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Unitarity and the Finkelstein-Kajantie problem
in diffractive hadron production
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The Froissart-Martin bound states that two-particle diffraction cross section cannot rise with s
faster than In?s, where s is the Mandelstam variable. However, the diffraction production of many
hadron showers separated by large rapidity gaps, when calculated within the standard Pomeron
approach, leads to cross sections rising much faster than the Froissart-Martin bound. This is the point
of Finkelstein-Kajantie problem. We consider the unitarization procedure based on Dyson-Schwinger
equations with input froissaron propagators and a three-froissaron vertex depending on angular momenta of
froissarons in it. The developed diffraction production model allows to resolve Finkelstein-Kajantie

problem.
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I. INTRODUCTION

A problem of the unitarity violation in the Pomeron
models has been well known since 1960s [1-3]. It is more
related to a three-Pomeron (3P) interaction vertex rather
than to a possible large intercept [a(0) > 1] of a bare
Pomeron. If the Pomeron trajectory is linear, so a(t) =
a(0) + o't with a(0) =1, and the 3P-vertex, r3p,
is constant, then the total hadron cross section does
not depend asymptotically on hadron energy, o,(s) «
(s/50)%®~1 = const (sy ~ 1 GeV?). At the same time the
contribution of diffraction production of high-effective
mass hadron showers, separated by the large enough
rapidity gaps (Fig. 1), o,(s) rise vigorously with energy
demonstrating inconsistency of this simplified scheme (see
[4-6] and references therein).

This process is pictured by the loop diagrams shown in
Fig. 2. The equivalence of left and right diagrams is a
consequence of the generalized optical theorem.

The total cross section of the n showers production is
determined by the imaginary part of the loop diagram
which has in j = w + 1, t-representation of the following
form
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One can obtain from this equation that at s — oo

so~ 1 GeV?,
(2)

ol (8) & (r3pIn(s/50) In In(s/s0))" ",

which severely contradicts the Froissart-Martin bound
[7-9]. This is the essence of the Finkelstein-Kajantie
problem [2,10,11].

In the 1970s, Cardy proposed considering additional
Pomeron rescatterings which had to screen large rapidity
gaps [12]. It was believed that in a black disc limit such a
screening can put the cross section back to Froissart-Martin
unitarity bound [13,14]. Unfortunately, any eikonal-type
screening appears to be not enough [15,16], at least for the
simplest input contribution to the amplitudes of single
diffraction dissociation (SDD), central diffraction produc-
tion (CDP), or double diffraction dissociation (DDD). In
Ref. [17] the differential cross sections have been written in
a general form taking into account enhanced Reggeon
diagrams. However, it is most likely, that the explicit final
result for integrated (over rapidity and impact parameter
variables) cross section cannot be obtained in analytical
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FIG. 1. Diffraction production of n hadron showers.
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FIG. 2. Cross section of a diffraction production of n hadron
showers as (n — 1)-loop diagram.
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FIG. 3.
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Graphic definition of three-froissaron vertex.

form. Another way to fix the problem, namely assumption
that the 3P-vertex depends on #, r3p(f) o tatt — 0[6,18] is
not supported by the data at high energies.

The Pomeron with a(f) =14 e+ @t as input in the
eikonal ([19] and references to earlier papers therein, [20]),
quasieikonal [21], U-matrix [22] unitarization and their
generalization [23] lead to the elastic scattering amp-
litude which does not violate the Froissart-Martin limit
for total cross section. Namely, unitarization leads to
6, ~ 8mead’ In?(s/sy). Such an amplitude (in a simplified
form at s — oo0) can be represented in impact parameter
representation H(s,b) = ¢g®(R(s) — b), where R(s)
In(s/sg) and g < 1. In the w-representation this amplitude
is not a pole—it looks like a pair of two complex branch
points colliding at ¢ = 0,

W) « (@ + @), w=j-1, P=-1 (3)
G(UJ‘,(T) GO(‘“%@
AN = - - - - - - +

Such a Pomeron was called a froissaron [24,25] because
it saturates the Froissart-Martin bound (in a functional
form), i.e., provides the maximality of strong interactions.

By introducing the proper three-froissaron (3F) vertex
shown in Fig. 3, one can hope to extend an unitarization to
the shower production.

Anyway, there are two possibilities: either we start
from the single pomeron pole with the intercept a(0) =
1 + &> 1 (and then apply to it a not well-defined unitar-
ization procedure) or we consider from the very beginning a
more complicated Pomeron singularity [for instance, in the
form (3)]. The question may be asked: does froissaron
satisfy the Dyson-Schwinger equation (DSE), provided that
the three-froissaron vertex is chosen appropriately.

