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For classical gravitational systems the lapse function and the shift vector are usually determined by
imposing appropriate gauge-fixing conditions and then demanding their preservation with respect to the
dynamics generated by a canonical Hamiltonian. Effective descriptions encoding quantum geometric
effects motivated by loop quantum gravity for symmetry-reduced models are often captured by
polymerization of connection (or related) variables in gauge-fixing conditions as well as constraints.
Usually, one chooses the same form of polymerization in both cases. A pertinent question is if the
dynamical stability of the effective gauge-fixing conditions under the effective dynamics generated by
the polymerized canonical Hamiltonian is provided by the lapse function and the shift vector obtained from
the polymerization of their classical counterparts. If this is the case, then we say that gauge fixing and
polymerization commute. In this manuscript we investigate these issues and obtain consistency conditions
for the commutativity of gauge fixing and polymerization. Our analysis shows that such a commutativity
occurs in rather special situations and reveals pitfalls in making seemingly well-motivated choices which
turn out to be inconsistent with the effective dynamics. We illustrate these findings via examples of
symmetry-reduced models in the loop quantization of the Schwarzschild interior and Lemaitre-Tolman-
Bondi spacetimes and report the noncommutativity of gauge fixing and polymerization and inherent

limitations of some choices made in the literature with a consistent effective dynamics.
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I. INTRODUCTION

As is well known, in order to solve canonical gravita-
tional systems, one needs to deal with the gauge freedom
encoded in the system. There exist two strategies that can
be followed. In the first, one chooses appropriate gauge-
fixing conditions which can be used to determine the
corresponding lapse and shift. Generally, requiring the
stability of the chosen gauge-fixing conditions leads to a
set of algebraic equations that can be solved for the lapse
and the shift which determines their explicit dependence on
the elementary phase space variables. Then by strongly
imposing the consistent gauge-fixing conditions, one can
work in a space where the dynamics of the physical degrees
of the freedom can be unraveled. The second approach aims
at constructing Dirac observables, which are quantities that
commute with all constraints present in gravitational
systems and which can be chosen as elementary variables
in the reduced phase space. In the relational formalism [1,2]
the construction of Dirac observables is strongly tied to a
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choice of reference fields with respect to which the
dynamics of the Dirac observables is formulated [3-6].
Often these reference fields are also referred to as clocks
although the gauge-fixing conditions might not necessarily
be related to a choice of the temporal coordinate only. For
certain class of gauge-fixing conditions and choices of
reference fields these two approaches can be related to each
other (see for instance Appendix H in [7]). In literature,
there are mainly two types of gauge-fixing conditions
involving either geometric or matter degrees of freedom,
respectively. In the context of the relational formalism one
calls the first choice geometrical clocks and the latter matter
clocks. In the models where one considers matter reference
fields these fields are dynamically coupled to gravity and
the gauge invariant dynamics of the remaining degrees of
freedom is formulated with respect to these reference fields
[6-9]. Similarly, we can also choose some of the geometric
degrees of freedom as the reference fields as one does in the
case of vacuum gravity (see e.g., [10-13]).

The above gauge-fixing procedure in classical gravita-
tional systems is also required and equally important for
quantized systems where the quantum dynamics is pre-
scribed by a quantum Hamiltonian operator. Here one often
follows the approach where one performs a gauge fixing at
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the classical level yielding in general phase space depen-
dent versions of lapse and shift and then promotes these to
the corresponding operators in the quantum theory.
Another strategy is to implement the gauge fixing in the
quantum theory. If we formulate the two approaches in the
context of the relational formalism, this corresponds to
choosing either classical or quantum clocks, respectively.
Quantum clocks in the context of the relational formalism
have been discussed in various settings; see e.g., [14—18],
where a broader perspective on quantum clocks and related
results are presented than we will address in our work here.
In the quantum theory, not only lapse and shift but also the
gauge-fixing conditions are promoted to operators in the
Hilbert space. In particular, the gauge-fixing conditions
now become operator relations and the preservation of
these operator-valued relations becomes a much more
complicated problem due to the fact that we need to work
with operators instead of classical quantities. An interesting
question in this context is the way choosing gauge-fixing
conditions or clocks either at the classical or quantum level
affects the final model under consideration and under
which conditions we can see a kind of commutativity of
gauge fixing and quantization in this sense. To answer this
question in full loop quantum gravity (LQG) is a compli-
cated task; therefore, in this work we will restrict our
discussion to effective models. In those models one often
uses a polymerized version of the classical theory as an
effective theory which is assumed to capture the underlying
loop quantization.1

In recent years, LQG techniques have been applied for
various isotropic and anisotropic spacetimes in cosmology
[19] and static and dynamical spherically symmetric space-
times in black hole physics (see e.g., [18,24-43]). Many of
these works use the effective theory (or the polymerization)
to understand Planck-scale physics from LQG. As com-
pared with the cosmological setting where on most of the
occasions only several forms of the time (for example, the
cosmic time and the conformal time) are used, in the black
hole spacetimes various gauges which correspond to
different choices of the lapse and shift can be chosen.
Unfortunately, not much attention has been paid so far to
analyze the consistency of the gauge-fixing conditions as
well as the choices of the lapse and shift in the effective
theories for black hole and spherically symmetric space-
times. Previously the choices of the lapse and shift in the
effective theories of the polymerized black hole were
usually determined by requiring the forms of the effective

'A motivation for this arises from loop quantum cosmology
[19] where effective dynamics derived using coherent states can
for some models be mimicked by a simple polymerization of
connection (or related) components and is known to well
approximate the underlying quantum dynamics [20-23]. Note
the usage of the phrase “effective theories” in this setting is
different from the one generally employed in effective action
techniques.

constraint algebra to be the same as their classical counter-
parts or demanding the lapse and shift to act on the same
lattice as the Hamiltonian constraint, etc. In the following,
we understand in detail consistency conditions to choose
the lapse and shift in such effective theories, which allow us
on one hand to set the guidelines for constructing consistent
models in polymerized theories and on the other hand point
out problematic features with some existing models. We
consider two simple example models which share features
with several others. The first describes the loop quantiza-
tion of the Schwarzschild interior [32] and the second
inhomogeneous dust collapse in Lemaitre-Tolman-Bondi
(LTB) spacetimes [39,44]. Given the similarity of tech-
niques which these models share with other works employ-
ing polymerization, it is quite possible that the conclusions
we find in this manuscript are applicable for various other
loop quantized models in black hole spacetimes.

To be specific, we aim to analyze the question of how a
gauge-fixing procedure can be applied in effective theories
in the framework of symmetry-reduced models motivated
from LQG. Although we will focus in this work on the
aspect of gauge fixings to deal with gauge degrees of
freedom of these models, this will also yield some insight
on the comparison of classical versus quantum clocks for
those cases where the gauge-fixed theory can be related
to the reduced phase space of the corresponding Dirac
observables. For these effective models one often considers
a classical gauge fixing, applies a loop quantization,
and then works with an effective theory that still has a
fingerprint of the underlying quantum model. In practical
applications this manifests in a polymerization of the
Hamiltonian constraint and the diffeomorphism constraint,
respectively, as well as the physical Hamiltonian, that
usually has been obtained for a given choice of the classical
lapse and shift. In case these also involve connection
degrees of freedom the question arises how the polymeri-
zation at the effective level affects lapse and shift. Some
important questions in this setting are the following. Do the
gauge-fixing conditions that are compatible with the
polymerized lapse and shift encode the same type of
polymerization as performed for the Hamiltonian and
diffeomorphism constraints? Is there any freedom in
changing the “angles” or “functions” of the polymerization
for different set of variables as it is sometimes performed to
simplify or enhance some features of the analysis? As we
will discuss in this article the basic guiding principle here
should be that lapse and shift at the effective level must be
consistent with the effective dynamics. That means that the
associated gauge-fixing conditions need to be preserved
under the effective dynamics. Requiring this leads to strict
conditions on the consistency of the dynamics vis-a-vis
polymerization and gauge-fixing conditions. This require-
ment is essential in the sense that it is what we need to
require if we aim at implementing the gauge-fixing con-
ditions at the quantum level.
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Our results show that in general polymerization does not
necessarily commute with gauge fixing (Lemmas 1 and 2).
By this we mean that applying the same Ansatz for
polymerization in the classical Hamiltonian and diffeo-
morphism constraint as well as for the gauge-fixing
conditions, the choices of lapse and shift that are consistent
with the resulting effective dynamics do not in general
agree with just the polymerization of their classical counter-
parts. Carrying this over to a more general discussion this
implies that if we determine lapse and shift from a choice of
a classical clock and perform their quantization, this
process will result in an inconsistent quantum dynamics
if we assume that the quantum clock agrees with classical
clock in the classical limit and it is quantized in the same
way as the constraints.” As shown in Lemma 2 this
noncommutativity between the gauge fixing and the
polymerization generally holds for fully constrained sys-
tems under the conditions that there is at least one time-
dependent gauge-fixing condition which depends only on
one canonical pair for which at least one variable of the pair
is polymerized. Therefore, coordinate gauge fixings that
involve a temporal dependence for gravitational systems in
which part of the degrees of freedom are loop quantized do
often belong to this class of models. Removing one of the
above conditions can make gauge fixing commute with
polymerization. For example, a consistent effective lapse
and shift coincide with the polymerization of their classical
counterparts if none of the gauge-fixing conditions depends
on the temporal coordinate (Corollary 1), or the time-
dependent gauge-fixing condition only includes unpoly-
merized matter degrees of freedom (Corollary 2), or the
time-dependent gauge-fixing condition only depends on
the geometrical degrees of freedom but the polymerization
is only implemented in the matter sector.

Usually when gauge fixing does not commute with
polymerization, working with the polymerization of the
classical lapse and/or shift requires one to modify the
gauge-fixing condition appropriately to obtain a consistent
dynamical system at the effective level. The consistent
gauge-fixing conditions for the effective dynamics can be
obtained by solving a partial differential equation (PDE)
derived from the stability requirement. We show explicitly
how this is done in one of the given examples which deals
with the choice of the gauge-fixing conditions once the
lapse is known in the context of the loop quantization of the
interior of the Schwarzschild black hole [32]. In contrast,
when gauge fixing does commute with polymerization,
the lapse and shift consistent with the effective dynamics
must be chosen as the polymerization of their classical
counterparts in order for the effective system to be
dynamically consistent and to possess the correct classical
limit (Lemma 3). An example in which gauge fixing and

’In effective theories this corresponds to using the same
polymerization for the gauge-fixing conditions and the constraints.

polymerization commute is the inhomogeneous collapse of
the dust cloud in LTB spacetime where the temporal gauge
consists matter degrees of freedom only and the gauge
fixing related with diffeomorphism constraints involves
variables from geometrical sector only and is time inde-
pendent. This exercise provides an important lesson on the
inconsistency of some choices made for the shift vector in
the literature [44] in relation to the consistency of the
effective dynamics and the corresponding physical
Hamiltonian (Lemma 3).

