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In this work, we investigate the ϒð10753Þ → ϒðnSÞπþπ− (n ¼ 1, 2, 3) processes by considering the
hadronic loop mechanism, where ϒð10753Þ is assigned to a conventional bottomonium in the 4S-3D
mixing scheme. Our results of the concerned processes own considerable branching ratios, which can reach
up to the order of magnitude of 10−4–10−3. We indicate that the measured Γeþe− × B½ϒð10753Þ →
ϒðnSÞπþπ−� values given by Belle can be reproduced well. This fact supports the former bottomonium
assignment to the ϒð10753Þ in the 4S-3D mixing scheme. Obviously, it is a good opportunity for the
ongoing Belle II experiment if the predicted result in this work can be tested further.
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I. INTRODUCTION

Heavy quarkonium spectroscopy, especially with the
observation of the higher states above the open heavy-flavor
thresholds, provides a unique platform to deepen our under-
standing of the nonperturbative behavior of quantum
chromodynamics (QCD) and hints for investigating how
quarks form different types of hadrons. As a typical example,
there were abundant charmonium and charmoniumlike XYZ
states above the Dð�ÞD̄ð�Þ thresholds (see more details in
Refs. [1–6]) reported by experiments in the past two decades
[7], which greatly enhance our knowledge of hadron
physics. However, up to now, only a few members in the
bottomonium family have been observed [7] and we should
pay more attention to the construction of the bottomonium
family, which has become one of the intriguing topics in the
study of hadron spectroscopy.
Recently, the Belle Collaboration reported a new

structure—named ϒð10753Þ in the Particle Data Group

(PDG) [7]—in the eþe− → ϒðnSÞπþπ− (n ¼ 1, 2, 3)
processes [8]. Its spin-parity quantum number is definitely
JPC ¼ 1−−. Since the mass of the ϒð10753Þ is different
from the results of the quenched model [9,10], various
exotic state interpretations were proposed, which include
the assignment of the tetraquark state [11,12] and the
hybrid state [13,14] to the ϒð10753Þ. Additionally, the
kinetic effect [15,16] was introduced to decode its nature.
When checking the PDG lists, there have been two vector
bottomonium or bottomonium-like states, the ϒð10580Þ
and ϒð10860Þ, which are usually treated as the ϒð4SÞ
and the ϒð5SÞ states, respectively. Thus, the observed
ϒð10753Þ [8] as the missing ϒð3DÞ state was discussed in
Refs. [17,18]. However, this bottomonium assignment to
the ϒð10753Þ encounters a mass problem, i.e., the mass of
the ϒð10753Þ is higher than the predicted mass of the
ϒð3DÞ from the quenched models [9,10,19–21], where
the calculated masses of the ϒð3DÞ are 10698 MeV,
10675 MeV, 10653 MeV, 10700 MeV, and 10717 MeV
from Refs. [9,10,19–21], respectively. Additionally, the
corresponding dielectron width of the ϒð3DÞ are esti-
mated to be 2.38 eV, 3 eV, 1.44 eV, and 1.435 eV in
Refs. [9,10,20,21], respectively. Compared with the
dielectron widths of the ϒð4SÞ and ϒð5SÞ, those of the
ϒð3DÞ are obviously suppressed, which makes it difficult
to find the ϒð3DÞ state via the electron-positron annihi-
lation process. Thus, this is contrary to the fact that the
ϒð10753Þ signal was observed in the eþe− → ϒðnSÞπþπ−
processes [8].

*Corresponding author.
xiangliu@lzu.edu.cn

†baizy15@lzu.edu.cn
‡liysh20@lzu.edu.cn
§huangqi@ucas.ac.cn∥matsuki@tokyo-kasei.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 074007 (2022)