The DSE for propagator is given in the Fig. 4.

Analytically the DSE for the propagator has the form,

Gl 3%) = Go(w. &) + Golo ) 2w, F)Glo0. ), (4)
where
2 1
Xo.7) = 5 [ 5o [ S Tallo} a6 )
xGlo-o, @-FPIN((@)Aa).  ©)

® = j — 1, j is the Pomeron angle momentum, and 4 is the
transverse component of the Pomeron momentum, g ~ —.
The equation for the three-Pomeron vertex I'(@, oy, @,;
4,41, 4») is given by the Fig. 5.
In the leading order the analytical form of the DSE for
the 3P-vertex (if only 3P-vertices are considered) is

r({w}: {q})
Fo({w): {a)) / do / I({0}: {4)G(@.7?)
< T({0}: {g})G(of — on. (@ — 1)) ({w}: {a})

xGlw—ao,(G—7))) + (0 < 02,4, < §2), (6)
where the notations {w} = w, o', 0 — ', {q} = §*, §?,

(g — q')* are used.

w2, 42

FIG. 4. DSE for the Pomeron propagator. The wavy line is the full propagator and the dashed line is the bare propagator. The black
point is the bare or input 3P-vertex, the gray circle is the dressed or output vertex.
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FIG. 5.

General properties of the DSE in the framework of
Reggeon field theory (with a single Pomeron input pole)
were discussed in details by Gribov [4]. Two regimes—the
weak coupling and the strong coupling ones—were ana-
lyzed. The weak coupling regime was noted as preferable;
however, it is not supported by available experimental data.

The first attempt to discuss the froissaron (3) as an input
in the DSE was made by Ball [26]. He considered the
model in which the output propagator and 3F-vertex are
proportional to input ones

G(w,q*) = gGy(w. ¢%),
Nw,o',q,.q9)=yTy(w. 0, q.9).
Go(@, ¢%) = 2na’(a? + a’q?) 2,

To(@.0'.q.q') = ro(0” + a’¢?)*?/(2na?),  (7)

and have obtained two algebraic equations for couplings
g and y.

However, one can see that in this simple scheme the
integrated DSE cross section, ogpg(s) = 0. We think that
the problem can be fixed only if the input 3F-vertex is
changed for a more complicated form.

Developing this idea is one of the goals of our work. In
Sec. II we define the main ingredients in our scheme and
estimate corrections to the input propagator and 3F-vertex
in the DS equations. Differential and integrated cross
sections of diffraction production processes are estimated
at asymptotic energy in Sec. III.

We would like to emphasize here that our approach is
based on two main assumptions: First, the input Reggeon in
DSE is a froissaron [Eq. (3)], which for # = 0 is located in
the w-plane at the point @ = 0 not violating the Froissart-
Martin bound. Second, we assume that the 3F-vertex
depends on the angular and spatial momenta of the
froissarons in it; therefore, the factorization of propagators
and vertices takes place only in the (w, f)-representation,
but does not hold in the (s, #) one, which is valid for the
input Pomeron in the form of a simple pole.

In Sec. III, cross sections of diffraction processes are
calculated at s — oo. The limits for free parameters at
which the diffraction cross sections do not exceed Froissart-
Martin bound are obtained. The results are summarized in
the conclusion.

_ —

Dyson-Schwinger equation for the 3P-vertex.

II. PROPAGATOR AND 3F VERTEX:
RESTRICTIONS ON THE VERTEX PARAMETERS

In accordance with a general form of the partial ampli-
tude of elastic scattering at low @ and g? we consider the
universal propagator for the froissaron

e (3)

(w? + a*q*

where the function E(w, ¢) is a finite function at any w, g,
providing the main contributions in the integrals over , g
in the region where @? ~ ag® ~ 0. We recall that our main
interest is concentrated in the limit of high-energy and low-
transferred momenta, which correspond to the above
mentioned @ — 0.

Now we suppose that in accordance with the structure of
the froissaron singularity in Gy(w, q) at @* + w} = 0, the
function E(w, ¢) depends on w through the variable x =
(w* + @})"/? and it can be expanded in powers of «,

(@. ),

©)

Eo(q) +xE\(q) + K*E2(q) <= .
Go(ah 61) = O( ) 11<3 2 ZGE)
k=

where k corresponds (at ¢ = 0) to the contribution of the
triple pole (k = 0), double pole (k = 1) and single pole
(k = 2). The DSE diagrams for propagator and vertex with
arbitrary values of k are shown in Figs. 6 and 7. Thus the
froissaron propagator can be written in the form with main
and subasymptotic (SA) corrections terms

Ei(q)
o+ o} (0?
Wy = aq. (10)

Ez(CI)
+ @3)'/?’

