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We find that the inverse magnetic catalysis (IMC) for Uð1Þ axial symmetry can emerge around the chiral
crossover regime in the thermomagnetic QCD with 2þ 1 flavors at physical point. This phenomenon can
be correlated with the IMC for the chiral SUð2ÞL × SUð2ÞR symmetry. We explicitly observe the axial
inverse magnetic catalysis (AIMC) based on a Nambu-Jona-Lasinio model with 2þ 1 quark flavors, where
introduced anomalous magnetic moments of the quarks play the essential role to drive both the chiral IMC
and AIMC. Our finding is shortly testable on lattices. Possible phenomenological and cosmological
implications are also briefly addressed.
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I. INTRODUCTION

Violation of Uð1Þ axial symmetry plays a key role to
address the QCD vacuum characterized by quark conden-
sates, as well as the chiral symmetry breaking. In particular,
it has been a longstanding issue how much the Uð1ÞA
breaking contributes to the quark condensate. This question
could be related to what is the major role for the origin of
mass in the thermal history of the Universe.
The state-of-art-lattice simulations have so far clarified

that in the hot QCD with 2þ 1 (light up and down quarks
and one heavy strange quark), the Uð1ÞA axial breaking
tends to survive longer than the chiral SUð2Þ breaking for
the lightest two flavors as temperature grows [1,2]. This
result is also supported from a rigorous argument based on
QCD-inequality-like relations [3] and its generalized evi-
dence based on the lattice QCD setup [4]. Moreover, a
recent lattice study (with two lightest flavors) has shown a
hint that significantly dominant contributions from the
Uð1ÞA breaking are left in the quark condensate, during
the chiral phase transition (crossover) [5]. All those may
imply that in a view of the thermal history of the Universe,
the main source for the origin of mass is supplied from the
Uð1ÞA breaking.
However, it might be not the end of the story: even in

early Universe including the QCD phase transition epoch, a
strong enough magnetic field might be present as a back-
ground field, which could be generated due to some

primordial (electroweak) phase transitions of strong first
order [6–12]. Therefore, the QCD dynamics in the thermal
history might be thermomagnetic, which is called thermo-
magnetic QCD. In addition, heavy ion collision experi-
ments [13–20] can create a strong enough magnetic field in
the thermal plasma of QCD, due to the relativistic motion
of the colliding nuclei and the smallness of the system.
Thus, the thermomagnetic QCD has nowadays opened a
vast ballpark, not only with cosmological, but also exper-
imental interests, involving lattice simulations, and chiral-
effective model approaches.
Some outstanding results have already been reported

from lattice studies on the QCD thermodynamics in a
strong external magnetic field [21,22]. Of particular
importance related to the chiral symmetry breaking are
the reduction of the pseudocritical temperature for the
chiral crossover [23–27] and the inverse magnetic catalysis
[28]. Both two imply a faster effective restoration of the
chiral symmetry in hot-magnetized early Universe. To our
best knowledge, however, no definite analysis on theUð1ÞA
breaking and effective restoration in the thermomagnetic
QCD has been carried out, or no implications of the inverse
magnetic catalysis for the chiral symmetry to the Uð1ÞA
symmetry have been argued.
In this paper, prior to lattice simulations in the near

future, based on a chiral effective model we observe a
definite implication of the inverse magnetic catalysis for the
chiral symmetry, to the Uð1ÞA breaking in thermomagne-
tized QCD: that is the inverse magnetic catalysis (IMC) for
theUð1ÞA symmetry, which we call the axial IMC (AIMC),
and in comparison, we call the IMC for the chiral SUð2ÞL ×
SUð2ÞR symmetry CIMC. We employ a Nambu-Jona-
Lasinio (NJL) model with 2þ 1 flavors at the physical
point, in which we introduce a couple of anomalous
magnetic moments (AMMs) of quarks, as well as so-called
Kobayashi-Maskawa-‘t Hooft determinant term [29–32]
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mimicked as the instanton-induced Uð1ÞA anomaly in the
underlying QCD.
We first look into the viable parameter space to realize

the CIMC, which is mapped on the AMM parameters. Then
we evaluate the difference of susceptibilities for the Uð1ÞA
partner, such as π and δ mesons, denoted as χπ and χδ
as a function of the applied constant magnetic field
and temperature. In terms of the axial susceptibility,
χπ−δ ≡ χπ − χδ, the AIMC is dictated by observing that
at zero temperature, χπ−δ becomes larger and larger, as the
magnetic field strength increases, and the pseudocritical
temperature of χπ−δ, TA

pc, gets smaller as the magnetic field
gets stronger. Here TA

pc is defined as the inflection point of
the temperature evolution of χπ−δ.
In light of the CIMC, the two-flavor NJL model with