Furthermore, we also extend our analysis to matter
reference models or where matter clocks are chosen.
When the matter sector is not loop quantized, and if the
matter couples only via the triad variables,” the matter
contributions to the Hamiltonian or diffeomorphism con-
straint as well as to the physical Hamiltonian do not involve
any polymerization effects at the effective level. As a
consequence, for a set of gauge-fixing conditions that
involve only matter reference fields polymerization and
gauge fixing commute. However, if we also loop quantize
the matter sector, the gauge fixing will become non-
commutable with the polymerization again for the same
reason as choosing geometric clocks when the geometric
sector is polymerized (Lemma 2). We show this explicitly
for the Brown-Kuchar [7,46,47] and Gaussian dust model
[48,49] well as the four-scalar reference field model [50].

The paper is structured as follows. In Sec. II, we first
present a proof of Lemma 1 for generic geometrical clocks
which shows that for this type of gauge-fixing conditions
polymerization and gauge fixing will not commute as long
as at least one of the gauge-fixing conditions is time
dependent. We then extend our analysis to several other
situations when some restrictions on the assumptions for
Lemma 1 are a bit relaxed. These analyses lead to Corollary
1. With Lemma 2 we show that for a wide range of models
that use a temporal gauge-fixing condition involving
canonical variables where at least one of the elementary
variables is polymerized, gauge fixing and polymerization
do not commute. Further we analyze in Lemma 3 the
possibility of reverse engineering the set of gauge-fixing
conditions for a given lapse and shift. In Sec. III, we discuss
several models known from literature as examples to clarify
the results of our lemmas and corollaries. These models
include vacuum and dynamical black hole spacetimes in
symmetry-reduced models of LQG as well as the Brown-
Kuchar dust model. We explicitly analyze whether the
choices of the gauge-fixing conditions with the polymer-
ized lapse and/or shift in these models lead to a consistent
dynamics at the effective level. Besides, the different
properties of geometrical and matter clocks in the context
of gauge fixing in the effective theory are addressed in the

3An exception to this can arise using gauge-covariant fluxes
result in a nonminimally coupled matter, i.e., with a coupling to
connection, even if matter is not polymerized [45].
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Brown-Kuchar dust model with a particular focus on how
the situation changes if we also apply a polymerization to
the matter sector. In the Appendix we present a similar
analysis for the Gaussian dust model and the four-scalar
field model. Finally, in Sec. IV we summarize our main
results.

II. GENERAL ANALYSIS ON THE CONSISTENCY
OF GAUGE FIXINGS IN POLYMERIZED MODELS

In this section we present some proofs which provide
insights on the process of polymerization in effective
theories of gravitational systems based on LQG and
gauge-fixing conditions. We start with the underlying
assumptions which lead us to Lemma 1 which shows that
when a gauge-fixing condition involves an explicit depend-
ence on the temporal coordinate as well as on the geometric
degrees freedom, then polymerization and gauge fixing do
not commute. This is followed by corollaries detailing
some special cases allowing for commutability of gauge
fixing and polymerization. On the other hand Lemma 2 in a
sense generalizes foregone Lemma 1 to a broader class of
gauge-fixing conditions that can for instance also involve
polymerized matter degrees of freedom and as shown
gauge fixing and polymerization do not commute in this
case. Next we discuss how in principle one could reverse
engineer the gauge-fixing conditions for given lapse and
shift. We conclude with Lemma 3 emphasizing for certain
systems the need of exactly the same polymerization in
lapse and shift as the constraints and the physical
Hamiltonian to avoid any inconsistencies in dynamics.
These lemmas are applied in the next section to models on
loop quantization of Schwarzschild interior [32] and
inhomogeneous dust collapse in LTB spacetimes [44]
highlighting various issues related to gauge fixing with
their construction. In this section, we make a brief comment
on the model in [18] which fits Corollary 1.

Since only for very specific models and choices of
gauge-fixing conditions, polymerization and gauge fixing
commute we choose a class of gauge-fixing conditions
which are not the most general ones but are sufficiently
general to cover all the examples discussed in Sec. III
and also to demonstrate the main reason why gauge fixing
and polymerization do not commute or commute in special
cases. Furthermore, because we discuss examples with
spherically symmetric as well as Kantowski-Sachs models
we perform the proof not for specific chosen models but
keep it at a more general level providing us with a better
intuition on what kind of properties are characteristic of a
given model. To formulate the effective model we will
assume that a subset of variables is replaced by their
corresponding polymerizations and all proofs in this
section apply only to those models where the correspond-
ing effective model is of this kind. These polymerizations
are motivated from the full theory where holonomies play
the role of the elementary variables and they involve

integrals of the connection along the edges of a graph
associated with a given spin network function. If there is a
relation between the full theory and the effective model,
then the polymerization parameter, denoted below by A’s,
needs to encode detailed properties of the underlying
dynamics in the full theory. Therefore, there might exist
effective models that have a more complex structure as far
as their polymerization is considered than we will consider
here. Nevertheless, a wide range of symmetry-reduced
effective models in the literature particularly for spherically
symmetric or cosmological spacetimes can be characterized
by the type of polymerization we consider in this work here
(see also footnote 1).

To start the discussion of Lemma 1, for the polymeri-
zation as well as the class of gauge-fixing conditions we
assume them to have the following properties.

(1) We only consider gauge-fixing conditions for the

Hamiltonian and diffeomorphism constraints.

(2) Furthermore, we assume that all gauge-fixing
conditions weakly commute with the Gauss con-
straints. This can for instance be achieved if we work
with gauge invariant variables with respect to the
Gauss constraint.

(3) We denote the set of gauge-fixing conditions by
{G;} with I =0, ..., 3. For at least one of the gauge-
fixing conditions G; we have % % 0.

(4) All gauge-fixing conditions depend on the gravita-
tional degrees of freedom only.

(5) The polymerization of the connection variables
denoted by A’ is performed by A} > h}(A%; A)
in the constraints and gauge-fixing conditions where
h}(A%; 2%) does not depend on partial derivatives of
AJ, and is not the identity function. The triad
variables EY are not polymerized at the effec-
tive level.

Let us briefly comment on these assumptions. The first
assumption is motivated by the fact that the Gauss con-
straint involved in formulation of general relativity in terms
of Ashtekar variables is often solved in the quantum theory
and then there exist no additional equations stemming
from a stability requirement of the gauge-fixing conditions
from the Gauss constraint. The second assumption has the
consequence that the Lagrange multiplier coming from the
Gauss constraint does not contribute to the stability
equations and this is the situation that occurs in the models
discussed in this work here. Assumption 3 ensures that we
can work with a coordinate gauge fixing that involves the
temporal coordinate and the fourth assumption restricts
the choice of gauge-fixing conditions to the class of geo-
metrical clocks. The fifth assumption allows us to consider
all polymerization functions that have been used in the
literature so far and this allows us to formulate our result
independently of the specific choice of polymerization.

Furthermore, we have considered in the assumptions a
polymerization of the spatial diffeomorphism constraint at
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the effective level as well. There exist effective models as
for instance in [38] where only the Hamiltonian constraint
is polymerized. In case we remove the polymerization of
the spatial diffeomorphism constraint in the proof, the final
conclusion that gauge fixing and polymerization will not
commute will still hold. Because an operator for the spatial
diffeomorphism constraint operator does not exist in full
LQG, the way we can obtain the form of a polymerized
spatial diffeomorphism constraint works as follows: We can
implement an operator of the classical expression ¢**C,C,
expressed in terms of connection and triad variables along
the lines of [47]. Then we can compute its semiclassical
expectation value leading in lowest order to a polymerized
version of this quantity from which we can read off the
polymerized form of the spatial diffeomorphism constraint.
At the effective level we assume that this agrees with the
classical spatial diffeomorphism constraint if we replace the
connection variables by their corresponding polymerized
quantities.

Now we proceed to prove the following lemma.

Lemma 1.—Given assumptions 1-5 stated above then
gauge fixing and polymerization will not commute. This
means that the lapse function and shift vector that are
consistent with the effective dynamics do not agree with the
polymerization of the classical lapse function and classical
shift vector.

Proof of Lemma [.—Without any loss of generality
we choose G, namely, the gauge-fixing condition for
the Hamiltonian constraint, to be the one that depends
on the temporal coordinate. In the literature so-called
coordinate gauge fixings, i.e., GS*(A(t, x),E;?(t, x);t) =
f1(A, E) = 7;(t, x), are a popular class of gauge fixings, but
it is not much more difficult to prove the lemma for general
gauge-fixing conditions and so we restrain from using this
simplification. The elementary Poisson bracket for the
gravitational degrees of freedom is given by

(AL 0, R (.0} = S6(ey)slel.  (2.1)
where k = 162G and G is the Newton’s constant. All the
other degrees of freedom will be labeled by {®*, 7,},
where the index A is a multi-index such that spinor-valued
fields are allowed as well. At the classical level the stability
requirement reads

d class class class aGO
d—tG,l‘l (t,x) = {G§™(t,x), HEG: }"‘51,0?(@)6)

~ / d3y{G?lass (t’x)’ (NClaSSCClaSS

oG
+Nglasscfllass)(y)} +51,07t0(t’x) %0, (22)

where we have denoted all classical quantities in particular the
lapse and the shift with a corresponding label and used the

second assumption that all G;’s weakly commute with the
Gauss constraint. The weak equality in the last step involves
all constraints as well as all gauge-fixing conditions. The
condition in (2.2) yields the following system of equations:

0G,
/dBy/d»?sz,aSSF;}‘}f?(x,y, 7) — 5,,07;) (t,x) ~ 0,
1=0,...,3. (2.3)
Here we have introduced the following abbreviations:

6G([tlass (t, x) 5C§lass (y)

]:'class (x,y, Z) =

N SA(z)  SEQ(2)
5G§l%s (t, x) 5C31ass (y)
SE(z)  8AL(2)

= (FIa)i () (Fe) (0:2)
= (FRE)7 (6 ) (FRE5); (0 2),

as well as the compact notation N7 = (N, N%.,) and
Class = (Cclass | Cdass) 1f we perform the gauge fixing directly
at the level of the effective dynamics, then we introduce
the effective Hamiltonian and diffeomorphism constraints
denoted by C; = (C, C,), respectively, and given by

Cy = C=(hl(AL: 7). ES, D 1y, (2.4)
where @4, 7, denote all remaining degrees of freedom
but the gravitational ones and /h7(A%;4%) denotes a
generic polymerization function. Given these we replace
HEY (A%, ES, @*, 7y) by its effective analog given by

Hea = HESS (Wo(Als 20), ES, @4, 70)  (2.5)

and furthermore
conditions

introduce the effective gauge-fixing

Gy = G§ (hf(Al; M), E9), (2.6)
where we have used the fact that by assumption four gauge-
fixing conditions G}s do depend on A, E only. The stability
requirement for the effective gauge-fixing conditions has the
form

d 0G
$G(13) = {Gi6.2), e} + 570 52 (1.)

dt
z/“’3Y{G1(t»x),(JWCJ)(J’)}

9G,

+ 51,07<t, x) zO, (27)

which, similar to the situation in the classical theory, can be
rewritten as
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oG
/d3y/d3zN1.7:N/,,(x,y,z) +61.07t0(t,x)z0,

1=0,...3. (2.8)

In the case of the effective theory the involved F ., are
given by

6G,(t,x) 6C, () _
5Ak(z) SEY(2)

5G1(t, X) 5C](y

B )
Fyig(x,y,2) = SEL(z) 6AK(z)"

Now in case that polymerization and gauge fixing commute in
the sense introduced above we need to have

since then the system of equations in (2.3) and (2.8) have
the same solution for lapse and shift (modulo polymeri-
zation). By this notation we mean that F s ; agree with the
quantities we obtain by simply polymerizing the classical
F Cl“ss . For the F s , we can slightly relax the condition

because the gauge-fixing conditions associated with G,
carry no explicit time dependence and therefore we can
allow an additional generic function H(A) depending on
the connection variables on the right-hand side. This is
possible due to the absence of the term involving % in the
stability equation, which allows us to factor out the term
involving H(A). We now show that under assumptions 1-5
listed above these conditions in (2.9) are never satisfied.