Ey(q)
(0 + @})/?

Go(w, q) =

Let us notice that the first terms in the Eq. (10) has a
pair of branch points colliding at wy = 0(g = 0) and
generating a triple pole. The numerators E,(w,q,k =
0,1,2) can be chosen for simplicity in exponential form
either e=B:4 or =B’ although it can be more sophisti-
cated. The amplitudes with such terms can be calculated
in (s, b)-representation, or at least can be estimated at
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FIG. 6. General 3-Reggeon (3R) vertex depending on the kinds
of legs.

b < &é=1In(s/sg) and b> & =1n(s/sy). The details for
k = 0 are given in the Appendix A.

We impose certain requirements to the vertex function,
from which the intervals for the vertex parameters can
be set.

(1) The vertex could not have singularities in w;, g; ~ 0
which lead to its infinity and could not cancel a
singularity of the propagator (while it can make it a
more soft). It means that vertex can (must) have
zeros at some of these variables.

(2) The vertex must be symmetric in ;, §;,i = 1, 2, at
least for k| = k,.

(3) Diffractive differential and integrated cross sections
could not violate the unitarity restriction.

(4) In accordance with the experimental data differential
cross section the single diffraction dissociation does
not vanish at r = 0.

(5) Most likely, the experiments show that diffractive
integrated cross sections rise with energy slower
then total and elastic integrated cross sections.

(6) Corrections to propagator and vertex in the DSEs
would be small at small w; and 7.

We consider here the 3F-vertex function in a factorized
form. Each of the three factors at the vertex (Fig. 6) depends
on the type of Reggeon corresponding to it in accordance
with Eq. (10), and has the same functional form. Generally,

k[)l

ky ks

kU‘Z

FIG. 7. General form of the Z(ok1%2) (@, gp)) diagram.

the factor corresponding to the input froissaron (with
g, qp) can differ from other, output ones. For instance,
it can have free parameters which are different from those
at other factors shown in the next equations. To avoid a
nonprincipal complexity we do not consider such a
possibility here.

koky ke RN
FE) ] 2)(a)vw1’w2’q’QI»QZ):7k(K»Q)7k|(Kl»QI)sz(KZ"D)’
Ki:(wlz+w%i)1/2:(wleraqug)l/z, W =w,01.07,

(11)

where

}’i(Ki’Qi) = 71’(0’ C]i)’(/;(ki)v (12)

and

p(k) = m (k) + k. (13)

with p(k) coming from the 3F-vertex while the second
term k takes into account the kind of Reggeon from the
expansion (10) of the f-propagator.

To satisfy point 1 from the list of requirements to 3F
vertex we must impose

0<u(k)<3 atany k=0,1,2. (14)

It will be shown in Sec. IIT A that y,(k = 0) = g # 0.
Otherwise this term leads to the integrated diffraction cross
section rising with energy o In>(s/sq) (F-K problem).

In the next section we consider three specified choices of
the function u (k)

(@) uy (k) = po,
0

(0) w1 (k) = po(1+ k).
© mk) =122 (15)

Equation (a) chooses the universal form of 3F-vertex
independent on the corrections to propagators. Equations
(b) and (c) describe an increasing and decreasing k with
power of x in the vertex.

Now let us consider a small, main, correction to the input
propagator Gy(w, t) and vertex I'y({w}, {G}).

A. DS-corrections: All Reggeons are froissarons

Let us consider here the main corrections to the propa-
gator and vertex in DSE. In the equations for propagator
(9), (10), and vertex (11) only the main term (with k = 0) is
taken into account. In this section we ignore the sub-
asymptotic, coming from propagator corrections [Eq. (9)]
which are small in the region of w, g considered here.

074010-4
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wo, qo

wl',q_i
kq //
FIG. 8.
Ey . (q
6(w.q) = —L0+ 9 e (16)

(0* + w})3/?

0 N
I (@, 1, 0,3, G1,3) = 71(5, @)7r2(k1,41)73 (K2, 42),

Ky = (@0F +a%qi)'/?, W; = 0, 0.0, (17)

where

vi(kir @) = 7,0, )40 (18)

It will be shown in Sec. IIT A that u(k = 0) = py # 0.
Otherwise this term leads to the integrated diffraction cross
section rising with energy o In’(s/sy). (This is a F-K
problem or paradox).