AMMs of quarks has so far been discussed [33–39]. There,
in terms of the symmetry argument, realization of the
CIMC can be understood by emergence of destructive
interference in the light-quark condensates between two
explicit chiral-breaking sources, where one comes from the
current quark mass, while the other from the AMMs of
quarks coupled to a strong magnetic field. No explicit work
on the chiral phase transition has been done with 2þ 1
flavors coupled with the AMMs in the framework of NJL.
We will shed the first light on the 2þ 1 flavor case, and

clarify the fully viable parameter space to realize the
desired CIMC at high temperatures, and MC at zero
temperature. We find that at any temperature including
zero temperature, the AMMs of u and d quarks contribute
to the u and d quark condensates, or the constituent-u and d
quark masses, destructively against effects from the current
quark mass and the Uð1ÞA anomaly, while the AMM of
strange quark acts as destructive interference at lower
temperature, and constructive one at higher temperatures:
namely, the AMM of strange quark tends to cease reali-
zation of MC and CIMC, at zero temperature and higher
temperatures, respectively. This latter feature is a new
finding characteristic to the 2þ 1 flavor model.
Since the AMM interactions break not merely the chiral

SUð2ÞL × SUð2ÞR symmetry, but the Uð1ÞA symmetry,
similar destructive interference is expected to happen in
the Uð1ÞA sector, i.e., χπ−δ. Such coincidental correlation
between the chiral and Uð1ÞA symmetries may also be
deduced in a context of the QCD-inequality argument [1,3],
and a recent lattice study detailed on the Dirac spectrum
[40,41]. The latter, in particular, works through an operator
identitylike relation between the Dirac spectrum, the chiral
condensate, and the Uð1ÞA susceptibility, and should hold
even including external fields, such as a constant magnetic
field. Still, however, it would be nontrivial in a sense of
framework of chiral effective models to monitor such chira-
Uð1ÞA axial coherence in the 2þ 1 flavor case. Based on
the NJL model with AMMs, we will explicitly clarify how
efficiently the destructive interference arises in the Uð1ÞA
susceptibility χπ−δ, coherently in the chiral condensate.

We find that the AIMC can take place in the chiral
crossover regime where the CIMC is present, which
depends on the size of AMM, and the pseudocritical
temperature TA

pc drops as the magnetic field strength
increases. Lattice simulations in the near future will give
a decisive conclusion on existence of the AIMC and the
competition for the survival between the chiral and Uð1ÞA
breaking at higher temperatures.
This AIMC may provide a hint to reveal whether in a

sense of early thermomagnetic universe, the remnant of the
Uð1ÞA breaking in the origin of mass might be comparable
with what the chiral breaking leaves, in contrast to the
pure-thermal QCD in which the former might highly
dominate [5].
Other phenomenological and cosmological implications

deduced from the AIMC are also briefly addressed.

II. NJL MODEL WITH QUARK AMM:
PRELIMINARIES

To clarify the presence of AIMC, we work on a NJL
model with 2þ 1 flavors with AMMs of quarks in a
constant magnetic field. The model is described by the
following Lagrangian:

L ¼
X

f¼u;d;s

ψ̄fðiγμDðfÞ
μ − m̂0f þ κfðeB; TÞqfFμνσ

μνÞψf

þ Gfðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2g
− K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ �: ð1Þ

Here ψf ¼ ðu; d; sÞT denotes the three-flavor quark field
forming the SUð3Þ triplet; for simplicity, the current-quark
mass matrix m̂0f is taken to be diagonal in the flavor space:
m̂0f ¼ diagðm0u; m0d; m0sÞ, where the present 2þ 1 flavor
setup leads to m0u ¼ mod ≡m0; λa (a ¼ 0;…; 8) are the
Gell-Mann matrices in the flavor space with λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

diagð1; 1; 1Þ; the covariant derivative DðfÞ
μ ¼ ∂μ − iqfAμ

contains the coupling between the quark and the external
magnetic field with the electromagnetic charge matrix
qf ¼ e · diagf2=3;−1=3;−1=3g, where the magnetic field
is applied along the z direction and embedded in the
electromagnetic gauge field Aμ as Aμ ¼ ð0; 0; Bx; 0Þ;
Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field strength;
G and K are the four-fermion coupling constant and the
determinant (six-fermion) coupling constant, respectively;
σμν ¼ i

2
½γμ; γν�. The κfðeB; TÞ is the AMM coupling, which

is related to the AMM for quark af as af ¼ 4Mf · κf with
the constituent quark mass Mf. Here κf itself is dependent
of quark flavors, the background temperature T, and an
applied strong enough magnetic field B, to be fixed later
[see Eq. (10)].
Under the chiral Uð3ÞL ×Uð3ÞR transformation:

ψ → U · ψ with U ¼ exp½−iγ5
P

8
a¼0ðλa=2Þθa� and the
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chiral phases θa, the four-fermion interaction term is
Uð3ÞL ×Uð3ÞR invariant. The mass term explicitly breaks
the chiralUð3ÞL ×Uð3ÞR symmetry. The determinant term,
called Kobayashi-Maskawa-‘t Hooft (KMT) determinant
[29–32], is induced from the instanton coupled to quarks in
the underlying QCD, and preserves the chiral SUð3ÞL ×
SUð3ÞR invariance (associated with the chiral phases
labeled as a ¼ 1;…; 8), but breaks the Uð1ÞA (correspond-
ing to a ¼ 0) symmetry. The AMM term with the coupling
κf explicitly breaks not only the chiral SUð3ÞL × SUð3ÞR
symmetry, but also the Uð1ÞA axial symmetry.
In addition to the quark mass terms, the KMT determi-

nant term, and the AMM term, the chiral Uð3ÞL ×Uð3ÞR
symmetry is spontaneously broken by the nonperturbative
dynamics of the present NJL. To monitor the spontaneous
breaking, we simply employ the mean-field approximation,
and construct the thermodynamic potential in the presence
of a constant magnetic field. The thermodynamic potential
is then given as a function of thermally averaged quark
condensates; hūui, hd̄di, and hs̄si, are determined via the
stationary condition of the potential, i.e., the gap equations:

hf̄fi ¼ −iNctr
R d4p

ð2πÞ4 S
fðpÞ, where SfðpÞ stands for the

full propagator of f quark and Nc is the number of colors,
to be fixed to three. With respect to those quark con-
densates, the thermodynamic potential is minimized at the
nontrivial vacuum with the stationary condition. We then
find the coupled gap equations in terms of the constituent
quark masses Mf ¼ ðMu;Md;MsÞ, which take the same
form as in the case without the magnetic field [42]:

Mf ¼ m0f þ σf; ð2Þ

where

σu ¼ 4iGhūui − 2Khd̄dihs̄si;
σd ¼ 4iGhd̄di − 2Khūuihs̄si;
σs ¼ 4iGhs̄si − 2Khūuihd̄di: ð3Þ

In evaluating the thermally averaged quark condensates,
we apply the imaginary time formalism. Taking into
account nonzero constant magnetic field applied along
the z direction as well, we shall make the following
replacements:

p0 → iωk ¼ ið2kþ 1ÞπT;Z
d4p
ð2πÞ4 → iT

X∞
k¼−∞

Z
d3p
ð2πÞ3

→ iT
X∞
k¼−∞

X
f¼u;d;s

X∞
n¼−∞

jqfBj
2π

Z
∞

−∞

dp3

2π
; ð4Þ

with the Matsubara frequency ωk and the Landau level n.
Thus the analysis will be straightforward just by extending
the one in the literature [42] to the case with the magnetic
field and AMMs.
The f-quark propagator SfðpÞ including the AMM term

is available in the literature [38], which takes the form

SfðpÞ ¼ ie
−

p⃗2⊥
jqfBj

X∞
n¼0

DnðqfB; pÞFnðqfB; pÞ
AnðqfB; pÞ

; ð5Þ

where p⊥ ¼ ðp1; p2Þ, and1

DnðqfB; pÞ ¼ ðp0γ0 − p3γ3 þMf þ κfqfBσ12Þ
�
ð1þ iγ1γ2signðqfBÞÞLn

�
2p⃗2⊥
jqfBj

�
− ð1 − iγ1γ2signðqfBÞÞLn−1

�
2p⃗2⊥
jqfBj

��

þ 4ðp1γ1 þ p2γ2ÞL1
n−1

�
2p⃗2⊥
jqfBj

�
; ð6Þ

FnðqfB;pÞ¼ðκfqfB−p0γ3γ5þp3γ0γ5Þ2−M2
f−2njqfBj;

ð7Þ

AnðqfB; pÞ ¼ ½ðκfqfBþ
ffiffiffiffiffiffi
p2
jj

q
Þ2 −M2

f − 2njqfBj�

× ½ðκfqfB −
ffiffiffiffiffiffi
p2
jj

q
Þ2 −M2

f − 2njqfBj�; ð8Þ

with p2
jj ¼ p2

0 − p2
3.

To regularize the intrinsic divergence terms arising in the
momentum integration along themagnetic field direction (p3),
we adopt a smooth cutoff scheme with the cutoff function,

fΛðp3; nÞ ¼
Λ10

Λ10 þ ðp2
3 þ 2njqfBjÞ2

; ð9Þ

where Λ is the cutoff for the three-dimensional momentum
integral in Eq. (4).
The AMM term breaks the full Uð3ÞL ×Uð3ÞR sym-

metry even at the classical or perturbative level of QED. In
a strong enough magnetic field, moreover, the AMM can
actually be dynamically developed [33,43–48] as another1Here Lα

n denotes the generalized Laguerre polynomials.
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chiral order parameter, simultaneously with the quark
condensates. This dynamical generation would happen
when the scale of the magnetic field strength would be
comparable with or greater than the intrinsic infrared scale
of QCD or the NJL dynamics, say the renormalization-
group invariant ΛQCD, or (equivalently) dynamical quark
mass at vacuum (∼300 MeV). Such strong enough
magnetic field would cause the dimensional reduction:
D ¼ 4 ⇒ 2 with the reduced Lorentz symmetry left in
D ¼ 2: SOð1; 3Þ ⇒ SOð1; 1Þ ×Oð2Þ, in which both the
dynamics and kinematics are separately characterized by
spaces parallel (jj) and transverse (⊥) to the applied
magnetic field direction (the z direction). This is how
the AMM operator q̄fσ12qf would be allowed to condense
in the residual-SOð1; 1Þ ×Oð2Þ invariant way, to contrib-
ute to the dynamical chiral symmetry breaking, together
with the normal quark condensate operator q̄fqf, as has
been discussed in the literature [33,43–48].
In the present analysis, we assume the dynamical

