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We measure the branching fractions and CP asymmetries for the decays B0 → D̄0π0 and Bþ → D̄0πþ,
using a data sample of 772 × 106 BB̄ pairs collected at the ϒð4SÞ resonance with the Belle
detector at the KEKB eþe− collider. The branching fractions obtained and direct CP asym-
metries are BðB0→D̄0π0Þ¼½2.70�0.06ðstatÞ�0.10ðsystÞ�×10−4, BðBþ→D̄0πþÞ¼½4.53�0.02ðstatÞ �
0.15ðsystÞ�×10−3, ACPðB0 → D̄0π0Þ ¼ ½þ0.42� 2.05ðstatÞ � 1.22ðsystÞ�%, and ACPðBþ → D̄0πþÞ ¼
½þ0.19� 0.36ðstatÞ � 0.57ðsystÞ�%. The measurements of B are the most precise to date and
are in good agreement with previous results, as is the measurement of ACPðBþ → D̄0πþÞ. The
measurement of ACP for B0 → D̄0π0 is the first for this mode, and the value is consistent with Standard
Model expectations.

DOI: 10.1103/PhysRevD.105.072007

I. INTRODUCTION

The branching fraction (B) of the color-suppressed decay
B0 → D̄0π0 [1] is measured [2–4] to be about a factor of 4
higher than theory predictions made using the “naive”
factorization model, where final-state interactions (FSIs)
are neglected [5,6]. This has led to a number of new
theoretical descriptions of the process [7–14] that include
FSIs and also treat isospin-related amplitudes of color-
suppressed and color-allowed decays. The B0 → D̄0π0

process has been shown to have large nonfactorizable
components [14], so precise measurements of its properties
are valuable in comparing different theoretical models used
to describe it. Many of these models predict a substantial
strong phase in the final state. A nonvanishing strong phase
difference between two amplitudes is necessary to give
rise to direct CP violation [15]. The direct CP-violation
parameter, ACP, for the B → D̄0π decay is defined as

ACP ¼ ΓðB̄ → D0πÞ − ΓðB → D̄0πÞ
ΓðB̄ → D0πÞ þ ΓðB → D̄0πÞ ; ð1Þ

where Γ is the partial decay width for the correspond-
ing decay.
In the Standard Model (SM), B0 → D̄0π0 transitions

proceed mainly via the tree-level diagram of Fig. 1(a). An
exchange diagram [Fig. 1(b)] with the same Cabibbo-
Kobayashi-Maskawa matrix (CKM) factors is also present,
but, due to Okubo-Zweig-Iizuka (OZI) suppression, is
expected to have a much smaller amplitude. As such,
direct CP violation in this mode is expected to be small,
even in the presence of a strong phase difference from FSI.
Measurements of notable CP violation in this decay would
be of significant interest and could hint at contributions
from beyond-the-Standard-Model physics diagrams.
Recently the BABAR and Belle Collaborations performed
time-dependent CP-violation analyses of the related modes

B̄0 → Dð�Þ
CPh

0, where h ∈ π0; η;ω and Dð�Þ
CP refer to D or D�

in a CP eigenstate [16]. They measure the CP-violation
parameters Cð¼ −ACPÞ, SCP, and ϕ1 [17], and obtain
CðB0 → D̄�0h0Þ ¼ ð−2� 8Þ × 10−2. This value is consis-
tent with the expectation of small ACP for B0 → D̄0π0.
However, this result does not exclude larger values up to
0.1, which would be much larger than SM predictions.
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A high precision measurement of B and ACP for B0 →
D̄0π0 has further utility in addition to comparison to
theoretical predictions, as it is a common control mode
for use in rare charmless B-decays with a π0. The precise
measurement of properties of a control mode is important
to provide validation and refinement of analysis techniques.
In this paper, we present new measurements of B0 →

D̄0π0 using the full data sample of ð772� 10.6Þ × 106B̄B
pairs (711 fb−1) collected with the Belle detector at the
KEKB asymmetric-energy eþe− (3.5 GeV on 8.0 GeV)
collider [18] operating near the ϒð4SÞ resonance. We also
present corresponding measurements of Bþ → D̄0πþ
decays, which proceed via a simple spectator diagram with
no color suppression.

