks are given
in Sec. VI.

II. FORMULATION OF THE COMPOSITENESS-
RELATION AND DECAY-WIDTH METHOD

For definiteness, we proceed with the discussion on the
components in the nature of the f0ð980Þ, and develop a
method to investigate its partial-decay widths, couplings
and compositeness. Later on we also apply this method to
the related isovector scalar resonance a0ð980Þ.
In what follows, we consider two main decay channels

(ππ and KK̄) of the f0ð980Þ. We follow the standard
convention such that compositeness and elementariness
coefficients are written as X and Z, respectively, with
X þ Z ¼ 1. For the case of a bound state the coefficient Z
corresponds to the field renormalization constant [53,77],
being real and positive and less than 1 (as X is too). The
straightforward generalization for resonances of the com-
positeness and elementariness gives rise to complex num-
bers. As mentioned in the Introduction, several variants for
the compositeness of a resonance have been discussed in
the literature. Here we will follow Ref. [62], which
formulates a probabilistic interpretation of the

1However, it is worth keeping in mind that the most sophis-
ticated theoretical studies on πη scattering matched with lattice
QCD [73,74] obtain that the a0ð980Þ is a pole lying in a hidden
Riemann sheet from the physical energy axis. This was also
obtained before in Refs. [75,76]. At this point there is a caveat,
because the methods used here, or in Ref. [55], to clarify the
nature of the a0ð980Þ cannot be applied to such scenario (in
which the resonance effect manifests as a strong cusp).
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compositeness relation involving only positive and real
coefficients for the resonance. As explained in Ref. [54] the
compositeness X arises by evaluating the expected value of
the number of mesons in the resonance divided by 2
(because we are considering two-body meson states). After
the proper unitary phase transformation of the S-matrix, it
gives the partial compositeness coefficient for the reso-
nance in the form [62]

Xi ¼ jγ2i j
���� ∂GiðsÞ

∂s
����
s¼sR

; ð1Þ

and the subscript i, with i ¼ 1 and 2, corresponds to the
S-wave isoscalar ππ and KK̄ channels, respectively. The
pole position in the Mandelstam variable s is called sR,

sR ¼
�
mR −

i
2
ΓR

�
2

; ð2Þ

with mR and ΓR the mass and width of the resonance,
respectively. Furthermore, γi is the coupling of the reso-
nance to the channel i that is extracted from the residues of
the T matrix at the pole position sR,

γ2i ¼ − lim
s→sR

ðs − sRÞTðsÞii: ð3Þ

GiðsÞ is the unitary two-point scalar loop function for the ith
channel and it can be written in the form [75]

GiðsÞ ¼
1

16π2

�
aiðμÞ þ log

m2
2

μ2
−
Δþ s
s

log
m2

m1

þ piffiffiffi
s

p ½logðs − Δþ 2
ffiffiffi
s

p
piÞ

þ logðsþ Δþ 2
ffiffiffi
s

p
piÞ − logð−sþ Δþ 2

ffiffiffi
s

p
piÞ − logð−s − Δþ 2

ffiffiffi
s

p
piÞ�

�
: ð4Þ

Here Δ ¼ m2
1 −m2

2 and m1, m2 are the masses of the two
particles in the channel i. We do not take into account the
isospin breaking effects and use an average mass of the
charged and neutral pions, and proceed analogously for
kaons too. However, such effects are expected to be

negligible in our exploration. The term aiðμÞ þ log m2
2

μ2
in

Eq. (4) is independent of s and it disappears when taking
the derivative ofGiðsÞ in Eq. (1). Finally in Eq. (4), pi is the
momentum of the channel i,

piðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1 þm2Þ2�½s − ðm1 −m2Þ2�

p
2

ffiffiffi
s

p ð5Þ

The total compositeness coefficient, X ¼ P
n
i¼1 Xi, is the

sum over the partial compositeness coefficients Xi, and it
must satisfy the condition X ≤ 1. As discussed in more
detail in Ref. [62], Eq. (1) is properly applied to the
calculation of Xi for the channel i under the condition that
the resonance pole lies in an unphysical Riemann sheet
(RS) that is connected with the physical RS along an
interval of the real s-axis (where s is the total energy
squared in the center of mass reference frame), lying above
the threshold for the channel i.2

Equation (1) is very similar to that for a bound state case,
see, e.g., [54],

Xi ¼ −γ2i
∂GiðsÞ
∂s

����
s¼sR

; ð6Þ

with the difference concerning the introduction of the
absolute values.
It is necessary to distinguish the RS in which sR lies.

For the different signs of the imaginary part of p1 and
p2 in the complex s-plane, we can define the four
different RSs as

Sheet I∶ Imp1 > 0; Imp2 > 0

Sheet II∶ Imp1 < 0; Imp2 > 0

Sheet III∶ Imp1 < 0; Imp2 < 0

Sheet IV∶ Imp1 > 0; Imp2 < 0 ð7Þ

The RSs II and III are connected to the physical RS I from
the ππ threshold onwards up to and above theKK̄ threshold
in the real s-axis, respectively. The threshold of the ππ
channel is distant from the resonance mass, while the
resonance location is remarkably close to theKK̄ threshold,
cf. Eq. (9) below.
Next, let us discuss how to make the analytical extrapo-

lation from the RS I to the RSs II, III, IV in order to
calculate the partial compositeness coefficient Xi, attending
to the RS in which the pole lies. We have to cross the cut of
GiðsÞ and use its continuity property for real values of s
with s > ðmi;1 þmi;2Þ2, wheremi;1 andmi;2 are the masses
of the first and second particles in the ith channel,
respectively. Then, one has that [25]

2We advance that for the modern and relevant determinations
of the pole structures for the f0ð980Þ and a0ð980Þ resonances
here considered there is only a pole associated to each resonance.
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GII
i ðsþ iϵÞ ¼ GI

iðs − iϵÞ ¼ GI
iðsþ iϵÞ − 2iImGI

iðsþ iϵÞ

¼ GI
iðsþ iϵÞ þ i

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sþ iϵ − ðm1 þm2Þ2�½sþ iϵ − ðm1 −m2Þ2�

ðsþ iϵÞ2

s
; ð8Þ

where the square root is calculated in the first Riemann
sheet, with the argument of the radicand between 0 and 2π.
The Eq. (8) can be extrapolated to any other complex value
of s. Thus, the RS I is obtained withGI

1ðsÞ; GI
2ðsÞ; the RS II

corresponds to take GII
1 ðsÞ, GI

2ðsÞ; the RS III is obtained
with GII

1 ðsÞ, GII
2 ðsÞ; and the RS IV implies GI

1ðsÞ, GII
2 ðsÞ.

The crucial inputs in the evaluation of the coefficients Xi,
Eq. (1), are the pole position and the coupling jγij.
Regarding the pole parameters of the f0ð980Þ, we prefer-
entially consider the results obtained by the dispersive
analysis of Ref. [78] based on the use of a set of Roy-like
equations called the GKPY equations [79]. The mass and
width of the resonance calculated in Ref. [78] are

mR ¼ 996� 7 MeV; ΓR ¼ 50þ20
−12 MeV; ð9Þ

which provides a rather accurate determination for the
mass, while the width is affected by rather large errors.
When using this pole we consider the RS II because it was
found to be there in the original publication [78].
In addition we consider the f0ð980Þ pole position from

Ref. [75]. This reference performs an exhaustive study of S-
and P-wave meson-meson scattering by unitarizing one-
loop amplitudes in Uð3Þ ⊗ Uð3Þ chiral perturbation theory
[80–86] with explicit exchange of resonances. A large
amount of experimental data on different reactions is
reproduced and, at the same time, the consistency of the
approach is checked by properly reproducing QCD con-
straints from spectral sum rules and semilocal duality as a
function of the number of colors of QCD. The resulting
pole of the f0ð980Þ, found also in the RS II, is

mR ¼ 978þ7
−11 MeV; ΓR ¼ 58þ18

−22 MeV: ð10Þ

Interestingly for this case the mass of the resonance lies
clearly below the KK̄ threshold, whilemR from Ref. [78] in
Eq. (9) is above. In this way we can now explore what is the
effect of such a relative arrangement of the resonance mass
with respect to the two-kaon threshold. Instead, the width
of the f0ð980Þ is rather similar in both cases.
In our considerations, we ignore the multiparticle

4π channel whose contributions are very small up to
1 GeV as obtained in phenomenological studies where it
is considered [79,87], or estimated theoretically in studies
based on unitarizing chiral perturbation theory [88].
We simply notice as well that the electromagnetically
driven two-photon decay channel has been ignored in
our calculations. References [23,49,89,90] obtained that

Γf0ð980Þ→γγ ¼ 0.32� 0.05 MeV, which contributes a tiny
portion of the total width for the f0ð980Þ, and should be
much smaller than the one for ππ, and KK̄.
Then, we sensibly assume that the total compositeness

coefficient of f0ð980Þ can be expressed as the sum of the
S-wave isoscalar ππ and KK̄ channels,

X ¼ X1 þ X2 ¼ jγ1j2
���� ∂G1ðsÞ

∂s
����
s¼sR

þ jγ2j2
���� ∂G2ðsÞ

∂s
����
s¼sR

:

ð11Þ

In addition to Eq. (11), another main equation stems from
imposing the saturation of the width of the f0ð980Þ. As the
threshold of the ππ channel is distant from the resonance
we use the standard formula for the partial-decay width of
the f0ð980Þ to ππ,

Γ1 ¼
jγ1j2p1ðm2

RÞ
8πm2

R
; ð12Þ

where pi is the momentum in the rest frame of the
resonance, cf. (5) with s ¼ m2

R.
However, theKK̄ threshold is very close to the resonance

mass and the effect of the finite width of the f0ð980Þ
(around 50 MeV) in the KK̄ phase space is not negligible.
Notice that even the lower limit of the f0ð980Þ mass within
its uncertainty region in Eq. (9) is indeed smaller than the
KK̄ threshold. However, since the uncertainty in the mass is
much smaller than the width of the resonance, this fact is
easily overturn by the mass distribution of the resonance
and it does not prevent the actual decay of the f0ð980Þ to
KK̄, even when the resonance mass is below the KK̄
threshold.
In these regards, we consider a Lorentzian mass dis-

tribution for the resonance, and the partial-decay width is
written as

Γ2 ¼
jγ2j2
16π2

Z þ∞

m1þm2

dW
p2ðW2Þ
W2

ΓR

ðmR −WÞ2 þ Γ2
R=4

ð13Þ

In the limit ΓR → 0, Eq. (13) becomes the standard formula
for the decay width. In a practical calculation, the upper
limit of integration (þ∞) is replaced by mR þ nΓR. For
example, in Ref. [64], the value of n ¼ 8 is chosen for the
Zbð10610Þ=Zbð10650Þ by reproducing the experimental
width; in Ref. [67], n ¼ 10 is adopted for the Zcð3900Þ,
Xð4020Þ and Zcð3985Þ particles. However, in the Ref. [63],
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dedicated to the study of the compositeness of the χc1p for
the Pcð4450Þ, the upper limit of integration used was
mR þ 2ΓR. The region for n ¼ 2 is usually thought to be a
reasonable cut in the resonance region [63,91]. For our
consideration, we restrict the upper integration limit in the
resonance region to mR þ 2ΓR (which comprises the
resonance signal as it can be seen in Fig. 2, introduced
in Sec. III within the context of a Flatté parametrization).3