AMM to dominate over the perturbative contribution
generated at the leading order of QED. Then, the AMM
should be related to the dynamical mass part of the
constituent quark mass. Inspired by the dynamical
AMM generation via the NJL dynamics as in the
literature listed above, but, still allowing the AMMs as
free parameters,2 we may model the relation between the
AMMs (κf) and the dynamical mass parts of the quarks
[σf in Eq. (2)] as3

κfðeB; TÞ ¼ vf · σfðeB; TÞ; for eB≳ eBjmin; ð10Þ

with the lower bound of the magnetic field strength,ffiffiffiffiffiffi
eB

p jmin, which is to be fixed later. The flavor-dependent
coefficient vf is assumed to be flavor universal for u and
d quarks, i.e., vu ¼ vd ≡ v, but is taken to be different for
s quark: vs ≠ v. This would be a reasonable setup
because the AMM parameter κf is defined exclusively
out of the overall electromagnetic charge, as seen from
Eq. (1), and QCD (or NJL dynamics) is potentially flavor
universal, hence the discrepancy in AMMs among
flavors arises only from the chiral-explicit breaking
sources, which can be fully incorporated in the dynami-
cal mass part σf.

In closing this preliminary section, we introduce five
model parameters fixed at vacuum with eB ¼ T ¼ 0:
m0 ¼ 0.0055 GeV, m0s ¼ 0.1407 GeV, Λ ¼ 0.6023 GeV,
GΛ2 ¼ 1.835, andKΛ5 ¼ 12.36, which are quoted from the
literature [42], where inputs are an optimized and conven-
tional set of the hadronic observables in the isospin-
symmetric limit: mπ ¼ 0.135 GeV, mK ¼ 0.4977 GeV,
mη0 ¼0.9578GeV, fπ ¼ 0.0924 GeV, and m0 ¼ 5.5 MeV.
We will not consider intrinsic-temperature dependent

couplings, instead, all the T dependence should be induced
only from the thermal quark loop corrections to the
couplings defined and introduced at vacuum. Actually,
the present NJL at eB ¼ 0 shows good agreement with
lattice QCD results on the temperature scaling for the
chiral, axial, and topological susceptibilities, as shown in
Ref. [49]. In this sense, we do not need to introduce
such an intrinsic T dependence for the model parameters
in the regime up to temperatures around the chiral
crossover.

III. CIMC AND “PHASE” DIAGRAM

With the preliminary setup provided in the previous
section, we first evaluate the constituent quark mass for u
and d quarks as a function of temperature T, given the
strength of the applied magnetic field and the AMM
parameters v and vs. See Fig. 1. We have taken

ffiffiffiffiffiffi
eB

p
∼

ð0.5–0.6Þ GeV for a wide range of T, (0.05–0.25) GeV,
where the strength of magnetic field is strong enough in
light of lattice QCD: the constant magnetic field applied on
lattice QCD has the minimal size fixed as jeBjmin ∝ T2

[28], and one can check that
ffiffiffiffiffiffi
eB

p jmin < Thighest ∼
0.25 GeV <

ffiffiffiffiffiffi
eB

p japplied ∼ ð0.5–0.6Þ GeV. In the figure,
we have plotted the averaged mass for u and d quarks,
M ¼ MuþMd

2
, which is a reasonable chiral order parameter in

the presence of a couple of isospin breaking sources, and

FIG. 1. Plot of the averaged constituent mass for u and d
quarks, M, versus temperature evolution, with eB varied and the
AMM parameters v and vs being fixed to a reference point
(included in the allowed regime of the “phase” diagram in Fig. 2).

2We have checked that the size of the NJL-driven AMM is too
small to realize the CIMC at higher T. In this sense, it is necessary
to go beyond the one-gluon exchange prescription of the NJL for
the AMM. Note, however, that as long as we work on the leading
order of the large Nc expansion (or mean-field approximation),
even NJL-driven AMM term can be reduced to the κf term in
Eq. (1). Therefore, we can interpret the size of v and vs
as displayed in the plots later as the net contribution from the
NJL-driven and beyond NJL effects.