2470-0010=2022=105(7)=074007(8) 074007-1 Published by the American Physical Society

https://orcid.org/0000-0001-7481-4662
https://orcid.org/0000-0002-4046-1042
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.074007&domain=pdf&date_stamp=2022-04-15
https://doi.org/10.1103/PhysRevD.105.074007
https://doi.org/10.1103/PhysRevD.105.074007
https://doi.org/10.1103/PhysRevD.105.074007
https://doi.org/10.1103/PhysRevD.105.074007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Facing this anomaly of the ϒð10753Þ, the Lanzhou
group proposed the 4S-3D mixing scheme for the
ϒð10753Þ inspired by the research experience of charmo-
nium [22–24], where the ϒð10753Þ can be a mixture of the
ϒð4SÞ and ϒð3DÞ states [25]. Under this mixing scheme,
the mass problem of the ϒð10753Þ can be understood, and
the dielectron width of the ϒð10753Þ has a significant
enhancement due to the mixing of the ϒð4SÞ component
[25].1 Along this line, the hidden-bottom hadronic decays
of the ϒð10753Þ with a η0 or ω emission was studied [25],
which can be used in future experiments.
When facing the new theoretical progress as mentioned

above, the story on the ϒð10753Þ should continue. In
this work, we investigate the scalar meson contributions to
the hidden-bottom hadronic transitions ϒð10753Þ →
ϒðnSÞπþπ− (n ¼ 1, 2, 3), by treating the ϒð10753Þ as a
traditional bottomonium state in the 4S-3Dmixing scheme,
to test whether the experimental results can be reproduced
or not. According to the previous experience, the hadronic
transitions between low-lying heavy-quarkonium systems
can be estimated by the QCD multipole expansion
(QCDME) [14,27]. However, when solving the problem
of higher states of the heavy-quarkonium systems whose
masses are above the corresponding open flavor thresholds,
the coupled-channel effect may play an important role.
There are anomalous decay behaviors of higher bottomonia
that have been announced in Refs. [8,28–31]. Besides,
enhancement of the decay rate for some spin-flipped
transitions, which are forbidden by the heavy quark spin
symmetry [32,33], was observed [29,34].
As indicated in Refs. [27,35–41], the coupled-channel

should be considered in the study of mass spectrum [40,41]
and decay [27,36–39] of higher hadronic states. Thus, for
reflecting the coupled-channel effect, the hadronic-loop
mechanism was developed to give the quantitative calcu-
lation. By introducing the hadronic loop mechanism, these
puzzling phenomena can be naturally understood [42–53].
Since the ϒð10753Þ is also above the Bð�ÞB̄ð�Þ threshold,

the ϒð10753Þ should dominantly decay into ϒðnSÞπþπ−
through the Bð�Þ meson loops. By taking this effect into
account, we calculate the widths of the ϒð10753Þ →
ϒðnSÞπþπ− processes by the effective Lagrangian
approach. Together with the enhanced dielectron width
of ϒð10753Þ in the 4S-3D mixing scheme, our predicted
widths can reproduce the measured Γee × B½ϒð10753Þ →
ϒðnSÞπþπ−� data by Belle [8], which supports the observed
ϒð10753Þ as a conventional bottomonium state.

This paper is organized as follows: In Sec. II we illustrate
the detailed calculation of ϒð10753Þ → ϒðnSÞπþπ−
(n ¼ 1, 2, 3) with the effective Lagrangian approach.
Then, we present numerical results in Sec. III. Finally,
the paper concludes with a summary.

II. ϒð10753Þ → ϒðnSÞπ +π − TRANSITIONS DUE
TO THE HADRONIC LOOP MECHANISM

In this section we introduce the hadronic loop mecha-
nism and present the detailed formula of the calculation
for ϒð10753Þ → ϒðnSÞπþπ− (n ¼ 1, 2, 3) when the
ϒð10753Þ is treated as a conventional bottomonium state
in the 4S-3D mixing scheme. Under the framework of the
hadronic loop mechanism, the ϒð10753Þ firstly decays
into a bottom meson pair, and then the bottom meson pair
is converted into the final state of the ϒðnSÞ and a light
scalar meson by exchanging a bottom meson. Finally, the
intermediate light scalar meson decays into πþπ−. The
concrete diagrams are shown in Fig. 1. It is worth noting
that the contribution from the BsB̄s loop is not included in
this work due to the weak coupling of the ϒð10753Þ with
BsB̄s [54].
In general, the decay amplitude of ϒð10753Þ →