II. BELLE DETECTOR

The Belle detector [19] is a large-solid-angle magnetic
spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACCs), a barrel-
like arrangement of time-of-flight (TOF) scintillation
counters, and an electromagnetic calorimeter (ECL) con-
sisting of CsI(Tl) crystals. All these detector components
are located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented with resistive plate
chambers to detect K0

L mesons and to identify muons. Two
inner detector configurations were used: a 2.0 cm beam
pipe and a three-layer SVD (SVD1) were used for the first
sample of 152 × 106 BB̄ pairs, while a 1.5 cm beam pipe, a

four-layer SVD (SVD2), and small cells in the inner layers
of the CDC were used to record the remaining 620 ×
106 BB̄ pairs [20].
We reconstruct B0 → D̄0π0 candidates from the sub-

sequent decays of the D̄0 and the π0 mesons. We employ
two reconstruction modes: B0 → D̄0ð→ Kþπ−Þπ0 (B2b)
and B0 → D̄0ð→ Kþπ−π0Þπ0 (B3b). The π0 mesons are
reconstructed from their decay to two photons.
The flavor of the neutral B-meson (B0 or B̄0) is

determined by the charge of the reconstructed kaon (Kþ
or K−). This method of flavor tagging is not perfect, as the
wrong-sign doubly Cabibbo-suppressed (DCS) decays
B̄0 → D̄0π0 [Fig. 1(c)] will result in wrongly tagged flavor.
The same effect occurs with charm DCS decays D0 →
Kþπ− and D0 → Kþπ−π0, and charm mixing, although the
charm mixing effect is negligibly smaller. These effects can
be calculated using the ratio of wrong-sign (Cabibbo-
suppressed) to right-sign (Cabibbo-favored) decay rates:

R ¼ BWS

BRS
; ð2Þ

where RðB̄0 → D̄0π0Þ has not been measured and thus is
approximated with RðB0→Dþπ−Þ¼ð2.92�0.38�0.31Þ×
10−4 [21], while RðD0 → Kþπ−Þ ¼ ð3.79� 0.18Þ × 10−3

and RðD0 → Kþπ−π0Þ ¼ ð2.12� 0.07Þ × 10−3 are taken
from the Particle Data Group (PDG) [22]. These effects
lead to the true value of B being ð0.314� 0.008Þ% lower
than the measured value, and the true ACP being ð3.05�
0.08Þ × 10−5 higher than the measured value. In the case of
B this is corrected for; however, for ACP the correction is
significantly smaller than our uncertainty and it is
neglected.
Photon candidates are mainly taken from clusters in the

ECL but additionally are reconstructed from eþe− pairs
resulting from photon conversion in the inner detector.
Photons from π0 decay must have an energy greater than
50ð100Þ MeV in the barrel (end cap) region of the ECL.
The invariant mass of the two-photon combination must lie
in the range 104 MeV=c2 <Mγγ < 165 MeV=c2, corre-
sponding to �3σ around the nominal π0 mass [22]. We
subsequently perform a mass-constrained fit with the
requirement χ2 < 50.
Charged tracks originating from a B-decay are required

to have a distance of closest approach with respect to the
interaction point of less than 4.0 cm along the z-axis (the
direction opposite the positron beam), and of less than
0.3 cm in the plane transverse to the z-axis. Charged kaons
and pions are identified using information from the CDC,
ACC, and TOF detectors. This information is combined to
form a K − π likelihood ratio RK=π ¼ LK=ðLK þ LπÞ,
where LKðLπÞ is the likelihood of the track being a kaon
(pion). Track candidates with RK=π > 0.6 (<0.4) are
classified as kaons (pions). The typical kaon (pion)

(a)

(b)

FIG. 1. Tree-level Feynman diagrams for (a) color-suppressed
B0 → D̄0π0 decay, (b) W exchange diagram, and (c) color-
suppressed and doubly Cabibbo-suppressed B̄0 → D̄0π0 decay.
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identification efficiency is 83% (88%), with a pion (kaon)
misidentification probability of 7% (11%).
Two kinematic variables are used to distinguish signal

from background: the beam-energy-constrained mass,
Mbc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − jp⃗Bj2c2

p
=c2, and the energy difference

ΔE≡ EB − Ebeam. Here, p⃗B and EB are the momentum
and energy, respectively, of the B-meson candidate evalu-
ated in the center-of-mass (c.m.) frame, and Ebeam is the
beam energy in the c.m. frame.
Due to energy leakage in the ECL, the reconstructed π0

energy is typically lower than its true value. To compensate
for this, we rescale the reconstructed π0 momentum to give
Eπ0 ≡ Ebeam − ED, specifically:

p⃗π;corr ¼ p⃗π ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEbeam − ED0Þ2 −M2

π0
c4

q
jpπjc

: ð3Þ

Using this we calculate a new B-meson momentum, p⃗B;corr,
then calculate a corrected Mbc (from now on simply
referred to as Mbc),

Mbc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − jp⃗B;corrj2c2

q
c2

: ð4Þ

Rescaling Mbc in this way improves the mass resolution
and removes some correlations between Mbc and ΔE. This
procedure is only applied to the π0 that is the direct
daughter of the B0.
All candidates satisfying Mbc > 5.25 GeV=c2 and

−0.2 GeV< ΔE < 0.2 GeV are retained for further analy-
sis. We find that 16% (47%) of events have more than one
B0 candidate in the B2b (B3b) reconstruction modes. In
these cases, we select one of the reconstructed B0-mesons
based on the mass difference ΔmðXÞ ¼ mPDGðXÞ −MðXÞ,
where mPDGðXÞ is the mass reported by the PDG [22] for
particle X, and MðXÞ is the reconstructed mass. The best
candidate is selected as the B0 or Bþ that minimizes
ΔmðD0Þ. If there are multiple candidates with the same
minimal ΔmðD0Þ, the one that minimizes Δmðπ0Þ is
selected. Monte Carlo (MC) simulation studies show that
this procedure selects the correct B0 in 96% (86%) of cases
for the B2b (B3b) samples.