1. Smallness of the DS-corrections

Propagator:
First, let us consider the “simplest” case with one
parameter pu, in the vertex I', all k; =0. The input
froissaron propagator G(()O) and input vertex F(()())

by Egs. (16) and (17), correspondingly.

are defined

In this case we have for the first corrections to the Gg))

propagator (all propagators and vertices in the first approxi-

mation are the input ones G(()O), FE)O)),

Gi(@,q) = Gy (w,¢*) + AG,
AG = GY (0. 9)ZY (0, q)GY (@, q),  (19)

0 do' [ d*q' o - 0
2wg) = [ 52 [ I (0} a6 .0
C

x Gy (w0, )T ({w}. {7}). (20)

Now let us estimate the corrections to G, at s — oo.
In Eq. (20) the essential region of integration is w(@') ~

aq(aq’) ~1/¢.

Wo, qo

o

wa, @2
/ ks k2

Corrections to three-Reggeon vertex.

Therefore, from Eqgs. (19) and (20) we have
AG Géo)(w2)3/2(a)2)(‘3/2) (a)2)3"0(a)2)‘3 _ G(()O)(wz)wo—a’
(21)
ie.,
G, = GVl + O(abkoD)]. (22)

The first correction is small at o ~qg~0 if py > 1.
It follows from this inequality and (14) that

1 <py<3. (23)

Vertex:
The first correction A I, A,I', (Fig. 8) are the following

0
Ty (g, 01, 5,0, 71, 33) =Ty =T + AT+ AT,

do'dq
wa q o
A1F:/ 510 (@0.03.04. 9. 03 73)

0
X Iﬁ(<) )(0)1,603, Ws, a’ q—3>’ %)
0 0
X FE) )(0)3,605,602» CI_3> %‘) 61_2>)GE> )(0)3’%)
0 0
x G (w4, 43)GY) (s, qs)
AT = AT (@ <> w,). (24)

>£X
: < 3 )¢

t

FIG. 9. SDD process (left) and the corresponding diagram
(right) from generalized optical theorem, & = &y + &;.
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t

FIG. 10. CDP process (left) and the corresponding diagram (right) from the generalized optical theorem, & = &y + & + &;.

Similarly to the propagator case, consideration of the
(©

correction to I' ) leads to
AT F(()O) (w2)3/2(w2)6-;40/2(wZ)—9/2 _ F(()O) (w2)3(y0—1)'
(25)

Because A I" ~ A,I" in the considered limit, we have
Iy =1y [1 + O D)), (26)

Again, the correction is small at @ ~ g ~ 0 if pg > 1.

Moreover, let us evaluate the factor coming from one
additional Reggeon line between any two Reggeon lines.
We have three new propagators, two new 3F-vertices, and
one integral over the new loop. The additional factor has at
w;~, q; < 1 the following behavior

(w2)3/2(w2)—9/2(w2)(6;40)/2 — @bo—1) (27)

Inserting one Reggeon loop into the Reggeon line we have
the same additional factor, @'2*0~1). And finally, inserting
one Reggeon line with one loop (six new Reggeons, four

wol
> &xy
w1, 4

3 q > &
o > e wp2

FIG. 11. DDD process (left) and the corresponding diagram
(right) from generalized optical theorem, & = &y + &xn + &;.

w2,4q

new vertices, and two new loops), we again obtain the same
factor.

This means that an increase in the number of Reggeons
and vertices only increases the number of ever-smaller
corrections in DS-equations if po > 1.

B. DS-corrections: General case

Here we consider the general term defined in the
propagator Egs. (9) and (10)

(k) Ei(qi)
Gy (o, qi) = R
: (07 + a T
o = aqy, k= 0, 1, 2. (28)

and in 3R-vertices

ko ey Z = =
FE)O ] 2)(01,0)1,0)2,61,%,612):7ko(K’q)7k1(K"QI)

XYk, (szlg)y
K = (@7 + w})V? = (0? + a*q?)"/?, 0; = 0, 01.0,.

(29)

It should be noted that &, k, values must be equal to those
in the corresponding terms of the left and the right Reggeon
propagators in the given 3F-vertex. Functions y(w, k) in
Eq. (29) we choose in the form

}’i(a’h Ki) = 71’(0’ ‘Ii)’(;'l(ki)- (30)

Equations (19) and (20) in the case when k; # 0 are
transformed to

w,q—0

(@, q) "% GV (w. q)[1 + AG],

2
AGH = 3" G (0.q)5 " (@.q). (31)
k.ky.kr=0

074010-6
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Now we can take into account that Gékzo)

(k=1)

> G, >

G(()kzz) in the considered region of w, g. [For k # 0 we have

in AG") additional small factors (@?)" where n >0
dependant on the values of k, k;, k,.] Thus, we come back
to the results (22), (23), and (26).

