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We present an evaluation of the π� and K� box contributions to the hadronic light-by-light piece of the
muon’s anomalous magnetic moment, aμ. The calculation of the corresponding electromagnetic form
factors (EFFs) is performed within a Dyson-Schwinger equations (DSE) approach to quantum chromo-
dynamics. These form factors are calculated in the so-called rainbow-ladder (RL) truncation, following two
different evaluation methods and, subsequently, in a further improved approximation scheme which
incorporates meson cloud effects. The results are mutually consistent, indicating that in the domain of
relevance for aμ the obtained EFFs are practically equivalent. Our analysis yields the combined estimates of

aπ
�−box

μ ¼ −ð15.6� 0.2Þ × 10−11 and aK
�−box

μ ¼ −ð0.48� 0.02Þ × 10−11, in full agreement with results
previously obtained within the DSE formalism and other contemporary estimates.

DOI: 10.1103/PhysRevD.105.074013

I. INTRODUCTION

There has been a renewed interest in the anomalous
magnetic moment of the muon, aμ, after the first meas-
urement from the new muon g-2 experiment at FNAL [1]

aFNALμ ¼ 116592040ð54Þ × 10−11: ð1Þ

Combining it with the final average from the muon g-2
measurements at BNL [2] yields

aExpμ ¼ 116592061ð41Þ × 10−11 ð2Þ

as the corresponding world average, which has a remark-
able precision of 0.35 parts per million. On the other hand,
the outcome of the Muon g-2 theory initiative for the
Standard Model prediction of this quantity [3],1

aSMμ ¼ 116591810ð43Þ × 10−11; ð3Þ

has a comparable accuracy and deviates by 4.2σ from aexpμ .
This difference hints at the tantalizing prospect of new
physics being at work.
The BMW lattice QCD result [59] for the dominant

component of the SM uncertainty, i.e., the hadronic
vacuum polarization contribution (HVP) was not taken
into account for the aSMμ value in the white paper [3]. If this
value were used, the incompatibility between the SM
prediction and the world average is reduced to merely
1.6σ level.2 This result needs to be confirmed or refuted by
other lattice analyses achieving a similar accuracy, thus
constituting a very active area of research.
The uncertainty in aExpμ is expected to shrink further as

more data is analyzed, demanding a commensurate improve-
ment in aSMμ . Its different contributions—particularly the
hadronic ones (HVP and hadronic light-by-light, HLbL),
which dominate the uncertainty—are continuously refined to
achieve this objective.
In this work we focus on a specific HLbL contribution to

aμ, namely, theP-box contributions (P ¼ π�; K�), depicted
in Fig. 1 and denoted herein as aP−boxμ . For pion, the
dispersive evaluation of Ref. [22] achieved a considerably
small uncertainty of 0.2 × 10−11. The Dyson-Schwinger
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1This result is based on Refs. [4–38]. Later developments, after
the cut for inclusion in the white paper [3], include Refs. [39–58].

2If the BMW result is adopted for aHVPμ , then there must
anyway be new physics somewhere else, according to the
constraints set by the electroweak precision observables [60–64].
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equations (DSE) computation in Ref. [31] also yields a
0.02 × 10−11 overall error for theK� contribution. This level
of accuracy serves as the reference for our corresponding
computation for each case. To calculate the P-box contri-
butions, we employ the master formula derived in [22],
which reads:

aP−boxμ ¼ α3em
432π2

Z
Ω

X12
i

TiðQ1;Q2;τÞΠ̄P−box
i ðQ1;Q2;τÞ; ð4Þ

where αem is the QED coupling constant and
R
Ω denotes the

integration over the photonmomenta,Q1;2, and their relative
angle τ. With Q2

3 ¼ Q2
1 þQ2

2 þ 2jQ1jjQ2jτ, the functions
Π̄P−box

i are expressed as:

