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The resummed thermodynamics of N ¼ 4 supersymmetric Yang-Mills theory in four space-time
dimensions has been calculated previously to two loop order within hard thermal loop perturbation theory
(HTLpt) using the canonical dimensional regularization (DRG) scheme. Herein, we revisit this calculation
using the regularization by dimensional reduction (RDR) scheme. Since the RDR scheme manifestly
preserves supersymmetry it is the preferred scheme; however, it is important to assess if and by how much
the resummed perturbative results depend on the regularization scheme used. Comparing predictions for
the scaled entropy obtained using the DRG and RDR schemes we find that for λ≲ 6 they are numerically
very similar. We then compare the results obtained in both schemes with the strict perturbative result, which
is accurate up to order λ2, and a generalized Padé approximant constructed from the known large-Nc weak-
and strong-coupling expansions. Comparing the strict perturbative expansion of the two-loop HTLpt result
with the perturbative expansion to order λ2, we find that both the DRG and RDR HTLpt calculations result
in the same scheme-independent predictions for the coefficients at order λ, λ3=2, and λ2 log λ; however, at
order λ2 there is a residual regularization scheme dependence.
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I. INTRODUCTION

Supersymmetric field theories have generated a great
deal of interest in the past decades [1–5]. Such field theories
are invariant under supersymmetry transformations in
which bosonic and fermionic degrees of freedom are
transformed into one another. Although there is currently
no experimental evidence that such theories are realized in
nature, they have recently proven to be useful due to the
ability to employ the conjectured (and strongly evidenced)
holographic duality between strongly coupled conformal
field theory (CFT) in the large-Nc limit and weakly coupled
gravity in five-dimensional anti–de Sitter space (AdS) [6].
This conjectured mathematical equivalence is called the
AdS=CFT correspondence and, in the context of thermo-
dynamics, has been used to calculate the strong-coupling
limit of N ¼ 4 supersymmetric field theory in four space-
time dimensions (SYM4;4) [7]. In this paper, we focus on

resummed perturbative calculations of thermodynamics in
SYM4;4 which complement such calculations.
One of the motivations for the calculation presented

herein is to test methods that have been applied in the
context of finite temperature and density quantum chromo-
dynamics (QCD). In particular, we would like to apply
perturbative reorganizations which have been used to
improve the convergence of the successive perturbative
approximations to the QCD thermodynamic potential
[8–29]. These studies have demonstrated that it is possible
to obtain excellent agreement with continuum extrapolated
lattice calculations of QCD thermodynamics for T ≳
250–300 MeV using such methods. Unlike SYM4;4,
QCD is a confining theory at low temperature; however,
at high temperature there are many similarities between
SYM4;4 and QCD. This stems from the fact that (a) QCD is
asymptotically free and (b) the two theories are similar in
the weak coupling limit. Comparing perturbative SYM4;4

and QCD one finds that (1) the forms of gluonic and
fermionic collective modes are the same, and the scalar
collective modes are those of a massive relativistic particle;
(2) the transport coefficients, such as the shear viscosity η,
which are dominated by the Coulomb-like interactions, are
quite similar [30]; and (3) the energy loss and momentum
broadening of highly energetic test particles are also alike
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[31]. These studies indicate that the key difference between
perturbative finite-temperature QCD and SYM4;4 is the
number and type of degrees of freedom, with SYM4;4

having, in addition to the adjoint gauge field, four adjoint
Majorana fermions and six adjoint scalars.
Unlike QCD, however, SYM4;4 is ultraviolet finite due to

its supersymmetric nature and has a vanishing β function.
Due to this, the ‘t Hooft coupling λ ¼ g2Nc in SYM4;4 does
not run and is independent of the temperature. In the weak-
coupling limit, the thermodynamics of SYM4;4 has been
calculated through order λ2 with the result being [32–37]
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where F ideal ¼ −dAπ2T4=6 is the ideal or Stefan-
Boltzmann limit of the free energy and Sideal ¼
2dAπ2T3=3, with dA ¼ N2

c − 1 being the dimension of
the adjoint representation and ζðzÞ being the Riemann
zeta function. The ratios of the free energy and entropy
density to their corresponding ideal limit are the same
owing to the fact that the ‘t Hooft coupling is temperature
independent. Note, importantly that the weak-coupling
expression (1) is valid for all Nc.
In the strong-coupling limit, the behavior of the SYM4;4

free energy has been computed using the AdS=CFT
correspondence. Most information is known about the
large-Nc limit where one has [7]
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One issue that must be faced when using strict weak- or
strong-coupling expansions is that they might have poor
convergence as additional orders are included in the
expansion or may not converge at all. This is a known
issue with the weak-coupling expansion of QCD thermo-
dynamics, in which case the series seems to converge only
for T ≳ 105 GeV. This poor convergence of strict pertur-
bation theory motivated research into methods for reor-
ganizing the weak-coupling expansion in order to improve
its convergence as one goes to higher loop order. In the
context of QCD, the methods used have included the
Φ-derivable method [38–41] and the hard-thermal-loop
perturbation theory (HTLpt) reorganization [8,10,12].
Despite its appeal, a fundamental issue with the

Φ-derivable method is that it is not manifestly gauge
invariant, with gauge parameter dependence appearing at
the same order in λ as the series truncation when evaluated
off the stationary point and at twice the order in λ when

evaluated at the stationary point [9,42,43]. The HTLpt
approach, on the contrary, is manifestly gauge invariant due
to the fact that the HTL effective action used as the starting
point is gauge invariant by construction. HTLpt has been
used to improve the convergence of weak coupling calcu-
lations of the free energy in scalar field theories [44–46],
QED [47], and QCD up to three-loop order at finite
temperature and chemical potential [19–23,26,27]. Based
on its success in QCD applications, in Ref. [48] we applied
this method to SYM4;4; however, in this prior work
canonical dimensional regularization (DRG) [49–51] was
used to regulate divergences generated during the calcu-
lation in the same manner as was done in QCD.
One issue with this prior work is that the use of canonical

DRG breaks supersymmetry because in DRG the size of the
bosonic representation depends on the dimensional regu-
lation parameter ϵ. In this paper we address this issue by
using a regularization scheme called regularization by
dimensional reduction (RDR). The RDR method was
introduced by Siegel [52] and is a modified version of
dimensional regularization [53,54] which manifestly pre-
serves gauge invariance, unitarity, and supersymmetry
[55,56]. In Refs. [36,37] this method was used to compute
the λ2 and λ2 log λ coefficients in Eq. (1). Herein we will
compute the order λ, λ3=2, and λ2 log λ coefficients using
two-loop HTLpt and demonstrate that these coefficients are
scheme independent. We will additionally demonstrate that
the order λ2 coefficient is regularization-scheme dependent;
however, this is somewhat expected, since this coefficient
is beyond the strict perturbative accuracy of a two-loop
calculation. Importantly, we find that the coefficient of
λ2 log λ is exactly the same as obtained in the prior two-loop
DRG HTLpt calculation [48], resummation using the
Arnold-Zhai method [36], and resummation using effective
field theory methods [37]. This firmly establishes the
existence of logarithms in the weak-coupling expansion
of SYM4;4 thermodynamics and provides confidence in the
computed coefficient.
Note that since the high-order terms in the expansion of

the free energy are unknown, it not possible to determine if
the finite temperature perturbative series for the free energy
has a finite radius of convergence. We note, however, that
even if the perturbative series has a zero radius of con-
vergence (an asymptotic series), it is possible to apply
variational perturbation theory methods such as HTLpt to
improve the convergence of successive loop approxima-
tions. In cases where all orders expansions of quantities are
known, e.g., the ground state energy of a zero temperature
anharmonic oscillator [57,58], it has been shown that by
using variational perturbation theory one can even self-
consistently obtain the strong coupling limit coefficients
from a divergent weak-coupling expansion [59,60].
In the case of SYM4;4, our recent calculations through

order λ2 [36,37] suggest that the perturbative expansion of
SYM4;4 thermodynamics has a finite and potentially large
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radius of convergence. The resummed results obtained in
this paper show that HTLpt can be used to improve the
convergence of successive approximations to the SYM4;4

free energy. As will we demonstrate, the two-loop HTLpt
resummed result, although having strict perturbative accu-
racy of order λ3=2, reproduces the order λ2 result to within
2% for λ≲ 2 (see Fig. 2 below).
Finally, we emphasize that the scheme dependence