In Sec. III B additional inequality is found

1 <pp<3/2. (32)

For corrections to the vertex function one can obtain the
following estimations
F(lk.kl,kz) - F(()k,kl,kz)[l + AF(k>],
2
ATK)
ks kg ks=0
2
— Z (a)z)f‘(llo—l)*ﬂ(k-kl,kz), (33)
Ky kg ks =0

(w2>—3+ﬂ(k3)+ﬂ(k4)+ﬂ(k5)+k3+k4+k5

where

— Ho + k;). (34)

ulk ki k) = 25:

Function p(k, k;,k,) is positive for any values of 0 <
k; <2 and equal to zero if k; = 0. It is valid for both
choices of u;(k) in Eq. (15). Thus, in the general case a
smaller corrections comparing with the main ones (at all
k = 0) are added.

In the B the inequalities for parameters ug, 4 in three
choices for the function u; (k) defined in the Eq. (15) are
obtained. Combining all these constraints we get

1 <pg<3/2,

1=0 for the case (a), (35)
-1/2 <A< —=/1/4 for the case (b),

A>0 for the case (c).

III. DIFFRACTION PROCESSES WITH LARGE
RAPIDITY GAPS
A. Single diffraction dissociation

The SDD process is illustrated in Fig. 9. In general
case the input propagator G and 3R-vertex with
the parameters (ug,4) defined by Egs. (28), (29),
and (30),

2
osop(s) = > oumy ™ (s). (36)

ko.k1,ka=0

where

(ko ky k) 7o dopp
ol o) = [ dex [ g™ —. (37
o 0

and

kook1 k)
dg.(S'lng ) / /da}l/da)2 e5x® o1 (01 +,)
dtdéy Csop 27i ) 2mi ) 2mi

X N My Uk, (1) 0k, (1) Ey (0) Ex, (1) Ex, (1)

5 Klll(ko>Kﬂ1 Kﬂ] (ky)
K(%) kOK? k,K; %
_¢ do ex® da)1 es11 dw2
=P | 2mi g3k | 2gi ok 2
eflwz
X = “u(ky) ’1w]’7w2 (t)EkO (O)Ek] (I)Ekz (t)’
2
(38)
where
1
Cspp = T2 o (0)74,(0,0)y,(0,0)yy, (0,0),
Ey (1) = exp(By,1).vy, (1) = v;,(0) exp(B, 4, v1),
u(k) = py (k) + k, (39)

and p (k) is defined in Eq. (15).
Then, after integration over o the differential SDD cross
section can be written in the following form

(ko.ky1.ks)
dogpp

dtdéy
~ Ji_ E EO\ 1-u(k)/2

X M &l —n(k2)/2 ’n, ,
<F((3_ﬂ(k2)/2) <2aq> >Ek2(61 ) kz(q )’

CSDD

-C 22— 2+u(ki)/2+u(ky) /2
— PGB u(ko))T((3 = (k) /2)0((3 = pu(ky)) /2)
(40)

where & =& —in/2,& = E—&x. The given presenta-
tions of integrals over w; are valid if 3 — u;(k;) > 0.

Restrictions on the parameters g, and 4 in function y; (k)
have been derived in Appendix B.
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a(ko’k"kZ)(s)

