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We consider 1þ 1 dimensional Yang-Mills theory with gauge group G coupled to a massive Majorana
fermion field in an adjoint representation and a number of massless Dirac or Majorana fermions
transforming in arbitrary representations of the gauge groupG. It is shown that the spectrum of the massive
sector of this theory becomes supersymmetric at particular mass of adjoint fermion. This mass is
independent of the detailed structure of the massless sector of the model and depends only on the gauge
group G and integer k measuring the total anomaly. The massless sector of the model is shown to be not
necessarily supersymmetric.
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I. INTRODUCTION AND SUPERSYMMETRIC
QUANTUM ELECTRODYNAMICS

One of the most important enigmas of the modern
theoretical physics is the problem of confinement in
quantum chromodynamics (QCD), that is just a SUð3Þ
Yang-Mills theory coupled to fermions in fundamental
representation. Due to experimental advances we know that
these fermions are bound into hadrons and never observed
as single particles. Even though we understand the rules
and laws governing the behavior of quarks at small
distances, we still do not completely comprehend the
QCD and its properties at large distances. One of the
promising ideas that allows us to drastically simplify
the problem and give some understanding was proposed
by G.’t-Hooft [1]. Namely, he suggested an idea, that if we
consider SUðNÞ gauge theory at large N limit with fixed
λ ¼ g2YMN, then only some particular type of diagram
would contribute. To demonstrate the power of such an
approach ’t-Hooft managed to solve an SUðNÞ gauge
theory in 1þ 1 dimensions that is coupled to a massive
Dirac fermion field in the fundamental representation [2].
The various generalizations of the ’t-Hooft model were
considered, for instance, coupling to fermion fields in
different representations of SUðNÞ. In the large N limit
these models could not be solved in a similar fashion, but
still some other interesting and peculiar models were
proposed and studied.
In this paper we discuss the properties of the

spectrum of these two-dimensional models of quantum

chromodynamics. Namely, we will be interested in the
question, when such models could become supersymmet-
ric. For this purpose, we consider a gauge field with gauge
group G, that is assumed to be a simple Lie group, and
couple it to a massive Majorana fermion field ψ i that
belongs to an adjoint representation of the gauge group G.
One of the remarkable properties is that the spectrum of the
model becomes supersymmetric at particular mass of the
fermionsmadj. It was shown first byKutasov [3] and after that
checked explicitly using some numerical methods [4–6].
Even though this property of two-dimensional gauge theories
was very well established, the physical intuition behind
this result is still obscure and understood only in terms of
light-cone quantization. We propose a claim, that this super-
symmetric QCD model could be understood as the defor-
mation of N ¼ 1 supersymmetric Wess-Zumino-Witten
(WZW) models by relevant operators. Namely, let us
consider a WZW model or some representation of Kac-
Moody algebra at level k̃:

½J̃an; J̃bm� ¼ ifabcJ̃cnþm þ nδn;−mδab
k̃
2
: ð1Þ

It is easy to make the model supersymmetric by introducing
Majorana fermions ψ i in the adjoint representation [7,8].
Then we should redefine the operators J̃an so they would
correctly act on fermion operators ψ i

n and construct a
fermionic operator Q:

fψ i
n;ψ

j
mg ¼ δijδnþm;0; Jan ¼ J̃an þ

i
2

X
m

fabcψb
n−mψ

c
m;

½Jan;ψb
m� ¼ ifabcψc

nþm

Q ¼
X
n;m

1

6
fabcψa

nψ
b
mψ

c
−n−m þ

X
n

Jinψ i
−n: ð2Þ
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It is easy to check that Q would interchange the current and
fermionic operators Jin

fQ;ψ i
ng ¼ Jin; ½Q; Jin� ¼ i

kn
4π

ψ i
n:

Since Q is a fermionic operator we conclude that Q is a
supersymmetry operator. One of the interesting features of
this construction is that it does not dependon the initial levelk
of the Kac-Moody algebra. We can just start with an empty
representation of the Kac-Moody algebra (k̄ ¼ 0) and just by
considering fermions alone in an adjoint representation we
can see that they automatically are supersymmetric.
The simplest example of such supersymmetry is to

consider a Uð1Þ version of Kac-Moody algebra and couple
to an adjoint Majorana fermion, or a free massless
Majorana fermion. The Uð1Þ Kac-Moody algebra is simply
a Heisenberg-Weyl algebra and could be realized with a
free scalar field. Therefore the supersymmetric Uð1Þ Kac-
Moody algebra could be realized in the following way:

S ¼
Z

d2x

�
1

2
ð∂μϕÞ2 þ iψ̄γμ∂μψ

�
; ð3Þ

which is easily seen to be supersymmetric by construction
(the spectrum consists of a massless fermion and scalar
field, therefore it is supersymmetric). We can make this
model a little bit more complicated by introducing a
mass term to both fields [which could be considered as
a deformation of the initial conformal field theory by a
relevant operator, but which still respects a supersymmetry]

S¼
Z

d2x

�
1

2
ð∂μϕÞ2−

1

2
m2ϕ2þ iψ̄γμ∂μψþ imψ̄ψ

�
: ð4Þ

We can note that a massive scalar field could be realized
as a Uð1Þ gauge field coupled to a massless fermion.
Therefore we must conclude that the following model must
be supersymmetric:

S ¼
Z

d2x
�
−

1

4e2
F2
μν þ iχ̄γμð∂μ − ieAμÞχ

þ iψ̄γμ∂μψ þ i
effiffiffiffiffiffi
2π

p ψ̄ψ

�
: ð5Þ

Let us note that this particular model could serve as a
simple example of the supersymmetric QCD model with
massive fermions in the adjoint representation discovered
by Kutasov [3]. The main difference is that along with the
fermions in adjoint representation we have added massless
charged fermions, that essentially created mass for the
scalar field in the action (4). The consideration Uð1Þ gauge
group is quite simple and tractable, which allows us to
understand the physics and mathematics behind this
anomalous supersymmetry. Thus, while the classical

supersymmetry requires the mass of a fermion field in
the adjoint representation to be zero, the supersymmetric
transformations are chiral and therefore measure is not
invariant under the action of supersymmetry. To compen-
sate this additional term we should add a mass term for a
Majorana fermion. In the case of non-Abelian gauge fields
we could expect that the same reasoning happens but the
computation becomes more complicated. Nonetheless, the
essential peculiarities and properties are left the same.
Comparison with a Uð1Þ model allows us to make a quite
interesting generalization of this supersymmetry, when
along with massive fermions in adjoint representation we
add some massless fermions in various representations of
the gauge group and one can still find mass madj, where the
model becomes supersymmetric.

II. THE HAMILTONIAN AND HILBERT SPACE
OF TWO-DIMENSIONAL QCD MODELS

As we discussed in the Introduction, we want to study a
gauge field theory coupled to a massive Majorana fermion
in the adjoint representation of some continuous Lie group
G together with some massless Dirac or Majorana fermions
in a different reducible unitary representation R. For
conventions and notations we refer to the Appendix. The
action of the model is

S ¼
Z

d2x

�
tr

�
−

1

4g2YM
F2
μν þ iΨ̄γμDμΨ −madjΨ̄Ψ

�

þ iv̄γμDμv

�
: ð6Þ

To make all computations tractable and explicit we will
write it down directly in terms of the component of the
fields

S ¼
Z

d2x
�

1

4g2YM
Fi2þ− þ

�
i
2
fijkψ i

−ψ
j
− þ v̄α−τkαβv

β
−

�
Akþ

−
�
−
i
2
fijkψ iþψ

j
þ þ v̄αþτkαβv

β
þ

�
Ak
−

þ i
2
ψ iþ∂−ψ

iþ þ i
2
ψ i
−∂þψ iþ þ iffiffiffi

2
p madjψ

iþψ i
−

þ iv̄α−∂þvα− þ v̄αþ∂−vαþ

�
; ð7Þ

that coincide with the action derived in [5]. It is convenient
now to study this model in the light-cone gauge where we
treat one of the light-cone coordinates, for instance, x− as
time and the other, xþ, as a spatial coordinate. In this case
we pick the gauge Aiþ ¼ 0, that would make the other
component field Ai

− nondynamical. Then its impact on the
action could be easily taken into account. The same holds
for the fermionic fields ψ i

− and vα−. After integrating out ψ i
−

and A− we get the following action:
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S ¼
Z

d2x

�
iv̄αþ∂−vαþ þ i

2
ψ iþ∂−ψ

iþ

− g2YMJ
i 1

∂2þ
Ji −

im2
adj

4
ψ i 1

∂þ
ψ i

�
;

where Ji ¼ −
i
2
fijkψ

j
þψkþ þ v̄αþτiαβv

β
þ: ð8Þ

From this action we immediately see that the only dynami-
cal fields are ψ iþ and vαþ. Then following the standard
quantization procedure we construct the Hilbert space H
and Hamiltonian that acts in this space. Since the action
contains only the first derivative of the fermionic fields we
have quite simple commutation relations,