III. BELLE DETECTOR AND SIGNAL SELECTION

Backgrounds to our signal are studied using MC
simulation. These simulations use EVTGEN [23] and
PYTHIA [24] to generate the physics interactions at the
quark level, and employ GEANT3 [25] to simulate the
detector response.
The largest background arises from eþe− → qq̄ ðq ∈

fu; d; s; cgÞ continuum events. A neural network [26] is
used to distinguish the spherical BB̄ signal from the jetlike
continuum background. It combines the following five

observables based on the event topology: a Fisher dis-
criminant formed from 17 modified Fox-Wolfram moments
[27]; the cosine of the angle between the B-meson
candidate direction and the beam axis; the cosine of the
angle between the thrust axis [28] of the B-meson candidate
and that of the rest of the event (all of these quantities being
calculated in the c.m. frame); the separation along the z-
axis between the vertex of the B-meson candidate and that
of the remaining tracks in the event; the tagging quality
variable from a B-meson flavor-tagging algorithm [29].
The training and optimization of the neural network are
performed with signal and continuum MC samples. These
are divided into five training samples and one verification
sample. The output of the neural net (CNN) has a range of
ð−1; 1Þ, with 1 being the most signal-like and −1 being the
most backgroundlike.
In order to maximally use CNN information, we impose

only a loose requirement on CNN and use CNN as a variable
in the fit. We require CNN > −0.05 for both the B2b and B3b
modes. This results in 86% background reduction and 87%
signal efficiency. To facilitate modeling CNN analytically
with Gaussian functions, we transform it into an alternative
variable C0

NN via the formula

C0
NN ¼ log

�
CNN − Cmin

NN

Cmax
NN − CNN

�
; ð5Þ

where Cmin
NN is the minimum value of −0.05, and Cmax

NN is the
maximum value of CNN obtained from the signal MC
sample used to verify the training.
There is a significant background arising from b → c

transitions, which we refer to as “generic B-” decays. The
main components of the generic B background are incor-
rectly assigned tracks, combinatorial backgrounds,
B0 → D̄0ρ0, and B0 → D̄0�π0 with either D̄0� → D̄0γ or
D̄0� → D̄0π0. These are investigated with MC simulations
of BB̄-decays. To reduce this background, signal candi-
dates are selected within �3 standard deviations of the
mean values for Mbc, ΔE, and the reconstructed π0 and D0

mass distributions. Low final-state momentum events are
excluded with selection criteria on the lab-frame momen-
tum of the final-state particles: PðK�Þ, Pðπ�Þ, Pðπ0

B0Þ, and
Pðπ0

D̄0Þ. These requirements are listed in Table I.
There is also a very small background component from

b → u and b → s transitions that consists mainly of
combinatorial background, with some nonresonant B-
decays to the same final states (Kþπ−π0, Kþπ−π0π0,
Kþπ−πþ, and Kþπ−πþπ0). These are studied using a large
MC sample corresponding to 50 times the number of BB̄
events recorded by Belle. We refer to these background
events as “rare.” The yield of these rare events is fixed when
fitting for the signal yield based on the most recent
branching fractions from the PDG [22].
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After all selections have been made for B0 → D̄0π0, the
reconstruction efficiencies are ð27.53� 0.04Þ% for the B2b
mode and ð9.43� 0.02Þ% for the B3b mode. Including
intermediate branching fractions, the overall efficiencies
are ð1.09� 0.01Þ% and ð1.36� 0.01Þ%, respectively.
For Bþ → D̄0πþ, the reconstruction efficiency after

all selections is calculated to be ð33.08� 0.04Þ% for
the B2b mode [ð1.31� 0.05Þ% including intermediate
branching fractions] and ð9.05� 0.02Þ% for the B3b
mode [ð1.30� 0.05Þ% including intermediate branching
fractions].

