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The light-quark mass dependence of the nucleon axial isovector charge (gA) has been studied up to next-
to-next-to-leading order, Oðp4Þ, in relativistic chiral perturbation theory using extended-on-mass-shell
renormalization, without and with explicit Δð1232Þ degrees of freedom. We show that in the Δ-less case, at
this order, the flat trend of gAðMπÞ exhibited by state-of-the-art lattice QCD (LQCD) results cannot be
reproduced using low energy constants extracted from pion-nucleon elastic and inelastic scattering.
A satisfactory description of these LQCD data is only achieved in the theory withΔ. From this fit, we report
gAðMπðphysÞÞ ¼ 1.260� 0.012, close to the experimental result, and d16 ¼ −0.88� 0.88 GeV−2, in
agreement with its empirical value. The large uncertainties are of theoretical origin, reflecting the
difference between Oðp3Þ and Oðp4Þ that still persists at large Mπ in presence of the Δ.
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I. INTRODUCTION

The axial isovector charge gu−dA (gA from now on) is a
fundamental property of the nucleon related to the differ-
ence in the spin fractions carried by u and d quarks. With a
magnitude precisely determined from neutron β decay,1 the
nucleon axial charge represents a benchmark for non-
perturbative studies of quantum chromodynamics (QCD)
in the lattice (LQCD) alongside with other nucleon proper-
ties, such as scalar and tensor charges, electromagnetic
form factors, and parton distribution functions (see Ref. [3]
and Sec. 10 of Ref. [4] for recent reviews). Over the last
decade, progress in this direction has been significant [4],
owing to better computational resources, improved algo-
rithms, and techniques to reduce systematic errors, in
particular, those induced by excited-state contamination,
which can be considerable in the baryon sector for currently
available lattice ensembles [5,6].
As the effective theory of QCD in the nonperturbative

regime, chiral perturbation theory (ChPT) plays an important

role. It allows one to determine the light-quark (u, d) mass
dependence of low-energy hadronic observables in terms of
low-energy constants (LECs) and perform model-indepen-
dent extrapolations of LQCD results to the physical point.
ChPTalso allows one to account for finite lattice-volume and
lattice-spacing corrections in a systematic way [7,8]. It has
also proved helpful to deal with the contamination from
excited states [5,6,9]. The interplay between ChPT and
LQCD can also be used to determine poorly known
LECs, which are difficult to access with experimental data.
This is the case of d16 present in the Oðp3Þ part of the πN
Lagrangian. Via a 4d16M2

π term, this LEC controls the slope
of the light-quark mass dependence of gA.

2 Therefore, its
extraction from LQCD results at low pion masses is only
natural. LEC d16 has been identified as one of the most
significant sources of uncertainty in quark mass dependence
of nuclear properties such as ground-state and binding
energies through long-range nuclear forces [10–12].
Alternatively, LECs have been extracted from experi-

mental information3 on various processes such as pion
photo- and electroproduction [13–16] but, predominantly,
from pion-nucleon (πN) scattering [17–25]. Although d16
cannot be extracted from πN elastic scattering, it contrib-
utes significantly to inelastic, πN → ππN, scattering.
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1After taking into account radiative corrections, a numerical
value of gA ¼ 1.2754ð13Þexpð2ÞRC has been recently extracted [1]
from the PDG average gA=gV ¼ 1.2756ð13Þ [2].

2Let us recall that in the isospin-symmetric limit
mu ¼ md ≡ m̂, M2

π ¼ 2B0m̂þOðp4Þ, so that, as customary,
we indistinctly refer to the m̂ or Mπ dependence.

3Throughout this article, LECs obtained from experimental
data are called phenomenological or empirical to distinguish
them from those extracted from LQCD simulations.
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Indeed, in a combined fit to both elastic and inelastic πN
scattering data, d16 has been recently extracted, albeit with
a large uncertainty [26]. Baryon ChPT (BChPT) has been
used to calculate the axial charge within the heavy-baryon
[27–31] and relativistic [22,23,30,32–35] ChPTapproaches
both without and with the Δð1232Þ as an explicit degree of
freedom. In the relativistic framework, both infrared and
extended-on-mass-shell (EOMS) regularization methods
have been applied. Some of these studies also address
the nucleon axial form factor at low four-momentum
transfers squared [32–35]. The Mπ dependence of gA has
been specifically investigated in Refs. [28–31,34,35].
Armed with relativistic baryon ChPT, we revisit this

problem up to next-to-next-to-leading order (NNLO) in the
perturbative expansion. The EOMS scheme ensures that
not only power counting but also analytic properties of loop
functions are properly preserved. After describing in Sec. II
the details of the ChPT calculation and introducing the
relevant terms of the effective Lagrangian, we show in
Sec. III the Mπ dependence of gA predicted with the
phenomenological LECs obtained in Ref. [26] from πN
elastic and inelastic scattering. In order to obtain a better
description of recent LQCD data, we have performed fits
from which some of the LECs and, in particular, d16, are
determined. These are presented in Sec. IV. A meaningful
representation of the flat trend exhibited by the LQCD
results is only achieved with explicit Δð1232Þ. Differences
between orders, which are considerable between NLO and
NNLO, are used to provide a measure of the systematic
error arising from the truncation of the perturbative series.
These differences are the main source of uncertainty in the
extracted d16 value.

II. THE NUCLEON AXIAL CHARGE
IN RELATIVISTIC BChPT

In the isospin limit, the matrix element of the axial
isovector current

Aa
μðxÞ ¼ q̄ðxÞγμγ5

τa

2
qðxÞ; ð1Þ

with q ¼ ðu; dÞT the quark-field doublet, taken between
on-shell nucleon states of equal four-momenta p
(p2 ¼ m2

N), can be written as

hNðpÞjAa
μð0ÞjNðpÞi ¼ ūðpÞgAγμγ5

τa

2
uðpÞ: ð2Þ

The isovector character of the current is manifest given the
presence of the Pauli isospin matrices τa.
We calculate the axial charge gA employing relativistic

BChPTwith pions, nucleons, and Δ as degrees of freedom.
We use the standard power counting [36], extended to
diagrams with Δ baryons following small scale expansion

of Refs. [37,38]. In this power counting, the mass differ-
ence δ ¼ mN −mΔ is OðpÞ.