ϒðnSÞπþπ− (n ¼ 1, 2, 3) can be written as

M¼
Z

d4q
ð2πÞ4

V1V2V3

P1P2PE

VSππF 2ðq2;m2
EÞ

p2
S −m2

S þ imSΓ̃Sðmπþπ−Þ
; ð2:1Þ

where Vm (m ¼ 1, 2, 3) and VSππ represent the interaction
vertices and 1=ðp2

S −m2
S þ imSΓ̃Sðmπþπ−ÞÞ is the propa-

gator of the intermediated scalar meson S. Here,
the momentum-dependent total width Γ̃Sðmπþπ−Þ ¼
ΓS

mS
mπþπ−

jp⃗ðmπþπ− Þj
jp⃗ðmSÞj of the light meson S is used in our

calculation by considering the width effect [55], where

jp⃗ðmπþπ−Þj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþπ−=4−m2
π

q
and jp⃗ðmSÞj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S=4−m
2
π

q
.

FIG. 1. The schematic diagrams for the ϒð4S; 3DÞ →
ϒðnSÞπþπ− (n ¼ 1, 2, 3) processes under the hadronic-loop
mechanism. Here, S denotes scalar σ and f0ð980Þ particles.

1As shown in Ref. [25], after introducing the 4S-3D mixing,
the dielectron width of ϒð10753Þ is comparable with that of the
ϒð10580Þ, which explains why the ϒð10753Þ can be discovered
in the eþe− → ϒðnSÞπþπ− processes just as in the case for
the ϒð10580Þ [8]. Here, Γðϒð10753Þ → eþe−Þ ¼ 0.159�
0.030 keV [25]. This value is comparable with the fitting result
in Ref. [26].
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In this work, the involved resonance parameters are taken
as Mσ ¼ 449 MeV, Γσ ¼ 550 MeV [7,56], Mf0ð980Þ ¼
993 MeV, and Γf0ð980Þ ¼ 61.3 MeV [57].
In Eq. (2.1), a monopole form factor F ðq2; m2

EÞ is
introduced to compensate the off shell effect of the
exchanged Bð�Þ meson and represent the structure effect
of the interaction vertices [35,58–60], i.e.,

F ðq2; m2
EÞ ¼

Λ2 −m2
E

Λ2 − q2
ð2:2Þ

is adopted, with mE and q representing the mass and
momentum of the exchanged bottom meson, respectively.
Here, Λ, the cutoff parameter, can be parametrized as Λ ¼
mE þ αΛΛQCD with ΛQCD ¼ 220 MeV [36–38], and αΛ is
expected to be of the order of unity to ensure that the cutoff
Λ does not deviate from the physical mass of the exchanged
meson [35].
The involved effective Lagrangians [25] include

LϒBð�ÞBð�Þ ¼ igϒBBϒμð∂μB†B−B†∂μBÞ

þgϒBB�εμναβ∂μϒνðB�α†∂β
↔

B−B†∂β
↔

B�αÞ
þ igϒB�B�ϒμð∂νB

�†
μ B�ν−B�ν†∂νB�

μþB�ν†∂μ

↔
B�
νÞ;

ð2:3Þ

and

Lϒ1Bð�ÞBð�Þ ¼ igϒ1BBϒ
μ
1ð∂μB†B − B†∂μBÞ

þgϒ1BB�εμναβ∂μϒν
1ðB�α†∂β

↔

B − B†∂β
↔

B�αÞ
þ igϒ1B�B�ϒμ

1ð∂νB
�†
μ B�ν − B�ν†∂νB�

μ

þ 4B�ν†∂μ

↔
B�
νÞ; ð2:4Þ

which can be constructed in the heavy quark limit and with
the consideration of chiral symmetry [33,61–63], where Bð�Þ†

and Bð�Þ are defined as Bð�Þ† ¼ ðBð�Þþ; Bð�Þ0; Bð�Þ0
s Þ and

Bð�Þ ¼ ðBð�Þ−; B̄ð�Þ0; B̄ð�Þ0
s ÞT, respectively. In the above

expressions, ϒ and ϒ1 denote the fields of the S-wave
and D-wave vector bottomonium states, respectively. The
Lagrangians relevant to the scalar meson S ¼ fσ; f0ð980Þg
are [64]

LSBð�ÞBð�Þ ¼ gSBBB†BS − gSB�B�B�μ†B�
μS;