IV. FITTING STRATEGY

The signal yield and ACP are extracted via an unbinned
extended maximum-likelihood fit to the variablesMbc, ΔE,
and C0

NN. There are four categories of events fitted: B0 →
D̄0π0 or Bþ → D̄0πþ signal events (s), continuum events
(c), generic BB̄ events (b), and rare B-decay backgrounds
(r). These events are described by probability density
functions (PDFs) denoted as Ps, Pc, Pb, and Pr, respec-
tively. Separate PDFs are constructed for the B2b and B3b
reconstruction modes, which are fitted as two separate
datasets. The data are further divided into events tagged as
B0 and B̄0 defined as having flavor q ¼ þ1 and q ¼ −1,
respectively, based on the charge of the kaon.
The physics parameters are determined via a simulta-

neous fit to the four datasets. The total likelihood is
given by

L ¼ e−
P

j
Nj

Q
q;dNq;d!

×
Y
q;d

�YNq;d

i¼1

�X
j

fjdN
jPj

q;dðMi
bc;ΔEi; C0i

NN; qÞ
��

; ð6Þ

where Nq;d is the number of events with flavor tag q for the
dataset d (d ∈ B2b; B3b), and Nj is the number of events in
the jth category (j ∈ s; c; b; r) contributing to the total
yield. The fraction of events in the dataset d for category j
is fjd, with f

j
3b ¼ 1 − fj2b. The PDF Pj

q;d corresponds to the
jth category in the d dataset for flavor q measured at Mi

bc,
ΔEi, and C0i

NN for the ith event.
The PDF for each component is given by

Pj
q;dðMbc;ΔE;C0

NN; qÞ

¼
�
1 − q ×Aj

CP

2

�
× Pj

dðMbc;ΔE;C0
NNÞ: ð7Þ

The model accounts for a possible direct CP asymmetry,
Aj

CP, and the fractions of signal and backgrounds expected
in each reconstruction mode B2b (B3b). In Eq. (6), the
fraction fsd is determined via MC studies of the B2b and B3b

modes and is fixed in the fit to data, andAj
CP ðj ∈ c; b; rÞ is

fixed based on studies of detector bias using sideband data
(see Sec. V).
The 20 free parameters in the fit are the number of signal

eventsNs, signal asymmetry As
CP, the number of continuum

events (Nc) and generic B-decay events (Nb), fractions of
backgrounds expected in each reconstruction mode fjd
(j ∈ c; b; r), shape parameters of the continuum Mbc
and ΔE PDFs, and the mean and width of the B2b signal
Mbc and ΔE PDFs. The number of rare background events
(Nr) is fixed to that expected from MC studies. The effects
of these assumptions are included in the systematic
uncertainties.
The PDFs used for the Mbc and ΔE distributions for the

various event types are as follows.
(i) Signal: For the B2b mode, the Mbc PDF is a Crystal

Ball function [30], while the ΔE PDF is the sum of a
Crystal Ball function and a Gaussian with the same
mean. The Gaussian component is small and in-
cluded to handle the tails of the distribution. For the
B3b mode, there is a strong correlation between Mbc
and ΔE, and no analytic 2D PDF could be found to
fit the data satisfactorily. Instead a 2D kernel density
estimation (KEST) PDF [31] is used.

(ii) Generic B-decay background: Similar to the B3b
signal, there exist complex correlations betweenMbc
and ΔE, so a 2D KEST PDF obtained from MC
simulations is used in both modes.

(iii) Continuum background:Mbc is fitted as an ARGUS
function [32], and ΔE as a third-order Chebyshev
polynomial, in both modes.

(iv) Rare B-decay background: As with a generic B and
B3b signal, the Mbc and ΔE distributions for rare
B-decay background are modeled with a 2D KEST
PDF in both modes. This PDF is determined using

TABLE I. Requirements on kinematic variables employed in
the reconstruction of B0 → D̄0π0 decays to minimize generic
B-decay background. The subscript identifies the origin of the
particle, and the D̄0-decay mode is shown in square brackets.

Variable Selected range

Mbc 5.253–5.288 GeV=c2

ΔE −0.2–0.2 GeV

MðD0Þ 1.841–1.882 GeV=c2

Mðπ0
B0Þ½Kþπ−� 104.1–163.1 MeV=c2

Mðπ0
B0Þ½Kþπ−π0� 105.8–164.4 MeV=c2

Mðπ0
D̄0Þ½Kþπ−π0� 107.9–162.3 MeV=c2

PðK�Þ 0.3–3.5 GeV=c

Pðπ�Þ 0.3–3.5 GeV=c

Pðπ0B0Þ 1.5–3.5 GeV=c

Pðπ0
D̄0Þ 0.2–3.5 GeV=c
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MC simulations corresponding to 50 times the
luminosity of the Belle dataset.

