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We develop a renormalization group for weak Harris-marginal disorder in otherwise strongly interacting
quantum critical theories, focusing on systems which have emergent conformal invariance. Using
conformal perturbation theory, we argue that previously proposed random lines of fixed points with
Lifshitz scaling in fact flow toward other universal fixed points, and this flow is captured by a “one-loop”
analysis. Our approach appears best controlled in theories with only a few operators with low scaling
dimension. In this regime, we compare our predictions for the flow of disorder to holographic models, and
find complete agreement.
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I. INTRODUCTION

A. Disorder and strong interactions

A longstanding challenge in understanding the landscape
of phases of quantum matter has been a careful analysis of
the interplay between disorder and strong interactions. While
in some contexts, disorder simply tends to prevent phase
ordering or symmetry breaking [1,2], it is also possible for
relevant disorder to lead to entirely new phases of matter,
such as glasses [3], Anderson [4] or many-body localization
[5–8] or “infinite randomness” fixed points [9,10].
It was first proposed in [11] that, at least in the context of

a specific holographic model, yet another possibility might
arise: a strongly correlated quantum critical system,
(weakly) perturbed by Harris-marginal disorder [12],
would flow to a “Lifshitz fixed point”—a nonrelativistic
scaling theory where the dynamical critical exponent z
characterizing the scaling asymmetry between time and
space could continuously depend on disorder strength D:

z ¼ 1þ cDþ OðD2Þ ð1:1Þ

where c > 0 is a nonuniversal prefactor. The possible
existence of this new line of fixed points led to many
further investigations, which also found this same physics

in holographic models [13–16] and even from generic field
theoretic arguments [17].
However, as two of us recently pointed out [18], and as

we will sketch out more quantitatively in the following
subsection, the holographic argument of [11] appears
inconsistent at sufficiently low energy scales. Instead, we
argued that the line of Lifshitz “fixed points” found
previously is in fact a transient effect: the disorder (and
thus exponent z) do in fact flow to particular values. The
purpose of this paper is to revisit our argument from a field
theoretic perspective, and to confirm and generalize our
original conclusions: in general, marginal disorder will
generically flow either to 0 or to large values, and there is
no line of (marginally) stable Lifshitz fixed points.

B. Summary of results

We start with a “UV” replicated action that contains all
length scales L≳ Λ−1. Following the Wilsonian paradigm,
we wish to integrate out short length scales and obtain an
effective action directly for the physics at scale L ≫ Λ−1.
However, we cannot directly proceed using Feynman
diagrammatics, since we are dealing with a strongly
interacting theory which might, in fact, not have a local
Lagrangian. (An example of such a theory would be the
O(2) Wilson-Fisher theory in 2þ 1 dimensions.)
Instead, we will make simple arguments, based both on

careful scaling analyses together with conformal perturba-
tion theory (see e.g., [19]), to develop a simple “one-loop”
prescription for analyzing the RG flow of the disorder
strength D, along with the dynamical critical exponent z.
Similar techniques have been applied to “classical” dis-
ordered conformal field theories (i.e., those where the
disorder is uncorrelated in time) in [20,21]. We first show
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that in certain CFTs with a conserved U(1) charge in 2þ 1
dimension, the disorder is marginally relevant. This is a
particularly interesting case to study, since due to rather
generic nonrenormalization theorems for the scaling
dimension of the charge density [22,23], the density
operator must be Harris-marginal even in a strongly
coupled system. In this case, at energy scale E, we will
show that

DðEÞ ¼ DðΛÞ
1 − 2πDðΛÞ 2jCJJT j

CTT
log Λ

E

ð1:2Þ

We then compare these results to a minimal holographic
model, and find agreement.
As a second example, we study CFTs coupled to Harris-

marginal (Lorentz-) scalar disorder. Here, we find that the
scalar disorder is marginally irrelevant: the effective
disorder coupling strength is given by

DðEÞ ¼ DðΛÞ
1þDðΛÞ djCOOT j

CTT
log Λ

E

: ð1:3Þ

In (1.2) and (1.3), CJJ T , COOT and CTT are the standard
normalizations of three and two point functions in position
space whose ratio is constrained by Ward identities [17,24];
details will be provided later as appropriate.
A little more precisely, let J be the timelike component

of a conserved spin-1 current, and O a scalar operator.
These are the operators which we source with Harris-
marginal disorder. The assumptions which then go in to
our simple calculation are that the dominant contribution to
the J tJ t and OO operator product expansion is the stress
tensor Tμν. While in a theory such as the 2þ 1D Wilson-
Fisher fixed point, there is no reason for this to hold, this
property is generic in CFTs described by simple holo-
graphic models, such as scalars minimally coupled to
Einstein gravity. Therefore, our minimalist conformal
perturbative approach is sufficient to compare with the
holographic computation of [18], where we find complete
agreement. We will present an analogous holographic
calculation with charge disorder, and again find agreement
with our field theoretical arguments.
The rest of this paper is organized as follows: In Sec. II

we introduce our charge disorder model and obtain the
replicated action. Section II B reviews the earlier argument
of [17] for the emergence of Lifshitz fixed points in generic
systems with Harris-marginal disorder. Sections II C and
III contains our “one-loop” perturbative and holographic
computations for the flow of D in the vector case
respectively. In Sec. IV, we perform a similar field theoretic
calculation for the scalar case and compare the results to
[18]. Section V discusses possible applications and exten-
sions of our results, along with a comparison to some
other work.