LSππ ¼ gSππSππ: ð2:5Þ

With the above preparation, the concrete amplitudes for
the diagrams in Fig. 1 can be deduced. Here, we only show

the amplitude for Fig. 1 (1) from the ϒð4SÞ component of
the ϒð10753Þ,2 which is expressed as

MSð1Þ
4S ¼ i3

Z
d4q
ð2πÞ4 gϒð4SÞBBϵ

μ
ϒð4SÞϵ

�ν
ϒðnSÞðq1μ − q2μÞ

× gϒðnSÞBBð−q2ν þ qνÞ
gSBBgSππ

p2
1 −m2

S þ imSΓ̃Sðmπþπ−Þ
×

1

q21 −m2
q1

1

q22 −m2
q2

1

q2 −m2
q
F 2ðq2; m2

qÞ: ð2:6Þ

The remaining amplitudes can be similarly deducted and
are displayed in the Appendix.
In the framework of the 4S-3D mixing scheme, for the

ϒð10753Þ, the decay amplitude is expressed as

MS ¼ 4
X3
i¼1

MSðiÞ
4S sin θ þ 4

X4
j¼1

MSðjÞ
3D cos θ; ð2:7Þ

where θ ≃ 33° [25] is the mixing angle, and the factor 4
comes from the charge conjugation and the isospin trans-
formation on the bridged Bð�Þ meson. In this work, we take
both σ and f0ð980Þ contributions into account. If taking
approximation of ignoring the interference between the σ
and f0ð980Þ contributions,3 the total amplitude is given by

jMtotalj2 ¼ jMσj2 þ jMf0ð980Þj2: ð2:8Þ

Finally, the differential decay width can be obtained by

dΓ ¼ 1

3

1

ð2πÞ5
1

16M2
jMtotalj2jp⃗ϒðnSÞjjp⃗�

πjdmππdΩϒðnSÞdΩπ;

ð2:9Þ

where the overbar denotes summation over the polariza-
tions of the ϒðnSÞ, and the coefficient 1=3 comes from an
average over the polarizations of the initial state. p⃗ϒðnSÞ is
the three-momentum ofϒðnSÞ in the initial state rest frame,
and p⃗�

π is the three-momentum of a π meson in the center-
of-mass frame of a di-pion system. mππ is the πþπ−
invariant mass. Besides, ΩϒðnSÞ and Ωπ are the solid angles
of p⃗ϒðnSÞ and p⃗�

π, respectively.

III. NUMERICAL RESULTS

In the following, we present our results of the widths for
the ϒð10753Þ → ϒðnSÞπþπ− (n ¼ 1, 2, 3) transitions.
Before presenting the numerical results, we need to illustrate
how to fix the relevant coupling constants. The coupling

2In Ref. [25], we introduce 4S-3D mixing for solving the
mass problem of the observed ϒð10753Þ, where jϒð10753Þi ¼
sin θjϒð4SÞi þ cos θjϒð3DÞi.

3It is safe to ignore this interference due to the small over-
lapping parts as shown in Fig. 4.
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constants gϒð3DÞBð�ÞBð�Þ and gϒð4SÞBBð�Þ are extracted from the
corresponding decay widths [7,10], which are collected in
Table I. The coupling constants gϒðnSÞBð�ÞBð�Þ (n ¼ 1, 2, 3) are
related to each other through the global constants gnS in the
heavy quark effective theory, which are expressed as
gϒðnSÞBB
mB

¼ gϒðnSÞBB�mϒðnSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmB�

p ¼ gϒðnSÞB�B�

mB�
¼ 2gnS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒðnSÞ

p
;

ð3:1Þ
where g1S ¼ 0.407 GeV−3=2, g2S ¼ 0.603 GeV−3=2, and
g3S ¼ 0.709 GeV−3=2 [53].
Additionally, the coupling constants gSBð�ÞBð�Þ defined in