discussed herein is related to whether or not one uses a
supersymmetry-preserving regularization scheme. This is a
fundamental symmetry requirement and, hence, the RDR
scheme is better suited to this problem. In the context of
QED and QCD there exists a more general scheme
dependence which stems from the choice of the method
of regularization. The standard scheme for renormalizing
QCD is the MS (modified minimal subtraction) scheme
[61], which is related to the MS (minimal subtraction)
scheme [62,63] through a rescaling of the MS scale by
ðeγE=4πÞϵ where γE is the Euler-Mascheroni constant. As a
result of this relationship, one can connect quantities
computed in the two schemes in a straightforward manner
using the running coupling itself [61]. We note importantly,
however, that physical observables such as scattering rates
and the free energy are scheme independent [61,64,65].
In strict perturbation theory, renormalization scheme invari-
ance of observables can be established order-by-order in
the coupling; however, the parameters in the theory which
are not directly observable, such as the running coupling
constant, are in general scheme dependent. When comput-
ing observables the scheme-dependence of the parameters
is compensated for by the scheme-dependence of the
coefficients in the perturbative expansion thereby ensuring
renormalization group invariance [61,64,65].
In SYM4;4 an analogous scheme dependence does not

occur because the theory is conformal and the coupling
does not run. As a result, the perturbative coefficients are
renormalization group invariants and hence, scheme inde-
pendent in the QED/QCD sense. This is evidenced by
Eq. (1) which is scale invariant through the perturbative
accuracy determined. Finally, we note that HTLpt goes
beyond strict perturbation theory through an all orders
resummation in the soft sector. As a result, a residual scale
dependence can remain in HTLpt when truncating at finite
loop order; however, as one extends the HTLpt calculation
to higher loop order, the scale dependence is systematically
pushed to higher orders in the ‘t Hooft coupling, resulting
in mathematically unique predictions for the fully deter-
mined perturbative coefficients.
The structure of our paper is as follows. We begin

with a brief introduction to the basics of SYM4;4 in Sec. II.
In Sec. III, we present a summary of HTLpt applied to
SYM4;4. We list the terms which change in the high
temperature expansion when going from DRG to RDR
in Sec. IV. Based on these results, we present the complete
expressions for the leading- (LO) and next-to-leading order

(NLO) thermodynamic potentials in the RDR scheme
in Sec. V. In Sec. VI, we present our numerical results
for the RDR HTLpt-resummed NLO SYM4;4 scaled
thermodynamic functions and compare to our previous
results obtained using the DRG scheme. We also compare
to strict perturbative expression for the scaled thermody-
namic functions through order λ2 which were obtained
using the RDR scheme and to a generalized Padé approx-
imant based on this result and the corresponding result in
the large-Nc strong coupling limit. In Sec. VII we present
our conclusions and an outlook for the future.
Notation:We use lower-case letters for Minkowski space

four-vectors, e.g., p, and upper-case letters for Euclidean
space four-vectors, e.g., P. We use the mostly minus
convention for the metric.

II. THE BASICS OF THE SYM4;4 THEORY

In SYM4;4 all fields belong to the adjoint representation
of the SUðNcÞ gauge group. The definition of gauge field is
the same as QCD and Aμ can be expanded as Aμ ¼ Aa

μta,
with real coefficients Aa

μ, and Hermitian color generators ta

in the adjoint representation which satisfy

½ta; tb� ¼ ifabctc and TrðtatbÞ ¼ 1

2
δab; ð3Þ

where a; b ¼ 1;…; N2
c − 1 and the group structure con-

stants fabc are real and completely antisymmetric.
For the fermionic fields, the massless two-component

Weyl fermions ψ in four dimensions can be converted into
four-component Majorana fermions [66–70],

ψ ≡
�
ψα

ψ̄ _α

�
and ψ̄ ≡ ðψα ψ̄ _α Þ; ð4Þ

where α ¼ 1, 2 and the Weyl spinors satisfy ψ̄ _α ≡ ½ψα�†.
The conjugate Majorana spinor ψ̄ is not independent, but is
related to ψ via the Majorana condition ψ ¼ Cψ̄ , where

C ¼
�

ϵαβ 0

0 ϵ _α _β

�
is the charge conjugation operator with

ϵ02 ¼ −ϵ11 ≡ −1. We will use latin indices i, j ¼ 1, 2, 3, 4
to label the four Majorana fermions, with ψ i denoting each
bispinor. Since the fermions are in the adjoint representa-
tion, one can expand ψ i ¼ ψa

i t
a, where the coefficients ψa

i
are four-component Grassmann-valued Majorana spinors.
In addition to the gauge field andMajorana spinors, there

are six independent real scalar fields which are represented
by a multiplet,

Φ≡ ðX1; Y1; X2; Y2; X3; Y3Þ; ð5Þ

where Xp and Yq are Hermitian, with p;q ¼ 1, 2, 3. Xp and
Yq denote scalar and pseudoscalar fields, respectively. We
will use a capital latin index A to denote components of the
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vector Φ. Therefore ΦA, Xp, and Yq can be expanded as
ΦA ¼ Φa

At
a, with A ¼ 1;…; 6 or alternatively, Xp ¼ Xa

pta

and Yq ¼ Ya
qta.

The Minkowski-space Lagrangian density for SYM4;4

can be expressed as

LSYM4;4
¼ Tr

�
−
1

2
G2

μν þ ðDμΦAÞ2 þ iψ̄ i=Dψ i

−
1

2
g2ði½ΦA;ΦB�Þ2 − igψ̄ i½αpijXp þ iβqijγ5Yq;ψ j�

�

þ Lgf þ Lgh þ ΔLSYM; ð6Þ

where μ, ν ¼ 0, 1, 2, 3 and αp and βq are 4 × 4matrices that
satisfy

fαp;αqg ¼−2δpq; fβp;βqg ¼−2δpq; ½αp;βq� ¼ 0:

ð7Þ

The matrices α and β satisfy αpikα
p
kj ¼ −3δij and

βqijβ
p
ji ¼ −4δpq, with δii ¼ 4 for the four Majorana fer-

mions and δpp ¼ 3 for each set of three scalars.
To quantize the theory, gauge-fixing and ghost terms

should be added to the Lagrangian density. In general
covariant gauge, their forms are the same as in QCD,

LSYM4;4
gf ¼ −

1

ξ
Tr½ð∂μAμÞ2�;

LSYM4;4
gh ¼ −2Tr½η̄∂μDμη�; ð8Þ

with ξ being the gauge parameter.

III. HTLpt FOR SYM4;4 THEORY

HTLpt provides a way to incorporate plasma effects into
resummed perturbative calculations while maintaining
explicit gauge invariance. In HTLpt the underlying theory
is reorganized by adding and subtracting the HTL effective
action to the vacuum action. The addition/subtraction of the
HTLpt action generates effective propagators and vertices
which are functions of energy and momentum. The HTLpt
method has been applied to QCD to three-loop order in
Refs. [8,10,12,16,17,19–29].
The HTLpt reorganization of SYM4;4 can be obtained in

the same manner as in QCD by introducing an expansion
parameter δ, treating it as a formal expansion parameter,
expanding around δ ¼ 0 to a fixed order, and then setting
δ ¼ 1 in the end. The HTL reorganized Lagrangian density
for SYM4;4 can be written as

Lshifted
SYM4;4

¼ ðLSYM4;4
þ LHTL
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Þjg→ ffiffi

δ
p

g þ ΔLHTL
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: ð9Þ

The HTL improvement term LHTL
SYM4;4

is

LHTL
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¼ −
1

2
ð1 − δÞm2

DTr

�
Gμα

	
yαyβ

ðy ·DÞ2



ŷ
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where yμ ¼ ð1; ŷÞ is a lightlike four vector, h� � �iŷ represents
an average over the direction of ŷ defined in theAppendix A,
the index j ∈ f1…4g labels the fourMajorana fermions, and
the index A ∈ f1…6g labels the six independent real-valued
scalars. The parametersmD andMD are the electric screening
masses for the gauge field and the adjoint scalar fields,
respectively. The parametermq is the induced finite temper-
ature quark mass. We note that, in general, the gluon mass in
RDR is not equal to −gμνΠμν, where Πμν is the gluonic self
energy andcaremust be taken due to this. This stems from the
necessity of employing integration by parts during the
calculation of the gluon self energy.
In the RDR scheme, all momentum-space integrals will be

evaluated in d ¼ 4 − 2ϵ dimensions while the size of the
gauge field and fermionic field representations will be taken
to be integer valued, and correspond to D ¼ 4 dimensional
fields. Since, as we will demonstrate, all ultraviolet diver-
gences generated in the calculation of HTL-thermodynamics
are canceled by theHTLpt counterterms independently of the
value of the gluon, quark, and scalar mass parameters, we
need to only consider the leading-order contributions in the
momentum-space regulation parameter ϵ.
The HTLpt reorganization of QCD and SYM4;4 gen-

erates new ultraviolet (UV) divergences compared to the
vacuum Lagrangian. In QCD, these divergences can be
eliminated using the counterterm Lagrangian ΔLHTL