πiψ ¼ ∂L
∂ð∂−ψ

iþÞ
¼ i∂−ψ

iþ;

fψ iþðxþÞ;ψ j
þðyþÞg ¼ δijδðxþ − yþÞ;

παv ¼ v̄α; fv̄αþðxþÞ; vβþðyþÞg ¼ δαβδðxþ − yþÞ: ð9Þ

After that we can introduce the vacuum j0i as

vαþðpþÞj0i ¼ 0 ∀ pþ ∈R; ψ iþðpþÞj0i ¼ 0 ∀ pþ < 0;

vαþðpþÞ ¼
Z

dxþvαþðxþÞe−ipþxþ ;

ψ iþðpþÞ ¼
Z

dxþψ iþðxþÞe−ipþxþ ð10Þ

and use the other fields v̄αþðkþÞ and ψ iþðkþÞ to act on the
vacuum and j0i and construct the other states in the Hilbert
space H in a way analogous to the Clifford module, where
the finite number of Majorana or Dirac fermions is
considered. Notice, that we defined vacuum for ψ iþðpþÞ
only for positive momentum, since the commutation
relations involve the same field but with opposite momen-
tum. The mode ψ iþð0Þ we will drop from the spectrum.
To make the statement more concrete we should take into

account residual gauge symmetries. Namely, a light-cone
gauge Aþ ¼ 0 does not fix the gauge completely; we can
still make a gauge transformation with the parameter being
a function of x− alone,

U ¼ Uðx−Þ ⇒ AUþ ¼ U−1AþU þ iU−1∂þU ¼ 0: ð11Þ

This symmetry enforces us to consider only a subsector
of the whole Hilbert space, HG ⊂ H, that contains only
global singlets under the action of the global G group. In
that Hilbert space we can introduce the Hamiltonian and
momentum operators as

H ¼
Z

dxþ
�
−g2YMJi

1

∂2þ
Ji −

im2
adj

4
ψ i 1

∂þ
ψ i

�
;

P ¼
Z

dxþ
�
i
2
ψ iþ∂þψ iþ þ iv̄α∂þvα

�
: ð12Þ

The mass spectrum of the states could be found via relation
M2 ¼ 2HP. One can see that sinceH and P are singlet with
respect to the gauge group G they will correctly mapHG to
itself and therefore their action is well established. Now we
will be only interested in the symmetries of the spectra of
this Hamiltonian.

III. HAMILTONIAN APPROACH

In this section we show explicitly how the Hilbert space
of the model possesses a supersymmetric operator and
generalize to the case when additional fermions are added
to the model. We will mostly review the results of the paper.
During this section we will omit the subscripts þ in the
notation of operators (9) for the sake of brevity. The Hilbert
space is constructed with the use of the following operators:

fψ iðpÞ;ψ jðqÞg ¼ 2πδijδðpþ qÞ;
fv̄αðpÞ; v̄βðqÞg ¼ 2πδαβδðp − qÞ: ð13Þ

We will use a Schrödinger approach to this quantum
problem—the operators do not evolve with time while
states do. Again, the algebra g is represented by Hermitian
matrices Ti that satisfy the relation ½Ti; Tj� ¼ ifijkTk and
represented by matrices τiαβ in the representation R of
massless fermions vα. We define the following Hermitian
current operators:

Jψi ðpÞ ¼ −
i
2
fijk

Z
dp1

2π
ψ jðpþ p1Þψkð−p1Þ; ð14Þ

Jvi ðpÞ ¼
Z

dp1

2π
v̄αðp1Þτiαβvβðp1 þ qÞ: ð15Þ

As usual when we deal with infinite numbers of operators
involved, we should take care how we define the operators
in order to get meaningful results. For this case we define
these operators using normal ordering. We notice immedi-
ately, that these operators are equal to the normal ordered
versions of themselves—there are no ambiguities in the
definitions ∶Jψi ðpÞ ≔ Jψi ðpÞ. It is easy to check that they
give the right action in the Hilbert space. Namely, the
commutator of currents with the field

½Jψi ðpÞ;ψ jðqÞ� ¼ ifijlψ lðpþ qÞ; ð16Þ

that shows that ψ jðqÞ transforms in the adjoint representa-
tion of the Lie algebra g and Jψi ðpÞ are indeed current
operators of the Lie algebra and provide the correct
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representation of Kac-Moody algebra. Namely, let us check
the commutators of two current operators

