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In this paper we introduce a self-consistent mean field approximation to study the QCD phase transition
and the structure of hybrid stars within the framework of an NJL-type model. In our practice, a
phenomenological parameter α is introduced, which reflects the weights of the “direct” channel and
“exchange” channel under a finite chemical potential. The mass-radius relation is obtained by solving the
Tolman-Oppenheimer-Volkoff equation using a crossover equation of state (EOS). We calculate the density
distribution in a two solar-mass hybrid star to show the effects of different parameters. We also calculate the
tidal Love number k2 and the deformability (Λ). It is found that the stiffness of the EOS increases with α,
which allows us to obtain a hybrid star with a maximum mass of 2.40 solar mass through our model. The
observation of over 2.06 solar-mass neutron stars may indicate that the chiral transition may be a crossover
on the whole T-μ plane.
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I. INTRODUCTION

Neutron stars are the densest celestial bodies in our
Universe except for black holes. Their extreme environ-
ment provides us a natural laboratory for cold and con-
densed matter. In recent years, the detection of gravitational
waves has given us different valuable information about
compact stars. During the inspiral and merger of binary
stars, the tidal deformability can be measured by the LIGO
and VIRGO network directly [1]. The Love number k2 is
used to measure the distortion of a neutron star. It can be
calculated through the exterior solutions that are related
to the tidal deformability (Λ) [2–4]. On the other hand,
electromagnetic observations on the cooling rate [5],
gamma-ray bursts [6], thermal x rays [7], and radio bursts
[8] from neutron stars give us diverse data to study neutron
stars. These astronomical observations can help us to
constrain theoretical models and improve our understand-
ing of neutron stars.
The inner structure of neutron stars is still not well

known. The possibility that the neutron star is composed of
a quark-matter inner core, nucleon matter outer core and
crust, i.e., being a hybrid star, is widely discussed. The key
to studying hybrid stars is the equation of state (EOS) of the
strongly-interacting matter. For quark matter, lattice quan-
tum chromodynamics (LQCD) is widely accepted as the

ab initio method to deal with QCD nonperturbatively.
Unfortunately, present lattice QCD calculations at finite
chemical potential are plagued with the so-called sign
problem [9]. Thus, to study QCD systems at finite chemical
potential, it is necessary to employ some QCD effective
models, such as the Nambu-Jona-Lasinio (NJL) model
[10–14]. The NJL model displays important features of
QCD, i.e., the dynamical chiral symmetry breaking and
restoring. The chiral restoring phase transition is usually
considered to happen simultaneously (or almost simulta-
neously) with the deconfinement phase transition [15–18].
Thus, a problem naturally arises; which type of phase
transition should it be, a first-order phase transition or a
crossover?
Another related issue is that in the case of zero chemical

potential and finite temperature, the result of LQCD and
other methods shows there is a crossover [15–18]. Thus, at
zero temperature and finite chemical potential the type
of phase transition determines whether there exists a
critical end point (CEP) in the QCD phase diagram.
Experimentally, the second stage beam energy scanning
plan of the Relativistic Heavy Ion Collider (RHIC) is still
to try to find the possible CEP [19–21]. Theoretically,
different models give different perspectives and answers. In
this paper, wewill study this issue by using a self-consistent
mean field approximation in the framework of the NJL
model [22]. People generally predict that the hadronic
matter will completely transition to quark matter when the
density increases to 4–8 times the saturation density of the
nucleon matter in the hadron physical pictures. [23–26],
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which means that the corresponding quark chemical
potential is at least larger than 430 MeV in NJL model.
However, the strong interaction phase transition predicted
by the standard NJL model usually occurs near 330 MeV
[27–30], which indicates that there is an contradiction
between the prediction of the standard NJL model and the
corresponding prediction of the hadron physical pictures.
In order to overcome this contradiction, the authors of