QCD, and
the thermodynamic potential at the two-loop level can be
renormalized by using a simple counterterm Lagrangian
ΔLHTL

QCD which includes vacuum energy and mass counter-
terms [16,17]. Although not proven at arbitrary loop order,
it has been explicitly demonstrated that one can renorm-
alize the HTLpt thermodynamic potential through three-
loop order using only vacuum, gluon thermal mass, quark
thermal mass, and gauge coupling constant counterterms
[22,27]. The same method can be used in SYM4;4.
We find that in SYM4;4 the vacuum counterterm Δ0E0,

which is the leading order counterterm in the δ expansion of
the vacuum energy E0, can be obtained by calculating the
free energy to leading order in δ, and the next-to-leading-
order contribution Δ1E0 can be obtained by expanding ΔE0

to linear order in δ. As a result, we find that in the RDR
scheme the counterterm ΔE0 has the form,

ΔE0 ¼
�

dA
128π2ϵ

þOðλδÞ
�
ð1 − δÞ2m4

D

þ
�

3dA
32π2ϵ

þOðλδÞ
�
ð1 − δÞ2M4

D: ð11Þ
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Comparing to the DRG HTLpt result obtained in Ref. [48],
one sees that Eq. (11) is precisely the same as obtained
therein.
To calculate the NLO HTLpt-improved free energy one

needs to expand the partition function to order δ.
Correspondingly, to cancel the remaining UV divergences
we need the counterterms ΔE0, Δm2

D, Δm2
q, and ΔM2

D to
order δ. In order to remove all UV divergences which
appear at two-loop level, the mass counterterms required
are

Δm2
D ¼

�
1

16π2ϵ
λδþOðλ2δ2Þ

�
ð1 − δÞm2

D;

ΔM2
D ¼

�
3

8π2ϵ
λδþOðλ2δ2Þ

�
ð1 − δÞM2

D;

Δm2
q ¼

�
−

1

π2ϵ
λδþOðλ2δ2Þ

�
ð1 − δÞm2

q: ð12Þ

Once again we find that the mass counterterms are precisely
the same as the ones necessary to remove the HTLpt
divergences in DRG HTLpt [48].
To calculate HTLpt-improved physical observables in

SYM4;4 we use the same method as in QCD, namely
expanding the path-integral in powers of δ, truncating at
some specified order, and then setting δ ¼ 1. The results for
physical observables will depend on mD, MD, and mq

which are functions of T and λ. These parameters are fixed
in HTLpt by minimizing the free energy. If we use
ΩRDR

N ðT; λ; mD;MD;mq; δÞ to represent the thermody-
namic potential expanded to N-th order in δ, then the
corresponding variational prescription is

∂
∂mD

ΩRDR
N ðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0;

∂
∂MD

ΩRDR
N ðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0;

∂
∂mq

ΩRDR
N ðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0: ð13Þ

These three equations are called the gap equations. The free
energy can be obtained by evaluating the thermodynamic
potential at the solution to the gap equations, and other
thermodynamic functions can be obtained from the free
energy and its derivatives with respect to T.
In the following section, we calculate the thermody-

namic potential through order λ5=2, which can be expressed
as an expansion in powers of mD=T, mq=T, and MD=T.
Instead of repeating all results from our DRG calculation,
we list all terms which change when going from DRG to
RDR. As mentioned above, at order δ, all divergences in the
two-loop thermodynamic potential can be removed by the
HTLpt vacuum and mass counterterms which are scheme
independent.

IV. HIGH-TEMPERATURE EXPANSION USING
THE RDR SCHEME

In this section, we list only the contributionswhich change
when going from the DRG to RDR scheme. Since the
Feynman rules and diagrams needed are the same as in
Ref. [48], the high-temperature forms are the same as in this
reference up to the dimension of the gluon tensor and metric
tensor. The labels on each Feynman diagram contribution
below correspond to the diagrams shown in Ref. [48].

A. One-loop sum-integrals in the RDR scheme

Based on the above knowledge, at one-loop order, only
the hard contribution from the gluonic one-loop free energy
and two-loop HTL counterterm are modified in the RDR
scheme. The remaining contributions come from fermions
and scalars and remain unchanged compared to the DRG
HTLpt result.

1. RDR modified gluon hard contributions

The form of the hard contribution to the one-loop gluon
free energy expanded to second order inm2

D has been given
in [16] and can be written in the RDR scheme as

F ðhÞ;RDR
g ¼D− 2

2
b0 þ

1

2
m2

Db1 −
1

4ðD− 2Þm
4
Db2

−
1

4ðD− 2Þm
4
D

XZ
P

�
−2

1

p2P2
− 2ðD− 1Þ 1

p4
T P

þ 2
1

p2P2
T P þ ðD− 1Þ 1

p4
ðT PÞ2

�
; ð14Þ

where T P is given in Eq. (A14), which enters into the HTL
gluon self-energy, and

b0 ≡
XZ

P
logP2 ¼ −

π2

45
T4; ð15Þ

bn ≡
XZ

P

1

P2n ; n ≥ 1: ð16Þ

Setting D ¼ 4, using Eq. (15), and the formulas in
Appendix B, (14) reduces to

F ðhÞ;RDR
g ¼ −

π2
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T4 þ 1
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2 −
1

128π2
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3

−
16

3
−
8 log 2
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��
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4πT

�
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m4
D: ð17Þ

The form of the hard contribution to the two-loop gluon
HTL counterterm has been given in [16] and can be
expressed as
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F ðhÞ;RDR
gct ¼ −

1
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Setting D ¼ 4, using Eq. (15), and the formulas in
Appendix B, (18) reduces to

F ðhÞ;RDR
gct ¼ −

1

24
m2

DT
2 þ 1

64π2

�
1

ϵ
þ 2γ þ 2π2

3

−
16

3
−
8 log 2

3

��
μ

4πT

�
2ϵ

m4
D: ð19Þ

We find, as can be expected on general grounds, that
the only difference between the result of the one-loop

gluonic contributions in the RDR scheme and the DRG
scheme is the finite contribution which is proportional
to m4

D.

B. Two-loop sum-integrals in the RDR scheme

Considering the two-loop contributions in the RDR
scheme, the soft-soft ðssÞ contribution from all diagrams

and the F ðhhÞ
3qs contribution are unchanged. All other

contributions are modified due to the dimension of the
gluon tensor and metric tensor changing from 4 − 2ϵ to 4.

1. Contributions from the ðhhÞ region
The form of the ðhhÞ contributions to the two-

loop gluonic free energy expanded to first order in m2
D

has been given in [16], and can be written in the RDR
scheme as

F ðhhÞ;RDR
3gþ4gþgh ¼

1

4
ðD − 2Þ2b21 − ðD − 2Þ 1

2
m2

Db1b2 þ
1

4
m2

D

XZ
PQ

�
2ðD − 3Þ 1

P2Q2q2
þ 2

1

P2Q2R2

þ ðDþ 1Þ 1

P2Q2r2
− 2ðD − 1Þ P ·Q

P2Q2r4
− 4ðD − 1Þ q2

P2Q2r4
þ 4

q2

P2Q2R2r2
− 2ðD − 2Þ 1

P2Q2q2
T Q

−D
1

P2Q2r2
T R þ 4ðD − 1Þ q2

P2Q2r4
T R þ 2ðD − 1Þ P ·Q

P2Q2r4
T R

�
: ð20Þ

Setting D ¼ 4, using Eq. (15), and the formulas in Appendix B, (20) reduces to

F ðhhÞ;RDR
3gþ4gþgh ¼

1

144
T4 −

29

4608π2

�
1

ϵ
þ 5.751206124

��
μ

4πT

�
4ϵ

m2
DT

2: ð21Þ

The form of the ðhhÞ contribution to F 3qg and F 4qg expanded to first order in m2
D can be obtained from Ref. [17], and in