II. CHARGE DISORDER IN TWO SPATIAL
DIMENSIONS: FIELD THEORY

We begin by discussing charge disorder in two spatial
dimensions. This “dirty boson” problem in condensed
matter physics has been extensively explored recently in
[25,26]. Our calculation is somewhat different: as stated
above, our approach is valid even in a strongly coupled
field theory (without an ϵ or large N expansion); however,
we neglect contributions to the operator product expansion
which might be important in an N ¼ 1 theory.

A. Model details

We consider a quantum critical theory, described by a
conformal field theory (CFT) in d spatial dimensions. This
means that the dynamical critical exponent z ¼ 1, where z
is defined by the relative scaling of time and space:
½t� ¼ z½x�. We also assume hyperscaling: θ ¼ 0, hence
the free energy FðTÞ ∼ T1þd=z ∼ T1þd. In what follows,
we focus on zero temperature physics, and work in
Euclidean time.
Suppose that this CFT has a U(1) conserved charge and

therefore an spin-1 conserved current J of dimension

½J � ¼ Δ ¼ d ð2:1Þ

Wewill relax this assumption in Sec. IV. Then for such an a
vector operator,

hJ μðxÞJ νð0ÞiCFT ¼ CJJ ðδμν − 2xμxν
x2 Þ

x2d
ð2:2Þ

Now consider perturbing the CFT Lagrangian density by a
space-dependent but time-independent coupling hðxÞ,
physically corresponding to a quenched random potential,
due to, e.g., sample impurities:

L → Lþ μðxÞJ tðx; tÞ ð2:3Þ

where ht ¼ μ. Note that ½μ� ¼ 1. We assume that μðxÞ is
drawn from a Gaussian distribution with zero mean and
covariance matrix

μðxÞμðx0Þ ¼ 2πD ×GðΛjx − x0jÞ ð2:4Þ

D corresponds to the strength of the random potential, and
is dimensionless as the disorder is Harris-marginal. We
include an extra factor of 2π to account for the field
normalization that is simpler in holographic models. The
UV cutoff is given byΛ, andG is a smooth function such as
GðrÞ ∼ e−r. We normalize the dimensionful G (note that
½G� ¼ d) so that
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1 ¼
Z

ddxGðΛjxjÞ: ð2:5Þ

On long wavelengths, therefore, GðΛjxjÞ ≈ δðdÞðxÞ.
The inverse length scale Λ corresponds to a UV cutoff on

disorder (namely, the inverse of its correlation length).
Within the z ¼ 1 fixed point theory, of course, Λ is also the
UV energy scale below which the disorder may qualita-
tively change the physics. We must emphasize that there is
a separate energy scale ΛCFT ≫ Λ above which the
continuum field theory description no longer holds (at
least if we assume that the true microscopic physics takes
place in a lattice model). We will not be interested in
adjusting ΛCFT because, by assumption, the CFT is an IR
fixed point when D ¼ 0; hence, for the discussion that
follows, we will treat the “UV” theory to be the CFT. Our
goal is to determine the IR fixed point once the CFT is
perturbed by Harris-marginal disorder.
We will analyze this theory using the replica method

(although the “peculiar” n → 0 limit does not appear
important for the calculation). For pedagogical purposes,
let us illustrate our procedure by assuming some
“Lagrangian” exists for this theory (though, ultimately,
this assumption does not factor in to our calculation). Let a,
b denote replica indices. Upon disorder averaging (2.3)
using (2.4), we obtain the effective action

Seff ¼
Xn
a¼1

Z
ddxdtLa −

2πD
2

Xn
a;b¼1

Z
ddx1ddx2dt1dt2

×GðΛjx1 − x2jÞJ a
t ðx1; t1ÞJ b

t ðx2; t2Þ

¼
Xn
a¼1

SCFT;a þ Sdis ð2:6Þ

where La denotes the CFT Lagrangian density for replica
a, and only depends on the a-copy of the fields.
Since we require our disorder to be Harris-marginal (D is

dimensionless), we set d ¼ 2 for the reminder of the
analysis on charge disorder.