Another aspect to take into account is the RS in which
the pole lies because the sign of the momentum of the
kaons in the center of mass reference frame has opposite
signs in the RSs II and III at the pole position. Notice that
for the latter RS the kaon momentum has the standard sign
in the lower half of the complex energy-plane, correspond-
ing to a mR − iΓ1=2 − iΓ2=2, while for the former one has
instead mR − iΓ1=2þ iΓ2=2. Because this change of sign
in the kaon momentum the saturation of the resonance
width obtained from the pole position varies, such that Γ2

standardly adds to Γ1 when the pole lies in the RS III, but Γ2

subtracts from Γ1 when the pole lies in the RS II. As a
result, the total decay width of the f0ð980Þ is then

ΓR ¼ jγ1j2
p1ðm2

RÞ
8πm2

R
� jγ2j2
16π2

Z
mRþ2ΓR

m1þm2

dW

×
pðW2Þ
W2

ΓR

ðmR −WÞ2 þ Γ2
R=4

; ð14Þ

for the pole in the RS III or II, respectively.
Another interesting consequence of this discussion on

the RS in which the pole lies is the simple observation that
for a pole in the RS II the combinationmR − iΓ1=2þ iΓ2=2
can be rewritten as mR − iðΓ1 − 2Γ2Þ=2 − iΓ2=2, so that
now the decay width to KK̄ appears with the right sign in
the resonance propagator for an interpretation as a decay
width, while the decay width to the lighter channel is
Γ1 − 2Γ2. This result can also be obtained in a more
straightforward mathematical way in terms of the branch-
ing ratio to the first channel, rexp, by noticing that

rexp ¼ 1 −
Γ2

ΓR
¼ ΓR − Γ2

ΓR
¼ Γ1 − 2Γ2

ΓR
; RS II; ð15Þ

where we have used again that ΓR ¼ Γ1 − Γ2. However, for
a pole in the RS III one has the standard result

rexp ¼ 1 −
Γ2

ΓR
¼ Γ1

ΓR
; RS III: ð16Þ

Nonetheless, in what follows, we keep the usual notation
of directly calling Γi as decay widths, though for i ¼ 1 and
the pole in the RS II the actual decay width to the lighter
channel does not coincide with Γ1, as just discussed.
Because of this reason we denote by Γππ or Γðf0ð980Þ →
ππÞ the physical decay width of the f0ð980Þ to ππ, and
similarly we use Γπη or Γða0ð980Þ → πηÞ for the physical
partial-decay width of the a0ð980Þ to the lighter channel.
For KK̄ we can use indistinctly Γ2 or ΓKK̄ since they
coincide. They have the same meaning as Γðf0ð980Þ →
KK̄Þ or Γða0ð980Þ → KK̄Þ in a clear notation. These points
are further elaborated when considering a Flatté para-
metrization for the f0ð980Þ and a0ð980Þ resonances in
Sec. III.
Combining Eq. (11) and Eq. (14) allows us to solve jγ1j

and jγ2j in terms of the total compositeness and width. Then
we can obtain the partial-decay width Γi and individual
compositeness coefficient Xi for each channel.4 We con-
sider several choices for X in Eq. (11), typically from 0.2 up
to 0.8 in steps of 0.2.
The information for the branching ratio rexp ¼

Γðf0ð980Þ→ ππÞ=½Γðf0ð980Þ→ ππÞþΓðf0ð980Þ→KK̄Þ�
can also be used together with the total width ΓR to fix jγ1j
and jγ2j. The results following one way or the other are
organized in Secs. IV and V, respectively. They are also
applied in analogous way to the isovector scalar a0ð980Þ
involving the scattering channels πηð1Þ and KK̄ð2Þ, with
rexp¼Γða0ð980Þ→πηÞ=½Γða0ð980Þ→πηÞþΓða0ð980Þ→
KK̄Þ� then.

III. FLATTÉ PARAMETRIZATION AND THE
SPECTRAL DENSITY OF A BARE STATE

One disadvantage of the approach followed in Sec. II is
the necessity to assume a value of n for the upper limit of
integration in Eq. (13) for evaluating the partial-decay
width of the resonance into KK̄, that is, Γ2. This can be
overcome by using a Flatté parametrization [92], without
increasing the number of the input parameters needed to
calculate the couplings jγij, partial-decay widths Γi and
partial compositeness coefficients Xi. Since the f0ð980Þ
and a0ð980Þ lie very close to the KK̄ threshold a Flatté
parametrization is then especially suitable [55].5

3We want to stress here that the use of a Flatté parametrization,
cf. Sec. III, does not make use of any specific expression for Γ2 as
a function of γ2, like Eq. (13). However, this equation has such a
clear physical insight that the results are compatible with those
from a Flatté parametrization, as it will be shown in Secs. IV and
V when discussing results.

4The fact that the width of the f0ð980Þ is substantially larger
than the difference between its mass and the KK̄ threshold allows
to apply in a reasonable way the standard formula Eq. (1) for the
partial compositeness X2, even if the f0ð980Þ pole lies in the 2nd
(3rd) RS above (below) the nearby KK̄ threshold. The mass
distribution of the resonance smooths the sharp condition, alluded
after Eq. (5), on the relative position between the resonance mass
and the threshold of KK̄ when their distance is much smaller than
the f0ð980Þ width.

5Let us notice that the method of Sec. II, based on the
saturation of the total width and compositeness of the resonance,
can also be applied to resonances not necessarily lying near a
main threshold, like wider or heavier ones.
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As discussed in Refs. [65,93], there is another limitation
in the use of a Flatté parametrization as it assumes that the
corresponding KK̄ partial-wave amplitude has no zero in
the near-threshold region. We assume that this is the case
and proceed with the rather intuitive picture offered by a
Flatté parametrization of dressing a bare resonance propa-
gator, 1=DðEÞ, by the self-energy due to the intermediate
channels 1 and 2,

DðEÞ ¼ E − Ef þ i
Γ̃1

2
þ i
2
g2

ffiffiffiffiffiffiffiffiffiffi
mKE

p
: ð17Þ

Here E is the total center of mass energy measured with
respect to the two-kaon threshold,E≡ ffiffiffi

s
p

− 2mK ,Ef is the
bare mass of the resonance plus the contributions at around
the KK̄ threshold from the real parts (which are taken as
constants) of the meson-meson loops contributing to the
resonance self-energy. In addition, gi is the bare coupling
squared of the resonance to the ith channel, such that the bare
width Γ̃1 to channel 1 is written in terms of g1 as

Γ̃1 ¼
p1ðmRÞg1
8πm2

R
: ð18Þ

The pole position in the variable E is called
ER ¼ MR − iΓR=2, with MR the mass of the resonance
with respect to 2mK , MR ¼ mR − 2mK .

The Flatté parametrization contains as free parameters
Ef, Γ̃1 and g2 that can be fixed in terms of the mass and
width of the resonance, that is, by knowing its pole
position, and from the knowledge either of the branching
ratio rexp to the lighter channel or the total composite-
ness X.
To calculate the resonance pole position we must look

for the zeroes of Eq. (17), DðERÞ ¼ 0,

ER − Ef þ
i
2
Γ̃1 ¼ −

i
2
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mKER

p
: ð19Þ

Taking the square in both sides of the previous expression
and solving the resulting quadratic algebraic equation, we
then have the following solutions for the roots

ER¼Ef−
1

8
mKg22−

i
2
Γ̃1þσ

ffiffiffiffiffiffiffiffiffiffiffi
mKg22
4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKg22
16

−Efþ
i
2
Γ̃1

r
;

ð20Þ

with σ ¼ �1 in order to keep track of the two different
solutions. Later on we show that σ ¼ þ1ð−1Þ corresponds
to the pole lying in the RS II (III). For the calculation of the
square root in the previous equation (taken such that
ℑ

ffiffiffi
z

p
≥ 0, z ∈ C) one needs to distinguish two cases

according to the sign of mKg22=16 − Ef:

ðiÞ mKg22
16

− Ef > 0;

ER ¼ Ef −
i
2
Γ̃1 −

mKg22
8

þ σ

2

ffiffiffiffiffiffiffiffiffiffiffi
mKg22

q ��
mKg22
16

− Ef

�
2

þ Γ̃2
1

4

�1
4

exp

�
−
i
2
arctan

Γ̃1=2
Ef −mKg22=16

�
: ð21Þ

ðiiÞ mKg22
16

− Ef < 0;

ER ¼ Ef −
i
2
Γ̃1 −

mKg22
8

þ σ

2

ffiffiffiffiffiffiffiffiffiffiffi
mKg22

q ��
mKg22
16

− Ef

�
2

þ Γ̃2
1

4

�1
4

exp
i
2

�
π − arctan

Γ̃1=2
Ef −mKg22=16

�
: ð22Þ

In what follows we only consider the case (i),
because for both (i) and (ii) one obtains the same
equations relating Ef, g2, and Γ̃1 with the inputs MR,
ΓR, and rexp or X. We introduce the auxiliary angle ϕ
defined by

ϕ ¼ arctan
Γ̃1=2

Ef −mKg22=16
: ð23Þ

Therefore, ER can be written as

ER ¼ Ef −
mKg22
8

−
i
2
Γ̃1 þ

σ

2

ffiffiffiffiffiffiffiffiffiffiffi
mKg22

q

×

��
Ef −

mKg22
16

�
2

þ Γ̃2
1

4

�1
4

�
cos

ϕ

2
− i sin

ϕ

2

�
: ð24Þ

Attending to the real and imaginary parts in this equation
we have that

MR¼Ef−
mKg22
8

þσ

ffiffiffiffiffiffiffiffiffiffiffi
mKg22

p
2

��
Ef−

mKg22
16

�
2

þ Γ̃2
1

4

�1
4

cos
ϕ

2
;

ΓR¼ Γ̃1þσ
ffiffiffiffiffiffiffiffiffiffiffi
mKg22

q ��
Ef−

mKg22
16

�
2

þΓ̃2
1

4

�1
4

sin
ϕ

2
: ð25Þ

Taking into account the definition of ϕ, one also has that�
Ef −

mKg22
16

�
2

þ Γ̃2
1

4
¼

�
Ef −

mKg22
16

�
2

ð1þ tan2 ϕÞ

¼
�
Ef −

mKg22
16

�
2 1

cos2 ϕ
; ð26Þ
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and

Ef −
mKg22
16

¼ Γ̃1

2
cotϕ: ð27Þ

Substituting these two equalities into Eq. (25), with ϕ < 0
for case (i), the latter equation becomes

MR ¼ −
mKg22
16

þ Γ̃1

2
cotϕþ σ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKg22Γ̃1

���� cotϕ2
����

s
;

ΓR ¼ Γ̃1 −
σ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKg22Γ̃1

���� tanϕ2
����

s
: ð28Þ

From this last equation it follows that

σ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKg22Γ̃1

q
¼ ðΓ̃1 − ΓRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cotϕ2
����

s
: ð29Þ

When this is taken into Eq. (28) we can write MR as

MR ¼ Γ2
R

4Γ̃1

cot
ϕ

2

�
1 −

�
Γ̃1

ΓR
tan

ϕ

2

�
2
	
;