A. Relevant terms of the effective Lagrangian

In this section, the terms in the effective Lagrangian,
Leff , required for our calculation are presented. We need

Leff ⊃Lð1Þ
πNþLð1Þ

πΔþLð1Þ
πNΔþLð2Þ

πNþLð2Þ
πNΔþLð2Þ

πΔþLð3Þ
πN; ð3Þ

where superscripts indicate the chiral order, and subscripts

show the present degrees of freedom. The terms in Lð1;3Þ
πN ,

Lð1Þ
πΔ, and Lð1Þ

πNΔ that are relevant for our study have been
displayed in Ref. [34] using the same notation adopted
here. In addition, Oðp2Þ contributions are entailed to give
gA at NNLO. Following the notation of Ref. [39], the
required terms of the πN Lagrangian are

Lð2Þ
πN ⊃ Ψ̄

�
c1hχþi −

c2
8m

∘ 2
ðhuμuνifDμ; Dνg þ H:c:Þ

þ c3
2
huμuμi þ

ic4
4

½uμ; uν�σμν
�
Ψ; ð4Þ

where Ψ is the isospin doublet of nucleon fields. Including
only isovector axial external fields aaμτa=2≡ aμ, we end up
with

Dμ ¼ ∂μ þ Γμ;

Γμ ¼
1

2
½u†ð∂μ − iaμÞuþ uð∂μ þ iaμÞu†�;

uμ ¼ i½u†ð∂μ − iaμÞu − uð∂μ þ iaμÞu†�; ð5Þ

χþ ¼ u†χu† þ uχ†u, with χ ¼ diagðM2
π;M2

πÞ, and h…i
denotes a trace over isospin.
In Lð2Þ

πNΔ, after redundant terms are eliminated from
Eq. (67) of Ref. [40] (see also Sec. 3.1 of Ref. [41] and
the Appendix of Ref. [42]), only the following monomials,

Lð2Þ
πNΔ ⊃ Ψ̄k

αξ
3
2

ki

�
b4
2
ωi
αω

j
βγ

βγ5τ
j þ b5

2
ωj
αωi

βγ
βγ5τ

j

�
Ψ

þ H:c:; ð6Þ

contribute to the nucleon axial charge. Here, Ψμ denotes
the Rarita-Schwinger field of the Δ resonance. States

fξ3
2

ijΨ
j
μgi¼1–3, where ξ

3
2

ij ¼ δij − τiτj=3 are isospin-3=2
projectors, are also isospin doublets, whose explicit expres-
sions in terms of the physical Δ states are derived, for
example, in Appendix A of Ref. [43]. The isovector
projection of uμ is represented by ωμ;i ¼ 1

2
hτiuμi (see,

for instance, Ref. [40]). Finally, also at Oðp2Þ [40,44],

Lð2Þ
πΔ ⊃ Ψ̄i

μξ
3
2

ijfa1hχþiδjkgμνgξ
3
2

klΨlν ð7Þ
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introduces an Mπ-dependent correction to the Δ mass, in
the same way as the term proportional to c1 does for the
nucleon mass.

B. Perturbative calculation

The set of Feynman diagrams that contribute to the axial
form factor and, in particular, to gA are displayed in Figs. 1
and 2. The LECs that each of these diagrams brings about
are listed in Table I. At Oðp4Þ, there are contributions from
Oðp2Þ vertices but also baryon (N, Δ) mass insertions. The
later are calculated perturbatively; i.e., we evaluate directly
diagrams (i), (j), and (l)–(n) of Fig. 2, avoiding Dyson
resummations to all orders in the propagators. Alternative
choices have been considered in Refs. [33,35].
Although not diagrammatically represented, nucleon

wave-function renormalization is taken into account in
the standard way. To the order of our calculation, only the
OðpÞ diagram (a), giving just the axial charge in the chiral

limit g
∘
A, should be multiplied by the wave-function

renormalization constant ZN , calculated from the Oðp4Þ
nucleon self-energy,

ZN ≈ 1þ ∂Σð4Þ
N

∂p
����
p¼mN

: ð8Þ

Additional Oðp3Þ and Oðp4Þ contributions to gA are
generated in this way. The LECs that enter in them are
also listed in Table I.
In order to absorb the ultraviolet divergencies generated

by loops, we perform dimensional renormalization in the

M̃S scheme [45], at the scale μ ¼ m
∘
, where m

∘
denotes

the nucleon mass in the chiral limit. An additional

renormalization is then performed to account for the
power-counting breaking caused by the presence of baryon
masses which do not vanish in the chiral limit. Among the
available schemes, we employ EOMS renormalization [45]
which consists of the absorption of the power-counting
breaking (PCB) terms in a redefinition of the LECs. In this
way, power counting is restored without altering the
analytic properties of the loops and preserving covariance.
Note that, as in earlier studies [24,34], PCB terms are
identified and subtracted in an expansion in powers or Mπ

but not in δ. The EOMS renormalization shifts for the
LECs are lengthy, so we have included them in the
Supplementary Material [46].

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. Diagrams at orders OðpÞ, (a), and Oðp3Þ, (b)–(g), contributing to the nucleon axial charge. Dashed, solid single, and double
lines denote pions, nucleons, and Δ resonances, respectively; wiggly lines stand for external axial fields. The open circle represents an
Oðp3Þ vertex, while the rest of the vertices are OðpÞ. Permutations of diagrams (d) and (f) have been omitted in the figure.

(h) (i) (j) (k) (l) (m) (n)

FIG. 2. Oðp4Þ diagrams contributing to the nucleon axial charge. Line styles are the same as in Fig. 1. Filled circles denote Oðp2Þ
vertices. Permutations of all these diagrams are taken into account but not explicitly represented.

TABLE I. LECs introduced by Feynman diagrams in Figs. 1
and 2 and by wave-function renormalization (wfr).