Ref. [22] proposed a mean field approximation method
under the framework of the NJL model. In this method, a
phenomenological parameter α is introduced to reflect the
weights of the “exchange” channel and “direct” channel,
because the vector interaction term generated by the
“exchange” channel plays a very important role in the
case of finite chemical potential. The relative results will
influence the CEP and hybrid stars. α is a theoretical
parameter and the finite density experiments could help to
constrain α. For example, the experiments of RHIC can
provide useful clues on the issue of whether the CEP exists
or not, which itself can help constrain the value of α.
Anyway, note that such a constraint will still be too rough
to determine α exactly, since there may be other factors
influencing the CEP. Thus, we need various experiments
and observations, such as the astronomical observations of
neutron stars, to further constrain the parameter. Another
point we focus on is the uncertain region between the
nucleon matter and the quark matter. The uncertainty forces
us to adopt some nonphysical methods to connect the
nucleon part and the quark part, such as the Gibbs con-
struction [31], or other mathematical operations [24,32,33].
However, these methods unavoidably lead to a phase
transition themselves, thus they are not self-consistent in
the practice. The EOS will be studied under a crossover-
type model with a self-consistent connection method in
this paper.
This paper is organized as follows. In Sec. II we intro-

duce the three-flavor NJL model and its Fierz transforma-
tion. The three-flavor QCD phase diagram is calculated and
the existence of the CEP in our model is discussed. In
Sec. III the thermodynamical relations will be solved to
obtain the EOS for quark matter. We use the soft-hadronic
Akmal-Pandharipande-Ravenhall (APR) EOS [34] and a
crossover connection method to get the EOS of hybrid
stars. We will show how hybrid stars are changed in this
framework. Finally, we give a summary in Sec. IV.

II. MEAN FIELD APPROXIMATION
AND PHASE TRANSITION

The standard (2þ 1)-flavor NJL Lagrangian contains
four-fermion and six-fermion interactions written as

L ¼ ψ̄ði=∂ −mÞψ þ G
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�

− K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ � þ μψ†ψ ; ð1Þ

where m is the current quark mass, and G and K denote
the coupling constants which will be calibrated to repro-
duce the physical pion meson mass, kaon meson mass,
and their decay constant. The corresponding mean field
approximation is

L 1 ≈ ψ̄ ½i=∂ − γ0μ − ðmþAÞ�ψ ; ð2Þ

with

A ¼ −4G

0
B@

σu

σd

σs

1
CAþ 2K

0
B@

σdσs

σuσs

σuσd

1
CA;

and

σi ¼ hψ̄ iψ ii ¼ −
Z

d4p
ð2πÞ4 Tr½sðpÞi� i ¼ u; d; s;

where σ is the quark condensation, Tr denotes a trace over
color and spinor indices.
As shown in Eq. (1), the standard NJL model Lagrangian

contains only the interactions of scalar and pseudoscalar
channels. It is insufficient to handle the interaction of vector
channels, such as in the case of finite chemical potential.
To get a self-consistent result in the sense of mean field
approximation, the contribution of Fierz transformation
Lagrangian must be taken into account [35]. The authors of
Ref. [11] demonstrated that a Fierz transformation of a six-
fermion interaction can be defined as an operation that
leaves the interaction invariant under all possible permu-
tations of the quark spinors ψ occurring in it; thus, the six-
fermion term does not change after Fierz transformation.
So in this paper we only need to consider the Fierz
transformation of four-fermion term, which can be written
as [11]

F

�X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�
�

¼ −
G
2

X8
c¼0

½ðψ̄γμλcψÞ2 − ðψ̄γμγ5λcψÞ2�: ð3Þ

In this study, we only consider the scalar and vector
channel contribution, this is because other terms in our
modeling make no contribution at the level of the mean
field approximation. The mean field approximation of the
Fierz transformation of the original NJL Lagrangian is

L 2 ≈ ψ̄ ½i=∂ − γ0ðμþ BÞ − ðmþ AÞ�ψ : ð4Þ

Here B ¼ − 2G
3
ðnu þ nd þ nsÞI, where I is the identity

matrix in flavor space and n denotes the quark number
density. L 1 contains only the Hartree term, while L 2
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contains only the Fock term. We can rewrite Eq. (1) by
taking the linear combination of L 1 and L 2 [22],