B. Emergence of Lifshitz scaling

Let us now review the argument of [17] for the
emergence of Lifshitz scaling in the presence of disorder.
Even though the original argument was presented for scalar
disorder, an analogous approach works for vector disorder
that we consider in this section. We focus on the second
term in (2.6). When we bring two operators very close, it is
reasonable to try and use the operator product expansion
(OPE) to simplify this expression. One universal contri-
bution to this OPE arises due to the stress tensor:

J a
t ðx1; t1ÞJ b

t ðx1; t2Þ ¼
δabCJJ T

CTT

Tttðx1; t1Þ
jt12j

þ � � � ð2:7Þ

where t12 ¼ t1 − t2. Note that the form of this OPE is fixed
by conformal invariance. We note that away from the UV
fixed point, corrections of OðDÞ can arise in these OPE
terms (e.g., the jt12j−1 factor could become a more
complicated function of x12 and t12 in the absence of
conformal invariance). But these extra terms do not affect
our result as they will contribute to all formulas at one
higher power in the small parameter D.
Now, suppose that in the textbook spirit of Wilson’s RG,

wewish to reduce our UV cutoff fromΛ toΛ=b, with b > 1
a small parameter. Integrating over t12 we find

Seff ≈ � � � − 2πD
2

Xn
a¼1

Z
d2xdtTa

ttðx; tÞ ×
Z b

Λ

1
Λ

dt0
CJJ T

CTT

1

jt0j :

ð2:8Þ

The logarithmically IR-divergent integral above leads to
nontrivial critical exponents. In particular, observe that

Seff ¼ � � � − 2πD
CJJ T

CTT
log b

Z
dtHðtÞ; ð2:9Þ

where HðtÞ is the total Hamiltonian (i.e., energy) in the
system.1 It is worthwhile to point out that the log b
diverging term appears irrespective of the microscopic
details of the clean CFT. Following the conventional RG
formalism, this divergence can be effectively canceled by
rescaling time coordinate as t → tZt, since the variation of
the action under this transformation takes the form
δS ¼ −ðZt − 1Þ R dtH. For us, we see that:

Zt ¼ 1 − 2πD
CJJ T

CTT
log b ð2:10Þ

Hence canceling this divergence leads us to implementing a
Wilsonian-style RG scheme discussed in the next section.
Within perturbation theory, this suggests that if there is a
fixed point with nontrivial scaling, it would have Lifshitz
invariance, since

dZt

d log b
¼ −2πD

CJJ T

CTT
¼ z − 1: ð2:11Þ

Indeed, the argument above suggests that time scales by
order D correction differently from space: z ¼ 1 is broken
by an order D correction. Note that in principle one might
find other corrections to Zt; the point of [17] is simply that
there is a universal contribution arising due to Harris-
marginal disorder. However, and this will be the main point
of the paper—it is not necessarily true that such a fixed
point exists. In fact, we will argue that in simple strongly
coupled examples, it does not.

1Note that since t0 can be positive or negative, the integral over
t0 leads to a factor of 2 logΛ.
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Note that we do not need to consider other components
of the stress tensor in the OPE. The nonlocality in (2.6) is
only in the time direction. After performing the integral
over t12, we find that the only divergence arises in the
energy channel. This also means that t, but not x, will pick
up anomalous scaling under RG.

C. Flow of disorder

The main point of this paper is to show that D will
generically flow under RG in strongly coupled theories. As
such, there will in general be no line of fixed points with
disorder-dependent dynamical critical exponent.
In order to find the flow equation for D, we need to keep

in mind that the coupling constants in (2.6) are the “bare”
couplings. They should be rescaled as follows:

J bare
t ¼ J R

tffiffiffiffiffiffiffiffiffi
ZJJ

p ð2:12aÞ

tbare ¼ tRZt ð2:12bÞ

Dbare ¼ DR ZJJ

Z2
t

ð2:12cÞ

where Zi ¼ 1þ δi, with δi corresponding to couplings of
counterterms. We already calculated Zt in (2.10) and we
will determine ZJJ shortly.
Clearly, we cannot implement the RG sketched above

using a conventional diagrammatic expansion. We may not
even have a controlled Lagrangian description of the CFT,
as is the case in even a simplest nontrivial example (Oð2Þ
Wilson-Fisher fixed point in 2þ 1 dimensions). Still, in the
spirit of the canonical Wilsonian RG, to leading order,
(2.11) generalizes to give us

−
d log t
d log b

¼ 1 − 2πDðEÞCJJ T

CTT
þ � � � ð2:13Þ

where � � � represents higher order terms in D, which are
beyond the scope of this work.
We claim that

ZJJ ¼ 1 ð2:14Þ

since we know from nonrenormalization theorems [22,23]
that a conserved current does not gain an anomalous
dimension unless the conservation law is broken. We
should emphasize that there are certain holographic models
that do support anomalous dimensions for J [27–29] but
these models typically involve introducing other fields
(such as a dilaton) coupled to the gauge field or breaking
of the gauge symmetry. We also note that operators J i do
in fact get rescaled by an inverse factor of Zt, ensuring that
the current conservation Ward identity remains dimension-
ally consistent.