SDD where a; =3 — (ko) — ko > 0,0 = 3 — pu(ky) — p(ky) —
& - k, — k, (sign of a, depends on the values of k;).
- 2 do (sljgg‘ 2) The estimation of the Igpp (&) is given in Appendix C.
~ Csop Z déx [ daq drdéy So, the final result is the following
Fokika=0 % 0
5 &4 J
~ koo & 2y (K _ _
~Coop D 0ty / A8 (& — gy prrutimit) gy (s) o / dx 1 (& - gy tb ()
koky Jy=0 % 0
) 3 b) rolkothkitle) - _1/2 <) <0,
12N [ 1=uthn)2(F)\ * o E273(0=1) % sk 42)
X ~1—,4 )/2 (k)2 c) g Zfzomf, 1> 0.
0
, & Thus, if pg> 1 then the integrated cross section
x Z / degEs (ko) (g — gy )2mlki)=nlka) (41) agjgg"kZ)(s) rises with energy slower than £ at any
ko.ky k=0 % 0 <kg ki, ky <2.
At s — oo the main contribution (it has all k; = 0) to the
where we put E; (q) ~ 1, v;,(q) = v, (0) = vy, SDD cross section is
Cross section energy dependence is governed by the
i 0,0,0 3 (g
integral Gspn(s) NU(SDD)< ) o E273(ko 1) (43)
&=¢y
/df 52—/4 ko)—ko (5 Ex ) k) —p (ke )=k —ks
‘ B. Central diffraction production
— E5-nlko)=p(k)=u(ko)~(koth1-+ho) Here, and in the following subsections, we consider only
the main contributions to diffraction cross sections, because
1=6o/¢ similarly to the SSD case, other terms at s — oo rise more
X / dxe—ll(ko)—ko(l — X)Z—ﬂ(kl)—ﬂ(kzl)—kl—kz slowly.
Z Let us write the expression for the differential CDP cross
section (Fig. 10) in terms of the above proposed propa-
=& aterogn (), i -
gators and vertices at all k; = 0,
d CDP / /da)l /d(l)z / d(l)3 da)4
dtldfldtzdéz Ceor | 20 | 2ai | 2mi | 2mi | 2mi
2 Ho
% * w LExw L& (01+wy) L& (w3+wy) (K K]+K2+K3+K4+)
’7(1)] 77(1}2 77(1)3 71(1)4 e e e K_3 K?_,'_K%_,'_K%_,_Ki_,’_
_c /da) ex® /dw1 M, €511 /da)2 1y, €192
- PP 2miw 0 | 2w (wF 4 @) B2 ) 27 (03 + @}, )BT
dw’j 71(1)3 €§2w3 da)4 7/]:}42 652“}4
X5 TS 2 \G=u)/2 | D7 (2 2 \G—u)/2’ (44)
2mi (w3 + w5,) 7 2mi (w3 + @)
where

Cepp = 321 2”0(0 O)Uo(t 0)}’0(0 0)7’0(0 ‘11)}’0(0 Q2)E2(II)E2(IZ)

E(t) = exp(11By).E(1,) = exp(12B,). (45)

The integral over w in (44) converges if py < 3/2.
do€PP o 20 (‘]l—ﬂo/z(élaQI) < 3 )l_”°/2> <J1—Mo/2(~TGQI> (ﬁ)l_m’/z)
dtydé didé, — X I'((3 = w0)/2) \2aq I'((3 = uo)/2) \2aq
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Similarly to the SDD case, we can estimate the CDP cross section as

&-&

1 1-x,

I3
ocop(s) o / g, & / ErE200 (5 — £, — &) py 5= / ey 2 / o2 (1 = x, = x,)2 %0, (46)
0

0

where &y = & — ¢,
fast as &2 if

0 0

— &,. The intgrated CDP cross section rises slower than £ if 8 — 64 < 2. Thus, 6pp does not rise as

1 < uy <3/2. (47)

C. Double diffraction dissociation

Let us consider the production of two bunches X;, X, of rapidity widths &y £x,, separated by a large rapidity gap

§1=¢—¢x, —¢&x, (Fig. 1)

doppp

o C /da)01/da)02/da)1 d(l)2
d1dé xdéry PP ) 2zi ) 2zi ) 2ai ) 2"

(k01k02k%+k%+))””

3 3 3 3
Ko1K02K1 K24

oo 51x@01 pEax @0 pEi (01+12)
2

eS1o1+E o

—C (Ex1€x2)™ ”O/dwl /da)z
DDD 2(3 — o)

27 (0} + a?q?)3 > (w

2 a’q?)3

5 é—”l I—pg
 (Ex18xp) 70 2aq 11—,40(6&16161) (48)
where & = & —in/2 — &x — &y
£-2¢, £ ~ 5
2—pg £2—po 51 . J2
Oppp X déx, déx2&x | Exy A dqq 2aa aq Jl—ﬂg(él‘“])
& o
E-26 E-&—¢ © J ( ) 2
= / dexi [ dend 80" (€ = Ex = ) P / dz ‘ ==
o & 0
1-26 1-6-x,
o E86Ho / dxlx%—ﬂo dx2x§—ﬂo(1 —x - x2)2‘4“0 - 525—6(;40—1). (49)
s s

Because of unitarity restriction on oppp(s) at s - co we
demand pg > 1.

D. DDD with additional showers

Now we can generalize DDD for a production of more then
two hadron showers separated by large rapidity gaps (the left
diagram of Fig. 12). The right diagram comes from the
generalized optical theorem for the process amplitude.

To estimate the contribution of the given process to
6ioi(8), we can write it in the following form keeping only
the dependence of &;. It can be made easily by evident
extension of the Eq. (49) to arbitrary n > 1. However, it is
evident that maximal value of n is ny, = [(§/& —1)/2].
Here we show the result for the main contribution (all

k; = 0) to o) (s).