To fit C0
NN, three summed Gaussians are used for all

components except continuum background, which
employed two summed Gaussians. The PDFs for all event
types are summarized in Table II.
The fitting procedure and accuracy of the various PDF

models are extensively investigated using MC “pseudoex-
periments.” In these studies, the signal and rare B back-
ground events are selected from large samples of simulated
events. Events for eþe− → qq̄ and generic B-decay are
generated from their respective PDF shapes. For
B0 → D̄0π0, we observe a small bias of ðþ0.6� 0.3Þ%
in signal yield, and ðþ0.04� 0.05Þ% in ACP. We correct
for this bias in our final measurements and include a
corresponding systematic uncertainty for it. No significant
bias is observed for Bþ → D̄0πþ, i.e., only ðþ0.06�
0.16Þ% in signal yield and ð−0.02� 0.02Þ% in ACP.

V. B+ → D̄0π +

We first select and fit a sample of Bþ → D̄0πþ decays.
This sample is not color suppressed and thus has much
larger statistics and lower background than the sample of
B0 → D̄0π0 decays. As well as ensuring the fitted B and
ACP are consistent with existing measurements, this mode
is used to obtain calibration factors for the fixed shape
parameters of the PDFs used to fit B0 → D̄0π0 decays to
account for any differences between MC and data. In
addition, this mode provides a data-driven estimation of the
systematic uncertainty associated with the ACP correction
for a detection asymmetry (discussed below).
To account for potential differences in the distribution of

fitting variables between MC and data, additional param-
eters (calibration factors) are included in the fit to enable
small adjustments in the fitted PDF shapes. These calibra-
tion factors are applied as mean shifts and width factors to
the C0

NN Gaussians.
To account for small differences between MC and data in

the width of theΔE distribution, the 2D KEST PDF forMbc
and ΔE in B3b is modified slightly. This is done by
modifying each ΔE data point in the MC dataset with a

random shift based on a Gaussian distribution with a mean
of 0 GeVand a width of 7 MeV (chosen after testing with a
range of widths) and generating a new KEST PDF from this
modified data sample.
Fits to the Bþ → D̄0πþ sample are performed to deter-

mine the signal yield, ACP;raw, the continuum background
yield, the generic B-decay background yield, and
the calibration factors. The rare B-decay background
yield is fixed to the value expected from MC simulations.
From the fit we obtain Nsig ¼ 84537� 306 and ACP;raw ¼
ð1.97� 0.36Þ%. The uncertainties listed are statistical.
ACP;raw is the output of the fit without a correction to
account for sources of bias. Figure 2 shows the fits to data
in Mbc, ΔE, and C0

NN.
To account for possible bias in ACP, we perform an

analysis over a “sideband” region of data defined as
0.1GeV<ΔE<0.4GeV and 5.255GeV=c2<Mbc<
5.27GeV=c2. This region consists almost entirely of
continuum events and has an expected ACP of zero.
Counting the number of events in this region we find
ACP;sideband ¼ ð1.78� 0.38Þ%. We subtract this value from
ACP;raw to correct for the detection asymmetry bias.
The branching fraction is calculated as

B ¼ Nsig

NB�
× mean

�
fs2b
ϵ2b

;
fs3b
ϵ3b

�
; ð8Þ

where NB� is the number of charged B-mesons in the
dataset based on the PDG average value of Bðϒð4SÞ →
BþB−Þ ¼ ð51.4� 0.6%Þ [22]; fsd is the fraction of signal
events in the dataset d ¼ 2b or 3b (fs2b ¼ 0.51,
fs3b ¼ 0.49); ϵd is the product of the reconstruction effi-
ciency, the D̄0 branching fraction Bd, and small corrections
for particle identification (PID), and charged-track and π0

reconstruction efficiencies (see Sec. VII) for mode d. The
π0 → γγ branching fraction is accounted for in the MC
simulation. The resulting values for ϵ2b and ϵ3b are ð1.19�
0.03Þ × 10−2 and ð1.16� 0.05Þ × 10−2, respectively. The
mean is calculated as a generalized weighted mean [33,34]
taking into account correlated and uncorrelated uncertain-
ties in a covariance matrix. This approach is used because
the difference in systematic uncertainties between the two
D̄0-decay modes leads to the need to weight them in order
to calculate the final branching fraction and uncertainty
correctly. Finally, the correction due to DCS decays
discussed in Sec. II is made.
The results for B and ACP for Bþ → D̄0πþ are

B ¼ ð4.53� 0.02� 0.15Þ × 10−3; ð9Þ

ACP ¼ ð0.19� 0.36� 0.57Þ%: ð10Þ

The uncertainties quoted are statistical and systematic,
respectively. The systematic uncertainties associated

TABLE II. Functional forms for PDFs employed by the differ-
ent event categories for fits.