Diagrams OðpÞ Oðp2Þ Oðp3Þ
(a), (c), (d) g

∘
A

� � � � � �
(b) � � � � � � d16
(e) g

∘
A

� � � � � �
(f) g

∘
A, hA � � � � � �

(g) g1, hA � � � � � �
(h) g

∘
A

c2−4 � � �
(i) g

∘
A

c1 � � �
(j) g

∘
A

c1 � � �
(k) hA b4;5 � � �
(l) g

∘
A, hA a1 � � �

(m) g1, hA a1 � � �
(n) g

∘
A, hA c1 � � �

wfr g
∘
A, hA c1, a1 � � �
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In the way outlined above, we obtain the axial charge
within the EOMS renormalization scheme up to Oðp4Þ
with explicit Δ. Our result has the following structure, with
superindices indicating the chiral order,

gA ¼ g
∘
A þ 4d16M2

π þ gð3Þ=ΔAðloopÞðg
∘
A;MπÞ

þ gð3ÞΔAðloopÞðg
∘
A; hA; g1;MπÞ

þ gð4Þ=ΔAðloopÞðg
∘
A; c1; c2; c3; c4;MπÞ

þ gð4ÞΔAðloopÞðg
∘
A; hA; g1; c1; a1; b4; b5;MπÞ þOðp5Þ: ð9Þ

The structures arising from the loops are preserved at the
price of keeping higher order terms. TheOðp3Þ part of gA is
given in Eq. (A4) of Ref. [34]. In Appendix B, we provide
the Oðp4Þ contribution from wave-function renormaliza-
tion. The length of the rest of the Oðp4Þ expression, which
depends on several LECs, discourages us from giving it
explicitly but is available in a Mathematica notebook as
supplementary material [46]. We nonetheless identify that
at Oðp4Þ, i.e., at OðM3

πÞ for gA, c3 and c4 enter in the
following combination, c̃4 ¼ c4 − c3=2, while c2 enters
only at Oðp5Þ [OðM4

πÞ in gA]. Although the rather involved
contribution of diagram (k) does not, a priori, show the
factorization of any mixture of b4 and b5 LECs, after
expanding in Mπ , one finds that the combination which
actually enters at Oðp4Þ is b̃4 ¼ b4 þ ð12=13Þb5. At
Oðp3Þ, we reproduce the results of Eq. (A4) of
Ref. [34]. At Oðp4Þ, we agree with the =Δ EOMS expres-
sions given in Refs. [22,33] except for the different treat-
ment of nucleon mass insertions, which in our case do not
include resummations. As a result, c1M2

π factors appear
only linearly in our calculation but not at all orders.
Furthermore, a PCB term proportional to c4 present in
Ref. [22] after the EOMS renormalization is absent in our
final result.

III. LIGHT-QUARK MASS DEPENDENCE
OF THE AXIAL COUPLING FROM
PHENOMENOLOGICAL INPUT

Once the framework and the chiral order are established,
the Mπ dependence of gA is ultimately determined by the
LEC values. In Ref. [26], elastic πN and inelastic πN →
ππN scattering has been studied up to Oðp4Þ in covariant
ChPT using a modified version of the EOMS approach
[25]. The LECs that enter gAðMπÞ at Oðp4Þ in the Δ-less
model were extracted, including d16, owing to the inclusion
of low energy total and double differential πN → ππN
cross section data in the combined analysis. To make a
prediction of gAðMπÞ based on this phenomenological
input, we should transform the LECs from the modified
EOMS of Refs. [25,26] to the conventional one adopted
here. To the order we are working at, this transformation,

whose details are disclosed in Appendix A, affects the
numerical value of d16 but not of c1−4. The axial coupling

in the chiral limit, g
∘
A, which is not extracted in

Refs. [25,26], is determined as

gAðMπ ¼MπðphysÞ;g
∘
A;d16;ciÞ¼ gAðphysÞ

¼ 1.2754ð13Þexpð2ÞRC ð10Þ

from the experimental value, precisely known from β decay
[1]. Up to higher orders for gA, the remaining parameters,
i.e., the pion decay constant and the nucleon mass in the
chiral limit, have been fixed to Fπ ≃ FπðphysÞ ¼ 92.2 MeV

andm
∘ ≃mNðphysÞ þ 4c1M2

πðphysÞ, withMπðphysÞ ¼ 135 MeV

and mNðphysÞ ¼ 939 MeV, respectively. The numerical

values for d16, c1−4 as well as g
∘
A and their uncertainties

are summarized in Table II.
The resulting gAðMπÞ at Oðp3Þ and Oðp4Þ are displayed

in Fig. 3 together with a subset of recent LQCD

TABLE II. LECs used to obtain the gAðMπÞ dependence in the
=Δ case.

Oðp3Þ Oðp4Þ
g
∘
A

1.251� 0.051 1.089� 0.030

d16 (GeV−2) −2.2� 1.1 −1.86� 0.80
c1 (GeV−1) � � � −0.89� 0.06
c2 (GeV−1) � � � 3.38� 0.15
c3 (GeV−1) � � � −4.59� 0.09
c4 (GeV−1) � � � 3.31� 0.13

FIG. 3. Pion-mass dependence of gA at Oðp3Þ (red) and Oðp4Þ
(blue) using phenomenological input from Ref. [26] and 1σ error
bands. The LQCD data points are from CalLat 18 [47] (black
circles), Mainz 19 [48] (red crosses), RQCD 19 [9] (green
triangles), and NME 21 [49] (blue squares).
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determinations.4 The curves are accompanied by 1σ stat-
istical error bands arising from the uncertainties in the
LECs of Table II assuming they are Gaussian distributed.
Unaccounted correlations are negligible because the uncer-
tainty is strongly dominated by the d16 error. The Oðp3Þ
result shows agreement with the lattice determinations,
albeit with increasing tension as Mπ grows and a curvature
in the central value that is absent in the data. On the other
hand, it is immediately apparent that the Oðp4Þ prediction
not only does not improve the Oðp3Þ but plainly fails to
describe the Mπ dependence of LQCD data. We have
checked that alternative c1−4 determinations from earlier
πN analyses using EOMS [22,24] do not mitigate the steep
rise of gAðMπÞ at Oðp4Þ. Therefore, the inability to

reconcile the light-quark mass dependence of g
∘
A at

Oðp4Þ with phenomenology, earlier observed in nonrela-
tivistic heavy-baryon ChPT [29,30], is also a feature of the
relativistic version of the theory.
The problem with the Oðp4Þ result might be caused by

an accidental slow convergence of gA in BChPT. Instead,
one could argue that additional degrees of freedom such as
the Δ [30] or even the Roper Nð1440Þ resonance might
solve the issue. In Ref. [26], a version of the theory
incorporating the Δ pole is also considered. However, in
order to predict gAðMπÞ up to Oðp4Þ with explicit Δ,
additional LECs absent in that study are needed. For this
reason, we do not tackle the role of the Δ in the gAðMπÞ
dependence from purely empirical input but postpone it to
the next Sec. IV where our fits to recent LQCD data are
reported.