Eq. (2.5) are related to a global coupling constant gπ , i.e.,
[42,43],

gσBB ¼ gf0BBffiffiffi
2

p ¼ 1ffiffiffi
6

p mBgπ;

gσB�B� ¼ gf0B�B�ffiffiffi
2

p ¼ 1ffiffiffi
6

p mB�gπ; ð3:2Þ

where gπ ¼ 3.73 [64]. In addition, gσππ ¼ 3.25 GeV−1 and
gf0ππ ¼ 1.13 GeV−1 are fixed by fitting the corresponding
decay widths.
In particular, since the σ dominantly decays into di-

pion, the Γσ [7] can be used to determine the coupling
constant gσππ . For the f0ð980Þ, it dominantly decays into
a pair of pions or kaons, so the ratio Γ½f0ð980Þ →
ππ�=ðΓ½f0ð980Þ → ππ� þ Γ½f0ð980Þ → KK�Þ ¼ 0.6 [7] is
used to determine Γ½f0ð980Þ → ππ� and the corresponding
coupling constant. Meanwhile, the relation Γ½σ=f0ð980Þ →
πþπ−� ¼ 2Γ½σ=f0ð980Þ → ππ�=3 is adopted.
Apart from the fixed coupling constants, there still

exists a free parameter αΛ introduced in the form factor.
Thus, in Fig. , we present the αΛ dependence of the
obtained branching ratios.
Next, we turn to the experimental status. Till now, there

have not been any measurements on the corresponding
widths. But some other concerned data, e.g.,Rn ¼ Γeþe− ×
B½ϒð10753Þ → ϒðnSÞπþπ−� (n ¼ 1, 2, 3) [8], were pre-
sented by the Belle Collaboration as

R1 ¼ 0.295� 0.175 eV;

R2 ¼ 0.875� 0.345 eV;

R3 ¼ 0.235� 0.025 eV;

which can shed light on some features about the partial
decay widths. In other words, once the dielectron decay
width is fixed, the branching rates can be extracted. The
dielectron width can be determined in the following steps.
In the framework of the 4S-3D mixing scheme, the
dielectron decay width of the ϒð10753Þ is [22]

Γeþe− ¼ 4α2e2b
M2

����R4Sð0Þ sin θ þ
5

2
ffiffiffi
2

p
m2

b

R00
3Dð0Þ cos θ

����
2

×

�
1 −

16

3

αs
π

�
: ð3:3Þ

Here, M is the mass of the ϒð10753Þ, eb ¼ −1=3 is the
charge of the b quark, α is the fine structure constant, and
αs ¼ 0.18 [10]. Besides, R4S and R00

3D are the radial parts of
the ϒð4SÞ spatial wave function and the second derivative
of the radial part of ϒð3DÞ spatial wave function, respec-
tively. By substituting R4Sð0Þ and R00

3Dð0Þ extracted from
Ref. [10], and the mixing angle θ ¼ ð33� 4Þ° fixed by
Ref. [25] into Eq. (3.3), the dielectron decay width of the
ϒð10753Þ is obtained as ð0.159� 0.030Þ keV.
Finally, the concerned branching ratios are estimated as

B½ϒð10753Þ → ϒð1SÞπþπ−� ¼ ð1.855� 1.155Þ × 10−3;

B½ϒð10753Þ → ϒð2SÞπþπ−� ¼ ð5.503� 2.405Þ × 10−3;

B½ϒð10753Þ → ϒð3SÞπþπ−� ¼ ð1.478� 0.320Þ × 10−3;

where the large uncertainness mainly come from the poor
accuracies of Rn. The α dependence of the calculated
branching ratios is given in Fig. 2, where the common αΛ
range is fixed as 0.5 < αΛ < 1.8 since αΛ is of order 1 as
suggested in Ref. [35]. As shown in Fig. 3, we give the αΛ
range after matching the calculated numerical branching
ratios B½ϒð10753Þ → ϒðnSÞπþπ−� (n ¼ 1, 2, 3) with
the extracted ones. In the following, we should discuss
the reasonable values of αΛ. For the ϒð10753Þ →
ϒðnSÞπþπ−� (n ¼ 1, 2), there exists a common αΛ range
around 1.2, where the extracted B½ϒð10753Þ →
ϒðnSÞπþπ−� (n ¼ 1, 2) can be well reproduced. This fact
may reflect the similarity between ϒð10753Þ →
ϒð1SÞπþπ− and ϒð10753Þ → ϒð2SÞπþπ−. What is more
important is that this αΛ range is consistent with the
requirement of determining αΛ value as suggested in
Ref. [35], where αΛ is expected to be of order unity
[35]. For the discussed ϒð10753Þ → ϒð3SÞπþπ−, only if
αΛ is reduced to about 50% of 1.2, the extracted
B½ϒð10753Þ → ϒð3SÞπþπ−� can be reproduced. Thus,
in a reasonable region of αΛ, the extracted branching
ratios B½ϒð10753Þ → ϒðnSÞπþπ−� can be reproduced by
introducing the hadronic loop mechanism. In other words,
the calculated results are comparable with the measured
Rn ¼ Γeþe− × B½ϒð10753Þ → ϒðnSÞπþπ−� values [8] by