Now combining (2.12c), (2.10), and (2.14) we find,

Dbare ¼ D
1

Z2
t

ð2:15Þ

Hence,

b
∂D
∂b ¼ −

4D2πCJJ T

CTT
ð2:16Þ

At energy scale E, which is defined by b ¼ Λ=E, we
conclude that the effective disorder strength is given by

DðEÞ ¼ DðΛÞ
1þ 2πDðΛÞ 2CJJ T

CTT
log Λ

E

ð2:17Þ

We can also see what happens to the flow of the dynamical
critical exponent z. Upon integrating (2.13) using (2.17),
we find that

−
d log t
d logb

¼ 1 −
2πDðΛÞ CJJ T

CTT

1þ 2πDðΛÞ 2CJJT

CTT
logb

ð2:18Þ

which means that

−logt¼ logb−
1

2
log

�
1þ2πDðΛÞ2CJJ T

CTT
logb

�
: ð2:19Þ

The effective dynamical critical exponent at energy scale
E < Λ is given by

zeffðEÞ¼−
logt
logb

¼1−
logð1þ2πDðΛÞ2CJJT

CTT
logΛ

EÞ
2 logΛ

E

: ð2:20Þ

Now using the results for the three-point functions of a
conserved current found in [17,24,30,31], we find that

CJJ T

CTT
¼ −

3

64π
: ð2:21Þ

which gives,

zðEÞ ¼ 1 −
log ð1 − 3DðΛÞ

16
log Λ

EÞ
2 log Λ

E

ð2:22Þ

We learn from (2.17) that the disorder becomes marginally
relevant, because CJJ T < 0. There is simultaneously a
blow up in the dynamical critical exponent at an IR scale

ΛIR ∼ Λe−
16

3DðΛÞ: ð2:23Þ

This exponential scaling of an IR scale at which
perturbation theory breaks down is reminiscent of the
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localization length scale in Anderson localization in two
spatial dimensions for a system with time-reversal sym-
metry [32]. It is tempting to speculate that holographic
systems in four bulk spacetime dimensions with charge
disorder that there may also be a similar kind of “locali-
zation” phenomenon, perhaps even associated with frag-
mentation of the bulk horizon [33,34]. We would predict
that this phenomenon is already visible within the Einstein-
Maxwell theory, as studied above. However, a curious
known fact is that (at least until the horizon fragments) the
conductivity of such holographic models is always finite
[35,36]. One possible resolution is that fragmentation does
not happen, and that there is some nonperturbative reso-
lution of the disorder in holographic models leading to a
smooth horizon; or, there may be a first order phase
transition to the fragmented/localized phase where the
conductivity abruptly drops to zero; or, it may be the case
that localization is in a sector of the theory decoupled from
charge and heat transport (namely the “localized” highly
disordered phase remains a conductor). It would be
interesting to study this problem further.

III. CHARGE DISORDER IN TWO SPATIAL
DIMENSIONS: HOLOGRAPHIC MODEL

In general, it is far from clear that the OPE channel JJ T
is the only contribution to the RG flow of D. However,
there is one class of CFTs for which we can assure this is
the case: a CFT described by gauge-gravity duality [37]. In
a nutshell, the holographic correspondence states that the
CFT (if it is of a suitable large N matrix type) is dual to a
semiclassical gravity theory in asymptotically anti–de Sitter
(AdS) space in one higher dimension. The conserved
current J is dual in the bulk to a gauge field A, and the
stress tensor Tμν is dual to the spacetime metric gμν. The
holographic action controls CFT data, such as scaling
dimensions and OPE coefficients.
A classic example of such a CFT is the ABJM theory in

2þ 1 spacetime dimensions [38]. This theory has a
conserved U(1) current, and it is holographically realized
by the AdS4-Einstein-Maxwell theory with gravitational
action:

SGrav: ¼
Z

dtd2xdr
ffiffiffiffiffiffi
−g

p �
Rþ 6 −

1

4
FabFab

�
ð3:1Þ

where we have set the gravitational constant and AdS
radius to 1 without loss of generality. The indices a,b
denote bulk coordinates with r being the bulk radial
direction. Since we want the metric to be asymptotically
AdS, we have set the cosmological constant to −3, in units
where the AdS radius has been set to 1.