IV. ANALYSIS OF LQCD RESULTS
AND LEC DETERMINATION

A. Data set and fit strategy

The axial charge has been historically underpredicted in
the lattice (see, for instance, Fig. 2 of Ref. [50]), but, as a
result of conceptual and technical improvements, the
majority of LQCD results nowadays agree with the
experimental value at the level of a few percent [4].
Most significantly, the analysis of excited-state contami-
nation has notably evolved in last years. Therefore, we only
include in our data set results from studies with an
improved treatment of these effects. We take into account
renormalized fgiAg data at different fMi

π; aig values, where
a stands for the lattice spacing, from5 CalLat 18 [47],
Mainz 19 [48], RQCD 19 [9],6 and NME 21 [49].7 Our

analysis treats 2þ 1þ 1 (CalLat 18) and 2þ 1 (Mainz 19,
RQCD 19, NME 21) ensembles on the same footing,
assuming that the c-quark sea content plays a negligible
role. We disregard LQCD determinations of gA coming
from q2, finite volume, a, or Mπ extrapolations. Since we
do not correct the finite volume effects, we consider only
large volumes, satisfying MπL ≥ 3.5, so that the neglected
extrapolation is small and can be absorbed in the errors.
In order to gauge the ability of BChPT at Oðp3Þ and

Oðp4Þ to describe the Mπ dependence of gA, and to extract

g
∘
A and d16 LECs, we perform fits to the LQCD data set
defined above. With this aim, we define the following χ2,

χ2 ¼
X
i

ðgAðMi
π; aiÞ − giAÞ2
ðΔgiAÞ2

þ χ2prior: ð11Þ

In addition to gAðMπÞ from BChPT, our theoretical para-
metrization incorporates lattice discretization corrections as

gAðMi
π; aiÞ ¼ gAðMi

πÞ þ xja
nj
i : ð12Þ

Free parameters xj, with j ¼ 1, 2, 3, 4 when lattice data
point i ∈ fCalLat 18; Mainz 19; RQCD 19; NME 21g,
respectively, control the leading a dependence of the
LQCD data, which is action specific, n1;4 ¼ 1, while
n2;3 ¼ 2. These discretization corrections are small and
do not substantially change the extracted LECs but result in
an appreciable reduction of the fits’ χ2=d:o:f.
Some of the LECs upon which gAðMπÞ depends are well

determined in other studies and are kept fixed, while others

are treated as free parameters together with g
∘
A and d16. To

improve our description of the LQCD data and reduce
correlations [51], for free LECs, we assume naturalness
Λn−1cn ∼ 1, encoded in Gaussian priors,

χ2prior ¼
X

free LECs

�
Λn−1cn

5

�
2

: ð13Þ

Here, cn generically denotes a LEC of chiral order OðpnÞ;
the breakdown scale is set to Λ ¼ 1 GeV ∼ 4πFπ [52,53].

We anticipate that a prior for g
∘
A is superfluous, since its

value is always driven to a natural one by low Mπ giA
LQCD data.
The large relative contribution of Oðp4Þ terms discussed

in the previous section and illustrated by Fig. 3 is a clear
indication that the theoretical error associated with trunca-
tion of the perturbative expansion should be taken into
account. We follow the method proposed in Ref. [54]. Let X
be an observable with a chiral perturbative expansion,

X ¼ Xð0Þ þ
X∞
m¼1

ΔXðmÞ; ð14Þ

4The selection criteria for the LQCD data are discussed in
Sec. IVA.

5The names are borrowed from the FLAG Review 2021 [4].
6We only consider the simulations with ms ∼msðphysÞ, the ones

suitable for an SU(2) ChPT analysis.
7We take the results from the fit strategy labeled as f4Nπ ; 3�g,

used to control excited-state contamination, averaging over the
two renormarization methods Z1 and Z2.
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ΔXðmÞ ¼ XðmÞ − Xðm−1Þ encompasses all the monomials
that start at order m. If X is calculated up to order n,
X ≈ XðnÞ, assuming that the truncation error is dominated
by order nþ 1, its contributionΔXðnþ1Þ can be estimated in
a conservative way as [25,54]

jΔXðnþ1Þj ¼ max fQnþ1jXð0Þj; QnjΔXð1Þj;…; QjΔXðnÞjg;
ð15Þ

where Q denotes the expansion variable.
For gA, Q ¼ Mπ=Λ. Recalling that in this case

Oðp5Þ ¼ OðM4
πÞ, for ourOðp4Þ calculation, Eq. (15) gives

Δgð5ÞAχ ¼ max
��

Mπ

Λ

�
4

jg∘Aj;
�
Mπ

Λ

�
2

jΔgð3ÞA j;Mπ

Λ
jΔgð4ÞA j

�

∼Q4 ¼ Oðp5Þ: ð16Þ

Connecting to Eq. (9), Δgð3ÞA ¼ 4d16M2
π þ gð3ÞAðloopÞ and

Δgð4ÞA ¼ gð4ÞAðloopÞ. Based on the results in Sec. III, it is easy

to foresee that at largerMπ, Δg
ð5Þ
Aχ will be determined by the

last term in Eq. (16). In our Oðp3Þ fits, we do not assume
any prior knowledge about Oðp4Þ, and therefore, the
truncation error is given by

Δgð4ÞAχ ¼ max

��
Mπ

Λ

�
3

jg∘Aj;
Mπ

Λ
jΔgð3ÞA j

�
∼Q3

¼ Oðp4Þ: ð17Þ

In our χ2, Eq. (11), this theoretical error is added in
quadrature to the one of LQCD points,

ðΔgiAÞ2 ¼ ðΔgiALQCDÞ2 þ ðΔgAχðMi
πÞÞ2: ð18Þ

This recipe assigns larger uncertainties to points at highMπ ,
where the convergence of the chiral expansion is poorer,
therefore reducing their impact on the fit. We should also
mention that, as discussed in Refs. [25,54,55], although this
theoretical error estimate does not have a clear statistical
interpretation, results are similar to those obtained in a
preferable but beyond the scope of the present study
Bayesian approach [51].
Fits are carried out iteratively until convergence is

achieved. The first minimization is performed without
theoretical errors, which are subsequently evaluated using
the LECs determined in the previous step. The lattice
discretization parameters xj are fixed in the first iteration
because evolving them results in overfitting. With the
described procedure, LQCD and truncation errors are not
independent, and it is not obvious how to combine them in
the error for a given observable. Consequently, following
Ref. [25], we plot them separately in the error bands for
gAðMπÞ. Furthermore, as a quantitative measure of the

agreement of our best-fit curve with the LQCD data, we
also provide the χ20 value, defined as

χ20 ¼
X
i

ðgAðMi
π; aiÞ − giAÞ2

ðΔgiALQCDÞ2
: ð19Þ

Finally, we have tested the convergence range of our
calculation by varying the maximum Mπ of the lattice data
included in the fits in the range ofMπcut ∈ ½200; 402� MeV.
A plateau in the χ2 and the fitted LECs is found toward the
end of the interval. In consequence, we report results
including all points in the chosen data sets up to
Mπ ¼ 402 MeV.8 As discussed in Sec. IV C 2, the theo-
retical error becomes larger at higher Mπ where the
convergence is poorer, and therefore, the corresponding
LQCD points weigh less in the fits.