Fyio(x,y,2)= ]:Cla“ [h{t(A{l;/,{{l)’Ej?vq)AvﬂA](x?y?Z) and For this purpose we aim at expressing F v ; in terms of
Fyral.y.2) = ]:class [h (A} » ), E;;’(I)A’ 7] (v, 2)H( A{,) FCI‘M Using the explicit form of the effective gauge-fixing
COIIdlthIlS and constraints from (2.6) and (2.4), respec-
(2.9) tively, we obtain
|
6G(t, x) / 5G,(t,x) Sh%(Z) / SGSlass Shi(Z)
N N Y At ats = [ &7 he(AZ29), E9)(t, x) —< ,
5AI£<Z) 5hf( /) 5Ak(2) 5A"ﬂ( /)[ ( ) j]( )5AII§(Z)
oC,(t, 5C,(t,y) dh%(Z SCass She (7
5G,(ty) y)—/d3’ 26,(ty) k(z)—/d3’ T (A 20), B 0A, () ). (2.10)
6A;(2) Shi(7') 6A;(2) SAL(Z) 6A;(2)
|
The notation in the last in each equation means that 6G,(t, SGSkass
e 1S n cah Sauation | _ rlbx) _ OGT™ 4 (a2, E4)( x).
we take the functional derivative of the classical gauge SEP(z)  SEL(2) J
fixing conditions, take the result and replace all the ¢ ]Zla“
remaining connection variables by their polymerized 6C,(ty) _ 8C5™ () (AL 20), B, @4, m] (). (2.11)
counterparts and we have used the fifth assumption on SEb(z)  SEY(2) /
the polymerization here. If we further take into account
that then we obtain
Frog = / L [(F) g Aa 20). B 4 ] (0. 2) (F ) (Al 24). B @4, 74 (2. )
lass\k (o7 ( AT . 7] A lass e (70 (AT 3 LA
— (P (AL 2, B, @7 ) ) (P (A 20), B 0%, ) () 2
64, (2)
= () (A 1), E2. @7 ), 2) (S A (A ). B @4 ) (2.)
= (FE), [ha(Aas o), B @4, my] (x, 2) (F 3% )6 [ (AG: Za), ES . @4, 7] (2. y)[HEZ (A). (2.12)

Here in the final step we have used assumption 5, namely,
that h/,(A%; 1) does not depend on the derivatives of A and
hence the functional derivative that is factored out in the
one before the last step involves §(z’, z) linearly. Further we
introduce the following notation:

oh% (7))

SAE(2) = HP(A)S(Z, 2).

(2.13)

|
Since by assumption 5 the polymerization function
I} (A%; 2%) cannot be the identity map the most simple
form the function H’?(A) can have is
HIP(A) = H(AS)5555, H#id.  (2.14)
If we reconsider the condition written in (2.9), we realize
that although it is satisfied for s ,(x,y, z) it can never be
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satisfied for F ys o(x, y, z) unless H(AS) is the identity map
which is excluded by our assumption. Hence, we have
shown that for the class of gauge-fixing conditions that
satisfy assumptions 1-5 polymerization and gauge fixing
will not commute. =

Before discussing some specific examples in the next
section, we want to extend this analysis to some other classes
of gauge-fixed models that are present in the literature. As
we will see, we can extensively use the calculations of the
foregoing lemma to prove the following corollaries. First we
consider the stationary slicings of the spacetime manifold. In
other words we will consider models which have no
temporal dependence in the gauge-fixing conditions.
Otherwise assuming the noncontradicting properties left
that were stated before, we can prove that gauge fixing and
polymerization commute for such models.

Corollary 1.—Given assumptions 1-5 stated beforehand
where assumption 3 is replaced by

(3) For all gauge-fixing conditions we have % ~ 0 and

the polymerization is of type (2.14),

then gauge fixing and polymerization will commute.

Proof of Corollary 1.—Using the connection of the
functions Fy ; to the ones of the classical theory given in
Eq. (2.12) and further requiring the polymerization to be of
the simple form defined in Eq. (2.14), we compute

d
d—tG,(t,x) z/d3y/d3zNJ]:NJ‘1(x,y,Z)

_ / dy / 02 (N F95 1l (Al 2,

~ 0. (2.15)
We can see that the polymerization function H(A¢) can be
factored out and the remaining set of equations are exactly
of the same form as in the classical theory. This concludes
the proof. [

We can find in [18] a model that falls in the class of
such gauge fixings. The authors use the areal gauge
G, = E* — g(x) (we have adapted the expressions to the
notation used in Sec. III B). The second gauge condition is
Gy = b — h(x). A quick computation shows that for this
model gauge fixing and polymerization commute. Note the
similarities of this model to the LTB model discussed in
Sec. III B; in particular, one can see this in the result for the
shift vectors of the two models, which modulo the lapse
function coincide.

The second class we want to consider are so-called
matter clocks. This means we will use an additional matter
field to write a coordinate gauge. The most common form
used in literature is Gy =7 —t, but in the following
corollary we can generalize to G := Go(®*, 74;t), where
®* are additional matter fields with canonical momenta 7.
The other gauge-fixing conditions remain “geometrical,”

i.e., only depend on the gravitational degrees of freedom.
Then the following corollary holds.
Corollary 2.—Given assumptions 1-5 stated beforehand
where we replace assumptions 3 and 4 by
(3) Only gauge-fixing condition G, has a weakly non-
vanishing dependence on the temporal coordinate and
further matter degrees of freedom; thus, we can write
Gy = Gy(®*, 4;t). The remaining gauge-fixing
conditions are functions of the gravitational degrees
of freedom and the polymerization is of type (2.14),
then gauge fixing and polymerization will commute.
Proof of Corollary 2.—Note that the stability equation
of G at the effective level is the same equation that one

obtains at the classical level up to that N, N&,. are
replaced by N, N¢ since
d 0G,
—Gy(t,x) ={Go,. Hean } + ——
dt 0( x) { 0 }+ ot
0
= {G§s, Has ) +aGglass ~ 0, (2.16)

where HS2S denotes the matter contribution to HS%% and
by construction the classical expression does not involve
any polymerized variables. The reason why only H&%s
contributes to the above equation is that the matter
contribution depends on the densitized triads and matter
degrees of freedom only. Considering the remaining gauge-
fixing conditions we can make the same computation as in
Lemma 1. We see after factoring out the polymerization
factor H(AS) in the stability equations, the equations are
the same as the classical ones. [

From the previous lemma and corollaries we learn that
the temporal dependence in the gauge-fixing conditions
plays a pivotal role in answering the question whether
gauge fixing and polymerization commute. Lemma 1 and
Corollary 1 show that when using a suitable type of
polymerization additional contributions in the gauge-fixing
conditions that do not carry any temporal dependence can
be completely factored out. Hence, these stability equations
associated with these nontemporal gauge-fixing conditions
are equivalent to their classical counterparts up to polymer-
izations of the involved variables in the solutions of lapse
and shift. As a consequence, discussed in Corollary 1,
if none of the gauge-fixing conditions depends on the
temporal coordinate, gauge fixing and polymerization
commute. As can be seen from Lemma 1 and Corollary 2
whether gauge fixing and polymerization commute if at
least one of the gauge-fixing conditions has a temporal
dependence depends on the fact whether the variables
involved in the gauge-fixing conditions belong to pairs of
canonical variables for which at least one of the variables is
polymerized. Since Lemma 1 and Corollary 2 focus on
geometrical clocks and matter clocks, respectively, we can
generalize our analysis to more generic gauge-fixing
conditions and constrained systems and show that if variables
are involved in a temporal gauge-fixing condition that are

066023-7



GIESEL, LI, SINGH, and WEIGL

PHYS. REV. D 105, 066023 (2022)

polymerized or that are not polymerized but whose conjugate
variable is polymerized, this generally breaks the commuta-
tivity of polymerization and gauge fixing. In the case that we
restrict to temporal gauge-fixing conditions that depend at
most on one canonical pair we can prove the following result.

Lemma 2.—

(1) Given a fully constrained classical system with cano-
nical variables (Q4(t,x),P4(t,x)) with A=0,....K
that is the canonical Hamiltonian of the system can be
writtenas H,, = | d>xN'(x)C;(x) for some suitable
finite range of the index / and a set of gauge-fixing
conditions {G;(t,x)} whose dynamically stability
yields solutions N%__ (t, x).

(2) The set of gauge-fixing conditions is such that at least
one gauge-fixing condition has a temporal depend-
ence that is not weakly vanishing, i.e., Tt’ % 0.

(3) Atleastone gauge-fixing condition for which =+ aG’ %0
does further at most depend on one canomcal
pair only denoted with loss of generality by

(Q°(t.x). Po(t. x)).

4 Gy(t.3) = {Golt. ),

dt Cdﬂ} +

8GO

(4) The polymerization is performed according to
Q% = hp(Q% Ag). Py = hp (Py: Ap,),  where
hgo(Q%Ag) and hp (Py;Ap,) do not depend on
partial derivatives of Q° and P, respectively, at
least one of the polymerization functions is
not the identity function and we have

190 (52) =571
(5) All remaining variables (Q*4, P,) with A = 1,.... K
can be polymerized according to Q* > hpa (0%
Agr). Py hp (PasAp,), where each of poly-
merization functions can be chosen to be the identity
function and no further restrictions apply to them.
For a system satisfying assumptions 1-5 listed above gauge
fixing and polymerization do not commute.