ΓR ¼ Γ̃1 −
σ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKg22Γ̃1

���� tanϕ2
����

s
: ð30Þ

The equation for MR is of the form,

x −
1

x
¼ 4MR

ΓR
;

x≡ ΓR

Γ̃1

cot
ϕ

2
< 0; ð31Þ

and its solution for x < 0 is

x ¼ 2MR

ΓR
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2MR

ΓR

�
2

s
: ð32Þ

After this is substituted in the expression for ΓR in Eq. (30),
we can isolate the bare partial-decay width to the first
channel, and then the bare branching ratio r≡ Γ̃1=ΓR is
given by

r ¼ 1þ σg2
ffiffiffiffiffiffiffi
mK

p
=2

u − 2MR
;

u≡ ð4M2
R þ Γ2

RÞ1=2: ð33Þ

Once we know r we can also determine cotϕ=2 by using
the definition of x and its solution in Eq. (32),

cot
ϕ

2
¼ rx¼ 1

2ΓR
ð4MR−2u−σg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðu−2MRÞ

p
Þ: ð34Þ

Let us denote by β the residue of 1=DðEÞ at the
resonance pole,

β ¼
���� limE→ER

E − ER

DðEÞ
���� ¼

������
1

1þ ig2
4

ffiffiffiffiffi
mK
ER

q
������

¼
ffiffiffiffiffiffi
8u

p

ðg22mK þ 8uþ 4σg2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðu − 2MRÞ

p Þ1=2 : ð35Þ

This expression can be obtained by substituting
ffiffiffiffiffiffi
ER

p
from

Eq. (19), the relation between Ef and tanϕ, cf. Eq. (27),
and finally the expression for tanϕ from that of cotϕ=2
given in Eq. (34).
The renormalized or dressed coupling squared jγ2i j is

related to the bare one gi by evaluating the residue of the
elastic scattering amplitudes for channel i, gi=DðEÞ. In
terms of β, we have the result

jγ1j2 ¼ g1β;

jγ2j2 ¼ 32πm2
Kg2β; ð36Þ

with the numerical factor in front of g2β needed for having
the same normalization as in Sec. II.
Up to our knowledge the difference between the bare and

dressed couplings in a Flatté parametrization has not been
clearly discussed before in the literature, and it has
important implications. E.g., this is one of the reasons
why the values for Γ̃ππ collected in the Table 2 of Ref. [55]
for the f0ð980Þ are typically much bigger than 100 MeV. A
similar comment can also be made for most of the entries of
Γ̃πη in Table 1 of the same reference regarding the a0ð980Þ.6
Indeed, this can be a source for confusion in the literature.
In this respect, we notice that Ref. [78] compares its ππS-
wave residue with bare couplings used in energy-depen-
dent-width Breit-Wigner or Flatté parametrizations without
considering the actual residue at the resonance pole
position of the parametrization.
In order to obtain g2 we need another input, for which we

take either the physical branching ratio rexp or the total
compositeness X. For the latter case we need then the
expression for calculating X1 and X2, with X ¼ X1 þ X2.
Recalling Eq. (1) we have for X1,

X1 ¼ γ21

���� ∂G1

∂s
����
s¼sR

¼ 8πm2
RΓR

p1ðmRÞ
rβ

���� ∂G1

∂s
����
s¼sR

; ð37Þ

6The other reason applies to those poles in the RS II because
then the physical partial-decay width to the lighter channel is
Γ1 − 2Γ2, which is smaller than Γ1, cf. Eq. (15) and discussions
below in this section.
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with r and β given in terms of g2 and the pole parameters in
Eqs. (33) and (35), respectively. For the calculation of X2 a
simpler algebraic formula can be obtained if we use
nonrelativistic kinematics for the calculation of the deriva-
tive of ∂G2ðsÞ=∂s at s ¼ sR, taking advantage of the fact
that pole lies in the vicinity of the KK̄ threshold. Then,
G2ðsÞ is a constant plus −i

ffiffiffiffiffiffiffiffiffiffi
mKE

p
=ð16πmKÞ þOðE=mKÞ,

and its derivative with respect to s is

∂G2ðsÞ
∂s

����
sR

¼ −i
128πm3=2

K

ffiffiffiffiffiffi
ER

p þOð1Þ: ð38Þ

We then multiply this derivative by 32πm2
Kg2β and the final

expression that results is

X2 ¼
ffiffiffiffiffiffiffi
mK

p
g2

ðg22mK þ 8uþ 4σg2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðu − 2MRÞ

p Þ12
: ð39Þ

The equation that is needed to be solved to obtain g2 given
X is X1 þ X2 ¼ X. Nonetheless, in the numerical results
shown below we calculate X2 making use of relativistic
kinematics, with differences of around a 10%–15% com-
pared with the values obtained when using the nonrelativ-
istic Eq. (39).
When rexp is the input taken one has to distinguish

between whether the pole lies in the RS II or RS III, due to
the change of sign in the analytical extrapolation of

ffiffiffiffi
E

p
in

DðEÞ, Eq. (17), needed to reach the pole position. For the
pole in the RS III, we have the following straightforward
relation between the physical rexp and the bare r,

rexp¼ rβ

¼
ffiffiffiffiffiffi
2u

p ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−2MR

p þg2σ
ffiffiffiffiffiffiffi
mK

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−2MR

p ðg22mKþ8uþ4σg2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðu−2MRÞ

p Þ1=2 :

ð40Þ

This is a quadratic equation for g2 that can be easily solved.
By requiring that g2 ¼ 0 for rexp ¼ 1 (which implies that
there is no resonance decay at all to the KK̄ channel) then
there is only one acceptable solution given by

g2 ¼
2ð−ΓRrexp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − 2MR

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MRr2exp þ ð2 − r2expÞu

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mKð2MRr2exp þ ð2 − r2expÞuÞ
q :

ð41Þ

For a pole in the RS II, when moving to the complex E-
plane with negative imaginary part the square root

ffiffiffiffi
EII

p
has

a positive imaginary part and negative real one, changing
sign with respect to that when calculated in the RS III,
because there

ffiffiffiffi
EIII

p ¼ −
ffiffiffiffi
EII

p
(the momentum p2 changes

sign between the two sheets). As a result, it is indeed the

case that the last term in Eq. (17), responsible for the width
to KK̄, does not add to but subtract from Γ̃1. Then, for a
physical interpretation of the different terms in this equa-
tion it is convenient to rewrite it as

DðEÞ ¼ E − Ef þ
i
2
½Γ̃1 þ 2g2

ffiffiffiffiffiffiffiffiffiffi
mKE

II
p

� − i
2
g2

ffiffiffiffiffiffiffiffiffiffi
mKE

II
p

¼ E − Ef þ
i
2
½Γ̃1 − 2g2

ffiffiffiffiffiffiffiffiffiffi
mKE

III
p

� þ i
2
g2

ffiffiffiffiffiffiffiffiffiffi
mKE

III
p

:

ð42Þ

Let us notice that the real part of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MR − iΓR=2

III
p

is positive
and then the imaginary part of the last term in Eq. (42)
appears with the same sign as Γ̃1. From this equation we
then deduce that, once the bare couplings are dressed,
cf. Eq. (36), the partial-decay width to the lighter channel
really observed in an experiment is not Γ1 but Γ1 − 2Γ2,
while the total decay width ΓR is Γ1 − Γ2 for the RS II case.
Therefore, when taking rexp as input for a pole in the RS II,

rexp ¼
Γ1

ΓR
− 2

Γ2

ΓR
¼ rβ − 2ð1 − rexpÞ ð43Þ

from where the extra equation to be taken into account is:

2−rexp¼rβ

¼
ffiffiffiffiffiffi
2u

p ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−2MR

p þg2σ
ffiffiffiffiffiffiffi
mK

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−2MR

p ðg22mKþ8uþ4σg2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðu−2MRÞ

p Þ1=2 ;

ð44Þ

instead of the straight Eq. (40) for a pole in the RS III. The
valid solution in this case, the one that gives g2 ¼ 0 for
rexp ¼ 1, is obtained from Eq. (41) by simultaneously
multiplying its right-hand side by a minus sign and
replacing rexp for 2 − rexp.
As a result of this analysis we then expect that Γ1 > ΓR

with values in the interval ½ΓR; 2ΓR� for the resonance when
its pole lies in the RS II. To illustrate this point, let us take
the residues given in the Refs. [75,78] for the pole positions
of the f0ð980Þ in Eqs. (9) and (10), respectively, and
evaluate Γ1=ΓR making use of Eq. (12). The values of the
residues are jγ1j ¼ 2.3� 0.2 GeV [78] and jγ1j ¼ 1.80�
0.25 GeV [75]. Propagating the errors in mR, ΓR and jγ1j
from these references, the values that we obtain are

Γ1

ΓR
¼ 2.0� 0.9;Eq:ð9Þ—Ref:½78�;

Γ1

ΓR
¼ 1.1� 0.6;Eq:ð10Þ—Ref:½75�: ð45Þ

This more detailed discussion based on the use of the Flatté
parametrization extends the same topic already discussed in
Sec. II for the interpretation of the Γi’s and their connection
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with the experimental decay widths for the case of a pole
lying in the RS II.
It is worth stressing that when X is taken as input the

procedure explained above, Eqs. (37)–(39), allows to
calculate Γ1=ΓR without relying on its connection to
rexp, and the resulting values, which we discuss below,
are perfectly compatible with the picture just explained.
An interesting outcome of our study is that by combining

outputs from different sources we are able to constrain
further the knowledge on the nature of the resonances
f0ð980Þ and a0ð980Þ than by just relying on one reference.
This is clear by considering the huge uncertainty in the
decay branching ratios Γ1=ΓR deduced in Eq. (45) from
Refs. [78] and [75]. However, later on we will use these
same references for the mass and width and then take the
branching ratio from other studies so that one can then
conclude a tighter information on the nature for the
f0ð980Þ. Related to this, we will be able to deduce values
for the dressed coupling squared jγ2j2 which cannot be
provided by the formalism of Refs. [75,78]. Similar
remarks also hold for the a0ð980Þ.
Finally, let us now show the relationship between the

sign σ and the RS in which the pole lies. For that, we isolateffiffiffiffiffiffi
ER

p
from Eq. (19), which can then be written as

ffiffiffiffiffiffi
ER

p
¼ 2i

g2
ffiffiffiffiffiffiffi
mK

p ðMR − EfÞ þ
ΓR − Γ̃1

g2
ffiffiffiffiffiffiffi
mK

p : ð46Þ

This equation tells us that if MR − Ef > 0 the pole lies in
the RS II, since then ℑ

ffiffiffiffiffiffi
ER

p
> 0 and, conversely, if MR −

Ef < 0 the pole is located in the RS III. Now, we consider
Eq. (25) which clearly implies that if σ ¼ −1 then
MR − Ef < 0, corresponding to the RS III. For σ ¼ þ1

a more careful treatment is needed because the sign of
MR − Ef depends on the relative sign between the last two
terms in the right-hand side of Eq. (25). One can straight-
forwardly show that the absolute value of the last term is
bigger than mKg22=8 by squaring and subtracting them. In
the process one has to relateEf with tanϕ, Eq. (27), and use
the expression for cotϕ=2 given in Eq. (34). As a result
MR − Ef > 0 and the pole lies in the RS II for σ ¼ þ1.
We give the results obtained with the present formalism

based on the use of the Flatté parametrization, distinguish-
ing between when X or rexp are taken as inputs in Secs. IV
and V, respectively.