3A similar procedure has been applied in Ref. [38] for the
2-flavor NJL case, with vu ¼ vd assumed.
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taken the AMM parameters v ¼ vs ¼ 1.4 GeV−2, as a
reference point to be clarified below. We see that for small
T, M increases as the magnetic field gets larger, while at
higher T, it turns to decrease with the magnetic field.
This confirms the CIMC phenomenon, and is a successful
result generalized from the two-flavor NJL with the AMM
[33–39], to the 2þ 1 flavor case including the KMT-
determinant Uð1ÞA-anomaly contribution [K terms in
Eq. (3)]. The CIMC is successfully realized essentially
due to a moderately large AMM for u and d quarks which
constructively contributes to M with the thermal correc-
tions, to make M dropped faster.
Scanning over the AMM parameter space ðv; vsÞ with

the size of eB varied in an appropriately strong enough
range (as noted above), we examine the MC and IMC
features at T ¼ 0 and at higher T. Thus, the phase diagram
is drawn on the ðv; vsÞ space, as depicted in Fig. 2. The
diagram turns out to be divided into four phases, where the
model realizes
[1] CIMC for any T including T ¼ 0, due to larger

AMMs for u and d quarks;
[2] ] CMC for any T including T ¼ 0, due to smaller

AMM for u and d quarks;
[3] CIMC at T ¼ 0, and CMC at higher temperatures,

due to significant AMM for strange quark;
[4] CMC at T ¼ 0, and CIMC at higher temperatures,

due to moderate AMMs for 2þ 1 quarks.
The first three phases [1], [2], and [3] are excluded, because
they do not reproduce the lattice results on the CMC and
CIMC. Thus, only the phase [4] survives, which corre-
sponds to the “Allowed” regime in Fig. 2. One may notice
that there is a critical point at which all four phases merge

on the diagram, that is, the tetra-critical point (TCP), which
has been also specified in Fig. 2.
Of particular interest is to note the phase [3], where the

AMM of strange quark acts like a destructive interference
against realization of the CMC at T ¼ 0 and CIMC at
higher temperatures. This is in contrast to the role of the
AMM for u and d quarks. It is operative in the light-quark
constituent mass (M), and contributes destructively against
the current quark mass and the Uð1ÞA anomaly at any
temperature including zero temperature, so that when it is
too large, the CIMC is driven even at T ¼ 0 (phase 1),
while the CMC shows up at any temperature, when the
light-quark AMM is too small (phase 2). This feature can
also be observed by viewing the plot along the v axis at
vs ¼ 0, in Fig. 2.
With the phase diagram taken into account, below we

will discuss the T and eB dependence on the axial
susceptibility.

IV. AXIAL SUSCEPTIBILITY:
χ π − δ, AMC, AND AIMC

The axial susceptibility is constructed from difference of
two susceptibilities related to the Uð1ÞA partners. In the
present NJL model with 2þ 1 flavors, we have two
candidates of the Uð1ÞA partners, which are, in terms of
meson names, ðσ; ηÞ and ðπ; δÞ. Those cases should be just
alternatives of each other, and exhibit the same axial
property, which would be so even at finite T and eB. In
the present analysis, we take π and δ meson channels, and
investigation of the other partner is to be pursued in another
publication.
We start with evaluating the π channel. The π meson

susceptibility χπ is defined as

χπ ¼
Z
T
d4x½hðūð0Þiγ5uð0ÞÞðūðxÞiγ5uðxÞÞiconn

þ hðd̄ð0Þiγ5dð0ÞÞðd̄ðxÞiγ5dðxÞÞiconn�; ð11Þ

with h· · ·iconn being the connected part of the correlation
function. Here the spacetime integral with the subscript
symbol T means

R β¼1=T
0 dτ

R
d3x, reflecting the currently

employed imaginary time formalism. Following the liter-
ature [50], the explicit formula for χπ in the present NJL
model reads

χπ ¼
Ππð0; 0Þ

1 − ½2G − Khs̄si�Ππð0; 0Þ
; ð12Þ

with Ππð0; 0Þ≡ Ππðω; p⃗Þ being the polarization (correla-
tion) function for the π channel. Presently, we focus only on
the neutral meson channel, so that Ππð0; 0Þ is evaluated as

FIG. 2. The phase diagram on ðv; vsÞ plane classified by the
CMC and CIMC features at T ¼ 0 and higher temperatures (HT).
The three phases filled by shaded lines, corresponding to [1], [2]
and [3] in the text, are ruled out because of failure of realizing the
magnetic features on the chiral symmetry breaking, reported from
lattice QCD. Only the centered regime of green-leaf shape is
allowed. All the four phases merge at the tetra-critical point, TCP,
denoted as a blob.
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Ππð0;0Þ¼−i ·
X
f¼u;d

�Z
d4p
ð2πÞ4 tr½iγ5S

fðpÞiγ5SfðpÞ�
�
: ð13Þ

Similarly, we next evaluate the δ meson susceptibility,
which is defined as

χδ ¼
Z
T
d4x½hðūð0Þuð0ÞÞðūðxÞuðxÞÞiconn

þ hðd̄ð0Þdð0ÞÞðd̄ðxÞdðxÞÞiconn�: ð14Þ

The explicit formula for χδ reads [50]

χδ ¼
Πδð0; 0Þ

1 − ½2Gþ Khs̄si�Πδð0; 0ÞÞ
: ð15Þ

Focusing on the neutral δ meson component, we find
the corresponding polarization function in the δ0 meson
channel:

Πδð0; 0Þ ¼ −i ·
X
f¼u;d

�Z
d4p
ð2πÞ4 tr½S

fðpÞSfðpÞ�
�
: ð16Þ

The more detailed expressions for Πδ as well as Ππ are
presented in the Appendix, which are useful for performing
numerical analysis.
It is crucial to note that χπ is related to the light-quark

condensates, through the chiral Ward identity [51–53] as

hūui þ hd̄di ¼ −m0χπ: ð17Þ

This is operative even at finite temperature [53], and can
also work even with a constant magnetic field, though it
provides extra explicit-chiral/isospin breaking term. The
recent lattice 2þ 1 flavor simulation [54] has also proved
that when mu ¼ md, Eq. (17) indeed holds in the magnetic
field for each of u and d terms at the operator level, so it
should work also at any temperature. Indeed, we have
checked that Eq. (17) is satisfied with χπ and light-quark
condensates.
Making difference of χπ and χδ, we define the axial

susceptibility as

χπ−δ ≡ χπ − χδ: ð18Þ

This χπ−δ becomes zero, when the Uð1ÞA symmetry is
exact, because χπ ↔ χδ by the Uð1ÞA transformation, as is
manifest in the definitions, Eqs. (11) and (14). In Fig. 3 we
plot the magnitude of χπ−δ as a function of eB at T ¼ 0,
with the AMM values fixed inside (for v ¼ vs ¼
1.4 GeV−2) or outside (for v ¼ vs ¼ 0) the allowed regime
in the phase diagram, Fig. 2. We observe that jχπ−δj gets
larger as eB grows, namely, the MC for the axial symmetry
at T ¼ 0. Realization of the AMC at T ¼ 0 is somewhat

insensitive to the size of the AMMs, in sharp contrast to the
case of the CMC at T ¼ 0.
From Fig. 4, we also notice the trend of monotonic

reduction for the magnitude by finite AMMs, with fixed
eB, which is observed irrespective to v or vs. This is
because all the AMMs play a destructive interference in
χπ−δ, against contributions from the current quark masses
and the KMT-determinant Uð1ÞA anomaly, to drive faster
Uð1ÞA restoration.
This trend is observed even at finite temperature. See

Fig. 4, which shows jχπ−δj as a function of T, with eB fixed
and the sizes of the AMMs being flavor symmetrically
(v ¼ vs) or asymmetrically (v ≠ vs) varied. Larger AMMs
tend to reduce the magnitude of jχπ−δj at any temperature,
and the AMMs generically play a role of catalyzer toward
the Uð1ÞA symmetry restoration.
Figure 5 shows the T dependence of jχπ−δj with eB

varied, at a reference allowed point for the AMMs ðv; vsÞ in
Fig. 2. We see that jχπ−δj starts to drop faster at higher
temperatures, as eB gets larger, while it develops with eB at
lower temperatures. This implies the IMC for the Uð1ÞA
symmetry, i.e., AIMC, in perfect analogy to the IMC for the
chiral symemtry (CIMC). This AIMC can further be
quantified by observing the eB dependence on the pseu-
docritical temperature, TA

pc, which is defined as the inflec-
tion point of the jχπ−δj curve with respect to T as

∂2jχπ−δj
∂T2

����
T¼TA

pc

¼ 0: ð19Þ

FIG. 3. The magnitude of the axial susceptibility, jχπ−δj, versus
the strength of eB, at zero temperature, with a couple of reference
AMM values inside and outside the Allowed regime in Fig. 2.
Both cases realize the AMC. The size of eB has been bounded
from below, at eB ≥ 0.25 GeV2, which is to be consistent with
quantitative agreement of the present NJL model on the eB
dependence of the subtracted quark condensates at T ¼ 0 with
those reported from lattice QCD. For details, see the Summary
and Discussion section and Fig. 8.
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Figure 6 plots this TA
pc as a function of eB, at the same

reference point for AMMS as in Fig. 5. A monotonic
decrease trend for TA

pc with growing eB is indeed
observed, so it manifests the AIMC, just like the case of
the CIMC.
Finally, in Fig. 7 we show an extended phase diagram on

the AMM ðv; vSÞ plane of Fig. 2, by incorporating the
parameter space to realize the AIMC at high temperatures.
The figure tells us that the AIMC at high temperature is
necessarily realized when the desired CMC at lower T and
the CIMC at higher T are present (filled in green), except
for domains with a larger AMM for strange quark (in

FIG. 5. Plots of jχπ−δj as a function of T, with eB varied, at a
viable reference point for the AMMS ðv; vsÞ in the phase
diagram, Fig. 2. The AIMC is observed.

FIG. 6. The eB scaling of the pseudocritical temperature for
jχπ−δj, TA

pc defined in the text. The AMM values have been set to
the same viable reference point as in Fig. 5. The observed
decreasing trend manifests presence of the AIMC. The range of
eB has been restricted to be ≥ 0.25 GeV2, for the same reason as
noted in the caption of Fig. 3.

FIG. 7. The phase diagram extended from Fig. 2 with the
property of the axial sector incorporated. In the same way as in
Fig. 2, the phase [1] is excluded by CIMC at T ¼ 0; [2] is ruled
out by CMC at higher temperatures; [3] is disfavored because of
CIMC at T ¼ 0 and CMC at higher temperatures. The TCP is
placed at the same point as in Fig. 2. The domain filled in yellow,
which realizes the AIMC at higher temperatures, almost overlaps
with the Allowed regime in Fig. 2, but separates into two, to
create the orange regime out of the original green Allowed
regime. The reason would be related to the calculability of the
present analysis. For more details, see the text.