Π̄P−box
i ðQ2

1;Q
2
2;Q

2
3Þ ¼ FPðQ2

1ÞFPðQ2
2ÞFPðQ2

3Þ

×
1

16π2

Z
1

0

dx
Z

1−x

0

dyIiðx; yÞ; ð5Þ

the scalar functions Ti and Ii are provided in Appendices B
and C, respectively, of Ref. [22]. Thus, the only missing
ingredients are the electromagnetic form factors (EFFs),
FPðQ2Þ, obtained from the process γ�P → P.
Our approach is based upon the DSE formalism [65–67],

which captures the nonperturbative character of QCD
excellently well and has produced a plethora of hadron
physics predictions; for instance, it unifies the description
of the EFFs [31,68–71] with their corresponding distribu-
tion amplitudes and distribution functions [72–75], as well
as with the γ�γ� → fπ0; η; η0; ηc; ηbg transition form factors
(TFFs) [76–80]. This manuscript is organized as follows:
Sec. II describes the computation of EFFs within the DSE
formalism, dissecting all the pieces entering the corre-
sponding electromagnetic current. The numerical results of
the EFFs and contributions to aμ are presented in Sec. III.
Section IV summarizes our results and conclusions.

II. ELECTROMAGNETIC FORM FACTORS
IN THE DSE FORMALISM

The interaction of a virtual photon with a pseudoscalar
meson is described by a single form factor, FPðQ2Þ.
The matrix element reads

hPðpfÞjjμjPðpiÞi ¼ 2KμFPðQ2Þ; ð6Þ

where Q ¼ pf − pi is the photon momentum and
2K ¼ ðpf þ piÞ; the electromagnetic current is

jμ ¼ Γ̄f
PG0ðΓμ −KμÞG0Γi

P; ð7Þ

with Γi;f
P denoting the incoming and outgoing P meson

Bethe-Salpeter amplitudes (BSAs), respectively; G0 repre-
sents an appropriate product of dressed quark propagators,
such that

Γμ ¼ ðS−1 ⊗ S−1Þμ ¼ Γμ ⊗ S−1 þ S−1 ⊗ Γμ ð8Þ

defines the impulse approximation (IA) [81]; this will be
shown explicitly later. Beyond IA effects are encoded inKμ

(see Appendix), which characterizes the interaction of the
photon with the Bethe-Salpeter kernel describing the two-
body interaction [68,82]. Thus, all the parts entering Eq. (6)
require the knowledge of quark propagators, BSAs, quark-
photon vertex (QPV), and their corresponding interaction
kernels. We shall now describe how to gather those
ingredients within the DSE approach.

A. Quark propagator and meson
Bethe-Salpeter amplitudes

The DSEs are the QCD equations of motion, encoding
full dynamics of the theory, simultaneously capturing the
perturbative and nonperturbative facets of QCD [65,67].
The DSEs form an infinite set of coupled integral equations
that relate the theory’s Green functions; subsequently, any
tractable problem demands a systematic and rigorous
truncation scheme [83–86].
The DSE for the f-flavor quark propagator, also referred

to as the gap equation, reads as:

S−1f ðpÞ ¼ Z2½Sð0Þf ðpÞ�−1 þ
Z

Λ

q
½Kð1Þðq; pÞ�SfðqÞ;

½Kð1Þðq; pÞ� ¼ 4

3
Z1g2Dμνðp − qÞ½γμ ⊗ Γfg

ν ðp; qÞ�; ð9Þ

where
RΛ
q ¼ RΛ d4q

ð2πÞ4 stands for a Poincaré invariant

regularized integration, Λ being the regularization scale.

FIG. 1. Leading order P-box contributions to aHLbLμ , where the corresponding P meson EFFs are highlighted by the purple filled
circles.
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The components that constitute the one-body kernel, ½Kð1Þ�,
carry their usual meanings (color indices have been omitted
for the simplicity of notation):

(i) Dμν is the gluon propagator and g is the coupling
constant for all the QCD interactions appearing in
the Lagrangian.

(ii) Γfg
ν represents the fully-dressed quark-gluon vertex

(QGV); in general characterized by 12 Dirac struc-
tures [87–89].

(iii) Z1;2 are the QGV and quark wave-function renorm-
alization constants, respectively.