B. =Δ case

1. Oðp3Þ
At Oðp3Þ, the only free parameters (besides the xj

governing the a dependence) are g
∘
A and d16 LECs. The

results of the fit are shown in the upper left panel of Fig. 4
and the first column of Table III. At the first sight, this
model describes LQCD data well, with a good χ2=d:o:f:,

relatively small errors, and natural g
∘
A and d16. As apparent

from the comparison of the first columns of Tables II and
III, the d16 value is slightly above the phenomenological
one extracted in Ref. [26] and with a much smaller error.

Instead, g
∘
A is in tension with the value obtained from

experimental input, Eq. (10). As a consequence,
gAðMπðphysÞÞ ¼ 1.205� 0.010, well below the experimen-
tal result. However, an inspection of the results for the
Oðp4Þ model described below reveals a large contribution
from the Oðp4Þ terms at Mπ ≳ 200 MeV, in line with the
findings of Sec. III. The fact that these terms are consid-
erably larger than the error band of theOðp3Þ result implies
that, in this case, the theoretical error estimated fromOðp1Þ
and Oðp3Þ terms falls short in accounting for the Oðp4Þ
contribution. The agreement of gAðMπÞ at Oðp3Þ with
LQCD points appears then as misleadingly good, while the
uncertainties in the LEC values can be regarded as under-
estimated. In other words, to be realistic, anOðp3Þ analysis
should be limited to small Mπ < 200 MeV, which would
be unfeasible with the small amount of presently available
LQCD data in this region.

2. Oðp4Þ
In the Oðp4Þ =Δ model, one has the additional contribu-

tion of NLO LECs c1−4. They were initially allowed to

8This upper limit allows one to include available points close
but above Mπ ¼ 400 MeV.
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evolve in the fits under the constrains set by their empirical
determination [26] (second column of Table II) imple-
mented as Gaussian priors. However, as these LECs are
quite well determined, this procedure yields substantially
the figures favored by the priors. Therefore, we report here
the results of a simpler fit with c1−4 held fixed to their
central phenomenological values (second column of
Table III).
In any case, as apparent from the lower left panel of

Fig. 4, the Oðp4Þ =Δ model fails to describe the light-quark
mass dependence of gA.

9 The small χ2 is merely a
consequence of the large theoretical error, which reduces
the impact of high Mπ points on the fit. Nevertheless, the
poor agreement is reflected in the magnitude of χ20 and also
in the quite unnatural d16 in spite of its prior. This large (in
absolute value) d16 is inconsistent with its phenomeno-
logical value and nonetheless unable to correct the Mπ

dependence atMπ ≳ 300 MeV, which is largely dominated

by the Oðp4Þ terms and, therefore, very similar to the one
displayed in Fig. 3.
The fact that the very wide theoretical error band

encompasses the lattice points reflects that the disagree-
ment would be removed by a (large) contribution of Oðp5Þ
counterbalancing the Oðp4Þ ones. Actually, within heavy-
baryon ChPT, it has been shown [29] that the curve can be
bent down by additional contributions of orders Oðp5;6Þ
with LECs of natural size (see also Fig. 1 of Ref. [11]).
Here, we take a different avenue and introduce theΔð1232Þ
explicitly as advocated in Ref. [30] based on the Adler-
Weisberger sum rule [56,57] and a heavy-baryon ChPT
calculation for gA.

C. Δ case

With the Δð1232Þ as explicit degree of freedom (d.o.f.),
new contributions with additional LECs arise. We fix the

Lð1Þ
πNΔ coupling hA to its large-Nc value hA ¼ 1.35 [26],

which is close to its empirical value [24]. For the Lð1Þ
πΔ

coupling g1, whose impact on gA is small, the large-Nc limit

FIG. 4. Pion-mass dependence of gA obtained by fitting LQCD results with Oðp3Þ and Oðp4Þ relativistic BChPT without and with
Δð1232Þ as explicit degree of freedom. Gray (dark) bands correspond to errors determined by propagating LEC uncertainties. Blue

bands represent the estimated theoretical uncertainties Δgð4;5ÞAχ . The LQCD points from CalLat 18 [47] (black circles), Mainz 19 [48] (red
crosses), RQCD 19 [9] (green triangles), and NME 21 [49] (blue squares) are shown at their finite a values, i.e., without (small)
discretization corrections.

9Lattice-spacing corrections were neglected in this fit once they
become unnaturally large (and uncertain) leading to overfitting.
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yields jg1j ¼ 2.29 [24,26]. We are unable to discern its sign
in our fits to gA LQCD data and opt for g1 ¼ −2.29,
preferred both by πN elastic scattering [24] and our own
studies of the nucleon axial form factor at low q2 to be
reported elsewhere. Finally, in analogy to the nucleon case,

m
∘
Δ ≃mΔðphysÞ − 4a1M2

ðphysÞ with mΔðphysÞ ¼ 1232 MeV

and a1 ¼ 0.90 GeV−1 from the LQCD Mπ dependence
of the Δ mass [58].

1. Oðp3Þ
With this model, the result of the fit for gAðMπÞ closely

resembles theOðp3Þ =Δ one as can be seen in the comparison
of the upper panels of Fig. 3. However, the value of d16
changes considerably, including its sign, with respect to the
Oðp3Þ =Δ one. The same feature was obtained when this LEC
was extracted from LQCD results for the axial form factor at
low q2 with Oðp3Þ relativistic BChPT [34]. The Oðp4Þ fit
described in the next section produces Oðp4Þ terms larger
than the theoretical error estimated from Oðp1Þ and Oðp3Þ
ones (although to a lesser extent than in the =Δ case) making
the extension to Oðp4Þ desirable for a more realistic
determination of LECs and their uncertainties.