GDDD

2n+1 2n+1
/Hd§6< Ze:) ”055,,1‘;1]52 o

T 22 —6n(ug— 1

[Tar waomn. oyl =aom(s). (50
i=1

Again, there is no a violation of s-channel unitarity if
1o > 1. However we remind that corrections to the frois-
saron propagator and 3F-vertex in the DS equations are
small at small @ and q if uy > 1

Similarly one can obtain for other generalized
processes

n _ n _ 0 _
Opp(s) e @700 6 (5) = opp(s).
0Cpp(s) o &I 68 (5) = ocpp(s). (S1)
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&1
&

&
€4

€6

§2n72
527L71
5271

§Qn+1

FIG. 12. DDD with additional n — 1 “internal’” hadron showers.

IV. CONCLUSION

We have considered an alternative approach to solving
the problem of s-channel unitarity bounds (in particular
the Finkelstein-Kajantie paradox) on diffraction production
amplitudes in the froissaron model, in which o (s)
In?(s/sy). Our main assumption concerns the vertex of the
three froissarons interaction, which in our approach
depends on the angular and spatial momenta of the
froissarons. The basic requirements for the properties of
a 3F vertex are formulated and a model is constructed in
which the corrections to the Dyson-Schwinger Reggeon
equations for s to co are small in the region of small angular
and spatial momenta of froissarons at the vertex. In this
paper, the Dyson-Schwinger equations are considered in
the leading approximation, in which only 3F vertices are
taken into account. We believe that the corrections with
higher-order vertices will be even smaller in this case. They
will be considered in a separate work.

The constructed model of a 3F vertex contains two
parameters, one of which determines the behavior of the
diffraction cross sections, which grow with energy more
slowly than In?(s/s,) and the smallness of corrections to
the propagator and the vertex in the Dyson-Schwinger
equations. The second parameter takes into account the
magnitude of the corrections, which also arise from the
preasymptotic terms in the froissaron propagator.

The model is applied to asymptotic estimates of the
contribution to the total cross section of the three main
processes of diffraction hadron production (SDD, CDP,
DDD) and their generalizations to an arbitrary number of
produced hadron beams with large gap rapidities between
them. All these cross sections in our approach do not
functionally exceed the Froissart-Martin boundary.

Thus, in the developed approach, the Finkelstein-Kajantie
contradiction does not arise at asymptotic energies.

In the diffraction interaction of protons with protons and
protons with antiprotons, it is necessary to take into account
the contribution of odderon along with froissaron. For strong
scattering, this is done in the froissaron and maximal
Odderon model [27-29]. The results of comparing the
model with experimental data showed that odderon effects
are visible at high energies, but remain small. The properties
of differential and total pp and pp cross sections are
determined by the dominant contribution of the froissaron.
We are sure that this property also holds for the processes of
diffraction production in pp and pp collisions at s — 0.
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APPENDIX A: MODIFIED PROPAGATOR
FOR REGGEON

Let us consider the possibility of having a smooth
behavior of ImH® (s, b) in b and to guarantee a divergence
of integrals over momenta ¢;. For that we write a Reggeon
propagators in the following form

gre B4

G (w,q) = )
(.q) (@ + a2q?) 2

k=0,1,2,

(A1)

Vg do el
ImH® (s, b) Im<l/dq61]0 bq)e /2_7ri(w2+a2q2)3/2_k/2
0

—CIm<i§’1_k/2/dxxk/2J0(bx/a)e_sz/“le_k/z(f’x)>,

0

_ v2gp/m27k2
- 8s0a’T(3/2—k/2)°

E=¢E-in/2.
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Then considering & — oo we neglect the imaginary part in & and make use the integral

/ dxxll—le—axzjﬂ(ﬂx)‘ly(yx) ﬂ/tyl/ 1) a—(/1+u+/4)/2 ir‘(m + ()' +u+ U)/Z) < ﬁZ)m
0

T2+ Lo mlT(m+pu+1)  \ 4
}’2
X F<—m, —-m— v+ 1;ﬁ—2>.

For aé < b we choose (u =0,v=1—-k,A=k+1,y=&,p=>b/a)

S 1" 2 b2 m
ImH® (s,b) = C, ZO( m') F(—m, -m;2 —k; (bfa)2> (4(B/a)2>
N o (_l)m b2 m B b2
G <4<B/a>2> - e (‘4<B/a>2>’

B aZgl—k

B C22—'<r(2 —k)B’