Herein, Sð0Þf ðpÞ ¼ ½iγ · pþmbm
f �−1 is the bare propagator

and mbm
f the bare fermion mass. The fully dressed quark

propagator is represented as

SfðpÞ ¼ Zfðp2Þðiγ · pþMfðp2ÞÞ−1; ð10Þ

in clear analogy with its bare counterpart. Multiplicative
renormalization entails that the quark mass function,
Mfðp2Þ, is independent of the renormalization point ζ.
The description of mesons is obtained from the Bethe-

Salpeter equation (BSE) [83–85]:

ΓHðp;PÞ ¼
Z

Λ

q
½Kð2Þðq; p;PÞ�χHðq;PÞ; ð11Þ

whose ingredients are defined as follows:
(i) As before, ΓH denotes the BSA, with H labeling the

type of meson.
(ii) χHðq;PÞ ¼ SðqþÞΓHðq;PÞSðq−Þ corresponds to the

Bethe-Salpeter wave function (BSWF).
(iii) The kinematic variables: P is the total momentum of

the bound state such that P2 ¼ −m2
H (mH the mass of

the meson); qþ ¼ qþ ηP and q− ¼ q − ð1 − ηÞP,
where η ∈ ½0; 1� determines the relative momentum.

The Dirac structure characterizing the BSA depends on the
meson’s quantum numbers. For a pseudoscalar meson P:

ΓPðq;PÞ ¼ γ5½iEPðq;PÞ þ γ · PFPðq;PÞ
þ γ · qGPðq;PÞ þ qμσμνPνHPðq;PÞ�: ð12Þ

The two-body interaction in Eq. (11) is represented by
½Kð2Þðq; p;PÞ�; it corresponds to two-particle irreducible
quark/antiquark scattering kernel, which contains all pos-
sible interactions between the quark and antiquark within
the bound state [90]. Once the 1 and 2-body kernels have
been specified (i.e., a truncation scheme has been defined),
gap and Bethe-Salpeter equations can be solved. In fact,
½Kð1Þ� and ½Kð2Þ� are related via vector and axial-vector
Ward-Green-Takahashi identities (WGTIs) [91–93], imply-
ing charge conservation and the appearance of pions and
kaons (in the chiral limit) as Nambu-Goldstone bosons of
dynamical chiral symmetry breaking [94].

B. Rainbow ladder truncation

The simplest truncation that fulfils vector and axial-
vector WGTIs is defined by the kernel (fr; s; t; ug are color
indices):

½Krs
tu�RLðq; p;PÞ ¼ −

4

3
Z2
2D

eff
μν ðp − qÞ½γμ�ts ⊗ ½γν�ru; ð13Þ

which relate the 1-body and 2-body kernels as:

Kð2Þðq; p;PÞ ¼ KRLðq; p;PÞ ¼ −Kð1Þðq; p;PÞ: ð14Þ

This truncation is dubbed as the RL truncation [94].
It provides a reliable and practical approach so long as
we restrain ourselves to ground-state pseudoscalar and
vector mesons [71,72,76,95]. It is worth noticing that the
gluon propagator has been demoted to an effective one,
gDμν → Deff

μν , where:

Deff
μν ðkÞ ¼

�
δμν −

kμkν
k2

�
Gðk2Þ: ð15Þ

Herein, Gðk2Þ is an effective coupling, typically obtained
from either lattice QCD or phenomenological models [96–
98]. Throughout this work, we shall employ the well-
known Qin-Chang (QC) interaction [98]:

Gðq2Þ ¼ 8π2

ω4
De−

q2

ω2 þ 2πγmð1 − e−q
2=Λ2

t Þ
ln½e2 − 1þ ð1þ q2=Λ2

QCDÞ2�
: ð16Þ

The first term above controls the strength of the effective
coupling, in such away that theQCmodel is defined once the
mass parameter, mG ¼ ðwDÞ1=3, is fixed to produce the
masses and decay constants of the ground-state pseudoscalar
mesons. Typical RL parameters are mG ∼ 0.8 GeV and
w ∼ 0.5 GeV; herein, the later is varied within the range
w ∈ ð0.4; 0.6Þ to estimate model uncertainties. The second
term is simply set to reproduce the 1-loop behavior of
the QCD’s running coupling: γm ¼ 12=ð11NC − 2NfÞ ¼
12=25 is the anomalous dimension, withNf ¼ 4 flavors and
Nc ¼ 3 colors, and ΛQCD ¼ 0.234 GeV; the parameter
Λt ¼ 1 GeV is introduced for technical reasons and has
no material impact on the computed observables. Table I
collects the RL inputs and some static properties of the pion
and kaon.
It is worth mentioning that the RL truncation is self-

consistent with the IA, in such a way that the EFF is
obtained from:

2KμFPðQ2Þ ¼ eu½Fu
PðQ2Þ�μ þ eh̄½Fh̄

PðQ2Þ�μ; ð17Þ

where P is a uh̄ meson and eu;h̄ are the electric charges of
the quark and antiquark, respectively. ½Ff

PðQ2Þ�μ denotes
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the interaction of the photon with a valence constituent
f-in-P, such that:

½Ff
PðQ2Þ�μ ¼ trCD

Z
q
χfμðqþ pf; qþ piÞ

× ΓPðqi;piÞSðqÞΓPðqf;−pfÞ: ð18Þ

The kinematics is defined as follows: pi;f ¼ K ∓ Q=2 and
qi;f ¼ qþ pi;f=2, such that p2

i;f ¼ −m2
P; naturally, mP is

the mass of the pseudoscalar meson and Q the photon
momentum. The trace, trCD, is taken over color and Dirac
indices. The only remaining ingredient to compute the
EFFs in the RL approximation is the QPV. This is
described below.

C. Quark-photon vertex

The QPV might be obtained via the inhomogeneous
BSE:

Γf
μðp;PÞ ¼ γμ þ

Z
Λ

q
½Kð2Þðq; p;PÞ�χfμðq;PÞ; ð19Þ

where χfμðq;PÞ is simply the unamputated vertex,

χfμðq;PÞ ¼ SfðqþÞΓf
μðq;PÞSfðq−Þ: ð20Þ

The choice of the 2-body kernel in Eq. (19) renders the
QPV self-consistent with the chosen truncation, ensuring,
for example, that the Abelian anomaly related with the
process γγ → π0 is faithfully reproduced [99,100]. For the
purpose of clarity, we refer to this approach as the direct
computation.
In the RL truncation, vector meson bound states appear

as poles on the negative real axis in the Q2 plane in the
inhomogeneous BSE for the QPV [101] and, as a conse-
quence, in the timelike form factors. The appropriate
inclusion of these poles favors obtaining the correct value
for the charge radius [81,101]. The EFFs in the timelike
region are harder to describe in the DSE-BSE approach. For
all practical purposes, this should not affect the way EFFs
contribute to aμ, because only a relatively small spacelike
region of the corresponding form factors near Q2 ¼ 0
actually matters for determining their contribution
[31,79]. We expect this small effect to be virtually remedied

by adjusting the model parameters to reproduce the correct
value of the charge radius.
Notwithstanding, it is worth exploring and reassuring

our expectations through a proper treatment of the timelike
region. In order to shift the vector meson poles appearing in
the QPV to the complex plane, and turn the bound state into
a resonance with a nonvanishing decay width, the inter-
action kernelsKð1;2Þ must allow virtual decays into suitable
channels [102,103]. The truncation explored in [82] and
employed in [68] for the calculation of the pion timelike
EFF, denoted herein as beyond rainbow-ladder (BRL),
takes into account resonance effects and incorporates
meson cloud effects (MCEs) in the description of the pion
EFF. This is sufficient to produce the correct behavior of
the pion EFF in the timelike axis. We adapt this approach to
compute the π − K EFFs and corresponding box contri-
butions. As Eq. (7) suggests, it is also desirable to go
beyond the IA. Nevertheless, to alleviate the numerical
calculations we neglect further photon couplings and
consider the IA only. Some aspects of the calculation of
EFFs in the BRL truncation are canvassed herein, in
Appendix, and detailed through Refs. [68,82]. As clarified
in Table I, the QC model favors mG ¼ 0.87 GeV and
ω ∼ 0.7 GeV.
Due to technical reasons, when employing the QPV

obtained from Eq. (19), the calculation of EFF is limited to
a certain domain of spacelike momenta. For instance, the
pion elastic and γ�γ → π0 transition form factors can only
be obtained up to Q2 ∼ 4 GeV2 [81,100], without appeal-
ing to sophisticated mathematical techniques for extrapo-
lation [80]. While not the entire spacelike domain is crucial
to aμ, it is reassuring to access it in its entirety.3 For this
reason and in direct connection with our previous work on
the HLbL contributions of neutral pseudoscalars [79], we
also present an alternative technique, based upon pertur-
bation theory integral representations (PTIRs), to evaluate
the form factors at arbitrarily large momenta.