the RDR scheme become

F ðhhÞ;RDR
3qgþ4qg ¼ 2ðD − 2Þ½f21 − 2b1f1� þ 4m2

D

�
b2f1 þ

XZ
PfQg

�
1

p2P2Q2
T P −

D − 3

D − 2

1

p2P2Q2

��

þ 2m2
D

XZ
fPQg

�
D

D − 2

1

P2Q2r2
−
4ðD − 1Þ
D − 2

q2

P2Q2r4
−
2ðD − 1Þ
D − 2

P ·Q
P2Q2r4

�
T R

þ 2m2
D

XZ
fPQg

�
4 −D
D − 2

1

P2Q2R2
þ 2ðD − 1Þ

D − 2

P ·Q
P2Q2r4

−
Dþ 1

D − 2

1

P2Q2r2
þ 4ðD − 1Þ

D − 2

q2

P2Q2r4
−

4

D − 2

q2

P2Q2R2r2

�

þ 4m2
qðD − 2Þ

XZ
fPQg

�
1

P2Q2Q2
0

þ p2 − r2

P2q2Q2
0R

2

�
T Q þ 4m2

qðD − 2Þ
�
2b1f2 −

XZ
PfQg

1

P2Q2Q2
0

T Q

�

þ 4m2
qðD − 2Þ

�
−2f1f2 þ

XZ
fPQg

�
D − 6

D − 2

1

P2Q2R2
þ r2 − p2

P2Q2R2q2

��
; ð22Þ

where fn is defined as

fn ≡
XZ

fPg

1

P2n ¼ ð22nþ1−d − 1Þbn; n ≥ 1: ð23Þ
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Setting D ¼ 4, using Eqs. (15) and (23), and formulas in
Appendix B, (22) reduces to

F ðhhÞ;RDR
3qgþ4qg ¼ 5

144
T4 −

7

1152π2

�
1

ϵ
þ 0.1415352337

�

×

�
μ

4πT

�
4ϵ

m2
DT

2 þ 1

16π2

�
1

ϵ
þ 9.96751112

�

×

�
μ

4πT

�
4ϵ

m2
qT2: ð24Þ

The form of the ðhhÞ contributions toF 4s,F 3gs andF 4gs

are

F ðhhÞ;RDR
4sþ3gsþ4gs

¼ 3ðDþ 1Þb21 − 3ð4þDÞM2
Db1b2 þM2

D

×
XZ

PQ

6

P2Q2R2
− 3m2

Db1b2 þm2
D
3ðD− 3Þ
D− 2

b1
XZ

P

1

p2P2

þ m2
D

D− 2

XZ
PQ

�
3ð1þDÞ
2p2Q2R2

−
3

P2Q2R2
−
6ðD− 1Þq2
p4Q2R2

þ 6q2

p2P2Q2R2
þ 3ðD− 1ÞðQ ·RÞ

p4Q2R2
þ
�
3ð2−DÞ
p2P2Q2

−
3D

2p2Q2R2
þ 6ðD− 1Þq2

p4Q2R2
−
3ðD− 1ÞðQ ·RÞ

p4Q2R2

�
T P

�
:

ð25Þ

Setting D ¼ 4, using Eq. (15), and the formulas in
Appendix B, (25) reduces to

F ðhhÞ;RDR
4sþ3gsþ4gs ¼

5

48
T4 −

1

8π2

�
1

ϵ
þ 2γ þ 5.97010745

�

×

�
μ

4πT

�
4ϵ

M2
DT

2 −
29

1536π2

×

�
1

ϵ
þ 5.751206124

��
μ

4πT

�
4ϵ

m2
DT

2:

ð26Þ
2. Contributions from the ðhsÞ region

The form of the ðhsÞ contribution to the two-loop gluon
free energy expanded to first order inm2

D was given in [16],
and in the RDR scheme can be written as

F ðhsÞ;RDR
3gþ4gþgh ¼

T
2

Z
p

1

p2þm2
D

�
−ðD− 2Þb1þ 2ðD− 2Þ

×
XZ

Q

q2

Q4

�
þm2

DT
Z
p

1

p2þm2
D

�
−ðD− 5Þb2

þ
XZ

Q

�ðD− 2ÞðDþ 1Þ
D− 1

q2

Q6
−
4ðD− 2Þ
D− 1

q4

Q8

��
;

ð27Þ

where

Z
p

1

p2 þm2
¼ −

m
4π

�
μ

2m

�
2ϵ

½1þ 2ϵ�: ð28Þ

Setting D ¼ 4, using Eqs. (15) and (28), and the formulas
in Appendix B, (27) reduces to

F ðhsÞ;RDR
3gþ4gþgh ¼ −

1

24π
mDT3 −

11

384π3

�
1

ϵ
þ 2γ þ 68

33

�

×

�
μ

4πT

�
2ϵ

×

�
μ

2mD

�
2ϵ

m3
DT: ð29Þ

The form of the ðhsÞ contribution to F 3qg and F 4qg

expanded to first order in m2
D can be obtained from

Ref. [17], and in the RDR scheme can be expressed as

F ðhsÞ;RDR
3qgþ4qg ¼ T

Z
p

1

p2þm2
D

�
4f1−

XZ
fQg

8q2

Q4

�

þ 4m2
DT

Z
p

1

p2þm2
D

�
f2

þ
XZ

fQg

�
−
2ð2þDÞ
D− 1

q2

Q6
þ 8

D− 1

q4

Q8

��

− 8m2
qT

Z
p

1

p2þm2
D

�
3f2−

XZ
fQg

4q2

Q6

�
: ð30Þ

SettingD ¼ 4, using Eqs. (15), (23), and (28) together with
the formulas in Appendix B, (30) reduces to

F ðhsÞ;RDR
3qgþ4qg ¼ −

1

12π
mDT3 þ 1

4π3
mDm2

qT

þ 1

48π3

�
1

ϵ
þ 2γ þ 4

3
þ 4 log 2

�

×

�
μ

4πT

�
2ϵ
�

μ

2mD

�
2ϵ

m3
DT: ð31Þ

The ðhsÞ contribution to F 4s, F 3gs, and F 4gs were pre-
sented in [48] and in the RDR scheme can be expressed as

F ðhsÞ;RDR
4sþ3gsþ4gs ¼ T

Z
p

1

p2 þM2
D

�
3ðDþ 4Þb1 − 3M2

Db2

− 3m2
Db2 −M2

D

XZ
Q

12q2

ðD− 1ÞQ6

�

þ T
Z
p

1

p2 þm2
D
×

�
−3b1 þ 9M2

Db2 − 6m2
Db2

þ
XZ

Q

�
6q2

Q4
−M2

D
12q2

Q6

þm2
D

�
6
Dþ 3

D− 1

q2

Q6
−

24q4

ðD− 1ÞQ8

���
: ð32Þ
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Setting D ¼ 4, using Eq. (15), and the formulas in
Appendix B, (32) reduces to

F ðhsÞ;RDR
4sþ3gsþ4gs

¼ −T3

�
mD

8π
þMD

2π

�
−

3

32π3
M2

DmDT

þ 3

64π3

�
1

ϵ
þ 2þ 2γ

��
μ

4πT

�
2ϵ
�

μ

2MD

�
2ϵ

MDm2
DT

þ 3

32π3

�
1

ϵ
þ 5

3
þ 2γ

��
μ

4πT

�
2ϵ
�

μ

2MD

�
2ϵ

M3
DT

þ 1

128π3

�
1

ϵ
þ 16

3
þ 2γ

��
μ

4πT

�
2ϵ
�

μ

2mD

�
2ϵ

m3
DT: ð33Þ

Finally, the ðhsÞ contribution to F 3qs was first presented
in [48] and in the RDR scheme is

F ðhsÞ;RDR
3qs ¼ 24T

Z
p

1

p2 þM2
D

�
−f1 −M2

Df2

þ2m2
qf2 þM2

D

XZ
fQg

2q2

ðD − 1ÞQ6

�
: ð34Þ

SettingD ¼ 4, using Eqs. (15), (23), and (28) together with
the formulas in Appendix B, (34) reduces to

F ðhsÞ;RDR
3qs ¼ −

1

4π
MDT3 þ 3

16π3

�
1

ϵ
þ 8

3
þ 2γþ 4 log2

�

×

�
μ

4πT

�
2ϵ
�

μ

2MD

�
2ϵ

M3
DT −

3

4π3

�
1

ϵ
þ 2þ 2γ

þ 4 log2

��
μ

4πT

�
2ϵ
�

μ

2MD

�
2ϵ

MDm2
qT: ð35Þ

V. NLO HTL THERMODYNAMIC POTENTIAL
IN THE RDR SCHEME

In this section, we will combine all contributions
and counterterms to obtain the LO and NLO HTLpt-
resummed SYM4;4 thermodynamic potential ΩRDRðT; λ;
mD;MD;mq; δ ¼ 1Þ. In the following subsections, we list
the various terms contributing and compare them to the
corresponding results obtained in the DRG scheme.