FIG. 4. The AMM dependence on jχπ−δj at finite temperature, with eB fixed.
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yellow) including the TCP (red blob), or with a larger
AMM for up and down quarks (in orange).
The former discrepancy is due to the flavor-universal

destructive contribution from the AMMs to jχπ−δj, hence
even so large vs can still act as a destructive interference
in jχπ−δj against the other axial breaking contributions
from the current quark mass and Uð1ÞA anomaly.
This feature is contrast to the vs sensitivity to the
chiral symmetry, as emphasized above, for which the
property of the vs interference changes in low or high
temperatures.
The latter case would involve limitation of the present

analysis based on the NJL description. The boundary
separating the “CIMC and AIMC” (in green) and
“CIMC” (in orange) domains has been created by the
present calculability: going over the CIMC and AIMC
domain to the right (i.e., to a larger v regime) jχπ−δj actually
starts to show nonmonotoic damping scaling at higher T,
which we would regard as unphysical or an artifact of the
present NJL model as a low energy description of QCD.
This lack of calculability has also affected the existence of a
top endpoint of the AIMC regime [at ðv; vsÞ ≃ ð0.9; 22Þ],
and the right-side boundary curve in Fig. 7.
The left-side lower boundary curve (green part) is

present because the AMC at higher temperatures is realized
due to too small AMMs, which corresponds to the
phase [2], while the upper boundary curve (yellow part)
has been created because of lack of calculability due to too
large vs, similarly to the aforementioned case with too
large v.
Lattice simulations in the near future will clarify the

AIMC, and give a conclusive answer to whether the AIMC
at high temperatures is necessarily realized when the CIMC
at high temperatures is present.

V. SUMMARY AND DISCUSSION

We found the AIMC at high temperatures, which can be
driven by the 2þ 1 flavor-universal destructive interference
against the current quark mass and the Uð1ÞA anomaly in
the axial susceptibility, when the CIMC is present. One
possible candidate to realize this kind of destructive effects
involves the AMMs of quarks, which, in the present paper,
we have incorporated into a NJL model with 2þ 1 flavors,
to observe emergence of the AIMC at the physical point.
Measuring the AIMC would give a complementary probe
of the CIMC (See Fig. 6), and imply a definite interpre-
tation on how the IMC is realized: it is due to the
destructive axial- and chiral-breaking driven in thermo-
magnetic QCD. Our findings are shortly testable by lattice
simulations in the near future, by which the AMM values in
the NJL model can be constrained and a part of the model
parameter space will be excluded or probed.
Several comments are in order.
(i) The presence of the AIMC manifests the intrinsic

and nonfactorizable chiral-axial correlation, which
has been supported from a recent rigorous proof by
the lattice study [40]. This correlation can be
suspected also from the result in [49] at zero
magnetic field, based on the same NJL model with
2þ 1 flavors as in the present paper, which is tightly
constrained by single anomalous-chiral Ward iden-
tity involving the chiral and axial susceptibilities,
together with the topological susceptibility.

(ii) Though both emergence of the CIMC and AIMC are
qualitatively interpreted by presence of AMM
parameters for quarks and its destructive interference
against the current quark mass and axial anomaly
effects, we may check its quantitative consistency
of the presence of such sizable parameters, by

FIG. 8. Comparison of eB dependence on the subtracted quark condensates Σu (left panel) and Σd (right panel) at T ¼ 0, with the
2þ 1 flavor lattice data (solid curve) [54]. Error bars along with the model yields correspond to the 30% uncertainty, described in the
text. The values of v and vs are read with unit of GeV−2.
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evaluating the eB dependence of the subtracted light-

quark condensate Σf≡1þ 2m0f

m2
πf2π

ðh−q̄fqfiðeB≠0Þ−
h−q̄fqfiðeB¼0ÞÞ at T ¼ 0 for qf ¼ u, d, in com-
parison with the lattice data in [54]. Here we take into
account a 30% uncertainty, which corresponds to the
order of subleading corrections in the large Nc
expansion, on that the present NJL-model analysis
has been based. This comparison would further
constrain the parameter space ðv; vsÞ in Fig. 4 and
the applicable size of the strong magnetic field
strength: 1.2≲ v ≲ 1.5, vs ≲ 4, in unit of GeV−2,
and 0.25≲ eBmin ≲ 0.34 in unit of GeV2. Thus too
large v and vs would drive Σu;d < 1, hence would
be disfavored because of spoiling the magnetic
catalysis at T ¼ 0, which also places the lower bound
on the strength of eB. This is due to too large
destructive interference from the AMM contributions
to the quark condensate. When this quantitative
constraint is combined with the allowed regime in
the phase diagram, Fig. 7, we see that the AIMCmay
necessarily take place at the same time the CIMC is
present.
More precise eB and T dependence of the chiral

and axial susceptibilities could be determined
by fitting all the model parameters to available lattice
data, as has been discussed in the literature [55] in
light of the CIMC. Then one could more quantita-
tively discuss whether the AIMC can take place at the
same time the chiral one does, though presence of the
destructive interference would be obscure. This may
be worth performing elsewhere.