A. Constructing the bulk geometry

In holography, the Harris-marginal disorder (2.4) corre-
sponds to setting boundary conditions on the timelike
component of the gauge field At near the boundary of
AdS. By solving the bulk equations of motion carefully, we
can hope to track the RG flow of the coupling constants,
following the prescription of [18]. In particular, we will try
to directly construct a homogeneous approximation to the
bulk geometry which is self-consistent. There are no
assumptions about scaling dimensions and nonrenormali-
zation theorems: instead, the consistent solutions to the
gravitational equations will encode this physics.
The coupled equations of motion for the metric tensor

and the gauge field are

∇aFab ¼ 0 ð3:2aÞ

Rab −
1

2
Rgab − 3gab ¼

1

2

�
Fc
aFcb −

1

4
gabF2

�
ð3:2bÞ

Since the background field theory is initially disorder
free, the solution on the gravity side, at r ¼ 0, corresponds
to an asymptotically AdS4 geometry:

ds2ðr → 0Þ ¼ −
dt2

r2
þ dr2

r2
þ dx⃗2

r2
ð3:3aÞ

Atðx⃗; rÞ ¼ μðx⃗Þ þ J tðx⃗Þrþ; ð3:3bÞ

where we have used standard quantization. Thus the
coefficient of the leading power of r (μðxÞ) in the near
boundary expansion of At corresponds to the chemical
potential and subleading correction (J tðxÞ) to the charge
density of the dual field theory. In our calculations we work
in the temporal gauge Atðr; x; yÞ ¼ AtðrÞeikxxþikyy, and
find that no other components of the gauge field are
sourced in the bulk by the equations of motion.
In general, solving these equations exactly is extraordi-

narily difficult and can only be done numerically. Yet, we
have already seen that we must go to exponentially small
energy scales ΛIR (which will roughly mean exponentially
large r) in order to understand the RG flow of the Harris
marginal disorder. Hence, it is unlikely that even the best
present day numerical techniques [39] would suffice to
resolve the IR geometry. We therefore proceed using an
approximation technique from [18,37]. We assume the
metric takes the form

ds2 ¼ AðrÞdr2 þ dx⃗2

r2
− BðrÞdt2: ð3:4Þ

Note that this homogeneity assumption is reasonable:
inhomogeneity in the metric is OðDÞ, and feeds back in
to affect the homogeneous part of the metric only at OðD2Þ.
This also means, if an approximately homogeneous
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geometry exists, albeit with Lifshitz scaling, it must mean
that (3.4) is a self-consistent approximation to the Einstein-
Maxwell system at all values of r. As long as D is small
therefore, we do not expect this ansatz will cause problems.
To calculate A and B, we disorder average the stress energy
tensor in (3.2b) prior to solving for the metric components.
After some algebra, Einstein’s field equations become

rA∂r

�
1

r4A

�
−
∂rB
r3B

¼ A
B
ð∂xAtÞ2 ð3:5aÞ

6A −
6

r2
þ A
rB

∂r

�
B
A

�
¼ ð∂rAtÞ2

2B
ð3:5bÞ

8

r2
− 12Aþ 2B

rA
∂r

�
A
B

�
þ 2

ffiffiffiffi
A
B

r
∂r

� ∂rBffiffiffiffiffiffiffi
AB

p
�

¼ ð∂rAtÞ2
B

ð3:5cÞ

where we have assumed the disorder averages are isotropic

along the spatial directions: ð∂xAtÞ2 ¼ ð∂yAtÞ2.
To solve (3.5), the first step is to evaluate the disorder

averages. For this we need to solve the gauge field equation
of motion for a gauge field at spatial wave number k (dual
to the disorder of the same wave number) given by

∂μð
ffiffiffiffiffiffi
−g

p
gμνgtt∂νAtðr; x; yÞÞ ¼ 0 ð3:6Þ

We use the following metric ansatz

AðrÞ ¼ c
r2

ð3:7aÞ

BðrÞ ¼ 1

r2ðrΛÞ2zeffðrÞ−2 ð3:7bÞ

where we assume the geometry varies sufficiently slowly in
the radial direction: in particular,

r∂rzeffðrÞ ≪ 1: ð3:8Þ

Our motivation for the metric ansatz stated in (3.7) stems
from assuming the existence of an IR Lifshitz fixed point.
We note that if zeff had been constant, it would fail to
capture the role of disorder in the perturbed geometry.
Hence, now the solution to (3.6) is

AtðrÞ ≈
ffiffiffiffiffiffi
2π

p
ðrΛÞ1−zeff ðrÞ2 e−

ffiffi
c

p
kr ð3:9Þ

where the Λ dependence comes in because the metric
transitions to AdS close to r ≈ 1

Λ. This tells us that the
dimension of the source has now become ½μðxÞ� ¼ zeff . We
therefore find that the disorder averages go as