A. Leading order

By combining Eq. (17) and contributions which are the
same as in DRG scheme from Ref. [48], our final result for
the one-loop free energy is

ΩRDR
1−loop ¼F ideal

�
1− m̂2

Dþ 4m̂3
D − 6M̂2

Dþ 24M̂3
D

− 8m̂2
qþ 16m̂4

qð6− π2Þþ 3

4
m̂4

D

�
1

ϵ
þ 2γþ 2π2

3
−
16

3

þ 2 log
μ̂

2
−
8 log2
3

�
þ 9M̂4

D

�
1

ϵ
þ 2γþ 2 log

μ̂

2

��
;

ð36Þ
where m̂D, M̂D, m̂q and μ̂ are dimensionless variables,
which are defined as

m̂D ¼ mD

2πT
; M̂D ¼ MD

2πT
;

m̂q ¼
mq

2πT
; μ̂ ¼ μ

2πT
: ð37Þ

Comparing to the one-loop free energy Ω1−loop obtained in
the DRG scheme, the only difference are the finite contri-
butions which are proportional to m4

D. Since the RDR
divergences are the same as in the DRG scheme, the
corresponding leading order vacuum energy counterterm
Δ0E0 is also the same. After adding Δ0E0 to (36), our final
result for the LO renormalized thermodynamic potential in
the RDR scheme is

ΩRDR
LO

F ideal
¼ 1 − m̂2

D þ 4m̂3
D − 6M̂2

D þ 24M̂3
D − 8m̂2

q

þ 16m̂4
qð6 − π2Þ þ 3

4
m̂4

D

�
−
16

3
−
8 log 2

3
þ 2γ

þ 2π2

3
þ 2 log

μ̂

2

�
þ 18M̂4

D

�
γ þ log

μ̂

2

�
: ð38Þ

B. Next-to-leading order

By combining Eqs. (20), (22), (26), (27), (30), (33), (35),
and contributions which are the same as in DRG scheme
from Ref. [48], and multiplying by λdA, we obtain the final
result for the two-loop HTLpt thermodynamic potential,

ΩRDR
2−loop

F ideal
¼ λ

π2

�
−
3

2
þ 3m̂D þ 9M̂D −

9

2
M̂Dm̂D þ 9

2
m̂DM̂

2
D − 12m̂Dm̂2

q þ
3

8
m̂2

D

�
1

ϵ
þ 4 log m̂D

þ 4 log
μ̂

2
þ 6.32087357

�
þ 9

4
M̂2

D

�
1

ϵ
þ 4 log M̂D þ 4 log

μ̂

2
þ 5.32488132

�
− m̂3

D

�
1

2
þ 4 log 2

�

− 6m̂2
q

�
1

ϵ
þ 4 log

μ̂

2
þ 9.967511121

�
− M̂3

D

�
36 log 2þ 9

2

�
þ 144 log 2M̂Dm̂2

q

þ
�
−
27

2
M̂3

D −
9

4
M̂Dm̂2

D þ 36M̂Dm̂2
q

��
2þ 1

ϵ
þ 2γ − 2 log M̂D þ 4 log

μ̂

2

��
: ð39Þ
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Comparing to the two-loop DRG result Ω2−loop, we find
that there are differences in the finite contributions propor-
tional to m2

D, M
2
D, m

3
D, m

2
q and M3

D.
The NLO RDR HTLpt counterterm contribution is

obtained from the sum of Eqs. (18) and contributions which
are the same as in DRG scheme from Ref. [48], giving

ΩRDR
HTL

F ideal
¼ m̂2

D − 6m̂3
D þ 6M̂2

D − 36M̂3
D þ 8m̂2

q

þ 32m̂4
qðπ2 − 6Þ − 3

2
m̂4

D

�
1

ϵ
þ 2γ þ 2 log

μ̂

2
þ 2π2

3

−
16

3
−
8 log 2

3

�
− 18M̂4

D

�
1

ϵ
þ 2γ þ 2 log

μ̂

2

�
: ð40Þ

Comparing to the DRG scheme result for ΩHTL, the
only difference is the finite contribution proportional
to m4

D. We find that the form of Δ1E0 is the same as
in the DRG scheme. Since the divergent terms in
Eq. (39) are the same as the ones in the DRG scheme,
we find the same result for ΔΩRDR

NLO as in the DRG
scheme.
By adding the one-loop (38), and two-loop (39)

HTLpt thermodynamic potentials, the HTLpt gluon
and quark counterterms, and the HTLpt vacuum and
mass renormalizations, we obtain the final expression
for the NLO HTL thermodynamic potential in SYM4;4

theory in the RDR scheme,

ΩRDR
NLO

F ideal
¼ 1− 2m̂3

D − 12M̂3
D þ 16m̂4

qðπ2 − 6Þ− 18M̂4
D

�
γ þ log

μ̂

2

�
−
3

2
m̂4

D

�
γ þ π2

3
þ log

μ̂

2
−
8

3
−
4 log2

3

�

þ λ

π2

�
−
3

2
þ 3m̂D þ 9M̂D −

9

2
m̂DM̂D þ 9

2
m̂DM̂

2
D − 12m̂Dm̂2

q − 12m̂2
q

�
1.99870184þ log

μ̂

2

�

þ 3

4
m̂2

D

�
0.1753830597þ 2 log m̂D þ log

μ̂

2

�
− m̂3

D

�
1

2
þ 4 log2

�
þ 9

2
M̂2

D

�
−0.3226130662þ 2 log M̂D þ log

μ̂

2

�

−
9

2
M̂Dm̂2

D

�
γ þ log

μ̂

2

�
þ 72M̂Dm̂2

q

�
γ þ 2 log2þ log

μ̂

2

�
− 9M̂3

D

�
1

2
þ 3γ þ 4 log2þ 3 log

μ̂

2

��
: ð41Þ

Note that the final expression is free from singularities
and valid for all Nc. Comparing to the result obtained using
the DRG scheme in Ref. [48], we find differences in terms
without logarithms, which are proportional to m4

D, λm
2
q,

λm2
D, λM

2
D, λm

3
D and λM3

D. These terms all contribute to the
coefficient of λ2 in the strict perturbative limit.

C. The strict perturbative limit

We next consider the strict perturbative limit through
order λ2. To obtain this limit we evaluate the NLO HTLpt
thermodynamic potential with LO perturbative gluon,
scalar, and quark masses. Expressed numerically, the
NLO HTLpt result in the DRG scheme obtained in
Ref. [48] is

ΩDRG
NLO

F ideal


m̂q¼m̂q;LO
m̂D¼m̂D;LO

M̂D¼M̂D;LO

¼ 1 − 0.151982 λþ 0.142365 λ3=2

− 0.0923192 λ2 þ 0.015399 λ2 log
λ

μ̂
;

ð42Þ

where m̂q;LO, m̂D;LO, and M̂D;LO are taken to be given by
their leading-order weak-coupling limits given in Eq. (A1).
The corresponding RDR HTLpt result obtained herein is

ΩRDR
NLO

F ideal


m̂q¼m̂q;LO
m̂D¼m̂D;LO

M̂D¼M̂D;LO

¼ 1 − 0.151982 λþ 0.142365 λ3=2

− 0.0912209 λ2 þ 0.015399 λ2 log
λ

μ̂
:

ð43Þ
We find the same dependence on the renormalization scale
μ̂ and all terms are same except the term proportional to λ2

without logarithms. We note that the coefficient of λ2 log λ
is the same using both schemes, showing that it is scheme
independent.
As further a comparison, the perturbative free energy

computed to three-loop order, keeping all terms through
order λ2 was obtained in Refs. [36,37]. Expressed numeri-
cally the full result is

Fresum
3−loop

F ideal
¼ 1 − 0.151982λþ 0.142365λ3=2

− 0.0613173λ2 þ 0.015399λ2 log λ: ð44Þ
Comparing Eqs. (42) and (43) to (44), we find all terms

are the same except the terms proportional to λ2. This is
expected since both the RDR and DRG scheme HTLpt
calculations were two-loop calculations and hence cannot
reproduce the full λ2 coefficient. At two-loop order one
could consider fixing μ̂ as to reproduce the full order λ2
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coefficient. This occurs when μ̂ ≃ 0.133554 and μ̂≃
0.143428, in the DRG and RDR schemes, respectively.