A. Spectral density and its integration

Here we use the spectral density function ωðEÞ of a near-
threshold resonance, in our case either f0ð980Þ or a0ð980Þ,
as a way to calculate the compositeness of the meson-
meson states in these resonances. We follow the formalism
of Ref. [55] to which we refer for further details. There the
spectral density function ωðEÞ is introduced, and it pro-
vides the probability distribution function in energy for
finding a bare elementary state in the continuum [70]. As a
result, its integration around the KK̄ threshold comprising
the resonance signal, which we call WR, is the probability
for finding the bare state. Namely, WR is calculated as [55]

WR ¼
Z þΔ

−Δ
dEωðEÞ;

ωðEÞ ¼ 1

2π

Γ̃1 þ g2
ffiffiffiffiffiffiffiffiffiffi
mKE

p
θðEÞ

ðE − Ef − 1
2
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−mKE

p
θð−EÞÞ2 þ 1

4
ðΓ̃1 þ g2

ffiffiffiffiffiffiffiffiffiffi
mKE

p
θðEÞÞ2 ; ð47Þ

with θðEÞ the Heaviside step function. In Ref. [55] the
parameter Δ was chosen to be 50 MeV but, since an
important dependence on Δ is observed on the final value
ofWR, we prefer to present the results forWR as a function
of Δ.

B. Reinterpretation of the method of Sec. II for poles in
the Riemann sheet II

By the application of the Flatté parametrization it has
been clear that for a near-threshold pole in coupled
channels lying in the RS II it is necessary to change the
interpretation of Γ1. We have seen from the last line in
Eq. (42) that the partial-decay width into the lighter channel
is not directly Γ1 but Γ1 − 2Γ2, and that the total width from
the pole position should be compared with Γ1 − Γ2.

Therefore, for a pole in the RS II near the heavier
threshold the equation for the saturation of the total width,
cf. Eq. (14), reads

ΓR ¼ jγ1j2
p1ðm2

RÞ
8πm2

R
−
jγ2j2
16π2

Z
mRþ2ΓR

m1þm2

dW

×
pðW2Þ
W2

ΓR

ðmR −WÞ2 þ Γ2
R=4

; ð48Þ

with no change in Eq. (11) for saturating the total
compositeness X. The latter equation is also reproduced
here

X ¼ jγ1j2
���� ∂G1ðsÞ

∂s
����
s¼sR

þ jγ2j2
���� ∂G2ðsÞ

∂s
����
s¼sR

: ð49Þ
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However, in applications up to now of these ideas instead of
the minus in Eq. (48) a “standard” plus sign is placed in
front of jγ2j2. Namely,

ΓR ¼ jγ1j2
p1ðm2

RÞ
8πm2

R
þ jγ2j2
16π2

Z
mRþ2ΓR

m1þm2

dW

×
pðW2Þ
W2

ΓR

ðmR −WÞ2 þ Γ2
R=4

; ð50Þ

At the practical level as long as X1 ≪ X2 the only change
is in the value of jγ1j, because the use of Eq. (50) would
provide an “effective” value of this coupling by reabsorbing
the effect of subtracting −2Γ2 in Eq. (48). This is clear
because then X is saturated almost completely by X2 and
this quantity alone fixes jγ2j. The use of Eq. (48) allows to
determine jγ1j, which is certainly larger than the “effective”
one deduced by fulfilling Eq. (50) with an intermediate plus
sign. However, the values for X2, Γ2 and the physical
partial-decay width to channel 1 almost do not change,
which are typically the most important pieces of informa-
tion to infer about the nature of the resonances.
Now, if rexp is taken as input the equations that one has to

fulfill are Eq. (48) and

2 − rexp ¼ jγ1j2
p1ðm2

RÞ
8πm2

RΓR
; ð51Þ

which are apparently very different to the “standard”
Eq. (50) and

rexp ¼
Γ1

ΓR
; ð52Þ

already written for a pole in the RS III in Sec. II. However,
they basically provide again the same results for Γ2, X2, and
the physical partial-decay width to channel 1, while the use
of Eqs. (50) and (52) provides the already mentioned
“effective” value for jγ1j.
In order to see it, let us divide Eq. (48) by ΓR and write

the following equations equivalent to Eqs. (48) and (51),

1 ¼ Γ1

ΓR
−
Γ2

ΓR
;

2 − rexp ¼
Γ1

ΓR
: ð53Þ

Subtracting the first line from the second one we then have

1 − rexp ¼
Γ2

ΓR
; ð54Þ

which fixes jγ2j as if Eq. (50) were used. Afterwards,
Eq. (48) is employed to calculate jγ1j, while the use of
Eq. (50) would provide the so-called “effective” value for
jγ1j, which would be smaller than the one obtained
from Eq. (48).

IV. RESULTS AND DISCUSSIONS USING THE
TOTAL COMPOSITENESS AS INPUT

Here we apply the formalism derived in Secs. II and III to
study the nature of the resonances f0ð980Þ and a0ð980Þ.
Subsequently, the former method based on the saturation of
ΓR and X is denoted by S, while the latter one based on the
use of a Flatté parametrization is called F. For each
resonance pole we first apply the method S and then F.

A. The f 0ð980Þ resonance
Assuming given values for the total compositeness X of

the f0ð980Þ, varying it from 0.2 to 1.0 in steps of 0.2, we
obtain the couplings, partial-decay widths, and compos-
iteness coefficients by solving Eq. (11) and Eq. (14). We
indicate that it is not possible to find solutions for the
parameters to reproduce X ¼ 0, because then the couplings
would be zero which is in contradiction of having a finite
width. As already mentioned, we consider the RS II where
sR of Eq. (9) lies [78] and the results calculated are shown
in Table I. One can observe from this table that the
compositeness coefficient X2 is always much larger than
X1, which means that the KK̄ channel plays a much more
important role than the ππ one in the structure of f0ð980Þ.
Related to this point, the f0ð980Þ couples much more
strongly to KK̄ than to ππ, in agreement with the fact that
f0ð980Þ sits very close to the KK̄ threshold. We also
observe from Table I that as the total compositeness X

TABLE I. Method S applied to the resonance f0ð980Þwith pole position in the RS II (column 2) from Ref. [78], Eq. (9): The couplings
jγij (columns 3, 4), corresponding partial-decay widths Γi (columns 5, 6), and individual compositeness coefficients Xi (columns 7, 8)
are calculated for X taking values from 0.2 up to 1.0 in steps of 0.2 (column 1).

X RS jγππj (GeV) jγKK̄ j (GeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

1.0 II 2.37� 0.21 5.21� 0.26 108.3� 18.9 54.3� 10.6 0.042� 0.007 0.958� 0.007
0.8 II 2.24� 0.20 4.65� 0.23 97.2� 16.9 43.2� 8.4 0.038� 0.007 0.762� 0.007
0.6 II 2.11� 0.19 4.01� 0.19 86.1� 14.8 32.1� 6.2 0.033� 0.006 0.567� 0.006
0.4 II 1.97� 0.17 3.24� 0.15 75.0� 12.9 21.0� 4.0 0.029� 0.005 0.371� 0.005
0.2 II 1.82� 0.16 2.23� 0.09 63.9� 11.0 9.9� 1.8 0.025� 0.004 0.175� 0.004
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increases the physical partial-decay width to ππ (here, for a
RSII pole, Γππ ¼ Γ1 − 2Γ2) decreases, while that to KK̄
becomes larger. Similarly, this fact has also been found in
other heavy-quark resonances with open and near-threshold
channels [67–69,94]. In these regards, it follows from
Table I that ΓKK̄ > Γππ for X ≳ 0.6,7 but as X decreases
Γππ becomes larger than ΓKK̄ .
For estimating the errors associated to the input values of

the resonance pole mass and width we proceed in this work
similarly as done in Ref. [64]. Then, we discretize the
inputs, mR and ΓR from the pole position at several points
within one standard deviation region from the central
values to generate a data grid. For each of the points in
the grid we proceed to calculate the different outputs so that
their central values correspond to the mean values and the
errors to the square root of the variances. We have also
checked that this procedure is (of course) stable if the
number of points in the grid is increased. For the other input
X the variation in the results calculated for the different
values of X provides an estimate of this source of
uncertainty.
We now consider the application of the method F, take

X ¼ 0.2 to 0.8 in steps of 0.2, and calculate the parameters
characterizing the Flatté formula, Eq. (17), that is, the bare
width to the lighter channel Γ̃1, the bare coupling squared
g2 to KK̄ and Ef. As typical outputs we provide Γ1, Γ2, X1

and X2. For the pole position of the f0ð980Þ we take
Eq. (9), with the results given in Table II. For this
method the extreme value X ¼ 1 cannot be reproduced,
while X ¼ 0 is in contradiction with having a finite width
as for the method S.

Comparing the values of X2 for the f0ð980Þ between
Table II and the previous Table I we see a good agreement,
with the difference in the central values affecting the third
decimal figure. This close agreement can be explained,
though not completely, by noticing that X2 ≫ X1 so t
hat X2 ≈ X, which fixes it to lie very close to the total
compositeness. Regarding the Γi we see that they are very
close between both tables for X ¼ 0.2, 0.4 and 0.6, with
larger differences for X ¼ 0.8, but perfectly compatible
within errors for all values of X. One should stress that the
method based on the Flatté parametrization directly pro-
vides Γi, since Γ1 ¼ Γ̃1β and Γ2 ¼ Γ1 − ΓR for a pole
in the RS II, as it is the case here for the f0ð980Þ poles in
Eqs. (9) and (10). However, the method S in Sec. II
keeps some spurious dependence on the value given to n
for Eq. (13), though a judicious choice gives rise to
remarkably compatible results between both methods, as
indicated.
We now move on and consider the f0ð980Þ pole position

from Ref. [75] given in Eq. (10), and proceed similarly as
done regarding the pole position in Eq. (9). Then, we
reproduce the values of the mass and width of the resonance
in Eq. (10) together with a value given for X. The results
obtained are shown in Table III.
Comparing Tables I and III we observe that all the

outputs are rather similar. In particular the resulting values
for X2 are almost coincident in both Tables, with X2 ≫ X1.
However, we notice that while the central value of the width
for the pole in Eq. (9) is smaller than that in the pole of
Eq. (10), the calculated Γ1 and Γ2 in Table I are larger than
those in Table III. This indicates that the cancellation
between widths in the difference Γ1 − 2Γ2 for calculating
the actual width to ππ is more important in the pole of
Eq. (9) than for the one in Eq. (10).

TABLE II. Method F applied to the resonance f0ð980Þwith pole position in the RS II (column 2) from Ref. [78], Eq. (9): The value of
X taken as input is given in the first column. We calculate the bare width Γ̃1 (column 3), the bare coupling g2 (column 4), Ef (column 5),
Γ1 (column 6), Γ2 (column 7), X1 (column 8), and X2 (column 9).

X RS Γ̃ππ (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.8 II 948.3� 383.1 10.01� 4.03 −389.7� 210.7 84.4� 15.3 30.4� 8.3 0.033� 0.006 0.767� 0.006
0.6 II 200.3� 38.5 1.63� 0.23 −57.6� 19.3 80.4� 14.4 26.4� 7.0 0.031� 0.006 0.569� 0.006
0.4 II 113.2� 20.1 0.66� 0.07 −20.4� 8.6 73.2� 12.9 19.2� 4.9 0.028� 0.005 0.372� 0.005
0.2 II 75.2� 13.0 0.24� 0.02 −4.2� 5.3 63.9� 11.1 9.9� 2.4 0.025� 0.004 0.175� 0.004

TABLE III. Method S applied to the resonance f0ð980Þwith pole position in the RS II from Ref. [75], Eq. (10). The various entries are
the same as in Table I.