Category Mbc ΔE C0
NN

Signal B2b Crystal ball Crystal
ball + gaussian

Three gaussians

Signal B3b 2D KEST PDF Three gaussians
Generic B 2D KEST PDF Three gaussians
Continuum ARGUS Third order Two gaussians

Chebyshev polynomial
Rare B 2D KEST PDF Three gaussians
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with the measurement of B andACP are explained in detail
in Sec. VII, and the contributions of each of these are
listed in Tables Vand VI, respectively. These results are in
agreement with the PDG values [22] of B ¼ ð4.68�
0.13Þ × 10−3 and ACP ¼ ð−0.7� 0.7Þ%. As a cross-
check, we determined B and ACP for each of the B2b
and B3d modes separately, and for just the SVD1 dataset.
All are in agreement within statistical uncertainties. The
fitted yield for each respective category is listed in
Table III.

VI. B0 → D̄0π0

After applying the calibration factors determined
from studies of the Bþ → D̄0πþ mode to the PDFs, we
fit the signal B0 → D̄0π0 PDFs to data and find 4448� 97
signal events and ACP;raw ¼ ð1.48� 2.05Þ%. The uncer-
tainties quoted are statistical. As was the case for
Bþ → D̄0πþ, ACP;raw is the value returned from the fit
without a correction for sources of bias. Figure 3 shows
the signal-enhanced projections of the fits. Figure 4 shows
signal-enhanced projections of Mbc separated into B0- and
B̄0-decays.
Using Eq. (8), the PDG value Bðϒð4SÞ → B̄0B0Þ ¼

ð48.6� 0.6%Þ [22], the fraction of signal events in dataset
d, fs2b ¼ 0.45, fs3b ¼ 0.55, and the efficiencies ϵ2b ¼
ð1.00� 0.03Þ × 10−2 and ϵ3b ¼ ð1.21� 0.07Þ × 10−2,
we determine the branching fraction to be

BðB0 → D̄0π0Þ ¼ ð2.70� 0.06� 0.10Þ × 10−4; ð11Þ

where the quoted uncertainties are statistical and system-
atic, respectively. The fitted yield for each respective
category is listed in Table IV.
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FIG. 2. Projections of the Bþ → D̄0πþ fit results into the signal region (5.275<Mbc < 5.285 GeV, −0.05< ΔE < 0.05 GeV,
−1 < C0

NN < 6) forMbc (left), ΔE (middle), and C0
NN (right) split into the B2b mode (top) and B3b (bottom). The blue short-dashed curve

shows the signal PDF, red dotted curve shows the BB̄ background PDF, green dash-dotted curve shows the continuum background PDF,
pink long-dashed curve shows the (almost negligible) rare background PDF, black line is the fit result, points are data. Also shown
underneath each graph are the residual pulls between the data points and fitted PDF.

TABLE III. Fitted number of signal and backgrounds events for
the two reconstruction modes (B2b and B3b) of Bþ → D̄0πþ.
Uncertainties are statistical only.

Category B2b mode (×104) B3b mode (×104)

Signal 4.27� 0.02 4.18� 0.02
Continuum 0.70� 0.01 1.78� 0.3
Generic B 3.58� 0.03 3.87� 0.03
Rare 0.03 (fixed) 0.05 (fixed)
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The ACP correction for the B0 → D̄0π0 decay is mea-
sured in the same way as for the Bþ → D̄0πþ mode. A
sideband region of data is defined as 0.1 GeV< ΔE <
0.4 GeV and 5.255GeV=c2<Mbc<5.27GeV=c2. Events
in this region consist almost entirely of continuum with an
expected ACP of zero. In this region we find ACP;sideband ¼
ð1.02� 0.64Þ%, and we subtract this value and the fit bias
(0.04%) from ACP;raw to correct for detector bias.
The direct CP-violation parameter is thus measured to be

ACPðB0 → D̄0π0Þ ¼ ð0.42� 2.05� 1.22Þ%: ð12Þ

The uncertainties quoted are statistical and systematic,
respectively.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties associated with the meas-
urement of B and ACP are as follows.

(i) Number of BB̄ pairs: The uncertainty associated
with the measured number of BB̄ pairs in the full
dataset collected at Belle is 1.37% [35].

(ii) Bðϒð4SÞ → B0B̄0Þ: Uncertainty from the branching
fraction Bðϒð4SÞ → B̄0B0Þ ¼ ð48.6� 0.6%Þ [22].

(iii) DCS mode correction: The uncertainty due to the
correction for doubly Cabibbo-suppressed decays
is 0.01% for both B0 → D̄0π0 and Bþ → D̄0πþ
(see Sec. II).

(iv) Charged-track efficiency: The uncertainty associated
with a possible difference in efficiency between MC
and data for charged-track reconstruction is found to
be 0.35% per track using partially reconstructed
D�þ → D0ð→ πþπ−π0Þπþ events [35].