Proof of Lemma 2.—Without loss of generality let G,
be the specified gauge-fixing condition in the lemma. Then
we can compute its temporal derivative in the effective
theory

o (L)

oo o o for(50) B2

8Gy(t. x) 6C(y)
<5hQ° (2') 8hp,(2")

where we have used assumption 3 after the last line. Considering assumptions 4 and 5 we have that

6Gy(tx) 8C,(y)

(6Go(tx> 3C,(y)
8h 0 (2) Shpy (")

solutions for the Lagrange multipliers N/
into the above result and obtain

class

Joe foe o [or(53) Gony ool

5Gy(t,x) 6Ci(y) 0Gy(t, x)
" S, () ath<z’>> i |

exist, we can reinsert the polymerized classical solution denoted by N/

8Gy(t.x) 6C;(y)

o (2.17)

660 (t,x) as well as

= hpy () o (7 )) coincide with their polymerized classical counterparts. Since by assumptlon 1 the classical
0

h)

class (

(9G0 (t, X)

Shoo(2) 6hp,(2")  6hp,(2")Shoo(Z)

6Gy(t.x) 6C;(y) )
ot

8Gy(

Joe o 355) (i) e (S5 -S )

This expression cannot weakly vanish because on the one
hand using assumption 3 we have that at most one
polymerization function can be the identity function and

oh ’ » o
moreover we have fd%(%((;)) (%) 2 88 (7, 7).

On the other hand due to assumption 1, the last integral on
the rhs in the above equation cannot weakly vanish because
then already in the classical theory the dynamical stability

(2.18)

|
of the gauge- ﬁxing condition cannot be satisfied as we have
a nonvanishing dt’ # 0 required in assumption 2. m

Note that we have considered the case of the field theory
here. For models with a finite number of degrees of
freedom the same result holds and the proof works
similarly in this simpler setup. This is the reason why
we have focused on field theory here.
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A. Reverse engineering gauge-fixing conditions
for given lapse and shift

In this subsection we want to discuss the question whether
one can take the point of view that for a given choice of a
polymerization of lapse and shift one can always reverse
engineer a set of gauge-fixing conditions that are consistent
with the effective dynamics and the polymerized lapse and
shift. An application where this question becomes relevant is
if elementary variables involved on the one side in the
constraints and on the other side in lapse and shift are
polymerized differently where both ways of polymerizing
still have the correct classical limit. One of the main reasons
why a different polymerization for the shift vector is chosen
is that it yields a quantization where the shift vector operator
acts on the same lattice points as the Hamiltonian constraint;
see e.g., the discussion in [18]. A further independent
argument for this choice is discussed in [39], where such
a definition of the shift vector is favored to allow the algebra
of the effective Hamiltonian constraints and the classical
ones exactly agree. Although it is desirable to have no
anomalies in this algebra, the first requirement that needs to
be satisfied here is to choose a dynamically consistent shift
vector. If there are ambiguities left, these could be used to
obtain an anomaly-free algebra but as we will see below for
the model in [18,39,51] a dynamically consistent shift vector
needs to have the same polymerization as the Hamiltonian
and diffeomorphism constraint or the physical Hamiltonian,
respectively. Because allowing one to adopt the gauge-
fixing conditions to a given set of lapse and shift brings some
additional freedom and thus ambiguity with it, it is rather
difficult to provide a general proof that is based on very
general assumptions. Therefore, what we will present in our
discussion below is a lemma that demonstrates that for a
certain class of models available in the literature [18,44,51]
such a kind of reverse engineering is not possible. As a
consequence, this means that the polymerization chosen for
the constraints and thus the physical Hamiltonian needs also
to be chosen for lapse and shift if one wants to have a
consistent dynamical system. At the end of this subsection
we will comment on possible drawbacks that can occur if
one follows the route of first choosing a polymerization for
lapse and shift and then aims at reverse engineering the
corresponding consistent gauge-fixing conditions.

The class of models that we want to consider satisfy the
following assumptions.

(a) The gauge-fixing condition associated with the
Hamiltonian constraint denoted by G, depends only
on the matter degrees of freedom denoted by ®4, 7,
and we have 2 Go(®*, 7y, 1) % 0.

(b) The matter degrees of freedom ®“, 7, are not
polymerized at the level of the effective dynamics.

(¢) The gauge-fixing conditions associated with the spa-
tial diffeomorphism constraint G, do only depend on
the gravitational triad variables and %GM(E;?) ~0.

(d) The polymerization of the connection variables
denoted by A} in the constraints is performed by

Al > h(A%; 1), where h(A9;2) does not depend on

partial derivatives of A} and is not the identity
function. The triad variables E{ are not polymerized
at the effective level.

The above assumptions are for instance satisfied in the
models considered in [44,51]. If we wish to reverse engineer the
gauge-fixing conditions for a given lapse and shift, then in
general this will also include the freedom to add an extra
polymerized contribution in the gauge-fixing condition that
vanishes in the classical limit or multiply quantities in the
gauge-fixing condition with polymerized quantities that tend to
one in the classical limit. With the chosen conditions for the
polymerization in (d) we want to exclude these ambiguities
here. Below we will discuss the situation when these assump-
tions are relaxed and particularly emphasize what kind of
drawbacks can occur if one follows this route. Given this set of
assumptions we can prove the following lemma.

Lemma 3.—Given assumptions (a)—(d) listed above, then
the gravitational degrees involved in lapse and shift need to
be polymerized in exactly the same way as chosen for the
constraints and the physical Hamiltonian, respectively.
Modifying the gauge-fixing condition to allow different
polymerization for lapse and/or shift is not possible if we
require the effective system to be dynamically consistent
and to possess the correct classical limit.

Proof of Lemma 3.—First we realize that assumptions
(a)—(d) are a special case of the assumptions stated in
Corollary 2. Hence, by applying Corollary 2 we can
conclude that under these assumptions gauge fixing and
polymerization commute. Next, by assumptions (a) and
(c) we know that all gauge-fixing conditions are not affected
by the polymerization and we have at the effective level

Go = G{*™ (@, 7,31) and G, = GIS(E9).  (2.19)

We use the same notation as in the former proofs; then the
stability condition reads

oG
/d3y/d3zNj.7:N./’1(x,y,z) - 51,07;)(t,x) ~ 0,
1LJ=0,..3, (2.20)

where we have used assumption (c) so far and considered
further assumptions (a), (b) and (d). The explicit form of
Fnog(x,y, z) for this class of models is given by

Fyro(xy,2) =F§i[@4 ma] (x.y.2) and
F o a(x.3.2) = F85 [l (Al A E9. 4 7a] (x.y.2) H(AL).
(2.21)

with
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8Gy(t, x) 5CSams ()

j:cldbs , Y, =
ol @ 7l (5.3 2) = S r o ()
3 oG, (t, X) 5C31?;§n< ) (2 22)
dmaz) 80M(z) T T
]_—class [hJ (AJ /1/) E‘? o4 ﬂA](x’% Z)
3G, (tx) 8CT () (2.23)
SEY(2)  OAK(2) |ajmniaial)

/dg /dgzNj’:C'ass L 7y) (X, 3. 2)

0Gy
/d3 /dzzN“}'CIa“( ) (X9, 2) + 61 0——

where C§% and C§4% denote the matter and geometrical

contribution to C5%%, respectively, and we further used that
gauge fixing and polymerization commute for this class of
models and computed the analog of (2.9) in Lemma 1 for the

models considered here. H(A{,) is as before a generic
function that depends on the connection variables and its
explicit form will depend on the chosen polymerization.
Using (2.21) we obtain the following equation that deter-
mines the effective lapse N:

O(tx).  (2.24)

ot

This agrees exactly with the equation we obtain at the classical level up to the fact that instead of the classical shift vector

Nd

class?

the effective one N is involved. Therefore, we can conclude that for the models considered here, we always have the

lapse function of the effective theory given by N = N, (®*, 74, N*) and polymerized variables involved in N can only
come from N“. Substituting this into the three remaining equations that determine the effective lapse function this yields for

a=1,23

[y [ @ r thalsad) B0 ) ez) = [ [ N (g PN AL B 0 1) 19.2).

Since by assumptions (b) and (c) the gauge-fixing con-
ditions do not involve any polymerized variables, it follows
that the polymerization encoded in F$i™ and F{%° is
completely determined by the kind of polymerization
chosen for the Hamiltonian and spatial diffeomorphism
constraints. Moreover, the polymerized variables involved
in the lapse function can only come from the contribution
of N“ and therefore any involved polymerized variables in
the system of equations that determine the effective lapse
and shift are contributions from the polymerized variables
involved in the effective constraints. Since the effective
physical Hamiltonian in these kind of models will always
be a phase space function that involves contributions of the
effective constraints from the gravitational degrees of
freedom and some matter degrees of freedom, the latter
contribution depending on the explicit form of the chosen
Gy, the polymerization chosen for the gravitational part
of the constraints carries over to the effective physical
Hamiltonian as well. Now due to the weak equality in the
system of equations that determine lapse and shift at the
effective level, we can use the constraints at the effective
level to for instance replace certain matter variables by
geometrical ones that are polymerized at the effective level.
But if this is done, the polymerization involved in the final
result for lapse and shift is again completely determined by
the polymerization chosen for the constraints. This shows
that starting with a given gauge-fixing condition that is
consistent with assumptions (a)—(d) the polymerization of

(2.25)

|
lapse and shift is determined by the polymerization chosen
for the constraints and cannot be chosen independently of
this choice if we require dynamical consistency. Moreover,
in these models we do also not have the freedom to modify
the gauge-fixing condition consistently to allow a different
polymerization for lapse and shift than chosen for the
constraints for the following reason: by assumptions (b)
and (d) neither the triads nor the matter variables experience
any polymerization. For this reason for models satisfying
assumptions (a)—(d) it is not possible to modify the set of
gauge-fixing conditions in a way that they on the one hand
lead to a solution of the stability requirement that allows a
different polymerization for lapse and/or shift—and are
thus dynamically consistent—and on the other hand still
have the correct classical limit. [

To close this subsection we want to look at a more
general case. This means we will drop most of the
assumptions of Lemma 3 and consider an effective system
where the components of the connection in the constraints
were polymerized according to A} +— h}(A%; 7). The triad
variables E} as well as the matter degrees of freedom DA,
7, are not polymerized. Given a choice of lapse and shift
we want to reverse engineer the corresponding gauge-
fixing conditions G; (A’a, Eb, @A 1yt x, 2 ). In order to do
that we have to consider the dynamical stability of the
gauge-fixing conditions with respect to the canonical
Hamiltonian. Using the notation of foregone proofs this
system of equations takes the form
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6G(t,x)6C,(y) 6G,(t,x) 6C,(y)
o] dBZNJ(”( "(2) 6Pale) | Pulc) 5Q"‘(Z))

96 (2.26)

—W(t,x) NO,

where Q% = (A, ®*) denotes all configuration variables of
the phase space and P, = (Ej’, 74) the respective canoni-
cally conjugate momenta. Additional factors of the Poisson
algebra were in the above equation absorbed in the
constraints. We can see that in general this is a very
complicated system of equations. Further we only have a
weak equality, meaning we are allowed to set the con-
straints on the left-hand side to zero. A common strategy to
find solutions is to make an Ansatz for the gauge-fixing
conditions. Typically we want to restrict the dependence on
the canonical variables or on the temporal variable. We
use such a strategy in the first example of the following
Sec. III A. Note that we can already see in this example that
in general there is no unique solution for the gauge-fixing
conditions.