2. Oðp4Þ
In the fit of the Oðp4Þ model with explicit Δ, we fix the

c1−4 LECs to thevalues extracted from theπN scattering [25]
(see the last column of Table III). They take the Δ pole into
account and are in good agreement with the joint πN þ ππN

fit from Ref. [26]. In addition to g
∘
A and d16, we now have

Oðp2Þb4 and b5 LECs as free parameters. As mentioned in
Sec. II B, these LECs appear at Oðp4Þ [more precisely, at
OðM4

π=δÞ] in the combination b̃4 ¼ b4 þ ð12=13Þb5.
Therefore, we keep only b̃4 as a free parameter of the fit
and neglect remaining higher order monomials proportional
to b5.
The result of the fit, depicted in the lower right panel of

Fig. 4, satisfactorily describes the trend of gAðMπÞ as
predicted by LQCD up to relatively large Mπ . The
theoretical error is large and rapidly increasing with Mπ

due to the large contribution of Oðp4Þ terms. Nevertheless,
the description of LQCD data and convergence are notably
improved with respect to the Oðp4Þ =Δ model.
The extracted LECs are given in Table III. The b̃4 value

might seem unnatural, but one should keep in mind that it is
a combination of LECs. As shown in Table IV, the
correlations among LECs are sizable; they are an indication
of degeneracy among the parameters that could be partially
lifted by adding a new dimension to the fit (i.e., studying
the axial form factor at finite q2). The d16 value obtained
from this model, d16 ¼ −0.88� 0.88 GeV−2, is in good

TABLE III. LEC values, both fixed and fitted to LQCD data, in the four different models under study. The χ2=d:o:f: for each fit is
given at the bottom; χ20, defined in Eq. (19), does not include theoretical errors or naturalness priors.

Oðp3Þ =Δ Oðp4Þ =Δ Oðp3Þ Δ Oðp4Þ Δ
g
∘
A (free) 1.1302� 0.0098 1.453� 0.048 1.1383� 0.0099 1.240� 0.046

d16 (GeV−2) (free) −0.925� 0.055 −9.77� 0.87 1.224� 0.040 −0.88� 0.88
hA � � � � � � 1.35 1.35
g1 � � � � � � −2.29 −2.29
c1 (GeV−1) � � � −0.89� 0.06 � � � −1.15� 0.05
c2 (GeV−1) � � � 3.38� 0.15 � � � 1.57� 0.10
c3 (GeV−1) � � � −4.59� 0.09 � � � −2.54� 0.05
c4 (GeV−1) � � � 3.31� 0.13 � � � 2.61� 0.10
a1 (GeV−1) � � � � � � � � � 0.90
b̃4 (GeV−2) (free) � � � � � � � � � −12.3� 1.0
x1 (fm−1) 0.39� 0.68 � � � 0.38� 0.07 0.21� 0.07
x2 (fm−2) −8.10� 1.80 � � � −8.17� 1.80 −7.27� 1.80
x3 (fm−2) 2.25� 1.83 � � � 2.17� 1.83 3.28� 1.84
x4 (fm−1) 0.61� 0.11 � � � 0.60� 0.11 0.51� 0.11

m
∘
(GeV) 0.874 0.874 0.855 0.855

m
∘
Δ (GeV) � � � � � � 1.166 1.166

χ2=d:o:f: 36.06=ð43 − 6Þ ¼ 0.98 13.31=ð43 − 2Þ ¼ 0.33 37.60=ð43 − 6Þ ¼ 1.02 11.14=ð43 − 7Þ ¼ 0.31
χ20=d:o:f: 424.87=ð43 − 6Þ ¼ 11.48 122820.67=ð43 − 2Þ ¼ 2995.63 439.19=ð43 − 6Þ ¼ 11.87 501.62=ð43 − 7Þ ¼ 13.93

TABLE IV. Correlation matrix for the fit with the Oðp4Þ Δ
model.

g
∘
A d16 b̃4

g
∘
A

1 −0.97 0.79

d16 1 −0.92
b̃4 1
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agreement with the determination from inelastic πN →
ππN with explicit Δ pole [26] which, translated to standard
EOMS, is d16ðphenoÞ ¼ −1.0� 1.0 GeV−2. Although, as
argued in the Introduction, the Mπ dependence of gA is
in principle better suited to extract d16 than the available
experimental πN → ππN data, the convergence issues of
the former lead to large errors, comparable to those of the

phenomenological result. The g
∘
A value is higher than in

the Oðp3Þ fits and with a larger error. Furthermore, at the
physical point, gAðMπðphysÞÞ ¼ 1.260� 0.012 is now close
to the experimental value although with a much larger
uncertainty.
The stability of the results for g

∘
A and d16 as a function of

the maximum Mπ considered, Mπcut, is shown in Fig. 5.
One can see that for both quantities the numerical values
and their errors stabilize for Mπ ≳ 300 MeV.
Owing to the consideration of theoretical errors, the

analysis could be extended to a broader range of Mπ

because points at higher Mπ, where the convergence is
worse, have a larger combined uncertainty, Eq. (18), and
contribute less to the fit.

V. CONCLUSIONS AND OUTLOOK

We have investigated the pion-mass dependence of the
nucleon axial coupling up to Oðp4Þ≡OðM3