A
B
ð∂xAtÞ2 ¼ ðrΛÞzeffðrÞ−1 · c 3D

16c2r4
ð3:10aÞ

1

2B
ð∂rAtÞ2 ¼ ðrΛÞzeffðrÞ−1 · r

2

2

Dð24þ 4ðzeffðrÞ − 1þ r logðrΛÞz0effðrÞÞÞð3þ zeffðrÞ þ r logðrΛÞz0effðrÞÞ
64cr4

ð3:10bÞ

Note that the left-hand side of (3.5) does not pick up any
anomalous factor of rΛ in the IR. As a consequence, we
will find that the right-hand sides of (3.5) become very
large in the IR, since zeff ≥ 1, and the geometry must
qualitatively change to account for this. Solving the set of
coupled equations in (3.5) at moderately small values of r
(i.e., not too deep in the IR) using (3.7) and (3.10),
following [18], we obtain

c ¼ 1þ D
16

ð3:11aÞ

zeffðrÞ ∼ 1 −
logð1 − 3D

16
logðrΛÞÞ

2 logðrΛÞ ð3:11bÞ

with Λ the UV cutoff. This is precisely what we expect to
find for marginally relevant disorder as in (2.20).
This suggests that there is an emergent IR scale where

zðrÞ blows up:

Λ� ∼ Λe−a
D ð3:12Þ

where a is an Oð1Þ constant which we estimate is close to 8
3
.

The assumption (3.8) is thus justified as long as r < 1
Λ�
. For

energy scales E obeying Λ� ≪ E ≪ Λ, we have an effective
Lifshitz metric with the dynamical critical exponent locally
given by

z ¼ 1þ 3

32
Dþ � � � : ð3:13Þ

Of course, this value of z is not really constant, but rather
slowly varying.
The blow up of (3.11) is not surprising as the disorder

has become relevant in the IR of the Lifshitz geometry. A
blow up in the metric due to the presence of relevant
disorder in AdS4 geometry was first proposed in [40].
Later, [15,16] explained how to remove these divergences
and arrive at a well behaved solution with Lifshitz scaling.
Amusingly, our argument shows that at exponentially larger
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values of r, the original conclusion of [40] is correct after
all. The reason is that the resummation technique of [15]
effectively neglects the feedback of the Lifshitz geometry
into the disordered gauge field background A, which is
ultimately responsible for the ðrΛÞz−1 factor in (3.10).
In order to further verify the agreement between holo-

graphic and the scaling arguments of the previous section,
we solve the gauge field equation of motion to first order in
D. The behavior of At near the boundary looks like

At ∼ αðkÞ þOðrÞ þ r1−
3D
32 ðβðkÞ þOðrÞÞ ð3:14Þ

This tells us that the dimension of the dual operator scales
like ½J t� ¼ ½r1−3D

32dt� ¼ 2. This is in agreement with the
nonrenormalization theorem and as a consequence (2.14).

B. Finite chemical potential,
magnetic field and temperature

One of the advantages to holography is that it allows us
to turn on additional background fields or sources that
introduce more explicit scales into the problem. This can be
challenging when trying to organize conventional RG, but
is no more difficult to analyze than what we did above. As a
concrete example, we will study how the weak marginal
disorder affects the system when it is at a finite chemical
potential μ0 ≪ Λ. Now the background clean geometry is
no longer AdS4 but rather Reissner-Nordstrom-AdS (AdS-
RN) with a charged black hole [37]. The gauge fixed
background metric and gauge field solutions are [37]

ds2 ¼ −
fðrÞ
r2

dt2 þ dr2

fðrÞr2 þ
dx⃗2

r2
ð3:15aÞ

AtðrÞ ¼ μ0

�
1 −

r
R

�
ð3:15bÞ

where

fðrÞ ¼ 1 −
�
1þ R2μ2

4

��
r
R

�
3

þ R2μ20
4

�
r
R

�
4

ð3:16Þ

is the emblackening factor with the location of horizon

given by R ¼ 2
ffiffi
3

p
μ0
.

The near-horizon regime of this geometry is of the most
interest to us as it controls the IR behavior of the theory. For
this regime, we switch from r to a new coordinate

ζ ¼ 1

R − r
R2

6
: ð3:17Þ

Under this transformation and x → c0x we find that the
near-horizon geometry becomes AdS2 × R2 with the gauge
field solution given by

ds2 ¼ −
dt2

6ζ2
þ dζ2

6ζ2
þ c0
R2

dx⃗2 ð3:18aÞ

AtðζÞ ¼
μ0R
6ζ

ð3:18bÞ

In these coordinates, the horizon is at ζ → ∞. Now
adding the disorder implies perturbing the background
gauge field solution (3.18b) at order OðDÞ. We find that at
first order in D,