Assuming we have found a solution to the above system
of equations G{°', then we want to formulate in the
following various sets of criteria the solution has to meet
and discuss their implications. First we require the solution
for the gauge-fixing conditions to have the correct classical
limit and obey the polymerization that was already used
in the constraints (in the following we refer to such a
polymerization as standard). In our case the latter criterion

means that there exists a function CTI(Q”,Pa;t, x) such
that

(2.27)

This is the simplest case, since we have a consistent
system where the effective physical Hamiltonian is equal
to the standard polymerization of the classical physical
Hamiltonian. Practically we can directly check whether
such a solution exists for a given system by plugging in the
standard polymerized classical gauge-fixing conditions as
well as our choice for lapse and shift in the stability
equations and check if they weakly vanish.

Secondly we can relax the criterion for the standard
polymerization and solely demand the solution for gauge-
fixing conditions to have the correct classical limit. Note
that the model discussed in Sec. III A falls into this
category. For this class of solutions we have to be careful
when formulating the effective physical Hamiltonian.
Instead of using the standard polymerized gauge-fixing
conditions we have to use our solution and the choice of
lapse and shift to construct the physical Hamiltonian from
the polymerized canonical Hamiltonian H_,,. Note that
although the classical limit of such a physical Hamiltonian
is correct, it is not given by the standard polymerization of

the classical physical Hamiltonian. The price to pay for
this approach is that we need to allow any possible
quantization ambiguity in the gauge-fixing conditions
to obtain consistent solutions. Since such an ambiguity
is considered for the quantization of the gauge-fixing
condition only, the question remains why the gauge-fixing
conditions are quantized differently from all other
functions.

The third category of solutions is defined by having a
classical limit that does not agree with the classical gauge-
fixing condition of the original classical model. As a
consequence, the physical Hamiltonian will also have a
different classical limit. This means that these effective
gauge-fixing conditions correspond to a different classical
system than the one we originally wanted to construct an
effective theory thereof. In a sense different choices of
gauge-fixing conditions do not change fundamentally the
physics of the theory but rather the perspective from
which we describe it, for example a rescaling of the
temporal coordinate. Still, if we want to have a system for
which the effective theory is a direct extension of the
classical one, we need to replace the classical theory by
the system constructed from the classical limit of the
gauge-fixing conditions and take into account that the
effective theory corresponds to a classical theory with a
different chosen gauge condition than we originally
started with at the classical level. Such a perspective
could be followed if one takes the quantum theory and its
corresponding effective model as fundamental and not as
the quantization of a given classical model because the
latter is problematic if we cannot rediscover such classical
theory in the classical limit. Depending on whether the
polymerization of the gauge-fixing conditions is standard
or not we would obtain models which fit in the first or
second category.

As our results show, from a physical perspective if we
choose lapse and shift and then reverse engineer consistent
gauge-fixing conditions, a wide range of the choices for
lapse and shift are suboptimal in the following sense. In
models where polymerization and gauge fixing do not
commute, in general in order to work with a consistent
model we need to rely on quantization ambiguities (second
category) and work with polymerized gauge-fixing con-
ditions whose classical limit does not agree with the
classical gauge-fixing condition one originally has started
with (third category).

III. EXAMPLES FROM LOOP QUANTUM
BLACK HOLES AND SPHERICALLY
SYMMETRIC SPACETIMES

To illustrate the consistency requirements of gauge-
fixing conditions with respect to the polymerized gravita-
tional dynamics we consider three specific examples.
We first discuss the case of the loop quantization of the
Schwarzschild interior using the quantization proposed
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in [32].* In this quantization all of the assumptions for
Lemma 1 in the previous section are satisfied. We find that
polymerization and gauge fixing do not commute. Then,
we move on to our second example where the gravitational
collapse of an inhomogeneous dust cloud in the LTB
spacetime is considered. In this example, which satisfies
the assumptions of Corollary 2, one works with two gauge-
fixing conditions, one of them being a temporal gauge fixed
by a reference field. We illustrate the conditions under
which gauge fixing and polymerization commute and point
out issues with considering different polymerization for the
shift vector as considered in [44] which is not consistent
with stability of gauge-fixing conditions. In our third
example we discuss the case of matter clocks when
polymerization of matter fields is taken into account.
Lemma 2 shows in this case that polymerization and gauge
fixing do not commute.

A. The Schwarzschild interior

Our first example concerns the interior of the
Schwarzschild black hole which is isometric to the homo-
geneous and anisotropic Kantowski-Sachs spacetime. Due
to the underlying symmetries this can be understood as a
special case of our proof where we consider a system with
finitely many degrees of freedom and where the diffeo-
morphism constraint is trivially satisfied such that one deals
with only one gauge-fixing condition. In this model the
spacetime metric is given by

ds? = =Ny (02dE2 + f(Dd2x + g()d?Q,  (3.1)

where N, denotes the lapse function, x is the radial
coordinate and d>Q = d6? + sin?()d¢? represents the
angular part of the metric. For the Schwarzschild interior,

1

Neas = 5———
class 2m/t—1

f=N). g ="t,

where m = GM and M is the mass of the black hole.
The coordinates can take any values in the range
te[0,2m),x e R,0 € [0, x],¢ € [0,2x].

In the following we first discuss the case of the classical
theory which is followed by its polymerized version.

*While there exist more recent loop quantizations of the
Kruskal spacetime such as [35,36] which not only resolve the
central singularity but are also free from some undesirable
features such as large mass asymmetry between black hole
and white hole spacetimes across the bounce, we consider this
quantization due to its simplicity and some features which are
shared by others [33,35-37].

1. The gauge-fixing conditions in the classical
Schwarzschild interior

It can be shown that in the Kantowski-Sachs spacetime,
after imposing the Gauss constraint, the Ashtekar con-
nection and the densitized triads only depend on two pairs
of symmetry-reduced canonical variables, namely, (b, p;)
and (c, p.) [24]. These phase space variables satisfy the
following nonvanishing Poisson brackets:

{b.pp} =Gy.  {c.p.}=2Gy. (3.3)
The corresponding classical Hamiltonian for the
Schwarzschild interior in terms of canonical pairs
(b, pp) and (c, p..) takes the form

N as
lass _ 1 Pb
Hss = _W (b + yz)ﬁ +2bcy/p.|.  (3.4)
Interestingly, the lapse N, can be chosen in such a way
that the resulting Hamilton’s equations can be readily
solved and the physical interpretations of the solutions
are transparent [24,32]. In particular, when

Nlass = Y\/Ec/b’ (35)
the equations of motion of (b, p,) decouple from those of
(c.p.), it is then straightforward to obtain the general
solutions [32]

(0) p2t

0 -
py=pyleVe =1,  p.=p!
b=2yVe -1, c = cpe

’

(3.6)

where the coordinate t should be regarded as tailored to the
lapse (3.5). Since the diffeomorphism constraint is already
fixed in obtaining this model, a generic form of the gauge-
fixing condition which leads to the above particular lapse
function must explicitly depend on the time coordinate.
We consider the following Ansatz for the gauge-fixing
condition:

Gglass :fO(c’pc’bvpb)_t' (37)
Here f) is a function of the canonical variables which does
not depend explicitly on the coordinate time. By requiring
the preservation of the gauge-fixing condition (3.7) with
respect to the Hamiltonian (3.4), namely,

d
G = {fo, HEl} = 10,

= (3.8)

*It can be shown that multiplying the classical lapse (3.5) by a
function of b or ¢ would lead to the Hamilton’s equations which
still admit analytical solutions; the additional function which is
multiplied to (3.5) amounts to a redefinition of time.
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one can readily obtain a PDE for f,. For the lapse in (3.5),
one gets

b* +y? 5f0+ b* + ¥\ 9fo
% ) ob % ) ap,
dfo fo

—2cH0 —
e TP,

1. (3.9)

Note that every solution of the above PDE results in the
same lapse function given in (3.5). Thus, there does not
exist a one to one correspondence between the lapse and the
gauge-fixing conditions, and, in general, there can be
different choices of the gauge-fixing conditions which
correspond to a particular lapse.

Some simple solutions of (3.9) can be found easily. For
example, when f, only depends on one of the canonical
variables b, ¢, p. we get the following cases.’

Case A.—When f only depends on ¢, one can find that
the corresponding solution of PDE (3.9) leads to the gauge-
fixing condition

1 c
GA.class =21 — ] =-t=0.
0 2 n(C())

As a result, when imposing the gauge-fixing condition
GA.class -2t
0

(3.10)

=0, we recover ¢ = cge” "' which is one of the
solutions in (3.6) derived from the Hamilton’s equations for
the lapse (3.5).

Case B—When f, depends only on p., we find the
corresponding solution results in the gauge-fixing condition

1 .
Gg,class _ _Eln (p_(‘)> —t=0.

(3.11)
pe

In this case, imposing the gauge-fixing condition G5 ** = 0
leads to the solution for p,, namely, p, = p%e? which is also
given in (3.6).

Case C.—When f, only depends on b, solving the PDE

(3.9) of f, leads to the gauge-fixing condition

GG ™ = —In <b2 . y2> —t=0.
y

(3.12)

In this case, imposing the gauge-fixing condition G§ class — ()
leads to the solution for b, namely, b = +yve™ — 1in (3.6).
|

Note that we have adjusted the integration constant in
each case appropriately so that the corresponding gauge-
fixing conditions are exactly equivalent to the classical
solutions in (3.6). In principle, any two gauge-fixing
conditions which differ by a constant will lead to the same
lapse function. Hence, without any loss of generality, one
can always properly choose this integration constant to
make the form of the gauge-fixing conditions consistent
with the analytical solutions.