πÞ (NNLO) in
relativistic BChPT with EOMS renormalization. We have
shown that, at this order and without including Δð1232Þ
explicitly, the pion-mass dependence of gA obtained using
LECs extracted from phenomenological analyses of pion-
nucleon elastic and inelastic (πN → ππN) scattering cannot
describe the rather flat behavior predicted by state-of-the-
art LQCD simulations. The disagreement is manifest from
pion masses right above the physical point. This feature,
earlier observed in nonrelativistic heavy-baryon ChPT
[29,30], is therefore also present in the relativistic theory.
The fact thatOðp4Þ terms become large from relatively low
Mπ ≳ 200 MeV implies that Oðp3Þ analyses of gAðMπÞ
likely underestimate theoretical uncertainties.
In line with the findings of Ref. [30] within heavy-

baryon ChPT, we can satisfactorily describe the LQCD data

for gAðMπÞ at Oðp4Þ only after the Δ is incorporated as an
explicit degree of freedom. However, although in a much
smaller degree than in the =Δ case, a fast increase in the
relative size of Oðp4Þ terms with Mπ is observed and
reflected by the estimate of theoretical uncertainties. This
fact jeopardizes the precision of the ChPT description of
gAðMπÞ at Mπ ≳ 300 MeV and negatively influences the
extraction of LECs based on LQCD data at such Mπ .
Together with the sizable correlations, which can be
reduced by considering both the Mπ and q2 dependence
of the axial form factor in the fits, this feature implies that
heavier resonances and/or Oðp5Þ terms are still required to
reach a good convergence and reduce theoretical errors.
The impact of setting the baryon masses in the loops to the
values obtained by the LQCD simulations may be also
worth exploring in view of the results of Ref. [35], although
this would correspond to the resummation of baryon self-
energy insertions of higher order. For this purpose, it would
be relevant to have more information about the Δ pole
position for the different lattice ensembles.
From our Oðp4Þ analysis of recent LQCD data, we have

obtained gAðMπðphysÞÞ ¼ 1.260� 0.012, close to the exper-
imental value, and d16 ¼ −0.88� 0.88 GeV−2, in agree-
ment with πN phenomenology. As a consequence of the
previously discussed issues, errors are still large, particu-
larly for d16 that is naturally extracted from the light-quark
mass dependence of the nucleon axial coupling. New
LQCD results at Mπ ≲ 250 MeV will improve the preci-
sion of the extracted LECs. Besides, our ongoing effort to
extend the analysis to the whole axial form factor (at low
q2) may shed more light on d16, as well as other LECs such
as d22.
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APPENDIX A: LEC CONVERSION

The covariant renormalization prescription adopted in
Refs. [25,26] differs from EOMS. In EOMS, only power-
counting breaking terms are absorbed in the LECs. To
obtain an equivalence between covariant and heavy-baryon
results, the prescription of Ref. [25] also subtracts infrared-
regular terms at the order of the calculation, as well as
pieces proportional to logðM2

π=m2
NÞ. After setting λ̄ ¼ 0

and μ ¼ mN in Eq. (21) of Ref. [25], one is left with a
dimensionally regularized LEC, xr,

xr ¼ x̄cov þ 1

F2
π
ðδx̄ð3Þf þ δx̄ð4Þf Þ þ βx

32π2F2
π
log

�M2
πðphysÞ

m2
NðphysÞ

�

¼ xEOMS þ δxEOMS
f ; ðA1Þ

which allows one to express the renormalized EOMS LECs
xEOMS in terms of the corresponding ones, x̄cov, from
Refs. [25,26]. The β-functions βx required to cancel the
mesonic tadpole terms are listed in Appendix B of Ref. [25]

as well as finite shifts δx̄ð3;4Þf . Our EOMS finite shifts

δxEOMS
f are given in the supplementary material [46]. In

particular, for the relevant LECs in this study, we obtain
that

dEOMS
16 ¼ dcov16 þ 1

F2
π
δd̄ð3Þ16f þ

βd16
32π2F2

π
log

�M2
πðphysÞ

m2
NðphysÞ

�
; ðA2Þ

with

δd̄ð3Þ16f ¼ 1

32π2
ðg∘A þ g

∘3
AÞ and βd16 ¼

g
∘
A

2
þ g

∘3
A ðA3Þ

because, in this case, δd̄ð4Þ16f ¼ δdEOMS
16f . Furthermore,

cEOMS
1−4 ¼ ccov1−4 ðA4Þ

once βc1−4 ¼ 0 [25], and the finite shifts coincide with those
in EOMS. Equations (A2)–(A4) are derived for the =Δ case
but hold also for the model with theΔ pole of Ref. [25] as it
does not involve additional renormalizations.

APPENDIX B: CONTRIBUTION TO gA FROM
WAVE-FUNCTION RENORMALIZATION

To the order of the present study, ZN , defined in Eq. (8),

can be written as ZN ¼ 1þ 1
16π2F2

π
ðδZð3Þloop

N þ δZð4Þloop
N Þ.