½Jψi ðpÞ; Jψj ðqÞ� ¼
1

2
fjmn

Z
dp1

2π
ðfimaψaðpþp1þqÞ

×ψnð−p1Þþfinaψmðp1þqÞψaðp−p1ÞÞ;

which contain some ambiguities related to normal ordering
that must be resolved. Thus, let us assume for a while that
pþ q ≠ 0, where we do not have any issues with normal
ordering. Then we can shift the integral in the second term
and using Jacobi identity we get

½Jψi ðpÞ;Jψj ðqÞ�¼
1

2

Z
dp1

2π
fanmfijmψaðpþp1þqÞψnð−p1Þ

¼ ifijmJ
ψ
mðpþqÞ: ð17Þ

If p ¼ −q the integrand of the commutator (3) is ill
defined. Namely, by naive integration one can assume that
these two terms coincide and therefore their difference
should be zero. Actually, these two terms diverge and to
take them into account correctly we should regularize the
integral and after that perform the shifts. The other way to
see this is to notice that the commutator

½Jψi ðpÞ; Jψj ð−pÞ� ¼
1

2

Z
dp1

2π
ðfjmnfimaψaðp1Þψnð−p1Þ

þ fjamfimnψaðp1 − pÞψnðp − p1ÞÞ
ð18Þ

is normal ordered (or both normal disordered) when
p1 > p or p1 < 0. But if 0 < p1 < p the first term is
normal ordered while the second one is not. Because of that
we are not allowed to perform a shift. By correctly
performing the normal ordering we get some constant
contribution proportional to p. Namely, after some algebra
we finally arrive at the following expression:

½Jψi ðpÞ; Jψj ð−qÞ� ¼ ifijmJ
ψ
mðp − qÞ þ Cf

2
δijδðp − qÞ;

fαβifαβj ¼ Cfδij: ð19Þ

Now at this level we can see that the Hilbert space spanned
by the fermions in the adjoint representations already
is supersymmetric. For this purpose we introduce the
charge Qψ

Qψ ¼ 1

3

Z
dp1

2π
ψ ið−p1ÞJψi ðp1Þ: ð20Þ

One can check that this operator is normal ordered
∶Qψ ≔ Qψ . The anticommutator with the fields ψ iðpÞ
reads as

fQψ ;ψ iðpÞg ¼ 1

3

Z
dp1

2π
½iψ jð−p1Þfjikψkðpþ p1Þ�

þ 1

3
Jψi ðpÞ ¼ Jψi ðpÞ; ð21Þ

and since we do not shift integrals and there are no
ambiguities, we can trust this result. Now consider com-
mutator with Jψi ðpÞ. We have

½Qψ ; Jψi ðpÞ� ¼ −
pCf

12π
ψ iðpÞ þ

i
3

Z
dp1

2π
ðfjikψkðp − p1Þ

× Jψj ðp1Þ þ ψ jð−p1ÞfjikJψk ðpþ p1ÞÞ:

Again to reconcile them we should make a shift. As in the
case of the cocycle for the Kac-Moody algebra we should
perform it in a very cautious way. We notice that these
terms again are both either ordered or disordered when
p1 < −p or p1 > 0, then we get

½Qψ ; Jψi ðpÞ� ¼ −
pCf

4π
ψ iðpÞ: ð22Þ

The action of Qψ coincides with the one derived by
Kutasov et al. We generalize this construction when addi-
tional fermions are involved. To make the computation
quite general, we assume that we added just some addi-
tional system of currents Jvi with the following commuta-
tion relations:

½Jvi ðpÞ; Jvj ðqÞ� ¼ ifijmJvmðpþ qÞ þ k
2
pδðpþ qÞδij; ð23Þ

that could come from some other reasons not necessarily
by introduction of the massless fermions. We define the
total current Ji ¼ Jψi þ Jvi and since J