2. The gauge-fixing conditions in the polymerized
Schwarzschild interior

The loop quantization of the Schwarzschild interior
has been extensively studied in the literature
[24-26,32,33,35,36] (see also [31] for Schwarzschild—de
Sitter, Schwarzschild—anti—de Sitter and higher genus black
holes). In the following, we consider the polymerization in
[32] as an example to show that the gauge-fixing conditions
and the polymerizations do not commute according to
Lemmas 1 and 2. Following [32], the effective Hamiltonian
of the loop quantized Schwarzschild interior is given by

N KsinZ(fsbb)+y2> s

Hcan =

2Gy? & VP,
5 /P, sin (gbg) sin (556)} ’ (3.13)
bYc

where two polymerization factors J, and J,. are constants
which do not depend on the phase space variables. When
these two polymerization factors approach zero, the effec-
tive Hamiltonian (3.13) tends to its classical counterpart in
(3.4). Similar to the classical case discussed in the last
subsection, one can then choose a particular lapse

N = NP = M, (3.14)
sin (6,D)

which decouples the (b, p,,) sector from the (c, p.) at the
level of effective dynamics. Note that the lapse (3.14) is
exactly the polymerization of the classical lapse in (3.5).
The corresponding Hamilton’s equations admit analytical
solutions which are given explicitly by [32]

2 1) 1 1
¢ = S-arctan (EC coe‘2t> , b=+ 5. arccos {bo tanh <§ byt + tanh™! (1/b0)>] ,

c

pe = 4m?(e* + c3sle ™),

b
sin(6,.¢) sin(6,D) De

pyp =2

50 517

A , (3.15)
smz(ggbh) + 7/2

®Given the PDE (3.9) there is no case when f, depends only on p,.
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where ¢, is an integration constant and by = /1 + }/25%.
When o, and 6. approach zero, these solutions from
the effective dynamics tend to their classical limits given
in (3.6).

In order to obtain the gauge-fixing conditions corre-
sponding to the polymerized lapse (3.14), one can follow
the procedure in the classical case where we assume that a
general gauge-fixing condition takes the form (3.7) and
then demand it be preserved during the time evolution of
the effective dynamics generated by the Hamiltonian (3.13)
with the lapse (3.14). In doing so, we obtain another PDE
for f, which turns out to be

LI (sin@b) 7, 6o Oh
2\ b sin(6,b)) 96 " op,
sin(8,.¢) Of dfo
—2———=——+472p. 0, =1, 3.16
5. dc +2p.cos(8.¢) op. (3.16)
with a = (p, cos (6,b) +%) Any gauge-

fixing conditions in the analogous form of (3.7) which
are compatible with the effective Hamiltonian (3.13)
together with the polymerized lapse (3.14) must satisfy
the above PDE. We can obtain the following particular
solutions for the gauge-fixing conditions from the above
PDE for cases when f, depends only on b, ¢ and p,.
Case A.—When f only depends on the connection c,
the solution to (3.16) results in the gauge-fixing condition

1 t S.c
() oo
e

Gi=—--1

(3.17)

which reduces to (3.10) as o, tends to zero on one hand and
gives the analytical solution of ¢ in (3.15) on the other
hand. Therefore, this gauge-fixing condition is compatible
with the dynamics when the lapse is chosen to be the one
from the polymerization of the classical lapse. It is
important to note that in the Hamiltonian constraint
(3.13) and the lapse (3.14), the sine function is used to
polymerize the connections while in the above gauge-fixing
condition, a tangent function appears as a polymerization of
the connection ¢. The gauge-fixing condition does not have
the same polymerization as the one used in the lapse and the
Hamiltonian constraint. This example illustrates what can
happen in a general case. Due to Lemma 1 we know that
gauge fixing and polymerization do not commute. Solving
the above PDE we end up with a solution of the second
category according to the discussion at the end of Sec. Il A.

Case B—When f, depends on p,., the PDE (3.16)
implies f;, should depend on ¢ as well. In this case, we need
to look for a solution of f(, which depends on both ¢ and p..
Such a solution exists and the corresponding gauge-fixing
condition is given by

1. /2tan(&S in(4,
Géz—?n(%) —l—g(pcsm(é—c)) —t=0, (3.18)

where g(p. Si"gﬂ) is an arbitrary differentiable function of
De smfs_(S() Given the solutions of ¢ and p, in (3.15), it is

c
sin(5,.¢)
5(.‘

constant. As a result, the gauge-fixing condition G§ = 0 is
also a solution of the effective dynamics with the lapse
(3.14). Note the gauge-fixing condition (3.18) for the
effective dynamics does not correspond to the polymeri-
zation of its classical counterpart (3.11) in the sense that the

latter only depends on the momentum variable p,. while the
sin(5,.¢)
5.

always shows up together in G5. This solution falls into the
third category since the classical limit is different from the
classical gauge-fixing condition.

Case C—When f, only depends on the triad variable b,
we can keep the first term on the left-hand side of the PDE
(3.16) to obtain a solution of f,, which leads to the gauge-
fixing condition

straightforward to show that p, turns out to be a

combination p,. whose classical counterpart is cp,.

2 2
Gg = Ztal’lh_l (COS(&bb)/bo) - b—otanh_l (l/bo) —t= 0,

(3.19)

where by = /1 + 7?57 and the above gauge-fixing con-

dition exactly gives the analytical solution of b in (3.15).
Moreover, when 0§, approaches zero, the gauge-fixing
condition (3.19) recovers its classical limit given in
(3.12). As can be clearly seen, Gg cannot be obtained
from the polymerization of the connection b in the classical
gauge-fixing condition (3.12). Instead it can only be
obtained by requiring its compatibility with the effective
dynamics.

To summarize these examples, we have explicitly shown
that our Lemma 1 applies to the Schwarzschild interior
where the polymerization of the lapse and the Hamiltonian
constraint lead to consistent gauge-fixing conditions which
do not directly come from the polymerizations of their
classical counterparts but are obtained by demanding the
dynamical consistency of the gauge-fixing conditions.
Requiring this consistency of the effective dynamics shows
that polymerization does not commute with the gauge
fixing.

A pertinent question is the following. At the level of the
effective dynamics, what are the lapse functions which are
consistent with the gauge-fixing conditions that come
directly from the polymerization of the classical ones in
(3.10)—(3.12)? For the cases discussed above, these polym-
erized gauge-fixing conditions obtained directly from the
classical gauge-fixing conditions take the forms
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GA poly

Requiring the preservation of the above polymerized
gauge-fixing conditions under the effective dynamics
produced by the effective Hamiltonian (3.13), we can
readily obtain a PDE of the lapse for each gauge-fixing
condition in (3.20). Since the calculations for each gauge—
fixing condition is similar, in the following, we take G -poly
as an example. The consistency requirement demands that

d

GA Jpoly __ GA ,poly H GA ,poly
dt { Cdﬂ} +

:Nsm(ébb) cos5cc_ 10 (3.21)

Y0p\/P,
which immediately yields
0
_ TP (3.22)
sin(8,b) cos(5.c)

It is straightforward to show that for the gauge-fixing
conditions given in (3.20), the consistent lapse functions
are all given by (3.22). Although this lapse also tends to the
classical lapse (3.5) when ¢, and , approach zero, due to
the additional cosine function in the denominator, it is not
the polymerization of the classical lapse under the same
polymerization rules as used in the Hamiltonian constraint
and the gauge-fixing conditions. In this sense, using the
same polymerizations in the classical lapse and the classical
gauge-fixing conditions are not compatible with the effec-
tive dynamics governed by the effective Hamiltonian
(3.13). Last but not the least, we can directly find the
noncommutativity between the gauge fixing and the lapse
by comparing the algebraic equations for the classical lapse
and its counterpart in the effective theory. In the classical
theory, knowing the gauge-fixing condition G§*** =0,
the classical lapse is determined by

d
dt

0 Acldss_ Nb

GA ,class — GA jclass H _
{ can} + 811 0 ¥ \/E

-1=0.

(3.23)

As we can see now clearly that the polymerization of
Eq. (3.23) would not lead to its counterpart which is (3.21)
in the effective theory due to the additional cosine function
in the latter which is exactly the factor H(AS) in (2.14)
introduced in the proof of Lemma 1.

1 sin(é‘c) B.pol 1
) — — _p( =22 —t, G P Y — 1
0 2 n( cod, > 0 2"

Pe Cpoly __
p(9)> —t, G, =—In (l +

sin?(5,,b)
51277/2

) —t. (320

B. Gravitational collapse of an inhomogeneous dust
cloud in the LTB spacetime

Spherically symmetric spacetimes were first quantized
using complex Ashtekar variables in [52] and real
Ashtekar-Barbero variables in [53]. These techniques have
been used in recent years to explore quantum geometric
effects in various spherically symmetric spacetimes
[18,27-30,38—-40]. In this subsection, we consider the
gravitational collapse of an inhomogeneous dust cloud in
a spherically symmetric spacetime. This example fits into
Corollary 2 of Lemma 1, and Lemma 2. The spacetime
whose metric can be expressed in terms of the Ashtekar-
Barbero variables as

ds*=—N?_ dt*+

class

L (dx+ N, dt)? +EdQ?, (3.24)

class

(E")?
E°

where N, and N7, are the lapse function and the radial
component of the shift vector, respectively, E4(t, x) and
E®(t, x) are the densitized triads in the radial and angular
directions, respectively, and dQ? = d6” + sin” 0d¢?. In the
following we first consider the classical case which is
followed by its polymerized version. After integrating
out the angular part, the Hamiltonian of a collapsing dust
cloud can be written in terms of Ashtekar-Barbero variables

as [44]
Hass — / dt / AXN 1 CI855 + N2 (CSI3ss | (3.25)
where the two remaining constraints are given by

Cclaiq ceeo Cdu@t

~36, <2ab\/ﬁ+ \/_(bz )>
1(aan)2+\/_ ax<aan>

+8GEb /Ea

Eb

(0.T)?,

E

class __ geo dust __
Celass — 80 4 cdust —

Gy (2E*0.b—ad E*) —4xpr0,T.

(3.27)

The Poisson algebra of the spherical symmetrized con-
nection and triad as well as the dust field is given by [44]

066023-15



GIESEL, LI, SINGH, and WEIGL

PHYS. REV. D 105, 066023 (2022)

{b(x).E"(y)} =rG5(x.y),

(3.28)

{a(x).E*(y)} =2rGé(x,y),
1

{T(x).pr(y)} 255()6&)-

Since the system contains two first-class constraints,
namely, C*5 and C$*, we need two gauge-fixing con-
ditions to convert the system into a second-class system.
The gauge-fixing conditions we choose are
GO = T—t, G1 :E”—xz. (329)

The first of these gauge-fixing conditions is also known as
the dust-time gauge, which is typically used for reference
field models which incorporate matter in order to fix the
gauge freedom and derive a physical Hamiltonian (see [49]
for a collection of such models). The second gauge
condition G; = 0 is also referred to as the areal gauge
since it fixes radial coordinate x to be the physical radius;
i.e., a sphere of radius x has the surface area 47x°.