G

The estimation is valid for any considered k.
For aé > b we choose (v =0,u = 1 —k,A=k+,a = B/(a)*,y = b/a,p = &). Then

o= () &\ . (b/a)?
ImH(k)(S,b) =C, mZ:OF(m "y <4Bz/a4> F<—m, -m+k—-1;1; 2 >

y © (_l)m §2 m

Nclmz:%l"(m—l—Z—k) <4B2/a4> ’

|
The series in the last equation can be summed separately ~ Such a suppression factor does not allow us to calculate the
fork=0,1,2 integrals for H(s, b) analytically. However, integral for H()
was calculated numerically. The results are given in Fig. 13

vzgklf (1- e—a4§2/432> k=0 for e84, At high energies, the tripole contribution G(©) (@, q)
4230“ is dominating; the dipole and simple pole give just small

ImH®) (s, b) = %6—0452/432(3&(@2/23), k=1, corrections.
. . Similar estimations and results one can obtain for the

Ty gmd 'S /ABT k=2 ropagator

4soBa propag
—Bgq

W (w, q) = — I k=0,1,2. (A3)

((U2 + a2q2)3/2—k ’

APPENDIX B: RESTRICTIONS ON THE

PARAMETERS p,.A
From the properties of 3F-vertex considered in Sec. II
we have
ey
(a) p(k) o po + k.
(b) u(k) = po(1 + Ak),
1
k) = , Bl
() ulk) = mo 72 (B1)
@)
uk)>0, k=0,1,2
FIG. 13. Amplitude ImH® (s, b) calculated for propagator Lo
(Al)at C=1,a =03 Gev-'.B =2 Gev2. because the vertex has no infinity at anyk (B2)
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3)
uk)y<3—-k k=0,1,2
because the vertex does not cancel zero in
(G o k30, (B3)

We know from the smallness of corrections to main
contribution (all k£ = 0) that gy > 1. Thus, for all variants

(a), (b), (c) in Eq. (B1)

0<pu(k) <3—k, 1 <py<3. (B4)

It follows from the above inequalities that at any k # 0,

1+ >0=1>—-1/k,=>1>-1/2. (B5)
Variant (b)

0 < po(l + k) <3 —k,

1 3,= 1 . B6

<Ho <3 = SHOS TR (B6)
It follows from the last inequality that
3—-k 2-k

1 —— =2/k-1. B7

Tk b AT =Y (B7)

The inequality for 4 should be valid for any &, hence 1 < 0.
Thus for the variant (b) we have

-1/2<1<0. (B8)

However, it follows from the convergence of the integrals
over w for cut Reggeons at ¢ = 0 in evaluation of CDP
cross sections, that

3—=2uy>0,= py<3/2,

3-2uk)—k>0,k=1,=2-2u(1)>0,=u(l) <1,

3-2uk)—k>0,k=2,=1-2u(2)>0,= u(2) <1/2.
(B9)

Hence, at A #0

1
p(1) =po(1+12) <1=1<py < —==1<0,

(1+2)
u(2) = po(14+22) <1/2 =1 < pgy <m
= 1< -1/4. (B10)
So, the final result for A in case (b) is
—-1/2 <2< -1/4. (B11)

Similarly for variant (c)

2> 0. (B12)

APPENDIX C: ESTIMATION OF SDD
CROSS SECTION

To estimate I¢pp (&), we rewrite it as

1-6

Ispp(&) = /dxx“1—1(1 —x)el,

é

where 6=¢&,/E<1,#0 and a; =3—u(ky) —ko >0,
a, =3 —pu(k)) —plky) —k; —k, (sign of a, depends on
the values of k;).

Let us split the integration domain (6,¢), (e, 1 —¢),
(1 —e,1—6) where € is constant, § < ¢ < 1. Then

€

ISDD(&) ~ Z/dx(xal—1+xa2—1)+c
o

C . Co
—_ ay __ 501 - _= Ay __ 502 C
(e —am) = (e )
constant if >0
{2—2(5/60)_{12, lf a2 < 07

where C is a constant.

We have obtained in Sec. II that the smallness of the
corrections in the DS equations requires y, > 1. Therefore,
the following inequalities should be satisfied for the cases
(b) and (c) from the Eq. (B1)

(k) = p(k) + k. ifA£0
and 1> -1/2,
(a) 1 < pg <3,

then 1 +1k >0

(€)1 < py < (3= k)(1+Ak), (C1)

where k=0, 1, 2. Taking into account inequalities
u(k) > 0,p9 > 1, and consequently 1 + ik > 0, it follows
that

(b)1 <py < -1/2 <1 <0,

1
1+24°

()1 <py <1424, A>0. (C2)

Thus, with obtained restrictions on A we have

b) fiﬂo(k0+kl+k2)' —1/2 <1<0,

c 5) o 273001 :
spp(S) ¢) g-iﬂozz?:o%ﬁki, A>0.

(C3)
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