L R ¼ ð1 − αÞL 1 þ αL 2: ð5Þ

To illustrate the characteristics of this approach, let us
recall the mean field approximation utilized in previous
studies within the framework of the NJL model. In the
original mean field approximation, the Fierz transformation
is not adopted, which corresponds to the case of α ¼ 0 in
our method [36]. But as pointed out in Refs. [35,37], this
approximation is theoretically not self-consistent at the
level of the mean field approximation.
As shown in Refs. [35,37], to get a self-consistent result

in the sense of mean field approximation, the contribution
of the Fierz transformed Lagrangian (“exchange channel”)
must be taken into account. Later, when the finite chemical
potentials (in this situation, the vector-isoscalar channel
interactions are very important) are involved, people
usually put a vector-isoscalar channel interaction by hand
into the original Lagrangian, so they must phenomeno-
logically introduce a coupling parameter to reflect the
strength of the explicit vector-isoscalar channel interaction
[38]. This will cause a serious problem, that is, the vector-
isoscalar channel interaction is introduced phenomenologi-
cally, and the Lagrangian at this time is no longer the
original Lagrangian. What is more serious is that the vector-
isoscalar interaction introduced by hand is not theoretically
self-consistent in the framework of the mean field approxi-
mation, because the Fierz transformed Lagrangian is not
considered.
At the same time, if people want to discuss the problems

related to the axial-vector chemical potential (under these
circumstances, the axial-vector channel interaction plays
an extremely important role), then people must artificially
introduce the axial-vector channel interaction. So, the
introduction of a term by hand is quite arbitrary and will
make the method lose its reliability [39]. In order to
overcome the arbitrariness brought by the above method,
the self-consistent mean field approximation method is
necessary, which can release all the interaction channels
hidden in the original Lagrangian by the Fierz trans-
formation [40]. Because the Fierz transformation is an
equivalent transformation, the new LagrangianL R ¼ ð1 −
αÞL þ αL F used in this paper is equivalent to the original
NJL model, which is another advantage of our method.
There are many studies that have considered the con-

tribution of an explicit Fierz transformed term and have
chosen the weight of the vector-isoscalar channel factor α
as 0.5 [11,27]. However, there is no physical basis
supporting that the “direct” channel and the “exchange”
channel have the same weight. In principle, the value of α
could be constrained or hinted from related experiments
and neutron star observations. On the other hand, in the
commonly used NJL model, μ0 (when the chemical

potential μ is smaller than the critical value μ0, the quark
number density becomes zero.) is very close to μc (the
critical chemical potential of chiral restoration). It means
that a vacuum phase transition occurs shortly after the
baryon is excited from the vacuum, which is physically
unreasonable [24,41]. This long-standing problem can
be solved by adopting our self-consistent mean field
approximation.
Based on the new Lagrangian of Eq. (5), the three-flavor

quark gap equation is then given by

Mi ¼ mi − 4Gσi þ 2Kσjσk; ð6Þ

μ̃i ¼ μi −
2

3
αG0ðnu þ nd þ nsÞ; ð7Þ

where G0 ¼ G
1−α, and μ̃i is the effective chemical potential

and Mi is the constituent quark mass. Similarly, μi is the
chemical potential and mi is the quark mass. Because the
NJL model is nonrenormalizable in this study we employ a
three-momentum cutoff scheme to regulate the divergence.
The quark condensation and number density in three-
momentum cutoff scheme is given by

σi ¼ −
NcMi

π2

Z
Λ

0

p2

Ep;i
½1 − ðeEp;i−μ̃i

T þ 1Þ−1

− ðeEp;iþμ̃i
T þ 1Þ−1�dp; ð8Þ

ni ¼
Nc

π2

Z
Λ

0

p2

�
1

e
Ep;i−μ̃i

T þ 1
−

1

e
Ep;iþμ̃i

T þ 1

�
dp: ð9Þ

The parameters of NJL we adopted are shown in Table I,
which are consistent with the experimental results of π, K,
and η meson masses and decay constants [42].
We can use the method of finite-temperature field theory

[43] to write the grand canonical potential density as

Ω ¼ −NcT
π2

X
i¼u;d;s

Z
p2

�
Ep;i

T
þ lnð1þ e−

Ep;iþμ̃i
T Þ

þ lnð1þ e−
Ep;i−μ̃i

T Þ
�
dpþ 2Gðσu þ σd þ σsÞ

−
αG0

3
ðnu þ nd þ nsÞ2 − 4Kσuσdσs þΩ0: ð10Þ

From this, the pressure p ¼ −Ω and the energy density
ϵ ¼ −pþP

i μini can be easily obtained. In addition,
the baryon number and electric charge are conserved for