D. The PTIR approach

A practical PTIR approach for the quark propagators and
BSAs was put forward in [71,75], to calculate the pion
distribution amplitude and spacelike EFF. It was sub-
sequently implemented to the case of γ�γ� TFFs [76–79].

TABLE I. RL and BRL parameters (mu ¼ md, ms and mG), fixed to produce the ground-state masses and decay constants (quoted in
GeV). Physical observables exhibit mild sensitivity to the variation of wRL ∈ ð0.4; 0.6Þ GeV and wBRL ∈ ð0.6; 0.8Þ GeV; this variation,
however, is taken into account for the calculation of the electromagnetic form factors. Charge radii (in fm) are obtained from Eq. (24).

mu ms mG mπ fπ rπ mk fk rk

RL 0.0052 0.122 0.80 0.139 (3) 0.131 (2) 0.677 (4) 0.493 (4) 0.157 (2) 0.597 (3)
BRL 0.0060 0.125 0.84 0.139 (4) 0.131 (2) 0.676 (2) 0.493 (5) 0.159 (2) 0.593 (2)

3The large-Q2 behavior of the γ�γ� TFFs is quite useful to
parametrize the numerical solutions [79,104].
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The general idea, which applies to all pseudoscalars, is to
describe the quark propagators in terms of jm ¼ 2 complex
conjugate poles (CCPs), and express the BSAs, Aj, as
follows:

Ajðk;PÞ¼
Xin
i¼1

Z
1

−1
dwρjiðwÞ

cjiðΛ2
i;jÞβ

j
i

ðk2þwk ·PþΛ2
i;jÞα

j
i

: ð21aÞ

The interpolation parameters involved, i.e., fzj;mjg,
fαji ; βji ;Λi;j; c

j
i ; in ¼ 3g (for quark propagators and BSAs,

respectively), as well as the spectral weights, ρjiðwÞ, are
determined through fitting of the numerical results of the
corresponding DSE-BSEs. The carefully constructed sets of
RL truncation parameters are found in Refs. [74,76].
Constructing a PTIR for the QPV in Eq. (19) turns out to

be difficult and unpractical [95]. Thus, appealing to gauge
covariance properties [105], the following Ansatz has been
proposed and systematically tested [76–79]:

χfμðko; kiÞ ¼ γμΔ
f
k2σV

þ ½sfγ · koγμγ · ki þ s̄fγ · kiγμγ · ko�Δf
σV

þ ½sfðγ · koγμ þ γμγ · kiÞ
þ s̄ðγ · kiγμ þ γμγ · koÞ�iΔf

σS ; ð22Þ
where Δf

ϕ ¼ ½ϕfðk2oÞ − ϕfðk2i Þ�=ðk2o − k2i Þ and s̄f ¼ 1 − sf.
According to [79], the transverse pieces are weighted by

sf ¼ sf exp
h
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1=4þm2

P

q
−mP

�
=ME

f

i
; ð23Þ

such that the strength parameter sf is tuned to reproduce the
π0 Abelian anomaly and γγ → fη; η0; ηcg empirical decay
widths. Nonetheless, as confirmed by our numerical
evaluations, such weighting for the case of the EFFs is
irrelevant and one can simply set sf to zero. The reasons
can be easily understood: first, the terms which dominate at
low-Q2 in Eq. (18), those involving the product of leading
BSAs (EP × EP), are not affected at all by the choice of sf
since the corresponding trace is exactly zero; then, with
FPðQ2 ¼ 0Þ ¼ 1 entirely fixed by charge conservation,
being exponentially suppressed, the sf-weighted sublead-
ing terms could only provide a minor contribution in
neighborhood of Q2 ∼ 0.
Defined as in Eq. (22), the QPV is fully written in terms

of the quark propagator dressing functions.4 With all the
ingredients in Eqs. (17) and (18) expressed in a PTIR, the
evaluation of the 4-momentum integral follows after a
series of standard algebraic steps (numerical integration is
only carried out for the Feynman parameters and spectral

weights). Hence, the form factors can be calculated at
arbitrarily large spacelike momenta.