X RS jγππj (GeV) jγKK̄ j (GeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

1.00 II 2.18� 0.28 5.47� 0.34 94.3� 23.3 38.3� 12.7 0.037� 0.009 0.963� 0.009
0.80 II 2.09� 0.26 4.88� 0.30 86.5� 20.8 30.5� 10.0 0.034� 0.008 0.766� 0.008
0.60 II 2.00� 0.24 4.21� 0.26 78.6� 18.4 22.6� 7.4 0.031� 0.007 0.569� 0.007
0.40 II 1.89� 0.22 3.40� 0.20 70.8� 16.0 14.1� 4.8 0.028� 0.006 0.372� 0.006
0.20 II 1.79� 0.20 2.33� 0.13 62.9� 13.7 6.9� 2.2 0.025� 0.005 0.175� 0.005

7This can be easily seen because ΓKK̄ > 25 MeV.
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For the method F the results are given in Table IV. We
observe that the values of X2 obtained are very similar to
those given in Table III for the same input X, with
X2 ≫ X1. The output Γ2 is smaller now than that in
Table III, though within errors they are again compatible.
This clearly indicates the compatibility between the two
methods for this f0ð980Þ pole too. We also point out that
the bare parameters for X ¼ 0.8 in Table IV are essentially
undetermined, as indicated by the large intervals given
between parenthesis, though the physical outputs appear
with an uncertainty of similar size as that in the other rows
of the table.

B. The a0ð980Þ resonance
Let us explore the compositeness of the a0ð980Þ sim-

ilarly as done above in Sec. IVA for the f0ð980Þ. The poles
that we are going to consider next for the a0ð980Þ stems
from a recent coupled-channel partial-wave analysis of
antiproton-proton annihilation data in Ref. [72], where the
pole parameters and the partial-decay width of the a0ð980Þ
are discussed. In the RS II Ref. [72] reports the values

ma0 ¼1004.1�6.67MeV; Γa0 ¼97.2�6.01MeV;

ΓKK̄=Γπη¼ð13.8�3.5Þ%; ð55Þ

while in the RS III the same reference provides

ma0 ¼1002.4�6.55MeV; Γa0 ¼127.0�7.08MeV;

ΓKK̄=Γπη¼ð14.9�3.9Þ%; ð56Þ

with the uncertainties added in quadrature.
Let us denote by 1 the lighter channel πη, and by 2 the

heavier one KK̄. Combining Eq. (11) for the total com-
positeness and Eq. (14) for the full width, given input
values for the former between 0.2 and 1.0 in steps of 0.2,
we derive a series of partial compositeness coefficients and
decay widths for the a0ð980Þ in Table V by applying the
method S.8 We find that X2 is rather similar for the RS II
and III calculations. We also obtain that X2 ≫ X1, except
for X ¼ 0.2 in which case they are quite close to each other.
This tells us that the KK̄ component typically dominates
over the πη one for the resonance a0ð980Þ.
The results corresponding to the method F for the

a0ð980Þ case are organized in Table VI. One then finds
that the values of X2 obtained in Tables VI and V are very
close independently of the RS in which the poles lie. It
turns out that X2 is typically much larger than X1 except
when X becomes small, like X ¼ 0.2 in Table VI, and then

TABLE IV. Method F applied to the resonance f0ð980Þwith the pole position in the RS II from Ref. [75], Eq. (10). The various entries
are the same as in Table II. The numbers between parenthesis indicate huge range of values of the corresponding quantity by varyingmR
and ΓR within errors.

X RS Γ̃ππ (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.8 II ð430; 3 × 106Þ ð5.4; 4 × 104Þ ð−160;−2 × 106Þ 71.6� 18.2 16.8� 7.9 0.028� 0.007 0.772� 0.007
0.6 II 218.4� 51.9 2.34� 0.52 −131.6� 52.3 68.8� 16.9 12.8� 7.0 0.027� 0.007 0.573� 0.007
0.4 II 113.6� 25.1 0.83� 0.13 −52.6� 20.7 65.6� 15.4 9.6� 5.1 0.026� 0.006 0.374� 0.006
0.2 II 75.2� 16.1 0.27� 0.03 −24.2� 11.8 61.1� 13.6 5.1� 2.6 0.024� 0.005 0.176� 0.005

TABLE V. Method S applied for the resonance a0ð980Þ with pole positions from Ref. [72], Eqs. (55) and (56), in different RSs
(column 2): We take input values for X (column 1), and predict jγij (columns 3, 4), Γi (columns 5, 6), and Xi (columns 7, 8).

X RS jγπηj (GeV) jγKK̄ j (GeV) Γ1 (MeV) Γ2 (MeV) Xπη XKK̄

1.0 II 3.78� 0.08 5.83� 0.05 189.3� 8.2 92.1� 6.3 0.169� 0.006 0.831� 0.006
III 2.01� 0.12 5.11� 0.07 53.9� 6.4 73.1� 5.7 0.049� 0.006 0.951� 0.006

0.8 II 3.57� 0.07 5.15� 0.04 169.1� 7.0 71.9� 4.9 0.151� 0.005 0.649� 0.005
III 2.30� 0.09 4.50� 0.06 70.4� 5.5 56.6� 4.4 0.064� 0.006 0.736� 0.006

0.6 II 3.35� 0.06 4.37� 0.03 149.0� 5.8 51.8� 5.8 0.133� 0.005 0.467� 0.005
III 2.56� 0.07 3.78� 0.05 86.9� 4.9 40.1� 3.1 0.079� 0.005 0.521� 0.005

0.4 II 3.12� 0.05 3.41� 0.02 128.8� 4.6 31.6� 2.2 0.115� 0.004 0.285� 0.004
III 2.79� 0.06 2.90� 0.04 103.5� 4.5 23.5� 1.9 0.094� 0.005 0.306� 0.005

0.2 II 2.86� 0.05 2.05� 0.01 108.6� 3.7 11.4� 0.8 0.097� 0.003 0.103� 0.003
III 3.01� 0.06 1.58� 0.04 120.0� 4.5 7.0� 0.7 0.109� 0.005 0.091� 0.005

8The same remark as for the f0ð980Þ in the footnote 4 can also
be applied for the a0ð980Þ when its pole is taken in the RS II for
applying Eq. (1) to calculate X2. The point is that the a0ð980Þ
mass in Eq. (55) is clearly larger than the KK̄ threshold but the
width of the resonance is much larger than the difference between
ma0 and the KK̄ threshold.
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both Xi are rather close to each other. Regarding the Γi it is
clear that for the pole in the RS II the values obtained now
in Table VI are remarkably similar to those in Table V.
However, they clearly differ for X ≥ 0.8 for the RS III case,
with no solution found for X ¼ 1. Of course, X ¼ 0 cannot
be reproduced in any method S or F due to the finite width
of the a0ð980Þ, which requires nonvanishing couplings.
As indicated above one should distinguish between the

bare and dressed parameters in a Flatté parametrization.
This reflects in the fact that the bare width Γ̃1 can be much
larger than the total width ΓR. This is particularly true when
the pole position is set to lie in the RS II, as it is clear from
the Tables II, IV and VI. Here in addition one has to
properly relate Γ1 and Γππ , cf. Eq. (43). Nonetheless, these
important points have been overlooked in the literature.
Before finishing this section we should mention that in

some studies the a0ð980Þ lies in the RS IV, so that there is
no an interval along the physical real s-axis within the
radius of convergence of the Laurent series around the
a0ð980Þ. In such a scenario it is not justified to apply
Eq. (1) for the calculation of X2, as discussed in detail in
Ref. [62], and it is not either clear how to connect the Γi
with the physical partial-decay widths. Then, it follows that
our method (as well as the older Ref. [55]) cannot be
applied and the conclusions thereof do not hold. In the
studies based on unitarization of SU(3) and U(3) chiral
perturbation theory it is observed that the pole for the
a0ð980Þ appears in the 2nd RS if only tree level amplitudes
are kept. This is necessarily the case when unitarizing the
leading order amplitudes [25,28,42,73]. However, once
loop contributions are accounted for the pole moves to the
RS IV [73,75,95]. This is also the case in the K-matrix
analysis of Ref. [74]. The more recent studies among those
quoted here [73,74] also reproduce the energy levels from
lattice QCD simulations. When the a0ð980Þ lies in the RS
IV it manifests on the physical real s-axis as a strong cusp
effect.

V. RESULTS AND DISCUSSIONS USING THE
BRANCHING RATIO rexp AS INPUT

Here, we directly explore the more stringent scenario of
taking rexp, together with the usual reproduction of the pole
position ER, in order to fix all the parameters both in the S
and F methods. The direct consideration of rexp as input is
an interesting check on the consistency of interpreting the
Γi, calculated from the pole parameters, in connection with
the experimental rexp for a pole lying in the RS II. As shown
below, the resulting physical-partial-decay widths have
values within meaningful ranges, such that they are positive
and smaller than the total width, while the Xi and their sum
X also lie within the allowed interval [0, 1].9 This situation
is similar to the one obtained before when taking X as input,
where all the Flatté parameters are fixed without the need to
connect the Γi with rexp, which comes out as an output.
We also show below that the procedure of providing rexp

as input is not completely satisfactory because the output
value for the renormalized coupling squared to KK̄, jγ2j2,
can be very sensitive to small variations in the input. As a
result, the calculation of X2 by using Eq. (1) does not come
out very accurate, particularly for the f0ð980Þ. We can
circumvent this limitation by then using the method of the
spectral function ωðEÞ to estimate X with better precision.
With this choice we also update values for the resonance
inputs compared with the almost two decades old Ref. [55],
where the spectral density function to calculate the com-
positeness was applied for the first time to the f0ð980Þ and
a0ð980Þ resonances. In this respect, it is important to
indicate that nowadays we have at our disposal the precise
determination of the f0ð980Þ pole from the Roy-like GKPY
equations, Eq. (9).

TABLE VI. Method F applied to the resonance a0ð980Þ with pole positions from Ref. [72], Eqs. (55) and (56), in different RSs
(column 2): We calculate the bare width Γ̃1 (column 3), the bare coupling squared g2 (column 4), Ef (column 5), Γ1 (column 6), Γ2

(column 7), X1 (column 8) and X2 (column 9). The value of X taken as input is given in the first column. The center dot in the second row
indicate that no solution is found for X ¼ 1 when the pole lies in the RS II.