The contribution to gA that starts at Oðp4Þ is then

g
∘
AδZ

ð4Þloop
N , with δZð4Þloop

N , including Δ, given by

δZð4Þloop
N ¼ −

24c1g
∘2
AM5

πfðMπÞ
m
∘ 3a3=2

f6m∘ 4 − 6M2
πm
∘ 2 þM4

πg

þ 2M4
π

27m
∘ 3

�
a1h2Am

∘

m
∘ 4
Δ

ð18m∘ 4m
∘
Δ − 4m

∘ 3ðM2
π − 9m

∘ 2
ΔÞ þm

∘ 2ð36m∘ 3
Δ − 103M2

πm
∘
ΔÞ − 36m

∘
m
∘ 2
ΔðM2

π þ 4m
∘ 2
ΔÞ

þ 54m
∘
ΔðM4

π þM2
πm
∘ 2
Δ − 5m

∘ 4
ΔÞÞ þ

18c1
m
∘ 2
Δ

�
18g

∘2
Am

∘ 2m
∘ 2
ΔðM2

π − 2m
∘ 2Þ

a
þ h2Að8m

∘ 4 þ 6m
∘ 3m

∘
Δ

þm
∘ 2ðM2

π − 2m
∘ 2
ΔÞ6m∘ m∘ ΔðM2

π − 2m
∘ 2
ΔÞ − 6ðM4

π − 3M2
πm
∘ 2
Δ þ 3m

∘ 4
ΔÞÞ

��

þ 4M4
π

9m
∘ 3m

∘ 4
Δ
log

�
m
∘ 2

M2
π

�
fa1h2Am

∘ ð−9m∘ 4m
∘
Δ þm

∘ 3ð4M2
π − 6m

∘ 2
ΔÞ þ 13m

∘ 2M2
πm
∘
Δ − 3M4

πm
∘
Δ þ 3m

∘ 5
ΔÞ

− 27c1g2m
∘ 4
ΔM2

πg

þ 8

3
h2AM

2
π logðm∘ Þ

�
a1

�
2m

∘ 3
Δ

m
∘ 2

− 2m
∘ þm

∘
Δ

�
−
6c1M2

πð2m∘ þm
∘
ΔÞ

m
∘ 2
Δ

�

−
8c1h2AM

2
π logðMπÞ

3m
∘ 5m

∘ 2
Δ

f5m∘ 8 þ 6m
∘ 7m

∘
Δ − 3m

∘ 6ð2M2
π þm

∘ 2
ΔÞ − 3m

∘ 5m
∘
ΔðM2

π þm
∘ 2
ΔÞ

þm
∘ 2ð2M6

π − 3M4
πm
∘ 2
Δ þm

∘ 6
ΔÞ þ 3m

∘
m
∘
ΔðM2

π −m
∘ 2
ΔÞ3 − 3ðM2

π −m
∘ 2
ΔÞ4g
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−
4a1h2AM

2
π

3m
∘ 2m

∘ 3
Δ

log

�
m
∘ 2

m
∘ 2
Δ

�
f9m∘ 4M2

π þm
∘ 3ð4M2

πm
∘
Δ − 2m

∘ 3
ΔÞ þm

∘ 2ðm∘ 4
Δ − 3M4

πÞ −M6
π þM2

πm
∘ 4
Δ þ 2m

∘ 6
Δg

þ 2a1h2AM
2
π

3m
∘ 4m

∘ 3
Δ

log

�
M2

π

m
∘ 2
Δ

�
f−5m∘ 8 − 4m

∘ 7m
∘
Δ þ 6m

∘ 6M2
π þ 2m

∘ 5m
∘
ΔðM2

π − 3m
∘ 2
ΔÞ

þ 2m
∘ 2ðM6

π þM2
πm
∘ 4
Δ − 2m

∘ 6
ΔÞ þ 2m

∘
m
∘
ΔðM2

π −m
∘ 2
ΔÞ2ðM2

π þ 5m
∘ 2
ΔÞ − 3ðM2

π −m
∘ 2
ΔÞ3ðM2

π þ 3m
∘ 2
ΔÞg

−
8h2AM

2
π

3m
∘ 5m

∘ 3
Δ
logðm∘ ΔÞfa1m∘ ð5m∘ 8 þ 4m

∘ 7m
∘
Δ þ 4m

∘ 5m
∘ 3
Δ þm

∘ 4m
∘ 4
Δ þ 6m

∘ 2m
∘ 6
Δ − 10m

∘
m
∘ 7
Δ − 9m

∘ 8
ΔÞ

− c1m
∘
Δð−5m∘ 8 − 6m

∘ 7m
∘
Δ þ 3m

∘ 6ð2M2
π þm

∘ 2
ΔÞ þ 3m

∘ 5m
∘
ΔðM2

π þm
∘ 2
ΔÞ þm

∘ 2ð2M6
π − 3M4

πm
∘ 2
Δ −m

∘ 6
ΔÞ

þ 3m
∘
m
∘
ΔðM6

π − 3M4
πm
∘ 2
Δ þ 3M2

πm
∘ 4
Δ þm

∘ 6
ΔÞ − 3ðM8

π − 4M6
πm
∘ 2
Δ þ 6M4

πm
∘ 4
Δ − 4M2

πm
∘ 6
Δ −m

∘ 8
ΔÞÞg

þ 4h2AM
2
πðm∘ −m

∘
ΔÞðm∘ þm

∘
ΔÞ3

3m
∘ 5m

∘ 3
Δ

log ðm∘ 2
Δ −m

∘ 2Þfa1m∘ ð5m∘ 4 − 6m
∘ 3m

∘
Δ þ 12m

∘ 2m
∘ 2
Δ − 8m

∘
m
∘ 3
Δ þ 9m

∘ 4
ΔÞ

þ 2c1m
∘
Δð5m∘ 4 − 4m

∘ 3m
∘
Δ þ 5m

∘ 2m
∘ 2
Δ − 3m

∘
m
∘ 3
Δ þ 3m

∘ 4
ΔÞg

þ FðMπÞ
3m

∘ 5m
∘ 3
Δ
f4h2Aðm

∘ 2 þ 2m
∘
m
∘
Δ −M2

π þm
∘ 2
ΔÞða1m∘ ð5m∘ 8 − 6m

∘ 7m
∘
Δ þ 2m

∘ 6ðm∘ 2
Δ − 6M2

πÞ

þ 4m
∘ 5ð2M2

πm
∘
Δ þm

∘ 3
ΔÞ þ 2m

∘ 4ð3M4
π − 5m

∘ 4
ΔÞ þ 2m

∘ 3m
∘
ΔðM4

π − 6M2
πm
∘ 2
Δ þ 5m

∘ 4
ΔÞ

þm
∘ 2ð4M6

π − 2M4
πm
∘ 2
Δ þ 4M2

πm
∘ 4
Δ − 6m

∘ 6
ΔÞ − 4m

∘ ðM6
πm
∘
Δ − 3M2

πm
∘ 5
Δ þ 2m

∘ 7
ΔÞ

− 3ðM2
π −m

∘ 2
ΔÞ3ðM2

π þ 3m
∘ 2
ΔÞÞ

þ 2c1m
∘
Δð5m∘ 8 − 4m

∘ 7m
∘
Δ −m

∘ 6ð6M2
π þ 5m

∘ 2
ΔÞ þm

∘ 5ð5m∘ 3
Δ −M2

πm
∘
ΔÞ þ 2m

∘ 4m
∘ 2
ΔðM2

π −m
∘ 2
ΔÞ

þ 2m
∘ 3m

∘
ΔðM2

π −m
∘ 2
ΔÞ2 −m

∘ 2ð2M6
π − 3M4

πm
∘ 2
Δ þm

∘ 6
ΔÞ þ 3m

∘
m
∘
ΔðM2

π −m
∘ 2
ΔÞ3 þ 3ðM2

π −m
∘ 2
ΔÞ4ÞÞg; ðB1Þ

with the following definitions:

FðMπÞ≡M2
π

b
log

�
−m∘ 2 þ bþM2

π þm
∘ 2
Δ

2Mπm
∘
Δ

�
; fðMπÞ≡ i log

�
Mπ þ i

ffiffiffi
a

p

2m
∘

�
; ðB2Þ

where b≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
∘ 4 − 2m

∘ 2ðM2
π þm

∘ 2
ΔÞ þ ðM2

π −m
∘ 2
ΔÞ2

q
, and a≡ 4m

∘ 2 −M2
π . This result, but also the full expression for the

Oðp4Þ nucleon self-energy ΣN with explicit Δ, from which ZN is derived using Eq. (8), can be found in the Mathematica
notebook provided as supplementary material [46].
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