III. NUMERICAL RESULTS

A. Electromagnetic form factors

The π − K EFFs are presented in Fig. 2. We compare the
RL results which follow from the direct computation and
PTIR approach; the compatibility between both calcula-
tions is evident. In the domain of interest, the BRL
truncation yields similar outcomes. Furthermore, our
obtained EFFs are in clear agreement with the DSE results
reported in Ref. [31]. The charge radii are obtained from the
derivative of the form factor:

r2P ¼ −6
dFPðQ2Þ
dQ2

����
Q2¼0

: ð24Þ

Both RL and BRL direct computations yield similar
values: rπ ¼ 0.677ð4Þ fm and rK ¼ 0.597ð3Þ fm (RL), and

FIG. 2. πþ and Kþ EFFs. The narrow band in the RL-direct
result accounts for the variation of the QC model parameters, as
described in text; those corresponding to the PTIR and BRL
results are not shown, since there is a considerable overlap.
The charge radii, Table I, are practically insensitive to the
model inputs and truncation. Experimental data is taken from
Refs. [106–109].

4The f-quark propagator expressed SfðpÞ¼−iγ ·pσfvðp2Þ þ
σfs ðp2Þ, with σfs;vðp2Þ being algebraically related to Mfðp2Þ and
Zfðp2Þ in Eq. (10).
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rπ ¼ 0.676ð2Þ fm and rK ¼ 0.593ð2Þ fm (BRL); the error
accounts for the variation of ω in the QC model, as
explained in Table I. The RL-PTIR case also falls within
these values: rπ ¼ 0.676ð5Þ fm and rK ¼ 0.596ð5Þ.

B. Pion and kaon box contributions

The integrations in Eqs. (4)–(5) have been carried out
employing the CUBA library [110], benchmarked with the
vectormeson dominance (VMD) ansätze of the form factors:

FVMD
πþ ðQ2Þ ¼ m2

ρ

m2
ρ þQ2

; ð25Þ

FVMD
Kþ ðQ2Þ ¼ 1 −

Q2

2

�
1

m2
ρ þQ2

þ 1

3

�
1

m2
ω þQ2

�

þ 2

3

�
1

m2
ϕ þQ2

�	
; ð26Þ

which yield the results

aπ
�−box

μ ¼ −16.4 × 10−11 ½RL-PTIR�;
aK

�−box
μ ¼ −0.5 × 10−11 ½BRL�; ð27Þ

where we have employed mπ ¼ 0.13957 GeV, mK ¼
0.49367 GeV, mρ ¼ 0.7752 GeV, mω ¼ 0.7827 GeV,
mϕ ¼ 1.0195 GeV, mμ ¼ 0.10565 GeV and αem ¼
1=137.03599 [111]. The estimates in Eq. (27) match those
quoted in [31], and the integration errors have been omitted,
since those are two orders of magnitude smaller.
With the EFFs obtained in the RL (direct and PTIR) and

BRL truncations, the numerical estimates for the π� − box
contributions are

aπ
�−box

μ ¼ −ð15.4� 0.3Þ × 10−11 ½RL-direct�;
aπ

�−box
μ ¼ −ð15.6� 0.3Þ × 10−11 ½RL-PTIR�;

aπ
�−box

μ ¼ −ð15.7� 0.2Þ × 10−11 ½BRL�: ð28Þ
Analogous results for the K� case yield:

aK
�−box

μ ¼ −ð0.47� 0.03Þ × 10−11 ½RL-direct�;
aK

�−box
μ ¼ −ð0.48� 0.03Þ × 10−11 ½RL-PTIR�;

aK
�−box

μ ¼ −ð0.48� 0.02Þ × 10−11 ½BRL�: ð29Þ
From Fig. 2 and the above estimates, it is clear that the

direct and PTIR approach are virtually indistinguishable;
the BRL truncation also yields similar outcomes.
Therefore, one can combine the estimates in Eqs. (28)–
(29) to produce:

aπ
�−box

μ ¼ −ð15.6� 0.2Þ × 10−11; ð30Þ
aK

�−box
μ ¼ −ð0.48� 0.02Þ × 10−11; ð31Þ

where the weighted errors have been added.