X RS Γ̃πη (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xπη XKK̄

1.0 II … … … … … … …
III 14.3� 7.8 0.83� 0.04 58.2� 4.5 18.9� 10.5 108.4� 10.9 0.017� 0.010 0.983� 0.010

0.8 II 740.5� 42.2 5.16� 0.51 −237.1� 39.4 157.2� 8.8 60.0� 7.4 0.141� 0.007 0.659� 0.007
III 35.9� 7.3 0.66� 0.03 49.3� 4.6 45.6� 9.7 81.4� 9.3 0.042� 0.009 0.758� 0.009

0.6 II 289.7� 8.5 1.54� 0.06 −61.6� 10.0 146.2� 7.2 49.0� 5.6 0.131� 0.005 0.469� 0.005
III 59.9� 5.6 0.49� 0.02 39.2� 4.3 72.7� 7.1 54.3� 6.2 0.066� 0.007 0.534� 0.007

0.4 II 177.4� 5.6 0.64� 0.01 −18.2� 5.8 129.9� 5.4 32.7� 3.5 0.116� 0.004 0.284� 0.004
III 85.2� 4.7 0.30� 0.01 28.6� 4.1 96.9� 5.3 30.1� 3.4 0.089� 0.006 0.311� 0.006

0.2 II 120.2� 3.8 0.18� 0.002 4.0� 4.3 109.9� 3.8 12.7� 1.4 0.099� 0.003 0.101� 0.003
III 113.6� 4.6 0.10� 0.01 16.7� 4.0 118.6� 4.6 8.4� 1.1 0.108� 0.005 0.092� 0.005

9Otherwise, if not correctly understanding rexp as proposed for
a RS II pole, there will be no solution within the method F
developed in Sec. III.
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A. The f 0ð980Þ resonance
Now, let us directly combine the knowledge of ER with

the input for the branching ratio rexp, rexp ¼ 0.52� 0.12
[71] and rexp ¼ 0.75þ0.11

−0.13 [96], as well as rexp ¼ 0.68 from
the theoretical analysis of Ref. [25]. Notice that in this way
we consider a broad range of values for rexp from around
0.40 up to 0.86, taking into account the spread in the central
values within one standard deviation. As a result, instead of
selecting a specific experimental input, rather we try to
extract an image for the nature of the f0ð980Þ compatible
with the present rather imprecise experimental knowledge
in rexp.
We start by applying the method S. It is clear that given

rexp and ΓR one can solve for the couplings jγij, i ¼ 1, 2,
and calculate the partial compositeness coefficients Xi.
Since the f0ð980Þ poles that we are considering lie
in the RS II we have that Γππ ¼ ð2 − rexpÞΓR and
ΓKK̄ ¼ ð1 − rexpÞΓR, and similarly for the RS II pole for
the a0ð980Þ, Γπη ¼ ð2 − rexpÞΓR. For the a0ð980Þ pole in
the RS III we have instead Γπη ¼ rexpΓR. By combining
Eqs. (1), (12), and (13) the value of the compositeness
coefficients X1 and X2 can be written as

X1 ¼
8πð2 − rexpÞΓRm2

R

p1ðm2
RÞ

���� ∂G1ðsÞ
∂s

����
s¼sR

;RS II; ð57Þ

X1 ¼
8πrexpΓRm2

R

p1ðm2
RÞ

���� ∂G1ðsÞ
∂s

����
s¼sR

;RS III;

X2 ¼
16π2ð1 − rexpÞΓRRmRþ2ΓR

m1þm2
dW pðW2Þ=W2

ðmR−WÞ2þΓ2
R=4

���� ∂G2ðsÞ
∂s

����
s¼sR

: ð58Þ

The results are organized in Table VII with mR and ΓR
taken from Eq. (9), corresponding to the determination in

Ref. [78]. For this and the rest of tables in this section
the error bars given to X2 and X contain also the
propagation of the error in the determination of rexp from
Refs. [71,96]. It follows from this table that X2 is affected
by large error bars, around a 50%, so that the resulting
X is not pined down accurately and the calculation is
rather indicative. Only for rexp ¼ 0.52� 0.12 [71] one has
that X can be larger than 0.5 within errors, with
X ¼ 0.49� 0.20. For the other experimental value rexp ¼
0.75þ0.11

−0.13 [96] the compositeness X ¼ 0.27� 0.11 and it is
smaller than 0.5.
We show in the left panel of Fig. 1 the total compos-

iteness X as a function of rexp for the f0ð980Þ with the
method S, and employing the central values for mR and ΓR
for the different poles considered. Thus, the requirement
that rexp > 0.4 implies that X ≲ 0.6 for the pole in Eq. (9) in
the RS II. It is also clear from Fig. 1 the linear decrease of X
with rexp. This can be easily understood by noticing that
both the partial-decay widths and partial compositeness
coefficients are proportional to jγij2, which can be written
in turn as Γi=θi. For given values for the mass and width of
the resonance the θi is just a measure of the available phase
space for the decay to the channel i, and then θ2 ≪ θ1. In
this way, for a pole in the RS III,

X¼ΓRrexp
θ1

����∂G1

∂s
����
s¼sR

þΓRð1−rexpÞ
θ2

����∂G2

∂s
����
s¼sR

¼ΓR

θ2

����∂G2

∂s
����
s¼sR

−rexpΓR

�
1

θ2

����∂G2

∂s
����
s¼sR

−
1

θ1

����∂G1

∂s
����
s¼sR

�
:

ð59Þ

This is a linear dependence with rexp, and the coefficient
multiplying the latter is negative because both 1=θ2 and

(a) (b)

FIG. 1. The total compositeness X is plotted as a function of the input branching ratio (rexpÞ when applying the method S. Panel
(a) corresponds to the f0ð980Þ: The dashed line is for the pole from Ref. [78], Eq. (9), and the dashed one is for the pole of Ref. [75],
Eq. (10). Panel (b) corresponds to the a0ð980Þ: The poles for the a0ð980Þ are given in Eqs. (55) and (56) for the RSs II and III,
respectively, and they are taken from Ref. [72].
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j∂G2=∂sjsR are basically proportional to jsR=4 −m2
Kj−1=2,

cf. Eq. (38).10

Now we apply the method F with rexp as input to the
same f0ð980Þ pole given in Eq. (9), and the results are
presented in the Table VIII. In the columns 2–4 we provide
the resulting parameters characterizing the Flatté para-
metrization, and in the rest of columns we calculate the
outputs in the form of the partial-decay widths Γi and
partial compositeness coefficients Xi. We notice that for the
smallest rexp ¼ 0.52 [71] the bare parameters are much
more poorly determined than those in the other cases.
Nonetheless, the outputs have uncertainties of similar sizes
as for the other values taken for rexp. The resulting values
for X2 in Tables VIII and VII turn out to be remarkably
close to each other, clearly showing the compatibility
between the methods F and S.
Let us compare Table VIII with Table II, where X is

taken as input and no use of the interpretation of the Γi for a
pole in the RS II, according to Eq. (43), is done to fix the
Flatté parametrization. One can then observe that similar
values of ΓKK̄ , which fixes rexp ¼ 1 − ΓKK̄=ΓR, lead to
close values of X2 in both tables. This agreement is of

course an indication that the equations are correctly solved,
because the same results are obtained by taking corre-
sponding values of X or rexp.
Let us move on and consider the f0ð980Þ pole position

from Ref. [75] applying first the method S, with the results
given in Table IX. We already noticed when comparing
Tables I and III that theΓi’swere larger for the former despite
the width of the pole in Eq. (9) is smaller. By comparing
Tables VII and IX with rexp as input we observe that the
partial-decay widths Γi’s have close values between them
and that the differences translates into the central values of
X2, which are always larger in Table IX than the ones in
Table VII. Thus, a somewhatmore prominent role of theKK̄
component in the case of the f0ð980Þ pole in Eq. (10) arises.
When applying the method F to the f0ð980Þ pole from

Ref. [75], Eq. (10), there are no acceptable solutions for the
input values of rexp from Refs. [25,71,96], with solutions
found only for larger values of rexp. Indeed, we see from
Eq. (45) that the central value for rexp calculated from the
information given in Ref. [75] is 0.91, though the error
estimated is too large to extract more stringent quantitative
conclusions. Our results are given in the Table X, where X2

varies by around a factor of 3 when changing rexp by less
than a 10%, from rexp ¼ 0.96 to 0.86. For similar values of
ΓKK̄ the results now and those in Table IVagree well within
errors, and give rise to rather small values for X2.
Interestingly, we can check our procedure with the full

characterization of the f0ð980Þ pole given in Ref. [75], in
which the residues, in addition to the pole position, are given.
In this reference one has jγ1j¼1.8þ0.2

−0.3GeV and jγ2=γ1j¼
2.6þ0.2

−0.3 . Precisely, the input value for rexp ¼ 2 − Γ1

ΓR
¼ 0.909,

cf. Eq. (45), is equivalent to providing the central value of jγ1j
as input, and solving the equation

TABLE VIII. Method F applied to the resonance f0ð980Þ with the pole position in the RS II from Ref. [78], Eq. (9): The branching
ratio rexp is taken as input (column 1). We then calculate the bare partial-decay width Γ̃1 (column 2), the bare coupling squared g2
(column 3), Ef (column 4), the renormalized Γ1 (column 5) and Γ2 (column 6), and the partial compositeness coefficients X1 (column 7)
and X2 (column 8). The numbers between parenthesis indicate large ranges of the corresponding quantities by varyingmR and ΓR within
errors.

rexp Γ̃ππ (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.52 [71] (71, 2623) (0.36, 26.8) ð−21.2; 1167.2Þ 79.9� 14.5 25.9� 4.7 0.030� 0.006 0.48� 0.22
0.68 [25] 113.8� 38.3 0.69� 0.45 ð−66.7; 6.3Þ 71.3� 13.0 17.3� 3.1 0.028� 0.005 0.35� 0.18
0.75 [96] 89.4� 20.4 0.41� 0.17 ð−42.9; 7.7Þ 67.5� 12.3 13.5� 2.5 0.026� 0.005 0.26� 0.14

TABLE VII. Method S applied to the resonance f0ð980Þ with pole position in the RS II (column 2) from Ref. [78], Eq. (9): By
reproducing values given for rexp (column 1), we calculate jγij (columns 3, 4), Γi (columns 5, 6), and Xi (columns 7, 8).

rexp RS jγ1j (GeV) jγ2j (GeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.52 [71] II 2.03� 0.18 3.62� 0.32 79.9� 14.5 25.9� 4.7 0.031� 0.006 0.46� 0.20
0.68 [25] II 1.92� 0.17 2.95� 0.26 71.3� 13.0 17.3� 3.1 0.028� 0.005 0.31� 0.13
0.75 [96] II 1.87� 0.17 2.61� 0.23 67.5� 12.3 13.5� 2.5 0.026� 0.005 0.24� 0.11

10Equation (59) was written for a pole in the RS III. For a pole
lying in the RS II one has to take into account that Γ1 ¼
ΓRð2 − rexpÞ and, then, instead of Eq. (59) we have

X ¼ 2
ΓR

θ1

���� ∂G1

∂s
����
s¼sR

þ ΓR

θ2

���� ∂G2

∂s
����
s¼sR

− rexpΓR

�
1

θ2

���� ∂G2

∂s
����
s¼sR

þ 1

θ1

���� ∂G1

∂s
����
s¼sR

�
; ð60Þ

so that the linear decrease of X with rexp follows.
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jγ1j2 ¼ βg1 ¼ β
Γ̃18πm2

R

p1ðmRÞ
; ð61Þ

instead of Eq. (44). The result is the same as the one given in
the third row of Table X corresponding to a value jγ2j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πm2

Kβg2
p

¼ 2.77 GeV [which straightforwardly trans-
lates into the central value forX2 by using Eq. (1)].We notice
that this value is a factor of 1.7 smaller than the reported one
in Ref. [75]. Its square is therefore a factor of 2.84 smaller
than the value jγ2j2 ¼ ð4.68 GeVÞ2 actually obtained in
Ref. [75] by solving for the residues of the partial-wave
amplitudes.
However, instead of jγ1j we can take jγ2j as input and

solve the equation

jγ2j2 ¼ 32πm2
Kβg2; ð62Þ

instead of Eq. (61). Doing this exercise with the central
value jγ2j ¼ 4.68 GeV [75], corresponding to a much
larger X2 ¼ 0.68, we find that jγ1j ¼ 1.875 GeV, which
is indeed perfectly compatible with the value jγ1j ¼
1.8þ0.2

−0.3 GeV given in Ref. [75]. The branching ratio rexp
obtained with this value of jγ1j is 0.81, instead of 0.91 for
jγ1j ¼ 1.8 GeV (third row in Table X).11