(v) π0 detection efficiency: The ratio of data to MC
efficiency for π0 reconstruction is based on a study
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FIG. 3. Projections of the B0 → D̄0π0 fit results into the signal region (5.275<Mbc < 5.285 GeV, −0.12< ΔE < 0.07 GeV,
−1 < C0

NN < 6) forMbc (left), ΔE (middle), and C0
NN (right) split into the B2b mode (top) and B3b (bottom). The blue short-dashed curve

shows the signal PDF, red dotted curve shows the BB̄ background PDF, green dash-dotted curve shows the continuum background PDF,
pink long-dashed curve shows the (almost negligible) rare background PDF, black line is the fit result. Also shown underneath each
graph are the residual pulls between the data points and fitted PDF.

TABLE IV. Fitted number of signal and backgrounds events for
the two reconstruction modes (B2b and B3b) of B0 → D̄0π0.
Uncertainties are statistical only.

Category B2b mode (×103) B3b mode (×103)

Signal 2.01� 0.04 2.44� 0.05
Continuum 4.26� 0.06 16.47� 0.22
Generic B 4.76� 0.10 8.39� 0.18
Rare 0.15 (fixed) 0.47 (fixed)
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of τ− → π−π0ντ decays [36]. This ratio is ð96� 2Þ%
per π0.

(vi) MC statistics in efficiency calculation: Uncertainty
associated with the reconstruction efficiency is
based on the binomial statistics of the MC dataset
used. This is 0.094% for B0 → D̄0ðKþπ−Þπ0,
0.18% for B0→D̄0ðKþπ−π0Þπ0, 0.075% for Bþ→
D̄0ðKþπ−Þπþ, and 0.19% for Bþ→D̄0ðKþπ−π0Þπþ.

(vii) D̄0-subdecay branching fraction and ACP: from the
PDG average [22].

(viii) PID efficiency: systematic error associated with
a small difference in PID efficiency between
MC and data. This is based on an inclusive
D�þ → D0ðK−πþÞπþ study [35]. The uncertainty
is calculated as 1.3% for B0 → D̄0ðKþπ−Þπ0, 1.3%
for B0→D̄0ðKþπ−π0Þπ0, 2.2% for Bþ→
D̄0ðKþπ−Þπþ, and 2.2% for Bþ → D̄0ðKþπ−π0Þπþ.

(ix) Signal decay mode yield ratio fsd: The ratio between
the D0-decay modes in signal, fsd, is fixed based on
the expected yields from MC. To account for the
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uncertainty, we perform two fits varying the fixed
value by �1σ (based on MC statistics of the
simulation). This variation gives changes of
½−0.38;þ0.31�% and ½−0.08;þ0.19�% in B for
B0 → D̄0π0 and Bþ → D̄0πþ, respectively. The un-
certainty in ACP is ½−0.02;þ0.03� for B0 → D̄0π0

and <0.01 for Bþ → D̄0πþ.
(x) C0

NN calibration factors: We fit with and without
the calibration factors applied to the PDFs.
The difference between the yields and ACP of these
fits is quoted as the uncertainty. The uncertainty
in B is 0.34% and 0.06% for B0 → D̄0π0 and
Bþ → D̄0πþ, respectively. For ACP it is 0.06 and
<0.01, respectively.

(xi) Modification of the B3d Mbc × ΔE KEST PDF: The
uncertainty from the ΔE modification to the D̄0 →
Kþπ−π0 Mbc × ΔE KEST PDF is evaluated by
comparing the fit results obtained using the cor-
rected and uncorrected PDF. The difference in the
fitted yields of 0.63% for B0 → D̄0π0 and 0.24% for
Bþ → D̄0πþ is quoted as the uncertainty. For ACP
this is 0.06 and <0.01, respectively.

(xii) 2D KEST PDFs: BB̄, rare, and B3b signalMbc × ΔE
PDFs all use a fixed 2D KEST PDF. To estimate
the uncertainty from this, an ensemble test is
performed running 1000 fits over the data, with
each fit using a different Gaussian-fluctuated KEST
PDF based on bin statistics. The uncertainty is
quoted as the rms of the resulting yield and
ACP distributions. This contributes 0.35% and
0.05% to the uncertainty in B for B0 → D̄0π0

and Bþ → D̄0πþ, respectively. For ACP the contri-
bution is 0.15 and <0.01, respectively.

(xiii) Fixed rare B-decay background yield: The uncer-
tainty due to the rare B yield is the quadratic sum of
the statistical uncertainty based on the size of the
MC dataset and the uncertainty in the branching
fractions used to generate the MC. For modes with
three-body final states (Kþπ−π0 and Kþπ−πþ), this
latter component is taken from the uncertainty in
the PDG branching fractions BðB0 → Kþπ−π0Þ ¼
ð37.8� 3.2Þ × 10−6 and BðBþ → Kþπ−πþÞ ¼
ð51.0� 2.9Þ × 10−6 [22]. For D̄0 → Kþπ−π0
modes, this latter component is taken as the differ-
ence between the PDG values for the decays with
experimentally measured branching fractions and
the branching fractions used in the MC generator (or
the uncertainty on the PDG value if that is larger). To
estimate the effect on signal yield, the data are
refitted, varying the rare yield by �1σ. The un-
certainty in B is 0.47% for B0 → D̄0π0 and 0.03%
for Bþ → D̄0πþ.