TABLE I. Parameters adopted in our calculations.

mu½MeV� ms½MeV� ΛUV½MeV� GΛ2
UV KΛ5

UV

5.5 135.7 630.1 1.781 9.29

HYBRID STARS AND THE QCD PHASE TRANSITION WITH AN … PHYS. REV. D 105, 074011 (2022)

074011-3



neutron stars [44]. Therefore, we need to include the
following equilibrium condition

8>><
>>:

2
3
nu − 1

3
nd − 1

3
ns − ne ¼ 0;

μe ¼ μμ ¼ μd − μu;

μd ¼ μs:

The NJL model with zero-bare quark mass at the high-
energy scale, keeps the chiral symmetry. With the decrease
of energy, the quarks and antiquarks condensate together
to give quarks dynamical mass, thus the chiral symmetry is
broken at the low-energy scale. To illustrate this phase
transition more clearly, we can use the chiral susceptibility
to reveal the order of phase transition and the correspon-
ding physical condition [45,46]. The chiral susceptibility is
defined as

χm ¼ −
∂σu
∂mu

: ð11Þ

We show the results of chiral susceptibility for different α
in Fig. 1. It can be seen that when α is small, there is a
singular point on the susceptibility curve. It corresponds
to a first-order phase transition occurring at a particular
critical chemical potential. On the other hand, when α is
large enough (α > 0.47), the curve becomes relatively
smooth. It means that the phase transition changes to a
crossover, and the chemical potential corresponding to the
peak point is regarded as “pseudocritical chemical poten-
tial”. Fig. 1 also shows that the critical (pseudocritical)
chemical potential gradually becomes larger with the
increase of the parameter α. We can see this more clearly
in Fig. 2. The above results indicate that our quark model
can be used to describe different kinds of phase transitions.
By evaluating the parameter α properly, it can present a
good approximation for various hadron models.
Similarly, using the chiral susceptibility we can plot the

QCD phase diagram for different α. The result is shown in
Fig. 3. In particular, we are interested in the critical end

point which denotes a critical point connecting two differ-
ent types of transitions. It is one of the most important
features of QCD phase diagram. However, whether there is
a CEP in the phase diagram or not is still highly debated
in the literature and it depends on the chosen physical
environment [47]. Our model indicates that there is a CEP
for a small α but no CEP exists for a large α.
More restrictions on α and the type of phase transition

could be hinted at by the experiments of RHIC. Note that
the above calculations about the QCD phase diagram are in
the conditions of neutron stars. For the experiments of
RHIC, the conditions are quite different. An important
difference is that the ratio of electric charge over baryon is
special and is approximately 0.4, i.e., nq ¼ 0.4nB. Second,
the strangeness neutrality requires the density of strange
quark (ns) to be zero. Additionally, the experiments of
RHIC are not in β equilibrium, but are connected with an
ambiguous chemical potential condition. However, com-
paring with the special electric charge condition, such a
chemical potential condition will have less influence on
the QCD phase diagram. To compare with the RHIC

FIG. 1. The chiral susceptibility as a function of baryon
chemical potential at zero temperature, for different α. FIG. 2. The critical (pseudocritical) chemical potential as a

function of α at zero temperature. When α < 0.47, it is a first-
order phase transition. But when α > 0.47, the phase transition is
a crossover.

FIG. 3. The QCD phase diagram on the T-μ plane for different
α for the conditions of neutron stars.
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experiments, we have calculated the QCD phase diagram
under the above experimental conditions (but still with β
equilibrium). The results are shown in Fig. 4. In these
cases, our model predicts that there will be no CEP when
α > 0.58 in the phase diagram.