Atðk; ζÞ ∼
ffiffiffiffiffiffi
2π

p
ðζμ0Þ−

μ0þ
ffiffiffiffiffiffiffiffiffi
8k2þμ2

0

p
2μ0 ð3:19Þ

where the overall Oð1Þ normalization constant is unim-
portant. Using this we arrive at the homogeneous correction
at order OðDÞ to the metric:

ds2 ¼ −
1þDfðζÞ

6ζ2
dt2þ 1þDhðζÞ

6ζ2
dζ2þ c0

1þDgðζÞ
R2

dx⃗2

ð3:20Þ

where

fðζÞ ¼ 9c0ζμð1þ logðζμÞÞ − 16c1 logðζμÞ2 þ 9c0 logðζμÞ2liðζμÞ
48ζμ logðζμÞ2 ð3:21aÞ

hðζÞ ¼ −
9c0ζμð2þ 5 logðζμÞÞ þ 80c1 logðζμÞ2 − 45c0 logðζμÞ2liðζμÞ

48rμ logðζμÞ2 ð3:21bÞ

gðζÞ ¼ −
c1
ζμ

þ c2 −
c0

32 logðζμÞ2 −
3c0

8 logðζμÞ þ
9c0liðζμÞ
16ζμ

ð3:21cÞ

where liðxÞ is the logarithmic integral function whose
asymptotic behavior is limx→∞ liðxÞ ¼ x

logðxÞ and c1 and c2
are constants of integration. Note that all the perturbations

are finite and we have no divergence as ζ → ∞. This tells
us that unlike the μ0 ¼ 0 case, the disorder becomes strictly
irrelevant [41]. In order to fix c0, c1 and c2 we assume the
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metric smoothly deforms from AdS4 to AdS2 ×R2 over a
length scale of δr ∼ Oð1Þ

R and we match the metric coef-
ficients.

ds2 ¼ −
1

6ζ2
dt2 þ 1

6ζ2
dζ2 þ c0

1þDc2
R2

dx⃗2 ð3:22Þ

where

c0 ∼
1

4
log

�
Λ
μ0

�
log

�
log

�
Λ
μ0

��
ð3:23aÞ

c2 ∼
3

32
log

�
Λ
μ0

�
−

3

80
ð3:23bÞ

The above result of the disorder becoming strictly
irrelevant (not just marginally irrelevant) at finite μ0 also
holds if we had instead put the system at finite magnetic field
B ∼Oð1Þ or at a finite temperature T, so long as TR ≪ 1

(which ensures the AdS2 ×R2 geometry at intermediate
scales). The fact that the coefficient of dx⃗2 has increased
means that disorder has perturbatively increased the entropy
density of the low temperature field theory in the IR.
We also briefly relate our results to some older work in

the literature. In [42], it was proposed that AdS2 ×R2

geometries would admit inhomogeneous deformations; see
[43] for follow-up numerics which argue instead that
AdS2 ×R2 is stable. Our results appear consistent with
the latter conclusion, though we are not certain whether our
approach is sufficiently high order in nonlinear terms to
recover the conjectured effect [42]. Interestingly enough, it
appears to be the zero density systems (which seemed not
to admit highly inhomogeneous IR geometries [15,44]) that
lead to highly disordered IR geometries. It would be
interesting to test this prediction in future numerics.

IV. SCALAR DISORDER

Having confirmed the agreement between our heuristic
field theoretic arguments and the minimal holographic
theory with charge disorder, we now move on to the theory
with scalar disorder which was studied in [11,18]. We start
by introducing the original model. Suppose that this CFT
has an operator O of dimension

½O� ¼ Δ ¼ d
2
þ 1: ð4:1Þ

Here, we will assume that O is spin zero. For a spin-0
(scalar) operator of this special dimension,

hOðx; tÞOð0; 0ÞiCFT ¼ COO

ðx2 þ t2Þ1þd=2 ð4:2Þ

Now again consider perturbing the CFT Lagrangian density
by a space-dependent but time-independent coupling hðxÞ

L → Lþ hðxÞOðx; tÞ: ð4:3Þ

Note that ½h� ¼ d=2. We similarly take the disorder to be
drawn from a Gaussian distribution

hðxÞhðx0Þ ¼ D ×GðΛjx − x0jÞ: ð4:4Þ

The replicated action in this case resembles (2.6) except
with the operatorJ t replaced byO. The relevant term in the
OPE now takes the form:

Oaðx1; t1ÞObðx2; t2Þ ⊃
δabCOOT

CTT

t212Tttðx1; t1Þ
ðx212 þ t212Þ

3
2

þ � � � ð4:5Þ

Using this we see that the expression for Zt (2.10) remains
the same as well with CJJ T replaced by COOT in agreement
with [11,17]. Note that in any CFT, [17]

COOT < 0; ð4:6Þ

and so z ≥ 1, consistent with all the understood quantum
field theories that we are aware of.