Our result for the π�-box contribution agrees remarkably
with the dispersive one, −15.9ð2Þ × 10−11 [22] and an
earlier DSE evaluation, −15.7ð2Þð3Þ × 10−11 [31] (see also
Ref. [99]). In the case of the K�-box contribution, we agree
again with the previous DSE computation [31],
−0.48ð2Þð4Þ × 10−11, which yields −0.46ð2Þ × 10−11 once
the integration error is improved [3]. We note that the K0-
box contribution is very much suppressed, as can be seen
from its VMD description in the ideal ω-ϕ mixing case

FVMD
K0 ðQ2Þ ¼ Q2

2

�
−

1

m2
ρ þQ2

þ 1

3

�
2

m2
ω þQ2

�

þ 2

3

�
1

m2
ϕ þQ2

�	
; ð32Þ

which yields the negligible result ∼1 × 10−15 [3].
Consequently, we do not evaluate this contribution in
our framework.

IV. CONCLUSIONS AND SCOPE

We describe the computation of the EFFs γ�P → P
within the DSE approach to QCD, leading to the evaluation
of their contributions to aμ. The EFFs were obtained,
firstly, in the RL truncation. Direct computations and the
PTIR approach were shown to be fully compatible, while
also being in agreement with the DSE results from
Refs. [31,99]. Our previous calculation of the ground-state
pseudoscalar pole contributions reinforces this finding [79].
It was confirmed that the BRL truncation, which incorpo-
rates meson cloud effects, 5 produces similar EFFs in the
relevant domain for aμ; the value of the latter being barely
affected by the new effects in the truncation.
In this way, we have highlighted how the DSE formalism

is a robust approach for calculations of hadronic observ-
ables, including quantities of interest for the muon g − 2.
We hope to continue developing calculations related to the
subject; for instance, the importance of axial mesons has
been discussed in [32], and the contribution coming from
excited states might be relevant as well.
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APPENDIX: BEYOND RAINBOW-LADDER
TRUNCATION

In the RL truncation, the meson bound states appear as
poles on the negative real axis on the Q2 plane in the
inhomogeneous BSE for the quark-photon vertex and, as a
consequence, in the calculation of form factors in the
timelike regime. In order to move the pole from the real axis
to the complex plane and turn the bound state into a
resonance state with a nonvanishing decay width, the
interaction kernel K must allow virtual decays into suitable
channels. In Refs. [102,103], pion cloud effects were
investigated by the inclusion of pionic degrees of freedom
in the quark propagator DSE and in the BSE interaction
kernel. In such BRL truncation the quark propagator is
modified by (k ¼ p − q and k̄ ¼ ðpþ qÞ=2):

S−1f ðpÞ ¼ S−1f ðpÞRL − 3

2
Z2

Z
Λ

q
½γ5SðqÞΓPðk̄;−kÞ

þ γ5SðqÞΓPðk̄; kÞ�
DPðkÞ

2
; ðA1Þ

with S−1ðpÞRL being the right-hand side of Eq. (9) in the
RL truncation, Eqs. (13), (14), and DPðkÞ ¼ ðk2 þm2

PÞ−1.
The quark propagator in Eq. (A1) preserves the axial-
vector WGTI identity in combination with the following
interaction kernel for the t− channel pseudoscalar
exchange [68,82]:

Ktu
srðq; p;PÞ ¼ −

3

16
ð½Γj

P�ruðk̄ − P=2; kÞ½Z2τ
jγ5�ts

þ ½Γj
P�ruðk̄ − P=2;−kÞ½Z2τ

jγ5�ts
þ ½Γj

P�tsðk̄ − P=2; kÞ½Z2τ
jγ5�ru

þ ½Γj
P�tsðk̄ − P=2;−kÞ½Z2τ

jγ5�ruÞDPðkÞ:

Analogous expressions for the s and u channels might be
found in [82]; beyond IA corrections to Eq. (7), Kμ are
given in [68].
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