After this check we reconsider the application of the
method F to the f0ð980Þ pole in Eq. (9) and discuss the
central values of jγ1jðjγ2jÞ for the input values of rexp in
Table VIII. For the extreme values rexp ¼ 0.52, and 0.75 we
find 1.96(3.88) GeV, and 1.78(2.40) GeV, respectively.
With a small variation of a 5% in rexp, between the values
0.95rexp and 1.05rexp the coupling squared jγ2j2 changes by
16% for rexp ¼ 0.52 and by 40% for rexp ¼ 0.75. This
implies that though there is no a critical dependence of jγ2j
on the value of rexp as in the case of the f0ð980Þ from
Ref. [75], cf. Table X, it is also true that the variations are
important. Considering the experimental errors in rexp from
Refs. [71,96] of around a 23% for rexp ¼ 0.52 and 15% for
rexp ¼ 0.75, we have added in quadrature the resulting
uncertainty of around a 40% in X2 to the one stemming
from the values ofMR and ΓR for calculating the error bars
in Table VIII.
A similar relative uncertainty, which also follows by

inspection of the dashed line in the left panel of Fig. 1, has
been applied to X2 in Table VII calculated with the method
S. We have proceeded analogously for the error bars of X2

shown in Table IX. Notice that within the method S the
sensitivity to the input value of rexp for the pole in Eq. (10)
is a factor of 1.6 larger than for the pole in Eq. (9), as
follows by comparing the slope of the solid versus the
dashed lines in the left panel of Fig. 1.
We then find a rather unpleasant situation in which small

changes in the input values, perfectly well within the error
bars provided by the analyses where they come from, can
give rise to a very different output value for jγ2j2 and then
for X2, the partial compositeness coefficient which typi-
cally almost saturates the whole X. A way that we have
found to circumvent this limitation is to use the spectral
density function ωðEÞ, Eq. (47), in order to calculate the
compositeness X as 1 −WR, since we have checked that it
does not depend so sensitively on the input value of rexp. In
this regard, we calculate WR as a function of the extent of

TABLE IX. Method S applied to the resonance f0ð980Þwith pole position in the RS II from Ref. [75], Eq. (10). The various entries are
the same as in Table VII.

rexp RS jγππj (GeV) jγKK̄j (GeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.52 [71] II 2.05� 0.22 4.71� 0.70 82.9� 18.2 26.9� 5.9 0.033� 0.007 0.72� 0.34
0.68 [25] II 1.94� 0.21 3.85� 0.58 73.9� 16.2 17.9� 3.9 0.029� 0.006 0.48� 0.23
0.75 [96] II 1.88� 0.21 3.40� 0.51 70.0� 15.3 14.0� 3.1 0.027� 0.006 0.38� 0.18

TABLE X. Method F applied to the resonance f0ð980Þwith the pole position in the RS II from Ref. [75], Eq. (10): The entries are the
same as those in Table VIII, except for the values of rexp in the first column because solutions are found only for rexp > 0.82. The values
of rexp taken do not come from any experiment and are considered due to theoretical reasons.

rexp Γ̃ππ (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xππ XKK̄

0.86 (45.8, 2632) (0.13, 35.6) ð−2358; 0.3Þ 63.8� 14.0 7.8� 1.7 0.026� 0.005 0.329� 0.140
0.91 (41.9, 407.6) (0.08, 6.64) ð−429.4; 1.3Þ 61.0� 13.4 5.1� 1.1 0.025� 0.005 0.239� 0.123
0.96 66.1� 13.0 0.16� 0.12 −20.8� 14.4 58.2� 12.8 2.3� 0.5 0.023� 0.005 0.105� 0.058

11At first sight it could seem strange that jγ1j ¼ 1.875 >
1.8 GeV has rexp ¼ 0.81 < 0.91, respectively. This is because for
jγ1j ¼ 1.875 GeV the coupling jγ2j ¼ 4.68 > 2.77 GeV and the
decay width to KK̄, Γ1 − ΓR, has increased. The fact that the
width to KK̄ has not increased by a relative factor of 2.84 as jγ2j2
does is a reflection of some divergence between the F and S
methods for large KK̄ couplings in the case of the pole in
Eq. (10). This point is also clear from the absence of solutions for
rexp ¼ 0.52, 0.68 and 0.75 within the method F, although they are
found for the method S in Table IX. Some divergence in the
results when taking X as input can also be seen for larger values
of X ≳ 0.6 (and hence of jγ2j) by comparing the central values for
the Γi between Tables III and IV.
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the interval ½−Δ;Δ� used in Eq. (47) because its depend-
ence on Δ is worth noticing, and the results for the f0ð980Þ
pole in Eq. (10) are given in Table XI. In the first column

we show the rexp taken, the integration interval in Eq. (47)
is given in the second column, the third column is for the
resulting WR, the fourth column provides 1 −WR, and the
last one gives X calculated already with the method based
on the Flatté parametrization in Table X.
InRef. [55] the cutoffΔwas taken to be 50MeV.Since the

width of the f0ð980Þ in Ref. [75] is 58 MeV we take Δ ¼
60 MeV for this pole, but estimate an uncertainty for the
result of WR by considering also Δ ¼ 90 MeV, which is a
50% larger than the nominal value. This is illustrated in
Fig. 2, where we plot ωðEÞ for the f0ð980Þ and a0ð980Þ
resonances in the top and bottom panels, respectively. It is
clearly seen that most of the resonance bump lies in
the region jEj<ΓR, and that for jEj > 1.5ΓR it has already
faded away. From Table XI we obtain that forΔ ¼ 60 MeV
and rexp ¼ 0.91 (the nominal one for [75]) the resulting
compositeness is 1−Wf0¼0.52, and for Δ¼1.5ΓR≈
90MeV, it decreases up to 0.43. We observe a variation
of around a 40% for 1 −Wf0 in Table XI calculated with
Δ ¼ 60 MeV (much smaller than the 300% in Table X),
decreasing from0.68 for rexp ¼ 0.86 to 0.39 for rexp ¼ 0.96.
Next, we apply the method based on the spectral density

function ωðEÞ to the pole from Ref. [78], Eq. (9), and the

TABLE XI. Resonance f0ð980Þ with the pole position of
Eq. (10) in the RS II: We show the dependence of Wf0 on the
integration interval ½−Δ;Δ� with Δ up to 2ΓR. The last column
gives X ¼ X1 þ X2 obtained in Table X. The values of rexp given
do not come from any experiment and are considered due to
theoretical reasons.

rexp ½−Δ;Δ� Wf0 1 −Wf0 X

0.86 ½−30; 30� 0.19 0.81
½−60; 60� 0.32 0.68
½−90; 90� 0.40 0.60

½−120; 120� 0.45 0.55 0.36� 0.14

0.91 ½−30; 30� 0.30 0.70
½−60; 60� 0.48 0.52
½−90; 90� 0.57 0.43

½−120; 120� 0.63 0.37 0.27� 0.12

0.96 ½−30; 30� 0.40 0.60
½−60; 60� 0.61 0.39
½−90; 90� 0.71 0.29

½−120; 120� 0.76 0.24 0.13� 0.06

(a) (b)

(c) (d)

FIG. 2. The spectral density function ωðEÞ is shown for the f0ð980Þ in the top panels (a) and (b), and for the a0ð980Þ in the bottom
ones (c) and (d). For the f0ð980Þ the poles considered are in the RS II, with the pole in Eq. (10) corresponding to the panel (a) and the
pole in Eq. (9) to the panel (b). For the a0ð980Þ we take the poles in Eqs. (55) and (56), which are in the RS II (panel (c)) and RS III
(panel (d)), respectively. Every line in a plot corresponds to the indicated value of rexp in the legends, and for the a0ð980Þ the poles lie in
different RSs.
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results are given in Table XII. The dependence withΔ in the
compositeness 1 −Wf0 is indicated with the subscript Δ in
the fourth column of Table XII, ð1 −Wf0ÞΔ. We take as the
nominal value for 1 −Wf0 the mean between the ones
obtained with Δ ¼ ΓR ¼ 50 MeV and Δ ¼ 1.5ΓR.
Considering the variation of the results between these
two values for Δ, and the error bar of around 0.12 in
rexp in both experiments [71,96] (such that rexp ¼ 0.68 is
around the upper value of rexp ¼ 0.52 and the lower one for
0.75 within one standard deviation), we see that an
uncertainty of at least 0.15 should be considered for the
reference value of 1 −Wf0 . The final figure is given in the
column before the last one in Table XII. We can appreciate
that the central value obtained by integrating Eq. (47) is
larger than the central value for X in Table VIII by
employing Eq. (1), which is also given in the last column.
Then, we would have 1 −Wf0 ¼ 0.76� 0.15 and 0.50�
0.15 for rexp ¼ 0.52 [71] and 0.75 [96], respectively, as also
shown in Table XII. These figures indicate a dominant
meson-meson component, mostly KK̄ (X2 ≫ X1), in the
nature of the f0ð980Þ pole from Ref. [78], Eq. (9). It also
follows that the results are compatible with those given for
X within errors.
However, for rexp from Ref. [96] the central value of

1 −Wf0 in Table XII is only slightly above 0.5, and both
values taken for rexp [71,96] generate values of 1 −Wf0
that could decrease substantially once errors are taken into
account. Therefore, other components apart from KK̄ are
likely to play a noticeable role in the composition of the
f0ð980Þ. From nonperturbative studies based on unitarizing
chiral perturbation theory with/without resonances these
extra components have been also unveiled [28,75,76,97].

B. The a0ð980Þ resonance
Now,we follow similar steps and use the fact that the ratio

of Γða0ð980Þ → KK̄Þ=Γða0ð980Þ → πηÞ is also given by
Ref. [72], see Eqs. (55) and (56), with the values 0.138�
0.035 (RS II) and 0.149� 0.039 (RS III), respectively. The
typical uncertainty for the inferred rexp is around a 3%. We
also consider the average value given by the PDG [49],
Γða0ð980Þ → KK̄Þ=Γða0ð980Þ → πηÞ ¼ 0.177 � 0.024,
which implies an uncertainty of a 1.7% in rexp.
Its implication has been organized in Table XIII, where

we apply the method S with rexp as input to the a0ð980Þ
poles in the RS II and III. The KK̄ component is larger than
the πη one, but the total compositeness X is small being less
than 0.25 and 0.35 for the RS II and III a0ð980Þ poles,
respectively.
We now proceed with the application of the method F

with rexp as input and the results obtained are presented in
Table XIV. We observe that the values of X2 and ΓKK̄ are
rather similar between Tables VI and XIV, and similarly if
we compare the latter with Table XIII where rexp is
taken as input too. Thus, we find compatibility between
different methods for the a0ð980Þ case. It is also clear from
Table XIV that the value of rexp ¼ 0.85 obtained from the
PDG average value of Γða0ð980Þ → KK̄Þ=Γða0ð980Þ →
πηÞ ¼ 0.177� 0.024 [49] implies quite small values
for X2 ≲ 0.3.
It seems in our opinion that an uncertainty of only 2%–