TABLE I. The coupling constants gϒð3DÞBð�ÞBð�Þ of the ϒð3DÞ
coupling with the Bð�ÞB̄ð�Þ pair and gϒð4SÞBBð�Þ of the ϒð4SÞ
interacting with the BB̄ð�Þ pair [25].

Coupling constants BB̄ BB̄� þ c:c B�B̄�

ϒð4SÞ 13.224 1.251 GeV−1 …
ϒð3DÞ 3.480 0.393 GeV−1 4.210
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treating the ϒð10753Þ as a mixture of ϒð3DÞ and ϒð4SÞ
states. We should indicate that a direct measurement of
branching ratios of these three discussed decays is still
lacking. The ongoing Belle II experiment on measuring
the absolute branching rates is necessary for helping us to
make further constraints on the parameter αΛ. Besides, we
also present the di-pion invariant mass spectrum distri-
butions dΓ½ϒð10753Þ → ϒðnSÞπþπ−�=dmπþπ− in Fig. 4,
where the maxima of the theoretical line shapes are all
normalized to 1.
Judging from the current node in the experiment, the

predicament that the experiment lacks the direct measure-
ment on the partial decay widths makes it difficult to make
a firm judgment. Thus, we expect further measurements on
the partial decay widths, as well as the di-pion invariant
mass spectrum distributions, from the running Belle II
experiment. They will play essential roles both in enriching
our knowledge about these transitions and further identify-
ing the coupled-channel effect.
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errors. We should indicate that the common αΛ range is fixed as 0.5 < αΛ < 1.8 for the discussed transitions since αΛ is of order 1 as
suggested in Ref. [35].
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IV. SUMMARY

Very recently, the Belle Collaboration reported a new
structure, ϒð10753Þ in eþe− → ϒðnSÞπþπ− (n ¼ 1, 2, 3)
processes [8]. In our previous work [25], we assign the
ϒð10753Þ into the conventional bottomonium family in
the 4S-3D mixing scheme. With the S-D mixing effect,
the mass of the ϒð10753Þ can be reproduced, and its
dielectron width has a significant enhancement.
In this work, we have investigated the scalar meson

contributions to ϒð10753Þ → ϒðnSÞπþπ− (n ¼ 1, 2, 3)
processes in the same hypothesis with the effective
Lagrangian approach. By taking the hadronic-loop mecha-
nism into account, the corresponding transitions acquire
considerably large branching ratios and can reach up to
10−4–10−3. Additionally, our results can reproduce the
Γeþe− × B½ϒð10753Þ → ϒðnSÞπþπ−� measured by Belle
[8] well with a reasonable cutoff parameter αΛ, which
strongly supports our assumption ofϒð10753Þ that it is the
4S-3D mixture. In addition, the line shape of the di-pion
invariant mass spectrum distributions dΓ½ϒð10753Þ →
ϒðnSÞπþπ−�=dmπþπ− are also presented, which should
be used to identify the coupled-channel effects of Bmeson
loops by the future experiments by Belle II.
In conclusion, the precise measurement on the reso-

nance parameters, e.g., the decay modes, the di-pion
invariant mass spectrum distributions of ϒð10753Þ would
help us further confirm its nature. We suggest that the
experimentalists pay more continuous attention on this
issue. With joint efforts of theorists and experimentalists,
the nature of ϒð10753Þ will be fully understood in future.
Meanwhile, we expect to see more and more bottomo-
nium and bottomonium-like states in the ongoing and
forthcoming experiments, especially the Belle II experi-
ment, which would lead us to a new era of hadron
physics.
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APPENDIX: AMPLITUDES

In this Appendix, the remaining amplitudes describing
the diagrams in Fig. 1 are presented. They are
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