D. Gap equations

To go beyond strict perturbation theory we need to fix the
mass parameters in a nonperturbative manner. Using the
NLO HTLpt thermodynamic potential, the gluon, scalar,
and quark masses can be fixed using the variational method
described previously. The gluon, scalar, and quark mass
parameters mD, MD, and mq can be determined by
requiring the derivative of ΩRDR

NLO with respect to each
parameter is zero,

∂
∂mq

ΩRDR
NLOðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0;

∂
∂mD

ΩRDR
NLOðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0;

∂
∂MD

ΩRDR
NLOðT; λ; mD;MD;mq; δ ¼ 1Þ ¼ 0: ð45Þ

The first equation in Eq. (45) gives

m̂2
qðπ2 − 6Þ ¼ λ

4π2

�
3

2
m̂D þ 3

2

�
1.998701836þ log

μ̂

2

�

− 9M̂D

�
γ þ 2 log 2þ log

μ̂

2

��
: ð46Þ

The second equation gives

m̂2
D þ m̂3

D

�
γ þ π2

3
þ log

μ̂

2
−
8

3
−
4 log 2

3

�

¼ λ

4π2

�
2 − 3M̂D þ 3M̂2

D − 8m̂2
q − m̂2

Dð1þ 8 log 2Þ

− 6m̂DM̂D

�
γ þ log

μ̂

2

�

þ m̂D

�
1.1753831þ 2 log m̂D þ log

μ̂

2

��
: ð47Þ

Finally, the third equation gives

M̂2
D þ 2M̂3

D

�
γ þ log

μ̂

2

�

¼ λ

4π2

�
1 −

1

2
m̂D þ m̂DM̂D −

1

2
m̂2

D

�
γ þ log

μ̂

2

�

þ 8m̂2
q

�
γ þ 2 log 2þ log

μ̂

2

�

− 3M̂2
D

�
4 log 2þ 3γ þ 3 log

μ̂

2
þ 1

2

�

þ M̂D

�
0.677386934þ 2 log M̂D þ log

μ̂

2

��
: ð48Þ

We find that, similar to the DRG scheme, m̂q in Eqs. (47)
and (48) can be written in terms of M̂D and m̂D by
using (46). By numerically solving these three equations
simultaneously, we obtain the gap equation solutions,
m̂gap

q ðλ; μ̂Þ, m̂gap
D ðλ; μ̂Þ, and M̂gap

D ðλ; μ̂Þ.
In Fig. 1, we compare numerical solution of quark,

gluon, and scalar gap equations in the RDR scheme to
the result obtained using the DRG scheme. In these
three panels, the results are obtained using the central
value of the renormalization scale, μ̂ ¼ 1, and are scaled

FIG. 1. Comparisons of the numerical solution of gap equations
in the RDR and DRG schemes for mq, mD, andMD as a function
of λ with μ̂ ¼ 1. In each panel, the results are scaled by their
corresponding leading-order weak-coupling limits.
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by their corresponding leading-order weak-coupling
limits. The red line is the result obtained using the
RDR scheme, and the black dotted line is the result
obtained using the DRG scheme. As one can see from
Fig. 1, the results obtained in these two schemes are
numerically similar to each other. At the central value
μ ¼ 2πT, for the quark mass, the RDR result is slightly
higher than the DRG result when λ → 0

1; for the gluon
mass, the RDR result is a little lower than the DRG
result at intermediate λ; for the scalar mass, the two
results are nearly identical.

VI. THERMODYNAMIC FUNCTIONS
IN THE RDR SCHEME

The NLO HTLpt-resummed free energy in the
RDR scheme can be obtained by evaluating the NLO
thermodynamic potential (41) at the solution of the gap
equations (45),

FRDR
NLO ¼ ΩRDR

NLOðT; λ; mgap
D ;Mgap

D ;mgap
q ; δ ¼ 1Þ: ð49Þ

The pressure, entropy density, and energy density can be
obtained using

P ¼ −F ;

S ¼ −
dF
dT

;

E ¼ F − T
dF
dT

: ð50Þ

In SYM4;4 these three quantities satisfy

P
Pideal

¼ S
Sideal

¼ E
Eideal

; ð51Þ

since λ is temperature independent.

A. Numerical results

In Fig. 2, we present a comparison of our NLO
HTLpt result in the RDR and DRG schemes with the
next-to-leading approximation (NLA) result of Blaizot,
Iancu, Kraemmer, and Rebhan (BIKR) [71]. The green,
blue, and cyan dashed/dotted lines represent the strict
perturbation theory result given in Eq. (1), truncated
at order λ, λ3=2, λ2 (including the logarithmic term),
respectively. The orange dashed line is the strong
coupling result given in Eq. (2). The purple dot-dashed
line is the result of a generalized Padé approximant
which is constructed based on Eqs. (1) and (2) [37]. The
black and blue lines with a shaded bands are the NLO
HTLpt result in the RDR and DRG schemes,

respectively. The bands correspond to variation of μ̂
in the range 1=2 ≤ μ̂ ≤ 2 and the solid lines correspond
to μ̂ ¼ 1. Finally, the red line with a shaded band is the
NLO BIKR result with the bands and line corresponding
to scale variation and central value.
As Fig. 2 demonstrates, the DRG and RDR schemes

result in similar predictions for λ≲ 6; however, both are
below the generalized Padé which is constructed using the
full order λ2 and λ2 log λ coefficients. Since the DRG
scheme breaks supersymmetry, the RDR result should be
taken as the correct NLO HTLpt result. In comparison with
the BIKR result, which made use of the DRG scheme, we
see that it is also in agreement to within a few percent
for λ≲ 6.
In Fig. 3, we present a similar comparison, but for

smaller λ in order to see the differences more clearly. The
various strict perturbative results in this figure are the same
as in Fig. 2. As can be seen from this figure, there is
excellent agreement between the BIKR result and RDR
NLO HTLpt in this coupling range. The generalized Padé
approximant, however, only overlaps with both resummed
results for λ≲ 0.5.

FIG. 3. Comparison of our NLO result for the scaled entropy
density in the RDR scheme with prior results for small λ. Lines
are the same as in Fig. 2.

FIG. 2. Comparison of the NLO scaled entropy density
obtained in the RDR scheme, the DRG scheme, and the prior
NLA work of Blaizot, Iancu, Kraemmer, and Rebhan (BIKR)
[71]. A detailed description of the various lines can be found in
the text.

1The gap equation solution for mq does not approach its
perturbative limit when λ approaches to zero in both schemes.
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VII. CONCLUSIONS

In this work, we obtained the LO and NLO HTLpt
resummed thermodynamic potential in SYM4;4 using the
RDR regularization scheme. We then analytically and
numerically compared the RDR result to the result obtained
in the DRG scheme. From the analytical perspective, we
found that differences emerged only in finite contributions,
while the divergences were unaffected. This causes only
a small change compared to DRG HTLpt result, which
can be seen from the figures presented in Sec. VI A.
Importantly, we found that, when expanded in strict
perturbation theory, both schemes gave the same results
for the coefficients of all terms contributing at orders λ,
λ3=2, and λ2 log λ, while at order λ2 we found a weak
residual regularization scheme dependence.
The results reported herein provide an important cross

check of the coefficient of the order λ2 log λ term in the free
energy, independently confirming our prior result for this
coefficient, which was obtained in Refs. [36,37]. The
differences at order λ2 are not yet conclusive; however,
since in both the RDR and DRG schemes we have only
performed a two-loop HTLpt calculation and a three-loop
calculation is needed to properly fix this coefficient. Such a
calculation was performed in strict perturbation theory in
Refs. [36,37]. It would be interesting to extend the RDR
HTLpt calculation to three-loop order in order to see how
well it performs at large coupling; however, we first plan to
complete the computation of the order λ5=2 coefficient
using effective field theory methods since this calculation is
somewhat more manageable.
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APPENDIX A: HTLPT FEYNMAN RULES FOR
SYM4;4 IN THE RDR SCHEME

In this Appendix, we will present the RDR scheme
HTLpt Feynman rules for SYM4;4 in Minkowski space.
In Minkowski space, the momentum is denoted by p ¼
ðp0;pÞ and satisfies p · q ¼ p0q0 − p · q. The four-vector
nμ specifies the thermal rest frame and in the local rest
frame of the plasma given by n ¼ ð1; 0Þ.
We begin by noting that, since all ultraviolet divergences

which are generated from the HTLpt reorganization are all
canceled by systematically derivable counterterms, we only
need to consider the leading order contributions to the
gluon, quark, and scalar masses,

m2
D;LO ¼ 2λT2; M2

D;LO ¼ λT2; m2
q;LO ¼ λT2

2
; ðA1Þ

which have been given previously in Refs. [48].