ψ and Jv commute we
immediately get

½JiðpÞ; JjðqÞ� ¼ ifijmJmðpþ qÞ þ kt
2
pδðpþ qÞδij;

kt ¼ Cf þ k: ð24Þ

Then we introduce a new supersymmetric charge as

Q ¼
Z

dp1

2π
ψ ið−p1Þ

�
1

3
Jψi ðp1Þ þ Jvi ðp1Þ

�
: ð25Þ

Note that a similar expression was suggested in [7,9]. It is
easy to check that the same commutation relations hold for
the new charge Q

fQ;ψ iðqÞg ¼ JiðqÞ ¼ Jψi ðqÞ þ Jvi ðqÞ: ð26Þ

After that we try to commute it with the current JtiðqÞ;
we have
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½Q; Jψi ðqÞ þ Jvi ðqÞ� ¼ ½Qψ ; Jψi ðqÞ� þ
Z

dp1

2π
½ψ jð−p1Þ

× Jvj ðp1Þ; Jψi ðqÞ þ Jvi ðqÞ�; ð27Þ

the first term was computed before. The second term could
be computed in a similar fashion and we arrive at

½Q; JiðqÞ� ¼ −
ktq
4π

ψ iðqÞ: ð28Þ

Now we can easily check that the Q commutes with the
Hamiltonian for a particular mass m and momentum
operator defined in the previous section. The ½Q;P� ¼ 0
just because Q does not carry any momentum or just
noticing that it does not depend on the coordinates x−

explicitly. The only thing left to check is that ½Q;H� ¼ 0.
We notice that the Hamiltonian in the momentum repre-
sentation has the following form:

H¼
Z

dp
2π

�
g2YM

JiðpÞJið−pÞ
p2

þm2
adjψ

iðpÞψ ið−pÞ
4p

�
: ð29Þ

Then commuting it with Q we get

½Q;H�¼
Z

dp
2π

�
−kt

g2YM
2π

ψ iðpÞJið−pÞ
p

þm2
adjψ

iðpÞJið−pÞ
2p

�
:

ð30Þ

And for m2 ¼ ktg2YM
π we would get that Q is a fermionic

symmetry of our system. For instance if we consider
G ¼ SUðNÞ and one adjoint fermion, then k ¼ N and

the mass is m2 ¼ g2YMN
π . If we add Nf fermions in the

fundamental representation to the Hamiltonian the mass of
the adjoint fermion should be

m2
adj ¼

g2YMðN þ NfÞ
π

; ð31Þ

to make the whole system respect the fermionic symmetry
Q. To state that the fermionic operator Q is a real super-
symmetric operator we should compute Q2 and compare
with P; we will do this computation in the next section. It
would be quite interesting to check this result numerically.
For a while, we can check this claim numerically only in the
large N limit. If we fix Nf, the correction would be small in
the large N limit. Therefore we would not be able to see
directly small Nf correction to the mass of adjoint fermion.
Nonetheless we can check that the leading correction is left
unaffected and supersymmetry indeed arises in the large N
limit at the same mass.1 The other approach would involve

considering a large number of massless fermions in the
fundamental representation Nf ∼ N, that would be quite
difficult to implement. And the final consideration would
involve just adding a massless fermion in an adjoint
representation, that should double the value of the super-
symmetric mass. Also, this result is quite similar to
the universality of QCD models with massless fermions
proposed by Kutasov and Schwimmer [10], where the
spectrum of massive states does not depend on the concrete
structure of the massless sector but only on the coefficient
in front of the WZW action.
One might wonder how would additional massless

fermion drastically change the properties of the matter.
More surprisingly, why does the spectra of the model not
depend on the actual structure of the massless sector of the
theory, but only on one factor k, that determines the level of
Kac-Moody algebra. The second question was partially
addressed in the case when all fermions are massless [10].
To see how both of these questions could be answered,
let us consider the case of Uð1Þ gauge theory, that was
partially reviewed in the Introduction. Namely, we want to
consider an electromagnetic field coupled to a Nf massless
fermion and one massive fermion that is not coupled to the
electromagnetic field. In this case we have the following
action:

S ¼
Z

d2x

�
−

1

4g2
F2
μν þ iψ̄γμ∂μψ þ imψ̄ψ

þ
X
j

iχ̄jγμð∂μ þ iqjAμÞχj
�
; ð32Þ

any gauge field could be decomposed as Aμ ¼ ∂μαþ
ϵμν∂νβ. The pure gauge term could be removed by a usual
gauge rotation, while the β term could be removed via
the axial rotation χj → eiqjβγ

5

χj. The last rotation is not
respected by a fermion measure. We have to add a
Schwinger term to the action. After that we arrive at the
following action:

S ¼
Z

d2x
�
1

2g2
ðΔβÞ2 − kβΔβ þ iψ̄γμ∂μψ

þ imfψ̄ψ þ
X
j

iχ̄jγμ∂μχj

�
: ð33Þ

Next we see that the field β has two poles: one with mass
k2 ¼ g2

P
j q

2
j with positive residue and k2 ¼ 0 with

negative residue. The first one corresponds to a real bosonic
propagating degree of freedom, the other one is nonphysi-
cal. Its role is the cancellation of one of the massless
degrees of freedom and instead of Nf massless fermionic
degrees of freedom we have Nf − 1 massless fermions. To
be completely right, one can bosonize these Nf fermions
and get a SU1ðNfÞ ×UNf

ð1Þ WZW model. The factor
1I would like to thank Ross Dempsey for providing numerical

data that confirms this claim.
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UNf
ð1Þ is coupled to the gauge field and essentially creates

mass for a photon m2 ¼ g2k. Thus we get SU1ðNfÞ WZW
together with a massive photon. After that if we pick
m2

f ¼ g2k we would have that fermionic and bosonic
degrees of freedom will have the same mass and therefore
we will get trivially a supersymmetric spectrum.
One important lesson we should draw, that while the

spectrum of the massive states is supersymmetric (for each
massive bosonic state we have a massive fermionic state),
the spectrum of massless states is not. We expect the same
to hold for the non-Abelian case. We need an additional
investigation to figure out the concrete structure of the
massless states [11]. Nevertheless, it could be possible that
the massless part of the spectra is still supersymmetric.
Thus, in the case of one massless fermion in fundamental
representation and one massive fermion in the adjoint
representation, it is known that there are massless baryon
states in the spectrum, in addition to a massless meson. If N
is odd then the baryon number 1 state is a fermion and
could be a partner of the meson [12]. So the spectrum
would be completely supersymmetric.

IV. PATH INTEGRAL DERIVATION

The previous approach for the Abelian case could be
generalized to the non-Abelian case. In this section we
rederive the results of the previous section by using the path
integral approach. It has an advantage, because it would
allow one to consider and find these supersymmetric
transformations not only in the light-cone quantization.
As it was discussed in the Introduction to make a WZW
model supersymmetric we should just simply add a mass-
less fermion in the adjoint representation. This statement
could be formulated at the level of path integral and
explicitly write down the transformation rules for the
WZW field g, that is an element of a gauge group, and
fermionic field ψ i. Namely, if we have a WZW model at
level k and massless adjoint Majorana fermion [8],

S0 ¼
Z

d2xtr½iψþ∂−ψþ þ iψ−∂þψ−� þ kW½g�; ð34Þ

then one can check that the action (34) possesses the
following symmetry:

δg ¼ 4πi
k

½ϵ−gψþ þ ϵþψ−g�;

δψþ ¼ ϵ−

�
g−1∂þg −

4πi
k

ψ2þ

�
;

δψ− ¼ ϵþ

�
∂−gg−1 þ

4πi
k

ψ2
−

�
: ð35Þ

Indeed, let us check for ϵþ ¼ 0 that the action is invariant

δSf ¼ 2iϵ−

Z
d2xtr½g−1∂þg∂−ψþ�; ð36Þ

δSWZWðgÞ ¼
k
2π

Z
d2xtr½g−1δg∂−ðg−1∂þgÞ�

¼ 2iϵ−

Z
d2xtr½ψþ∂−ðg−1∂þgÞ�: ð37Þ

Combining these two variations (37) and (36) we would
get a total derivative. One important observation in this
derivation is that the transformation (35) works for any
chosen k. It is deeply connected to the fact found in the
previous section: that for 2D QCD with massive adjoint
fermions and a massless fermion we can always fine-tune
mass madj that the model becomes supersymmetric.
Now we will show that the symmetry (35) is responsible

for the supersymmetric transformations. To do this, we
would like to make the following simple transformation of
the action (6), that would make it look similar to theN ¼ 1
supersymmetric WZW. Thus, we pick gauge A− ¼ 0 as in
the previous case, but notice that we can always find an
element of the group g ∈ G such that

A− ¼ 0; Aþ ¼ −ig−1∂þg; D− ¼ ∂−;

Dþ ¼ g−1 · ∂þ · g; ð38Þ
that allows one to rewrite the action in the following way:

S ¼
Z

d2xtr

�
−

1

2g2YM
ð∂−ðg−1∂þgÞÞ2 þ iψþ∂−ψþ

þ igψ−g−1∂−ðgψ−g−1Þ þ i
ffiffiffi
2

p
madjψþψ−

þ iv̄þ∂−vþ þ iv̄−ρðg−1Þ∂þðρðgÞv−Þ
�
: ð39Þ

We can easily get rid of g in the action by making rotations
v− → ρðgÞv− and ψ− → g−1ψ−g, that could be done with-
out a lot of trouble, but the price we would pay is to add to
the WZW action, because the measure of fermions is not
invariant under these transformations. After such a rotation,
the massless fermions “decouple” from the action. These
massless states are still present, but they are completely
decoupled from the interaction with the gauge field, while
the interacting degrees of freedom could be represented
with the use of the WZW action. For instance, if we
consider G ¼ SUðNÞ and consider Nf fundamentals there
is a well-known equation [13]

S ¼
XNf

α¼1

Z
d2xψ̄ iα=∂ψ iα

↔
Z

d2x½NfW½g� þ NcW½h� þ ð∂ϕÞ2�; ð40Þ

where g ∈ SUðNÞ; h ∈ SUðNfÞ and ϕ represents overall
phase. One can see that the gauge fields interact only with
W½g� while W½h� and ϕ decouple from the interaction.
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Let us note that in the axial gauge, the Popov ghosts are
decoupled from the rest of the system and thus could be
ignored. So at the end we arrive at the following action:

S¼
Z

d2xtr½iψþ∂−ψþ þ iψ−∂þψ−� þ kW½g�

þ
Z

d2xtr

�
i

ffiffiffi
2

p
madjψ−gψþg−1 −

1

2g2YM
ð∂−½g−1∂þg�Þ2

�
;

ð41Þ
where coefficient k ¼ cf þ k0 in front of the WZW action
comes separately from the adjoint fermions cf and massless
part k0. The action is very similar to the one considered
above and therefore it is natural to conjecture that the same
transformation (35) leaves the action (41) invariant. The
direct computation shows that we should add the following
terms to the transformation to make everything consistent
(for brevity we consider only ϵ− ¼ 0, the other part of the
transformations could be easily written in a similar fashion)

δg ¼ 4πi
k

ϵ−gψþ; δψ− ¼ ϵ−
πmadjffiffiffi
2

p
g2k

gFþ−g−1;

δψþ ¼ ϵ−

�
g−1∂þg −

4πi
k

ψ2þ

�

þ π

g2YMk
ϵ−

�
1

2
m2

adjg
−1∂þg −DþF−þ

�
: ð42Þ

We can easily check that under these transformations the
whole action is invariant. Indeed, the variation of the Yang-
Mills part of the action is

δðg−1∂þgÞ ¼
2πi
k

ϵ−½∂þ þ adðg−1∂þgÞ�ψþ;

adðg−1∂þgÞψþ ¼ ½g−1∂þg;ψþ�;

δSYM ¼ 4πiϵ−
g2YMk

Z
d2xtr½DþF−þ∂−ψþ�: ð43Þ

Then we have the following additional terms in the fermion
part of the action:

δS− ¼
Z

d2xϵ−tr

�
2πimadjffiffiffi
2

p
g2YMk

gFþ−g−1

× ½2∂þψ− þ
ffiffiffi
2

p
madjgψþg−1�

�
;

δSþ ¼ 2πi
g2YMk

Z
d2xϵ−tr

��
1

2
m2

adjg
−1∂þg −DþF−þ

�

× ½2∂−ψþ −
ffiffiffi
2

p
madjg−1ψ−g�

�
;

δSm ¼ −
ffiffiffi
2

p
iϵ−madj

Z
d2xtr½ψ−∂þgg−1�: ð44Þ

Combining all δS−; δSþ; δSYM we arrive at the following
variation:

δS ¼
ffiffiffi
2

p
πim3

adjϵ−

g2YMk
tr½ψ−∂þgg−1�; ð45Þ

where we have integrated by parts and used that
Dþðg−1ψ−gÞ ¼ g−1∂þψ−g. That cancels out by δSm (44)
if the following condition is satisfied:ffiffiffi