The stability of the temporal gauge condition G, = 0
yields

0G
= {Go, HES} + -2
{Go F+ o

E¢@
= Nclass\/l + W (axT)z

4Gy
dt

- N?lassaxT -1=0,

(3.30)

where we have used the dust-time gauge 7 =t and thus
0,T = 0. Considering the stability of the areal gauge, we
find

dG » b
(G HERY = 2o VE + Ny O.E
b X
= 2N01355;X + 2Nc]assx =0. (331)

This gives a second equation which determines the lapse
and shift. Solving the coupled equations (3.30) and (3.31),
one can obtain

Nclass =1, (332)

b
N =——
class y
Having considered the classical case, we now want to
analyze the stability of the gauge conditions in the effective
theory. We can make this calculation for general polymer-
izations A} > h)(Al;2%). Specifically, for connection
variables a and b, a general polymerization takes the form

sin(/laa)’ bis b (b.Ay) :sin(ﬂbb)’
Aa )“17

(3.33)

a—h(a,A,) =

where 4, and 4, are polymerization factors which do not
depend on the connection variables. Correspondingly, the
effective Hamiltonian now becomes

H., — / dt / dxNC + N*C,, (3.34)

with

1 E?

C=-— 2hehb/E4 hb)2 2

s (2HWVE + (P )
1 (0EY)?  VE" 5 0,E*
8G EbVET  2G "\ EP

(3.35)

E¢
+ 471'pT\/1 + W <8XT)2,

1
C, =—(2E*0,h* — h*0,E*) — 4zp;0,T.
X ZG}/( X X ) POy

(3.36)
Since the gauge-fixing conditions (3.29) do not depend on
the connection variables, we continue to use them to fix the
gauge freedom of the effective dynamics. Similar to the
classical case, the preservation of the temporal and areal
gauge conditions leads to a fixing of the lapse and shift. In
particular, requiring the stability of the temporal gauge, we
find

dG 0G
—0= {GOHcan}+7ozN_ 1=0,

it ot (3.37)

which is exactly the same as in the classical case since only
the dust parts of the Hamiltonian have nontrivial contri-
butions in the Poisson bracket. On the other hand, the
stability of the areal gauge requires

dG, h?

T: {G,Hegn} =(0,h%)| 2N—x+2N*x | =0, (3.38)
14

where we have used the areal gauge after evaluating the

Poisson bracket. The derivative of 4% can be factored out as

it only appears linearly in the Hamiltonian. Combining the
last two stability equations, one immediately finds

hb  sin(4,b)

N=1,
Y Apy

N* = (3.39)

The lapse function has the same value as in the classical
theory and the shift vector is the polymerization of the
classical shift vector. Note that in this model the temporal
and the spatial gauges decouple. Since the stability of the
temporal gauge condition is completely independent of
the shift vector and the solution of the lapse function is the
same in the classical as well as the effective theory, we can
go to the partially gauge-fixed system where only the
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spatial gauge remains. Then we can actually use Corollary
2 to show that gauge fixing and polymerization always
commute. The important point is that now the system has
no gauge condition with a temporal dependence, which is
the exactly one of the conditions in Corollary 2.

We conclude this subsection with two remarks on
subtleties of using gauge-fixing conditions which arise
in recent works where this example is considered. These
remarks help illustrate Lemma 3.

Remark 1.—It should be noted that although the authors
in [44] use the same gauge-fixing conditions given in
(3.29), they work with a different effective theory since
the shift vector is polymerized differently than the
Hamiltonian constraint. In particular, the shift vector used
is (see also [39,51])

X

|
N :—mSIH(zlhb).

(3.40)
As compared with the shift vector in (3.39), the above shift
has an additional factor of 2 in the argument of the
trigonometric function. The motivation used to introduce
such a polymerization is to ensure that the operator of the
scalar constraint as well as the shift vector act on the same
vertices v;. But such a choice is fraught with problems. First,
it is rather unnatural and ad hoc to choose a different
polymerization exclusively for the shift vector. Secondly our
above calculation shows that if we transition to the effective
theory by polymerizing the canonical Hamiltonian and
requiring stability of the polymerized gauge-fixing condi-
tions to determine the lapse and the shift of the effective
theory, these solutions correspond to the polymerized
classical solutions of the lapse and shift. One is not allowed
to choose any other polymerization as it will be inconsistent
in the above sense. Thirdly, although the shift vector in
(3.40) has the same classical limit as the one in (3.39) when
A, tends to vanish, such a shift actually corresponds to a
different choice of the gauge-fixing conditions in the
effective theory. Similar to what we have computed in the
last subsection for the Schwarzschild interior, the specific
form of the gauge-fixing condition consistent with the
choice of the shift (3.40) can be obtained by requiring the
preservation of the gauge-fixing condition in the effective
theory which leads to a partial differential equation of the
gauge-fixing condition. In summary we need to be careful in
considering polymerizations of different quantities in the
effective theory and choices made for certain simplifications
can be inconsistent.

Remark 2.—Another issue arises with respect to the
choice of the lapse in (3.40) when we consider the physical
Hamiltonian of the model in [44]. In principle, one can
obtain the polymerized physical Hamiltonian in two differ-
ent ways. The first is to impose the gauge-fixing conditions
(3.29) in the classical theory to get rid of one of the
connection variables and its conjugate momentum and then

use the polymerization in (3.33) for the remaining con-
nection variable. The other way is to first polymerize the
full phase space with the Ansatz for polymerization in
(3.33) and then impose the gauge-fixing conditions (3.29)
to obtain the polymerized physical Hamiltonian. Since the
gauge fixing and the polymerization commute in this model
and the gauge-fixing conditions remain the same for
classical and effective theories, the polymerized physical
Hamiltonian derived from the above two ways coincide.
However, if one uses a different shift such as (3.40) which
corresponds to a different gauge-fixing condition for the
effective theory, then a consequence is that the above two
Ansdtze would result in different polymerized physical
Hamiltonians. In other words, in order to obtain the
polymerized physical Hamiltonian corresponding to the
choice of the shift in (3.40), one can only follow the second
Ansatz in which we first polymerize the full phase space
and then reduce to the physical phase space with the right
gauge-fixing conditions consistent with the shift (3.40).
This complexity does not arise if we simply choose the shift
as given in (3.39) which is consistent with the choice of the
gauge-fixing conditions in (3.29) in both classical and
effective theories.

C. Matter reference models including
polymerized matter

The general proofs in Sec. II already show that, for a wide
range of models that use geometrical clocks, polymerization
and gauge fixing do not commute. However, as shown in
Sec. III A 2, we can reverse engineer from a chosen lapse
function (and shift vector) the corresponding gauge con-
ditions. A difficulty lies in finding solutions of the corre-
sponding PDE of the gauge-fixing conditions which are
similar in structure to (3.16). However, there still might exist
inconsistencies when formulating the physical Hamiltonian.
Going to models that use a mix of geometrical and matter
clocks, we can already see in Sec. III B that the situation
simplifies. The geometrical part of the Hamiltonian is not
contributing to the stability equations of the gauge-fixing
condition. This also means that the solutions for lapse and
shift vector of the stability equations will lose their con-
nection dependency and thus any sensitivity to polymeri-
zation. This is the reason that matter clocks using
unpolymerized matter, as considered in the previous sub-
section, are able to bypass the polymerization.

Let us elaborate on this point by considering a reference
model which incorporates spherically symmetric Brown-
Kuchar dust [46] considered in the relational formalism in
[7] and its quantization within LQG in [47]. After reducing
the second-class constraints, the system takes the following
form [7]:

CI' = +dxmy\/ g™ U U, +1, Cut =4n(noT  +n,.S.),
(3.41)
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where the dust fields (7', S) have the canonical momenta

(7o, my), Uy = —Tyx—;”—; x and the metric component

is expressed by triads ¢** = (}EE—W Defining the matter

clocks by the gauge-fixing conditions Gy =T —t and
G; = S — x, we can compute the solution of lapse function
and shift vector to be

/ 2 2
N:i qxxﬂ'x‘l_”O’ Nx:_qxxﬁ'

(3.42)

7o 7o
For such reference models (see the Appendix for further
examples), the matter parts of the constraints only depend
on the matter degrees of freedom as well as the metric, thus
the densitized triads. Since the gauge-fixing conditions
only depend on the matter degrees of freedom, no con-
nection components occur in the stability equations and
therefore in the lapse and the shift vector. This means that
the stability equations are unchanged under polymerization
and so the question whether polymerization and gauge
fixing commute can be trivially answered for these models
affirmatively.

We now consider the case where the matter sector is
quantized with a loop quantization which yields a polym-
erization in the matter part at the effective level as well. It
turns out that in this case gauge fixing and polymerization
do no longer commute. To illustrate this let us discuss a
polymerized version of the Brown-Kuchai dust model
above (in the Appendix we have calculated this for the
other reference models too). To incorporate matter polym-
erization, we define a general polymerization by replacing
the canonical momentum of the matter fields by a general
function
i =20,x.

T = hi(ﬂi;ii)v (343)

As mentioned earlier, it makes no difference for the stability
equations in this model whether the geometric degrees of
freedom are polymerized as well, so we can directly
compute the stability of the gauge-fixing conditions:

o )(am,ho) -1=0=

Gow (iN—
/qxxh§+h(2)
xth h2

N=+ VT T

- 3.44
hO(anohO) ( )
G~ <N%NL}”‘>(8 h)=0=
1 /_qxxh)zc + h(z) T ttX
qxxhx
N =—-——2 % 3.45
hO(alrohO) ( )

We can see that, whenever the polymerization of the matter
field T is not the identity, we get a nontrivial contribution
from the derivative of the corresponding polymerization

function A in the effective theory. This leads us to the
conclusion that for models with matter clocks where the
matter is polymerized, gauge fixing and polymerization do
not commute. This is not surprising, since in this case one is
essentially treating the matter degrees of freedom in the same
way as the geometrical ones under polymerization and so we
are again in the scope of Lemma 1. One can see this in the
second stability equation too. Note that here we can factor
out the derivative term of /.. This is possible since we do not
have any temporal dependence of the gauge-fixing con-
dition. So in the partially gauge fixed system, where G, is
fixed, gauge fixing and polymerization would again com-
mute, a point we have discussed extensively in Sec. III B.
Furthermore the above calculation is a faithful example of
Lemma 2 in action.

IV. CONCLUSIONS

In this manuscript, we have addressed the question of
whether the procedure of gauge fixing and polymerization
commutes for the effective dynamics of symmetry-reduced
models based on techniques of LQG. We have studied
some representative situations in which the Gauss con-
straint is eliminated and only the Hamiltonian constraint
possibly along with the diffeomorphism constraint remains
to be solved. To obtain dynamics in constrained systems
one usually introduces gauge-fixing conditions and their
dynamical stability determines the corresponding Lagrange
multipliers which are lapse and shift in the gravitational
systems considered in this work. In practice for a given
model one can also take the perspective of first choosing
lapse and shift and then determining a set of gauge-fixing
conditions consistent with the dynamics. If we go beyond
the classical theory and consider quantized models, then we
can either implement the gauge fixing at the classical level
or in the quantum theory, where the latter is treated at the
effective level (polymerization) in this article. Therefore, a
pertinent question is whether polymerizing just the classical
lapse and shift is sufficient to obtain solutions for the
effective lapse and shift that are consistent with the stability
of the effective gauge-fixing conditions. In case the
preservation of the effective gauge-fixing conditions with
respect to the effective dynamics yields solutions for lapse
and shift which are simply the polymerized versions of the
classical lapse and shift, then we say that gauge fixing and
the polymerization are commutable with each other. If this
is not the case, then polymerization and gauge fixing do not
commute.