(xiv) Fit bias: The uncertainty in the fit bias obtained from
the signal MC ensemble tests is quoted as an

uncertainty. For B this is 0.30% and 0.16% for B0 →
D̄0π0 and Bþ → D̄0πþ, respectively, and for ACP it
is 0.05 and 0.02, respectively.

(xv) ACP detector bias correction: Uncertainty on
the correction made to ACP is the statistical un-
certainty on the ACP;sideband measurement, summed
in quadrature with the deviation of the ACP of the
Bþ → D̄0πþ mode from the expected value of
ACP ¼ 0. This is 0.66 for B0 → D̄0π0 and 0.42
for Bþ → D̄0πþ.

(xvi) Fixed background ACP: Uncertainties from back-
ground ACP being fixed in fits are estimated by
varying them by �1σ (based on sideband data) and
comparing theACP in the resultant fits. This is found
to be 0.49 for B0 → D̄0π0 and 0.03 for Bþ → D̄0πþ.
This is correlated with the ACP detector bias
correction uncertainty.

In order to accurately calculate the uncertainty in B, the
D̄0-decay-mode-dependent factors are combined in a gen-
eralized weighted mean as shown in Eq. (8). The absolute
uncertainties for charged-track efficiency, π0 detection
efficiency, reconstruction efficiency, PID efficiency, and
D̄0 branching fraction are combined into a covariance
matrix, Σ, that accounts for their correlations between
the two-body and three-body modes. For B0 → D̄0π0,
Σ ¼ ½1.47

2.40
2.40
6.76�, and for Bþ → D̄0πþ Σ ¼ ½1.17

1.05
1.05
4.03�. The

combined value, which we call “mean efficiency,” is

calculated as ϵ̄ ¼ σ2ϵ̄

�
J TΣ−1

h
fs
2b
ϵ2b

;
fs
3b
ϵ3b

i
T
�
−1
, with variance

σ2ϵ̄ ¼ ðJ TΣ−1J Þ−1 (where J ¼ ½1; 1�T) [33,34]. The rela-
tive uncertainty on this is found to be 2.43% for
B0 → D̄0π0, and 2.54% for Bþ → D̄0πþ.
The values of all contributions to the branching fractions

are listed in Table V. The quadratic sum of these terms is
quoted as the total systematic uncertainty for B. The values

TABLE V. Systematic uncertainties for B measurements. The
mean efficiency results from combining charged-track efficiency,
π0 detection efficiency, MC statistics in efficiency calculation,
D̄0-subdecay properties, and PID efficiency in a general weighted
mean calculation.

Systematic B0 → D̄0π0 Bþ → D̄0πþ

Number of BB̄ 1.37% 1.37%
Bðϒð4SÞ → B0B̄0Þ 1.23% 1.17%
DCS mode correction 0.01% 0.01%
Mean efficiency 2.43% 2.54%
Fixed fsd

þ0.31
−0.38 %

þ0.19
−0.08 %

Calibration factors (C0
NN) 0.34% 0.06%

ΔE KEST modification 0.63% 0.24%
KEST PDFs 0.35% 0.05%
Fixed rare yields 0.47% 0.03%
Fit bias 0.30% 0.16%
Background ACP 0.01% 0.05%
Total 3.65% 3.32%
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of all contributions to the ACP measurements are listed in
Table VI. The quadratic sum of these terms is quoted as the
total systematic uncertainty for ACP.

VIII. CONCLUSIONS

Our measurements of

BðB0 → D̄0π0Þ ¼ ð2.70� 0.06� 0.10Þ × 10−4; ð13Þ

BðBþ → D̄0πþÞ ¼ ð4.53� 0.02� 0.15Þ × 10−3 ð14Þ

are the most precise to date. They agree with our previous
measurements [4,37] within uncertainties, and supersede
those results. They are also in agreement with PDG
values [22].
Our result

ACPðB0 → D̄0π0Þ ¼ ð0.42� 2.05� 1.22Þ% ð15Þ
is the first reported for this mode. Our result

ACPðBþ → D̄0πþÞ ¼ ð0.19� 0.36� 0.57Þ% ð16Þ
is the most precisely measured and agrees with our
previous result [38], which it supersedes.
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D̄0-decay ACP 0.35 0.35
Fixed fsd

þ0.03
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Calibration factors (C0
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ΔE KEST modification 0.06 <0.01
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