1. HTLpt gluon polarization tensor

In SYM4;4, for massless bosons and fermions, the gluon
polarization tensor in HTL limit can be expressed as

ΠμνðpÞ ¼ m2
D½T μνðp;−pÞ − nμnν�; ðA2Þ

where we have introduced a rank-two tensor T μνðp; qÞ,
which is defined only when pþ q ¼ 0,

T μνðp;−pÞ≡
	
yμyν

p · n
p · y



ŷ
: ðA3Þ

The angular brackets represent an average over the
spatial direction of the lightlike vector y. The tensor T μν

is symmetric in μ and ν, and satisfies the “Ward identity,”

pμT μνðp;−pÞ ¼ ðp · nÞnν: ðA4Þ

As a result, the polarization tensor Πμν is also symmetric in
μ and ν and satisfies

pμΠμνðpÞ ¼ 0;

gμνΠμνðpÞ ¼ −m2
D: ðA5Þ

The gluon polarization tensor can also be expressed in
terms of two scalar functions, the transverse and longi-
tudinal polarization functions ΠT and ΠL, which can be
written as

ΠTðpÞ ¼
1

D − 2
ðδij − p̂ip̂jÞΠijðpÞ;

ΠLðpÞ ¼ −Π00ðpÞ; ðA6Þ

where p̂ ¼ p=jpj is the unit vector in the direction of p. The
gluon polarization tensor can be expressed in terms of these
two functions,

ΠμνðpÞ ¼ −ΠTðpÞTμν
p −

1

n2p
ΠLðpÞLμν

p ; ðA7Þ

with

Tμν
p ¼ gμν −

pμpν

p2
−
nμpnνp
n2p

;

Lμν
p ¼ nμpnνp

n2p
: ðA8Þ

The four-vector nμp appearing above is defined by
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nμp ¼ nμ −
n · p
p2

pμ; ðA9Þ

which satisfies p · np ¼ 0 and n2p ¼ 1 − ðn · pÞ2=p2. As a
consequence, Eq. (A5) reduces to

ðD − 2ÞΠTðpÞ þ
1

n2p
ΠLðpÞ ¼ m2

D: ðA10Þ

In the HTL limit, the polarization functions ΠTðpÞ and
ΠLðpÞ can be written in terms of T 00,

ΠTðpÞ ¼
m2

D

ðD − 2Þn2p
½T 00ðp;−pÞ − 1þ n2p�;

ΠLðpÞ ¼ m2
D½1 − T 00ðp;−pÞ�: ðA11Þ

Note that, it is crucial to take the angular average in d − 1 ¼
3 − 2ϵ in (A3), and then analytically continue to d − 1 ¼ 3
only after all poles in ϵ have been canceled. The expression
for T 00 is

T 00ðp;−pÞ ¼ ωðϵÞ
2

Z
1

−1
dcð1 − c2Þ−ϵ p0

p0 − jpjc ; ðA12Þ

where the weight function ωðϵÞ is given by

ωðϵÞ ¼ Γð2 − 2ϵÞ
Γ2ð1 − ϵÞ 2

2ϵ ¼ Γð3
2
− ϵÞ

Γð3
2
ÞΓð1 − ϵÞ : ðA13Þ

In the imaginary-time formalism, T 00ðp;−pÞ can be
expressed as

T P ¼
	

P2
0

P2
0 þ p2c2



c
; ðA14Þ

where the angular brackets represent an average over c
defined by

hfðcÞic ≡ ωðϵÞ
Z

1

0

dcð1 − c2Þ−ϵfðcÞ: ðA15Þ

The definition of the gluon self energy in Eq. (A2) is the
same as in QCD in Ref. [16] up to the definition ofmD. The
HTLpt three-gluon vertex, four-gluon vertex, and ghost-
gluon vertex are also similar C [48].

2. HTLpt gluon propagator

The HTLpt Feynman rule for the gluon propagator is

iδabΔμνðpÞ; ðA16Þ

where a and b are adjoint color indices and

ΔμνðpÞ ¼ ½−ΔTðpÞgμν þΔXðpÞnμnν�
−
n ·p
p2

ΔXðpÞðpμnν þ nμpνÞ

þ
�
ΔTðpÞ þ

ðn ·pÞ2
p2

ΔXðpÞ−
ξ

p2

�
pμpν

p2
; ðA17Þ

where ΔT and ΔL are the transverse and longitudinal
propagators, respectively, and defined by

ΔTðpÞ ¼
1

p2 − ΠTðpÞ
;

ΔLðpÞ ¼
1

−n2pp2 þ ΠLðpÞ
; ðA18Þ

and ΔXðpÞ is defined as

ΔXðpÞ ¼ ΔLðpÞ þ
1

n2p
ΔTðpÞ: ðA19Þ

3. HTLpt quark self energy, propagator,
and counterterm

The HTLpt quark self energy is

ΣðpÞ ¼ m2
q=TðpÞ; ðA20Þ

where we have suppressed the trivial Kronecker deltas and

T μðpÞ≡
	

yμ

p · y



ŷ
; ðA21Þ

Similar to the gluon polarization tensor, the angular
average in T μ can be written as

T μðpÞ ¼ ωðϵÞ
2

Z
1

−1
dcð1 − c2Þ−ϵ yμ

p0 − jpjc : ðA22Þ

As was the case with the gluonic self energy, the quark
self energy (A20) is the same as in QCD [17] up to the
definition of mq and taking into account the four Majorana
fermions which are indexed by i. This will also occur in the
HTLpt quark propagator, quark-gluon three vertex, and
quark-gluon four vertex in SYM4;4 [48].
The HTLpt Feynman rule for the quark propagator is

iδabδijSðpÞ; ðA23Þ

where i, j index the four independent Majorana fermions
and

SðpÞ ¼ 1

=p − ΣðpÞ ¼
1

=AðpÞ ; ðA24Þ

where AμðpÞ ¼ ðA0ðpÞ;AsðpÞp̂Þ with
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A0ðpÞ ¼ p0 −
m2

q

p0

T p;

AsðpÞ ¼ jpj þm2
q

jpj ½1 − T p�: ðA25Þ

The insertion of an HTL quark counterterm into a quark
propagator corresponds to

iδabδijΣðpÞ: ðA26Þ

4. HTLpt scalar self energy, propagator,
and counterterm

The HTL scalar self energy can be expressed as

PAB
ab ðpÞ ¼ δabδ

ABλT2; ðA27Þ

and the corresponding Feynman rule for the scalar propa-
gator is

iδabδABΔsðpÞ; ðA28Þ

where

ΔsðpÞ ¼
1

p2 −M2
D
: ðA29Þ

The insertion of an HTL scalar counterterm into a scalar
propagator corresponds to

−iδabδABPAA
aa ðpÞ: ðA30Þ

5. HTLpt quark-gluon vertex

The quark-gluon vertex with incoming quark momen-
tum r, incoming gluon momentum p, and outgoing quark
momentum q, Lorentz index μ, and color indices b, a, c is

Γμ;ij
abcðp; q; rÞ ¼ −gfabcδij½γμ þm2

qT̃
μðp; q; rÞ�

¼ −gfabcδijΓμðp; q; rÞ: ðA31Þ

The rank-one tensor T̃ μ is only defined for pþ r − q ¼ 0

T̃ μðp; q; rÞ≡
	
yμ
�

=y
ðy · rÞðy · qÞ

�

ŷ
; ðA32Þ

and is even under the permutation of q and r. It satisfies

pμT̃
μðp; q; rÞ ¼ =TðrÞ − =TðqÞ: ðA33Þ

The quark-gluon vertex therefore satisfies the Ward iden-
tity,

pμΓμðp; q; rÞ ¼ S−1ðqÞ − S−1ðrÞ: ðA34Þ

6. HTLpt quark-gluon four vertex

The quark-gluon four vertex with incoming quark
momentum r, outgoing gluon momentum p, q, and out-
going quark momentum s is

Γμν;ij
abcdðp; q; r; sÞ ¼ −ig2δijm2

qT̃
μν
abcdðp; q; r; sÞ; ðA35Þ

and satisfies

δijδadδbcΓμν
abcd;ijðp; q; r; sÞ ¼ −4ig2NcdAΓμνðp; q; r; sÞ;