III. HYBRID STARS WITH A CROSSOVER
EQUATION OF STATE

The EOS plays a critical role in calculating the mass-
radius relation and tidal deformability (Λ) of neutron stars.
Using Eq. (10), we can get the quark section of the EOS.
The hybrid star also includes a hadron section, but the NJL
model makes it difficult to describe the hadron state at low
densities. Thus we use the APR EOS for hadronic matter,
which is a soft EOS [34]. It has been adopted by many
authors to describe hybrid stars at low densities [48,49]. For
the whole EOS, we use a simple mathematical method to
link the hadron and quark section,

p ¼ sðμÞpHðμÞ þ ð1 − sðμÞÞpQðμÞ; ð12Þ

n ¼ dp
dμ

¼ sðμÞnHðμÞ þ ð1 − sðμÞÞnQðμÞ þ
ds
dμ

ðpH − pQÞ:

ð13Þ

Here pH and pQ is the pressure of hadron and quark
section, p is the total pressure. The case is similar for the
density n. The function s is defined as

sðμÞ ¼ e−
μ−μ0
μ1 : ð14Þ

Here the parameter μ0 ¼ 923 MeV corresponds to the
chemical potential that nucleon matter begins to appear
in the ARP EOSmodel. The parameter μ1 ¼ 1200 MeVwe
assume here can make the contribution of hadron matter
reduce and the contribution of quark matter increase
smoothly when the density changes from 2n0 to 8n0,

which means it is a crossover between quark and hadron
matter. So, a reasonable requirement is that the EOS of
quark matter also has a crossover, which means α > 0.47
here. The whole EOS is shown in Fig. 5, from which it can
be seen that a larger α will lead to a harder EOS.
To study the stiffness of the system in detail, we calculate

the square of sound velocity

v2 ¼ dp
dε

; ð15Þ

which can reflect the stiffness of the system. The results are
plot in Fig. 6. From this figure, we can see that a larger α
leads to a larger sound velocity, which demonstrates that
the stiffness of the EOS will increase with α.
We then study the mass-radius relation by solving the

Tolman-Oppenheimer-Volkoff equations (in the natural
unit system)

dpðrÞ
dr

¼ −
ðεþ pÞðM þ 4πr3pÞ

rðr − 2MÞ ; ð16Þ

dMðrÞ
dr

¼ 4πr2ε: ð17Þ

FIG. 4. The QCD phase diagram on the T-μ plane for different
α, under the condition of nq ¼ 0.4nB and β equilibrium. When
α > 0.58, there is no CEP in our model.

FIG. 5. The crossover equation of state for different α.

FIG. 6. The square of sound velocity for different α.
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In addition, we use the small-crust approximation [50] to
describe the crust of our hybrid stars. To show the influence
of α on the neutron star, the mass-radius relation of hybrid
stars for different values of α is presented in Fig. 7.
Astronomical observations show that the masses of pulsars
(PSR): PSR J0384þ 0432 and PSR J1614-2230 are 2.01�
0.04 M⊙ and 1.928� 0.017 M⊙, respectively. Our result
indicates that when α ¼ 0.5, the maximum strange matter
star is 2.01 M⊙, which is consistent with observations.
However, when α ¼ 0.5 it is difficult to meet the require-
ment of PSR J0740þ 6620 (2.14� 0.10 M⊙). Thus, we
may need an even larger α, such as in the range of 0.6–0.8.
As shown in Fig. 7, the maximum mass of hybrid stars
increases with the parameter α. If a larger mass of neutron
star is observed then a larger α will be preferred.
Another astronomical phenomenon that can be engaged

to limit the range of α is the cooling rate of neutron stars.
The direct Urca process provides the fastest neutrino
emission in nucleon matter and quark matter. It is the
main cooling mechanism in neutron stars [51]. The
neutrino emission rate is density dependent; a high density
will lead to a high emission rate, which makes the cooling
of neutron stars faster. This could give us more restrictions
on the EOS. We plot in Fig. 8 the density distribution inside

a two solar mass hybrid star. We can see that a small α
results in a high density, which will lead to a quicker
cooling rate. A more detailed comparison is beyond the
scope of this study and will be studied later.
During the inspiral and merger of two stars, the ratio of

each star’s induced-mass quadrupole moment to the tidal
field is defined as the tidal deformability (Λ), and the Love
number k2 describes the distortion of the surface of a star.
The relation between the tidal deformability (Λ) and the
l ¼ 2 dimensionless tidal Love number k2 is (in the natural
unit system)

k2 ¼
3

2
Λ
�
M
R

�
5

: ð18Þ

According to Ref. [52], k2 can be calculated as

k2 ¼
8C5

5
ð1 − 2C2Þ½2þ 2Cðy − 1Þ − y�

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� lnð1 − 2CÞg−1;