(iii) The AIMC may provide a hint to reveal whether in
a sense of early thermomagnetic universe, the
remnant of the Uð1ÞA breaking in the origin of
mass might be comparable with what the
chiral breaking leaves, in contrast to the pure-
thermal QCD in which the former might highly
dominate [5].

(iv) Confirmation of the AIMC by lattice QCD simu-
lations for the AIMC at high temperatures might
give evidence of the destructive chiral and axial
breaking in the chiral and the axial susceptibilities,
and effective chiral models without such destructive
interference leading to both the CIMC and AIMC
would be excluded.

(v) Possible prospected studies along this AIMC also
include correlation between the dual CIMC and
AIMC and the topological susceptibility: as briefly
aforementioned, in the case without magnetic fields,
the susceptibility differences for the chiral and axial
partners are firmly linked to the topological suscep-
tibility, through the anomalous-chiral Ward iden-
tities [51–53], and can form what is called the QCD
trilemma [49]. It would be noteworthy to look
into the magnetic dependence on the topological

susceptibility, when a strong magnetic field is
applied, and its sensitivity to the emergence of the
chiral and axial inverse magnetic catalyses, through
the chiral Ward identities.4

(vi) Some cosmological implications to QCD axion
coupled to thermomagnetic QCD could also be
derived: if the topological susceptibility could drop
faster around the chiral crossover regime, due
to the strong magnetic field along with the CIMC
and AIMC, the axion mass (with fixed axion
decay constant) could also get smaller, implying
a significant modification of estimate on the
thermal relic abundance of axion as a dark matter
candidate.

(vii) Other possible application of the AIMC may be
related to a stable neutral a0 meson around the chiral
crossover regime: note first that the susceptibilities
scale with the associated meson masses like
∼1=m2

mesons, hence the degeneracy in the meson
masses actually signals the (effective) restoration of
the associated symmetry. Since we expect mπ0 ≃
mðδ0¼a0

0
Þ due to the AIMC, the dominant decay

channel a00 → π0 þ η0 will almost be closed (no
matter how the η0 mass gets changed from the
vacuum value around the chiral crossover regime),
so that the neutral a0 meson can be somewhat long
lived. This might give phenomenological impact on
meson physics relevant to heavy ion collision ex-
periments.

Exploring those interesting issues are to be left, and
pursed elsewhere.
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APPENDIX: USEFUL FORMULAS FOR POLARIZATION FUNCTIONS Ππ AND Πδ

Substituting the quark propagator under the magnetic field in Eq. (5), which includes the AMM terms, into the
polarization functions, we work on the Dirac trace quantities. For the pion polarization function in Eq. (13), we have

Tr½γ5Dnðpk; p⊥ÞFnðpk; p⊥Þγ5Dmðpk; p⊥ÞFmðpk; p⊥Þ�
¼ −8½f1ðnÞf1ðmÞ − f22 · p

2
k�½ðLnLm þ Ln−1Lm−1Þ · ½p2

k − ðM2
f þ κ2fq

2
fB

2Þ�
−2signðqfBÞMfκfqfBðLnLm − Ln−1Lm−1Þ − 8p2⊥L1

n−1L
1
m−1�; ðA1Þ

where we have omitted the arguments for the generalized Laguerre polynomials, and defined

f1ðnÞ≡ p2
k þ ðκfqfBÞ2 −M2

f − 2njqfBj;
f2 ≡ −2κfqfB: ðA2Þ

In a similar way, for the delta meson polarization function in Eq. (15), we have

Tr½Dnðpk;p⊥ÞFnðpk;p⊥ÞDmðpk; p⊥ÞFmðpk;p⊥Þ� ¼ 8½f1ðnÞf1ðmÞ þ f22 ·p
2
k�½ðLnLm þLn−1Lm−1Þ · ½p2

k þ ðM2
f þ κ2fq

2
fB

2Þ�
þ 2signðqfBÞMfκfqfBðLnLm −Ln−1Lm−1Þ− 8p2⊥L1

n−1L
1
m−1�

þ 16ðf1ðnÞ þ f1ðmÞÞf2p2
kMfsignðqfBÞðLnLm −Ln−1Lm−1Þ

− 8p2
kðf1ðnÞ þ f1ðmÞÞf22ðLnLm þLn−1Lm−1Þ; ðA3Þ

where

f1ðnÞ ¼ p2
k þ ðκfqfBÞ2 −M2

f − 2njqfBj;
f2 ¼ −2κfqfB: ðA4Þ

Plugging those into Eq. (18) with Eqs. (11) and (14), and working on momentum integration with respect to p⊥, and
summing over Matsubara frequencies, we are then ready to evaluate the axial susceptibility numerically. Through this
procedure, a couple of the results have been presented in the main text.
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