3% in rexp for the a0ð980Þ is probably too optimistic. In this
respect we notice that the analysis of Ref. [72] for the
a0ð980Þ is based on taking poles in the RS II and III for this
resonance, while recent sophisticated theoretical studies
[73,74], which also reproduce lattice QCD data, require a
very different qualitative picture with a pole in the RS IV. In
this respect, let us check the sensitivity of the results based
on Eq. (1) for the calculation of X, and for that take e.g., the
a0ð980Þ pole in the RS II and rexp ¼ 0.85� 0.15, which
corresponds to the average value of the PDGwith an ad hoc
uncertainty of around a 20%. We indeed find a strong
sensitivity, such that for the central value rexp ¼ 0.85 we
have the values for the couplings jγ1j ¼ 2.9 GeV and
jγ2j ¼ 2.2 GeV, while for the lower end rexp ¼ 0.85 −
0.15 ¼ 0.70 we find a new solution with the values jγ1j ¼
3.1 GeV and jγ2j ¼ 3.2 GeV. With respect to the central
value we have a variation of only a 6% in jγ1j, but jγ2j is
now a 44% bigger (a factor of 2 for the square of the
coupling). The variation is of similar size if considering
rexp ¼ 0.87� 0.17 with the central value from Ref. [72]
and an ad hoc 20% uncertainty taken.
Thus, it is advisable to also apply for the a0ð980Þ case

the method based on the spectral density function (which is
less sensitive to small variations in the input value for rexp)
and evaluate the compositeness 1 −Wa0 as a function of Δ.
We give the results in Tables XV and XVI for the a0ð980Þ
poles in the RS II, Eq. (55), and RS III, Eq. (56),

TABLE XII. Resonance f0ð980Þ with the pole position in the
RS II from Ref. [78], Eq. (9): We show the dependence ofWf0 on
the integration interval ½−Δ;Δ� with Δ up to 2ΓR. For the
experimental inputs of rexp we give our final estimate for 1 −
Wf0 in the column 5. The total compositeness X ¼ X1 þ X2 from
Table VIII is given in the last column.

rexp ½−Δ;Δ� Wf0 ð1 −Wf0ÞΔ 1 −Wf0 X

0.52 [71] ½−25; 25� 0.13 0.87
½−50; 50� 0.21 0.79
½−75; 75� 0.27 0.73

½−100; 100� 0.31 0.69 0.76�0.15 0.51� 0.22

0.68 [25] ½−25; 25� 0.25 0.75
½−50; 50� 0.39 0.61
½−75; 75� 0.47 0.53

½−100; 100� 0.53 0.47 0.38� 0.18

0.75 [96] ½−25; 25� 0.30 0.70
½−50; 50� 0.45 0.55
½−75; 75� 0.55 0.45

½−100; 100� 0.61 0.39 0.50�0.15 0.29�0.14
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respectively. The dependence with Δ is indicated by the
subscript Δ in the fourth column, ð1 −Wa0ÞΔ. Taking into
account the variation in the value of 1 −Wf0 between Δ ≈
Γa0 and Δ ≈ 1.5Γa0 , we give our range of values calculated
for 1 −Wa0 in the column before the last one in Tables XV
and XVI. The output is similar in both tables with values for
1 −Wa0 typically within the range 0.3–0.4. When com-
pared with X from Table XIV, given in the last column in
Tables XVand XVI, we see a quantitative agreement in the
case of the RS III pole, and a semiquantitative one for the
RS II one. The emerging picture is that X is clearly less than
0.5, ranging between 0.2–0.4 depending on the method of
calculation. Therefore, other components beyond πη and
KK̄ are also required [37,38]. However, if the resonance
lied in RS IV, as preferred by the recent analyses [73,74],
our approach does not apply and we cannot extend such
conclusion to that case.
We would also like to comment about the clearly visible

cusp effect for most of the curves of ωðEÞ in Fig. 2. This
change in the shape of ωðEÞ below and above the two-kaon
threshold is due to the fact that if the resonance pole lies in
the RS II (III) then there is no associated pole in the RS III
(II) above (below) the KK̄ threshold. Precisely the RS III
(II) is the one that connects with the physical region there.

VI. SUMMARY AND CONCLUSIONS

This paper discusses the importance of the continuum
channels ππ − KK̄ and πη − KK̄ in the composition of the
f0ð980Þ and a0ð980Þ resonances, which is quantified by the
concept of the total compositeness X. In our calculation we
exploit the tight relationship between the compositeness X,
the mass and the decay width of a resonance. The threshold

TABLE XIII. Method S applied to the resonance a0ð980Þ with pole positions from Ref. [72], Eqs. (55) and (56): By reproducing the
input values of Γa0 and rexp (column 2), we predict jγij (columns 3, 4), Γi (columns 5, 6), and Xi (columns 7, 8).

rexp RS jγπηj (GeV) jγKK̄j (GeV) Γ1 (MeV) Γ2 (MeV) Xπη XKK̄

0.85 [49] II 2.90� 0.05 2.32� 0.08 111.8� 4.2 14.6� 0.6 0.100� 0.004 0.132� 0.013
III 2.86� 0.05 2.61� 0.72 108.0� 3.7 19.1� 0.7 0.098� 0.004 0.249� 0.017

0.87 [72] II 2.88� 0.05 2.16� 0.07 109.8� 4.2 12.6� 0.5 0.098� 0.004 0.115� 0.009
III 2.89� 0.05 2.43� 0.07 110.5� 3.8 16.5� 0.6 0.100� 0.004 0.216� 0.030

TABLE XIV. Method F applied to the resonance a0ð980Þ with pole positions from Ref. [72], Eqs. (55) and (56): The branching ratio
rexp is taken as input (column 1), the RS in which the pole lies is indicated in the column 2. We then calculate the bare partial-decay
width Γ̃1 (column 3), the bare coupling squared g2 (column 4), Ef (column 5), the renormalized Γ1 (column 6) and Γ2 (column 7), and
the partial compositeness coefficients X1 (column 8) and X2 (column 9).

rexp RS Γ̃πη (MeV) g2 Ef (MeV) Γ1 (MeV) Γ2 (MeV) Xπη XKK̄

0.85 [49] II 124.0� 5.3 0.21� 0.03 3.08� 5.11 111.8� 4.2 14.6� 0.6 0.100� 0.004 0.116� 0.017
III 98.7� 3.4 0.21� 0.01 23.1� 2.8 108.0� 3.6 19.1� 0.6 0.099� 0.004 0.205� 0.028

0.87 [72] II 119.9� 4.9 0.18� 0.02 4.65� 4.82 109.8� 4.2 12.6� 0.5 0.098� 0.004 0.100� 0.016
III 102.0� 3.5 0.18� 0.01 21.6� 2.9 110.5� 3.7 16.5� 0.6 0.101� 0.004 0.178� 0.038

TABLE XVI. Resonance a0ð980Þ with the pole position in the
RS III from Ref. [72], Eq. (56). The dependence of Wa0 on the
integration interval ½−Δ;Δ� for the a0ð980Þ is shown with Δ up to
2Γa0 . In the column 5 we provide our interval estimated for 1 −
Wa0 and in the last one X ¼ X1 þ X2 from Table XIV is given.

rexp ½−Δ;Δ� Wa0 ð1 −Wa0ÞΔ 1 −Wa0 X

0.85 [49] ½−50; 50� 0.39 0.61
½−100; 100� 0.59 0.41
½−150; 150� 0.69 0.31
½−200; 200� 0.75 0.25
½−250; 250� 0.79 0.21 0.31–0.41 0.303� 0.030

0.87 [72] ½−50; 50� 0.40 0.60
½−100; 100� 0.60 0.40
½−150; 150� 0.70 0.30
½−200; 200� 0.76 0.24
½−250; 250� 0.80 0.20 0.30–0.40 0.279� 0.037

TABLE XV. Resonance a0ð980Þ with the pole position in the
RS II from Ref. [72], Eq. (55). The dependence of Wa0 on the
integration interval ½−Δ;Δ� for the a0ð980Þ is shown with Δ up to
2Γa0 . In the column 5 we provide our interval estimated for 1 −
Wa0 and in the last one X ¼ X1 þ X2 from Table XIV is given.

rexp ½−Δ;Δ� Wa0 ð1 −Wa0ÞΔ 1 −Wa0 X

0.85 [49] ½−50; 50� 0.38 0.62
½−100; 100� 0.57 0.43
½−150; 150� 0.67 0.33
½−200; 200� 0.73 0.27 0.33–0.43 0.216� 0.017

0.87 [72] ½−50; 50� 0.39 0.61
½−100; 100� 0.59 0.41
½−150; 150� 0.68 0.32
½−200; 200� 0.74 0.26 0.32–0.41 0.198� 0.016
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of the KK̄ pair is very close to the mass of each resonance
and this fact has main consequences in our results. We
develop two methods: One is based on saturating the total
width and compositeness; the other relies on the use of a
Flatté parametrization and, in some instances, of the
spectral function of a near-threshold resonance.
We provide input values for the mass and width of each

resonance by taking their pole positions from relevant
analyses in the literature. In particular, for the f0ð980Þ we
consider the determination of its pole position by the Roy-
like GKPY equations. Regarding the third input needed in
our analyses we first take input values for X in the
compositeness relationship and we predict the couplings,
partial compositeness coefficients and partial-decay widths
to the ππ (πη) and KK̄ channels for the f0ð980Þ (a0ð980ÞÞ.
There is an interesting trend in the results such that the
larger X, the smaller the branching decay ratio to the lighter
channel, rexp. This is due to the increase of the coupling to
the heavier KK̄ channel with increasing X, compensating
the reduced phase space available for the decay of the
resonances into this channel. It is also found that for the
f0ð980Þ the partial compositeness coefficient of KK̄, X2, is
larger by orders of magnitude than the corresponding one to
ππ, X1. For the a0ð980Þ the compositeness for KK̄ is also
larger than the one associated to πη, but as X decreases they
tend to become similar in size.
Another possibility is to replace the third input X by

reported values in the literature for rexp. However, if X2 is
calculated in terms of the coupling squared to KK̄ and the
derivative of the unitary-loop function in the corresponding
Riemann sheet, we typically find a large sensitivity on the
input value for rexp. The situation is improved when using
the method based on integrating the spectral density
function around the KK̄ threshold along the energy region
comprising the resonance signal, so that more stable results
are obtained under small changes in rexp. It turns out that
for the poles considered the meson-meson components are
typically dominant for the f0ð980Þ, while for the a0ð980Þ
they are subdominant. By considering the range of nowa-
days acceptable values of rexp for the f0ð980Þ in the PDG
[49] (within an interval of values of 0.4–0.9) the total

compositeness X could vary between 0.4 to 0.9 (accounting
also for uncertainties in the values calculated). It comes out
unambiguously from our results that X is dominated by far
by the KK̄ component over the ππ one. Regarding the
a0ð980Þ described by a pole in the RS II or III, as it is the
case in Flatté or Breit-Wigner like parametrizations,
rexp ¼ 0.85� 0.015, which corresponds to the PDG aver-
age value for Γða0 → πηÞ=Γða0 → KK̄Þ ¼ 0.177� 0.024,
implies remarkably low values for the compositeness
between 0.3 to 0.4 only. In this case, we also find that
the KK̄ dominates over the πη component but not
overwhelmingly.
Throughout the manuscript we have emphasized the

need to distinguish in a Flatté parametrization between the
bare couplings/widths, on the one hand, and the dressed/
renormalized ones, on the other hand. We have also shown
how to calculate the latter ones. In addition, we discuss the
relationship between the partial-decay widths directly
calculated in terms of the dressed couplings and the
actually measured ones. In this regard, we show the
changes needed for a pole in the second Riemann sheet
lying near the heavier threshold, such that the total width is
then ΓR ¼ Γ1 − Γ2, instead of the standard ΓR ¼ Γ1 þ Γ2

for a pole in the third Riemann sheet.
Finally, we stress that the compositeness concept, as a

quantitative examination of the inner structure of a
resonance/molecule, is a relevant tool to promote a step
forward in the understanding of the structure of a
hadronic state.
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