2
p

πm3
adj

g2YMk
¼

ffiffiffi
2

p
madj; m2

adj ¼
g2YMk
π

; ð46Þ

that coincides with the results of the previous section. Now
let us compute the square of the Q operator (25)

fQ;Qg ¼ kþ cf
4π

Z
dp1

2π
ψ ið−p1Þp1ψ iðp1Þ

þ
Z

dp1

2π
Jvi ð−p1ÞJvi ðp1Þ: ð47Þ

While it is easy to see that it does not coincide with the
momentum operator of the whole system, nonetheless it
reproduces themomentum operator of the interacting subpart
described by the action (41).2 It shows that Q is indeed the
supersymmetry of QCD with adjoint fermions and deeply
connected to theN ¼ 1 supersymmetricWZWmodels. One
can notice that the supersymmetric transformation considered
in this section looks like a gauge transformation with gauge
parameter ϵ−ψþ (in two dimensions the supersymmetric
transformation of gauge theories could indeed be cast in
such a form). The reason why in this case the supersymmetry
demands the additionalmass term for the adjoint fermions is a
sensitivity to the chiral transformations of the measure. The
original supersymmetry transformations breaks the chiral
symmetry and to take into account the change in the measure
we should add to the action the additional terms (that is just
a variation of the WZW term), that should and could be
compensated by the mass term for fermionic fields.

V. DISCUSSION AND POSSIBLE
GENERALIZATIONS

One of the interesting generalizations of the proposed
mechanism of supersymmetric gauge theories in two
dimensions would involve the use of the coset construction
of the N ¼ 1 supersymmetric WZW models [7–9]. It is
very well known that such constructions could lead to the
N ¼ 2 supersymmetry. The supersymmetric action in this
case has the following form:

S ¼ kW½g� þ 1

2π

Z
d2ztr½B−g−1∂þg − Bþ∂−gg−1

− B−Bþ þ B−g−1Bþg�

þ i
4π

Z
d2ztr½ψþDB

−ψþ þ ψ−DBþψþ�; ð48Þ

2I would like to thank S. Pufu and I. Klebanov for discussion
and checking this relation.

SUPERSYMMETRY IN QCD2 COUPLED TO FERMIONS PHYS. REV. D 105, 074005 (2022)

074005-7



where B is a gauge field that values in the subalebgra h ⊂ g
and ψ� belongs to the subspace g=h. Under general
assumptions this model would become N ¼ 2 supersym-
metric. It would be very interesting to use this supersym-
metry to construct anN ¼ 2 QCDmodel. Nevertheless, the
obstacle includes the introduction of the additional gauge
field B� that would also gauge the original gauge field.
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APPENDIX: NOTATIONS AND CONVENTIONS

In this section we put all conventions and notations
that have been used throughout the main body. In two-
dimensional space-time it would be convenient to study it
in the light-cone coordinates

ds2 ¼ 2dxþdx−; x� ¼ t� xffiffiffi
2

p ; ηþ− ¼ η−þ ¼ 1;

γþ ¼ ðγ−ÞT ¼
�
0

ffiffiffi
2

p

0 0

�
: ðA1Þ

We represent our gauge group G with the use of its Lie
algebra g, assuming that it is finite dimensional and has the
following basis of the Hermitian matrices Ti:

Ti ∈ g; ½Ti;Tj� ¼ ifijkTk; tr½TiTj� ¼ 1

2
δij: ðA2Þ

The structure constants fijk are completely antisymmetric
and satisfy the Jacobi identity.
The fermion field in the adjoint representation could be

decomposed with respect to this basis in the following way:

Ψ¼ΨiTi; Ψi ¼ 1

2
1
4

�
ψ iþ
ψ i
−

�
∈R2; Ψ̄¼ΨTγ0: ðA3Þ

The massless fermion field is assumed to be in some
representation (that is not necessarily an irreducible
representation)

v¼
�
vþ
v−

�
; v� ¼ fvα�g∈Cn ¼R; v̄¼ v†γ0;

ρR∶g→ EndðRÞ; ρRðTiÞαβ ¼ τiαβ : ðA4Þ

The gauge field Aμ ∈ g belongs to the adjoint representa-
tion of the group G and again could be decomposed with
the use of the basis Ti

Aμ ¼ Ai
μTi: ðA5Þ

The covariant derivative is defined in the following way:

Dμ ¼ ∂μþ iAμ;

Fμν ¼−i½Dμ;Dν� ¼ ∂μAν− ∂μAνþ i½Aμ;Aν� ¼Fi
μνTi;

DμΨ¼ ∂μΨþ i½Aμ;Ψ�; Dμv¼ ∂μvþ iρðAμÞv;
ðDμΨÞi ¼ ∂Ψi−fijkAjΨk; ðDμvÞα ¼ ∂μvαþ iAi

μτ
iα
β v

β;

Fiþ− ¼ ∂þAi
− −∂−Aiþ−fijkAj

þAk
−;

where Fiþ− is the only nonzero component of the curvature
Fμν in two dimensions.
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