ðA36Þ

where

Γμνðp; q; r; sÞ ¼ m2
q

	
yμyν

�
1

y · r
þ 1

y · s

�

×
=y

½y · ðr − pÞ�½y · ðsþ pÞ�


: ðA37Þ

This tensor is symmetric in μ and ν, and satisfies the Ward
identity,

pμΓμνðp;q; r; sÞ ¼ Γνðq; r−p;sÞ− Γνðq; r; sþpÞ: ðA38Þ

7. HTLpt four scalar vertex

The four-scalar vertex is

ΓABCD
abcd ðp;q; r; sÞ ¼ −ig2½fabefcdeðδACδBD − δADδBCÞ

þ facefbdeðδABδCD − δADδBCÞ
þ fadefbceðδABδCD − δACδBDÞ�: ðA39Þ

It satisfies

δbdδacδACδBDΓABCD
abcd ðp; q; r; sÞ ¼ ð−ig2Þð60NcdAÞ: ðA40Þ

8. HTLpt scalar-gluon three vertex

The scalar-gluon vertex with incoming scalar momen-
tum r, incoming gluon momentum p, and outgoing scalar
momentum q is

Γμ;AB
abc ðp; q; rÞ ¼ gfabcδABðrþ qÞμ: ðA41Þ

9. HTLpt scalar-gluon four vertex

The scalar-gluon four vertex is independent of the
direction of the momentum and can be expressed as

Γμν;AB
abcdeðp; q; r; sÞ ¼ −2ig2gμνδABfadefbce: ðA42Þ

It satisfies
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δacδbdδABΓμν;AB
abcdeðp; q; r; sÞ ¼ ð2ig2Þð6NcdAÞgμν: ðA43Þ

10. HTLpt quark-scalar vertex

There are two types of quark-scalar vertices, the quark-
scalar vertex and the quark-pseudoscalar vertex. This is due
to the fact that there are two types of interactions between
quarks and scalars (Xp), and between quarks and pseudo-
scalars (Yq) which are different. The quark-scalar vertex,
with incoming scalar momentum p, incoming quark
momentum r and outgoing quark momentum q, and their
corresponding colors indexed by a, c, b, can be written as

Γp
abc;ijðp; q; rÞ ¼ −igfabcα

p
ij: ðA44Þ

The quark-pseudoscalar vertex can be written as

Γq
abc;ijðp; q; rÞ ¼ gfabcβ

q
ijγ5: ðA45Þ

APPENDIX B: INTEGRALS REQUIRED
IN THE HTLPT CALCULATION

The one-loop sum-integrals required for the SYM4;4

NLO HTLpt calculation were presented in Appendix B of
Refs. [16,17]. We list them here for completeness.

XZ
P

1

P2
¼ T2

�
μ

4πT

�
2ϵ 1

12

�
1þ

�
2þ 2

ζ0ð−1Þ
ζð−1Þ

�
ϵ

�
; ðB1Þ

XZ
P

1

P4
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ
�
1

ϵ
þ 2γþ

�
π2

4
− 4γ1

�
ϵ

�
; ðB2Þ

XZ
P

p2

P4
¼ 1

8
T2; ðB3Þ

XZ
P

p2

P6
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ 3

4

�
1

ϵ
þ 2γ −

2

3

�
; ðB4Þ

XZ
fPg

p2

P6
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ 3

4

�
1

ϵ
þ 2γ −

2

3
þ 4 log 2

�
;

ðB5Þ

XZ
P

p4

P8
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ 5

8

�
1

ϵ
þ 2γ −

16

15

�
; ðB6Þ

XZ
P

1

P2p2
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ

2

�
1

ϵ
þ 2γ þ 2

þ
�
4þ 4γ þ π2

4
− 4γ1

�
ϵ

�
: ðB7Þ

Similarly, the one-loop sum-integrals which involve HTL
function T P are given by

XZ
P

T P

p4
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ

ð−1Þ
�
1

ϵ
þ 2γ þ 2 log 2

�
; ðB8Þ

XZ
P

T P

P2p2
¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ
�
2 log 2

�
1

ϵ
þ 2γ

�

þ 2log22þ π2

3

�
; ðB9Þ

XZ
P

ðT PÞ2
p4

¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ
�
−
2

3

��
ð1þ 2 log 2Þ

×

�
1

ϵ
þ 2γ

�
−
4

3
þ 22

3
log 2þ 2log22

�
;

ðB10Þ
XZ

fPg

T P

P2P2
0

¼ 1

ð4πÞ2
�

μ

4πT

�
2ϵ
�
1

ϵ2
þ 2ðγ þ 2 log 2Þ 1

ϵ

þ π2

4
þ 4log22þ 8γ log 2 − 4γ1

�
: ðB11Þ

The two-loop sum-integrals required can be split into two
types. The first type are related to bosonic momentum
integrations,

XZ
PQ

1

P2Q2R2
¼ 0; ðB12Þ

XZ
PQ

1

P2Q2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ 1

12

�
1

ϵ
þ 10

− 12 log 2þ 4
ζ0ð−1Þ
ζð−1Þ

�
; ðB13Þ

XZ
PQ

q2

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ1

6

�
1

ϵ
þ8

3
þ2γþ2

ζ0ð−1Þ
ζð−1Þ

�
;

ðB14Þ
XZ

PQ

q2

P2Q2R2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ 1

9

�
1

ϵ
þ 7.521

�
; ðB15Þ

XZ
PQ

P ·Q
P2Q2r4

¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−
1

8

��
1

ϵ
þ 2

9

þ 4 log 2þ 8

3
γ þ 4

3

ζ0ð−1Þ
ζð−1Þ

�
: ðB16Þ

The second type are related to fermionic momentum
integrations,

XZ
fPQg

1

P2Q2R2
¼ 0; ðB17Þ

XZ
fPQg

1

P2Q2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−
1

6

��
1

ϵ

þ 4 − 2 log 2þ 4
ζ0ð−1Þ
ζð−1Þ

�
; ðB18Þ
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XZ
fPQg

q2

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

12

��
1

ϵ
þ 11

3
þ 2γ

− 2 log 2þ 2
ζ0ð−1Þ
ζð−1Þ

�
; ðB19Þ

XZ
fPQg

P ·Q
P2Q2r4

¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

36

�

×

�
1 − 6γ þ 6

ζ0ð−1Þ
ζð−1Þ

�
; ðB20Þ

XZ
fPQg

q2

P2Q2R2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

72

��
1

ϵ
− 7.002

�
;

ðB21Þ
XZ

fPQg

p2

P2Q2R2q2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ 5

72

�
1

ϵ
þ 9.5667

�
;

ðB22Þ
XZ

fPQg

r2

P2Q2R2q2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

18

��
1

ϵ
þ 8.1420

�
:

ðB23Þ

In a similar manner, the two-loop sum-integrals involving
T P can be split into two types. The first type are related to
the bosonic momentum integrations,

XZ
PQ

T R

P2Q2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

48

��
1

ϵ2

þ
�
2 − 12 log 2þ 4

ζ0ð−1Þ
ζð−1Þ

�
1

ϵ
− 19.83

�
;

ðB24Þ
XZ

PQ

q2T R

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

576

��
1

ϵ2
þ
�
26

3
−
24

π2

− 92 log2þ 4
ζ0ð−1Þ
ζð−1Þ

�
1

ϵ
− 477.7

�
; ðB25Þ

XZ
PQ

ðP ·QÞT R

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

96

��
1

ϵ2
þ
�
8

π2

þ 4 log 2þ 4
ζ0ð−1Þ
ζð−1Þ

�
1

ϵ
þ 59.66

�
:

ðB26Þ

The second type are related to the fermionic momentum
integrations,

XZ
fPQg

T R

P2Q2r2
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

48

��
1

ϵ2
þ
�
2

þ 12 log 2þ 4
ζ0ð−1Þ
ζð−1Þ

�
1

ϵ
þ 136.362

�
;

ðB27Þ

XZ
fPQg

q2T R

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

576

��
1

ϵ2

þ
�
26

3
þ 52 log 2þ 4

ζ0ð−1Þ
ζð−1Þ

�
1

ϵ

þ 446.438

�
; ðB28Þ

XZ
fPQg

ðP ·QÞT R

P2Q2r4
¼ T2

ð4πÞ2
�

μ

4πT

�
4ϵ
�
−

1

96

��
1

ϵ2

þ
�
4 log 2þ 4

ζ0ð−1Þ
ζð−1Þ

�
1

ϵ
þ 69.174

�
;

ðB29Þ

XZ
fPQg

ðr2 − p2ÞT Q

P2q2Q2
0R

2
¼ −

T2

ð4πÞ2
�

μ

4πT

�
4ϵ 1

8

�
1

ϵ2

þ
�
2þ 2γ þ 10

3
log 2þ 2

ζ0ð−1Þ
ζð−1Þ

�

×
1

ϵ
þ 46.8757

�
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