From our studies, we find that the commutativity of
gauge fixing and polymerization depends, apart from the
model under consideration, on the types of the gauge-fixing
conditions as well as their dependence on the temporal
coordinate. For geometrical clocks, that we denote as the
first type, the gauge-fixing condition involves only the
geometrical degrees of freedom, whereas for matter clocks,
denoted as the second type, they involve only matter
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degrees of freedom. As Lemma 1 shows, when only the
geometrical sector is polymerized and the gauge-fixing
conditions are of the first type with at least one of them
depending on the temporal coordinate, then gauge fixing
does not commute with polymerization. Lemma 1 is then
further illustrated by a simple but nontrivial example, i.e.,
the loop quantization of the interior of the Schwarzschild
black hole [32]. In this example, due to the homogeneity of
the Schwarzschild interior, the diffeomorphism constraint
is fixed. As a result, the gauge-fixing condition used to
determine the lapse must depend on the temporal coor-
dinate and thus Lemma 1 applies to this setting. As a
consequence, if we work with the same polymerization for
the gauge-fixing condition that is used for the Hamiltonian
constraint, simply polymerizing the classical lapse in the
effective theory leads to inconsistencies. Therefore, in
practice, if we want to work with the lapse which is
specified to yield well-known analytic solutions in the
literature, we need to solve for the corresponding gauge-
fixing condition which obeys a PDE derived from con-
sistency requirements. Our results reveal several properties
of the gauge-fixing conditions which hold for both classical
and effective dynamics. Firstly, as expected for a specific
lapse, there can be multiple choices of the gauge-fixing
conditions and all of the applicable gauge-fixing conditions
are the solutions of the system. Secondly, if we choose a
lapse for the effective dynamics that is the polymerization
of the classical lapse, the corresponding consistent gauge-
fixing conditions for the effective dynamics are not the
polymerization of their classical counterparts. Thirdly,
although gauge fixing and polymerization do not commute
in this case, the polymerized quantum system has the
correct classical limit; that is to say, the effective
Hamiltonian constraint, the effective lapse and the corre-
sponding gauge-fixing conditions can reduce to their
classical counterparts when the polymerization para-
meters approach zero. It will be interesting to further
investigate this issue for other loop quantizations of the
Schwarzschild interior, such as in [26,33,36,37] and under-
stand the commutability of polymerization and gauge-
fixing conditions.

Relaxing some of the restrictions in the assumptions
of Lemma 1 can make gauge fixing commute with the
polymerization. The first two corollaries of Lemma 1
highlight this. In particular, when only the geometrical
sector is polymerized, and if none of the gauge-
fixing conditions depend on the temporal coordinate
(Corollary 1), or the time-dependent gauge-fixing condition
is of the second type (Corollary 2), then gauge fixing turns
out to commute with the polymerization. The gravitational
collapse of an inhomogeneous dust cloud which we have
analyzed in Sec. III B fits exactly into Corollary 2. Since the
time-dependent gauge-fixing condition only depends on
the dust field and thus is not affected by the polymerization
of the geometric sector, the stability equations of the

gauge-fixing conditions for the effective dynamics are
equivalent to those obtained from the polymerization of
the classical stability equations, leading to the solutions of
the lapse and the shift which are the polymerization of their
respective classical counterparts. It is important to note that
with this type of the gauge-fixing conditions, the choice of
the lapse and shift for the effective dynamics should be
exactly their polymerized classical counterparts; otherwise,
inconsistencies in the dynamics would arise as is proved
in Lemma 3. We discuss some consequences of this in
Sec. III B for the works in [39,44,51]. Our analysis shows
pitfalls with some choices made in literature for the shift
vector which are inconsistent with the stability of gauge-
fixing conditions.

Finally, we have also extended our analysis to the case in
which the matter sector is polymerized and matter clocks
are chosen. In this particular case, which is an example of
Lemma 2, polymerization turns out to not commute with
gauge fixing for the same reason as in the case of choosing
geometric clocks with a polymerized geometric sector
addressed in Lemma 1. We choose the Brown-Kuchar
dust model [7,46] and the Gaussian dust model [48,49] as
well as the four-scalar fields model [50] as examples in this
category (in the Appendix). Due to the polymerization of
the matter sector, the lapse and shift which are consistent
with the effective dynamics include extra terms other than
those obtained from the polymerization of the momenta
of the matter fields. In general our analysis shows that
whenever the gauge-fixing condition that involves a tem-
poral dependence involves variables that belong to a set of
canonical variables where at least one of the elementary
variables is polymerized we are in the situation that gauge
fixing and polymerization will not commute. As a result,
in order to deal with a model where gauge fixing and
polymerization commute, one could for instance choose
matter clocks for the Hamiltonian constraint and only
polymerize the geometric degrees of freedom or choose
geometric clocks for the unpolymerized Hamiltonian con-
straint and apply a polymerization to the matter sector
only. From the LQG perspective the latter will be a rather
unnatural choice.

In summary, our examples illustrate that when polym-
erizing a classical system with gauge degrees of freedom,
gauge fixing and polymerization may not commute with
one another in general. However, this causes no issue
a priori because independent from the classical theory the
requirement of the stability of the gauge-fixing conditions
yields a clear procedure how the effective lapse and shift
that are consistent with the effective dynamics can be
determined for a given choice of gauge-fixing conditions.
This allows one to check for each given model in practice
whether gauge fixing and polymerization commute. If one
wants to work with a specific choice of a polymerized lapse
and/or shift, then one can look for possible gauge-fixing
conditions that yield this choice and that are consistent with
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the effective dynamics. As shown in our work depending
on the model this might require one to use different
polymerizations for constraints and gauge-fixing condi-
tions and/or work with polymerized gauge-fixing condi-
tions that do not correspond to a polymerization of the
classical gauge-fixing condition. These are undesirable
features which should be avoided for a well-motivated
and consistent polymerized model.

As a further remark, compared with other requirements
on the effective dynamics, such as a specific choice for
lapse and/or shift motivated from the effective constraint
algebra, we believe the first priority should be placed on the
consistency in the dynamics generated by the effective
Hamiltonian; that is, the gauge-fixing conditions must be
preserved by the effective dynamics and one has to care-
fully check whether choices one motivates from the
constraint algebra do not violate this consistency require-
ment. Under this necessary condition, the commutativity or
noncommutativity of the gauge fixing and the polymeri-
zation depends on the types of gauge-fixing conditions and
also on which sector of the system is polymerized.

As afinal remark, next to performing the gauge fixing in the
effective theory, that corresponds to applying a gauge fixing
in the quantum theory, one can also apply the relational
formalism and the construction of Dirac observables in the
quantum theory. Although a detailed analysis on this topic
goes beyond the scope of this paper our results give some first
insight on the relation between classical and quantum clocks
for those classes of gauge-fixing conditions where we can
relate the gauge-fixed theory to the reduced phase space of
elementary Dirac observables and their dynamics. As our
results show, if one quantizes the gauge-fixing condition with
the same polymerization as used for the constraints, that is
what one would usually do, then only in very special cases
will a dynamically consistent lapse and shift be given by the
polymerization of their classical counterparts. In the generic
case this means that choosing a classical or quantum clock has
an effect on how the quantization of lapse and shift needs to be
performed. Moreover, our analysis also shows that whether
such a commutativity exists strongly depends on how the
variables and their conjugates involved in the temporal gauge-
fixing condition are quantized, which at an effective level
means whether the variables and/or their conjugate variables
are polymerized. Among other criteria such as that the algebra
of Dirac observables has a simple structure and the physical
Hamiltonian can be implemented as a well-defined operator
on the physical Hilbert space, the requirement of commuta-
tivity of quantization and gauge fixing in the sense discussed
in this work can allow one to further discriminate possible
different choices of clocks in the relational formalism.
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APPENDIX: THE MATTER CLOCKS WITH

POLYMERIZED MATTER SECTOR IN THE

GAUSSIAN DUST AND THE FOUR-SCALAR
REFERENCE FIELD MODELS

In this Appendix, we extend the analysis of reference
matter models. We will start with the Gaussian dust model
discussed in [48,49]. As before we do not specify to any
symmetry-reduced model yet but keep our analysis as
general as possible and formulate the effective model by
polymerizing a suitable subset of the canonical variables.
The Gaussian dust gives rise to the following additional
terms to the geometrical parts of the constraints [49]:

g T . x; S’

CUS' =+ | por/14+q®T T )+ —==t2
\/1+¢*T T,

C™ = myT y + 78, (A2)
where the four dust fields (7,S’) have the canonical
momenta (7, 7;). To construct the reference model we
will use these fields as clocks, i.e., Gy =T —t and
G; =8 —x/. We will directly compute the stability of
these gauge-fixing conditions in the effective theory using
the polymerization of the matter degrees of freedom like
in Eq. (3.43). Note that we can go back to the classical
theory by setting h;(x;; 4;) = ;. Straightforward calcula-
tions show that

Go=%N(9, ho)\/1+q™T /T ,—1%EN(9, hy) —1=0

1
Ned— A3

= I (A3)

. . abr 8’ .

G, = NSy e N— D 0%h o Nag, = 0 = N“ =0,

V1+aT T,

(A4)

Similar to the Brown-Kuchar dust model [7,46,47] dis-
cussed in Sec. III C, we can see that once again polym-
erization and gauge fixing do not commute. To be precise,
in the classical theory the lapse equals unity. Switching to
the effective theory this is not the case anymore, since
lapse is now the inverse derivative of the polymerization
of the temporal reference field. These two solutions only
coincide for constant polymerizations, which are trivial
and thus will be excluded. In both cases the shift vector is
vanishing.

Another reference model in the literature is the four
Klein-Gordon scalar field model of [50]. We will again treat
this model in the symmetry unrestricted sector. Although
this is not a dust model, we will adapt the notation of the
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cited paper to our notation used for matter models. The
matter part constraints take the form [50]

‘ ”2 1 P—
Cdust —_ ﬁ + E\/gqabT,aT,b — Zﬂjm, (AS)
J

CIst = 70T, + 7;8%, (A6)

where we used the abbreviation /g :=+/|det(¢")|.

Using the same gauge-fixing conditions as before we
compute

Go —N(aﬂoho)%— 1=0=N= ihOL (A7)

(aﬂo h’o) '

Gj=(05,h))(N\/qS'aS,+NS,) =0=> N“ =N+/q“.
(A8)

Similar to the reference model analyzed above, a partial
derivative of the polymerization is appearing. This breaks
the commutativity of gauge fixing and polymerization.
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