ð19Þ

where C ¼ M=R is the compactness of the star, and

y ¼ RβðRÞ
HðRÞ −

4πR3ε0
M

ð20Þ

is related to the metric variable H and surface energy
density ε0. The metric variable H depends on the EOS and
can be obtained by integrating two differential equations

dHðrÞ
dr

¼ β; ð21Þ

dβðrÞ
dr

¼ 2

�
1 − 2

M
r

�
−1
H

�
−2π½5εþ 9pþ fðεþ pÞ�

þ 3

r2
þ 2

�
1 − 2

M
r

�
−1
�
M
r2

þ 4πrp

�
2
�

þ 2β

r

�
1 − 2

M
r

�
−1
�
−1þM

r
þ 2πr2ðε − pÞ

�
;

ð22Þ

where f is defined as

f ¼ dε
dp

: ð23Þ

We can integrate Eqs. (22) and (23) from the center via
expansions HðrÞ ¼ a0r2 and βðrÞ ¼ 2a0r for r ≪ R with

FIG. 7. Mass-radii relations of hybrid stars for different α. The
maximum mass increases with α. Masses are in units of M⊙.

FIG. 8. The density distribution in a 2 M⊙ hybrid star. The
color depth denotes the density value.
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constant a0. Since a0 can be reduced in the expression of
the Love number k2, here we take a0 ¼ 1.
We have calculated themain parameters of hybrid stars for

different α. The results are shown in Table II. For a 1.4 M⊙
low-spin star, the tidal deformability (Λ) has been con-
strained in a range of (200, 800) through gravitational wave
observations [53]. It can be seen that the results of our hybrid
stars are consistent with the observational requirement.

IV. SUMMARY AND DISCUSSION

In this paper, we adopt a self-consistent mean field
approximation to discuss the three-flavor NJL model. A
free parameter α is introduced to denote the weight of
different interaction channels. Using this method, we study
the phase transition properties by calculating the chiral
susceptibility. It is found that the (pseudo) critical chemical
potential increases with α. We plot the QCD phase diagram
under the condition applicable for neutron stars as well as
the condition for heavy-ion collision experiments. It is
found that there is no CEP when α > 0.47 for neutron stars
but for the heavy-ion collision experiments there will be no
CEP when α > 0.58. We discuss how the stiffness of EOS
changes with α by examining the sound velocity. It is found
that the phase transition of quark matter to hadron matter is
a crossover when α > 0.47 in neutron stars, thus we need a

crossover connection method to describe the hybrid star.
The corresponding EOS can also support a more massive
star since it gets harder with a larger α. The density-radius
diagram of a 2 M⊙ hybrid star is plot to show the effects of
different parameters. Finally we calculate the tidal deform-
ability and show that our EOS can meet the requirements of
gravitational wave observations.
To be specific, the EOS with α ¼ 0.5 yields a maximum

compact star of 2.01 M⊙, which can match the masses of
PSR J1614-22300 (1.928� 0.017 M⊙) [54] and PSR
J0348þ 0432 (2.01� 0.04 M⊙) [55]. However, α ¼ 0.5
is difficult to satisfy PSR J0740þ 6620 (2.14� 0.10 M⊙)
[56] and PSR J2215þ 5135 (2.27þ0.17

−0.15 [57]. A quark model
with a larger α may provide a harder EOS to support a
compact star with a larger mass. A more mild phase
transition which means a larger α in this paper, makes
quarks have a larger energy at the same density due to
interactions with each other. As a result, α > 0.7 is
preferred to satisfy PSR J0740þ 6620 (2.14� 0.10 M⊙)
in our framework. More astronomical observations will
help to further constrain the value of α. We calculate the
density-radius distribution because the density of the matter
may affect the cooling rate of neutron stars. Measuring the
temperature of neutron stars may also help to constrain α.
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