A. Heuristic argument and comparison to holography

In general, it is far from clear that the OPE channelOOT
is the only contribution to the RG flow of D. However,
there is one class of CFTs for which we can assure this is
the case: a putative CFT described by gauge-gravity duality
[37]. In a nutshell, the holographic correspondence states
that the CFT (if it is of a suitable large N matrix type) is
dual to a semiclassical gravity theory in asymptotically
anti–de Sitter (AdS) space in one higher dimension. The
scalar operator O is dual in the bulk to a scalar field ϕ, and
the stress tensor Tμν is dual to the spacetime metric gμν. The
holographic action controls CFT data, such as scaling
dimensions and OPE coefficients. The bulk holographic
model

Sbulk ¼
Z

ddþ2xbulk

�
Rþ dðdþ 1Þ

L2
−
1

2
ð∇ϕÞ2 −m2

2
ϕ2

�

ð4:7Þ

which was studied in [11] corresponds to a CFT where the
only third order OPE coefficients (of relevance) are TTT
andOOT; these coefficients can be read off from the action
by computing (schematically) δg3 and δgδϕ2 terms in (4.7)
upon expanding around AdS spacetime (a saddle point
of this action). By suitably tuning m2, we can arrange for
Harris-marginal disorder.
A quick argument for the fact that D can become

marginally irrelevant, which we repeat from [18], is
instructive. The Harris criterion [12] for the marginality
of scalar disorder in dþ 1 dimensions with dynamical
critical exponent z is given by
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Δ ¼ d
2
þ z: ð4:8Þ

In our scalar theory, we will have Δ ¼ d
2
þ 1 and z ¼ 1 at

the UV fixed point; from (2.11), we see that z will slightly
change. Unless Δ happens to be rescaled by the exact same
amount (which would seem to require one parameter’s
worth of fine tuning), then we should anticipate that at
order D, (4.8) will no longer hold, and so disorder will be
either marginally irrelevant or relevant.
In the holographic computation of [18], it was found that

Δ increased by a larger amount at orderD than z, and hence
the scalar disorder was marginally irrelevant. This can be
seen from the relation between the mass of the bulk scalar
field m and the dimension of the dual operator Δ:

ΔðΔ − d − zÞ ¼ m2 ð4:9Þ

m2 ¼ − d
2
ðd
2
þ 1Þ is fixed by requiring the operator be

Harris-marginal to begin with. Using this we find that
for z ≈ 1:

Δ ≈
�
d
2
þ 1

�
þ
�
d
2
þ 1

�
ðz − 1Þ þ Oððz − 1Þ2Þ ð4:10Þ

This tells us that the disorder becomes marginally
irrelevant.
Therefore with the normalization of ϕ above, and in

d ¼ 1, one finds that for energy scales just below Λ,

z ≈ 1þD
8
¼ 1þDjCOOT j

CTT
: ð4:11Þ

However, our argument shows that this value of z flows,
because D flows.
In the holographic calculation of [18], determination of

these flowing quantities relied on a subtle heuristic argu-
ment. Disorder arises due to random boundary conditions
on the bulk field ϕ; one must (approximately) construct the
back-reacted geometry in the presence of disorder and
solve the Einstein equations all the way to a zero temper-
ature horizon in the infrared. So one must account for
nonperturbative effects in 1=D, which only arise at the
energy scale

Λ� ∼ Λ exp

�
−

CTT

DjCOOT j
�
; ð4:12Þ

a scale which was not accessible in the resummed pertur-
bative argument of [11]. From our RG perspective, this
nonperturbative effect is a conventional, one-loop pheno-
menon of marginally irrelevant disorder.

B. Correction to two-point function

The calculation for the scalar case proceeds similar to the
vector calculation. We begin with the rescaled correlation
function:

hOðx; tÞOð0; 0ÞiCFT ¼ COOZOO

ðx2 þ ðZttÞ2Þ1þd=2 ð4:13Þ

Our goal is to determine ZOO; we have already determined
Zt in the earlier discussion above. In this spirit we look at
the following two-point function:

hOað0;0ÞOaðx; tÞiD ¼ hOð0;0ÞOðx; tÞiCFT
þD

2

Z
ddx1dt1dt2hOð0;0Þ

×Oðx; tÞOðx1; t1ÞOðx1; t2ÞiCFTþ� � �
ð4:14Þ

(no sum over a) where higher order terms are not of interest
to us. Now plugging in the OPE given in (4.5), we get

hOað0;0ÞOaðx; tÞiD ¼ hOð0;0ÞOðx; tÞiCFT þ
DCOOT logb

CTT

×
Z

ddx1dt1hOð0;0ÞOðx; tÞ

× Tttðx1; t1ÞiCFT ð4:15Þ

where the three point function is given by

hOðx1ÞOðx2ÞTμνðx3Þi ¼ COOT
VμVν −

δμν
d VαVα

xd−113 xd−123 x2Δ−dþ1
12

ð4:16Þ

with Vα ¼ xα
13

x2
13

− xα
23

x2
23

. We now use the result given in [17] to

evaluate the integral over the three-point function to get,

Z
ddx3dt3hOð0; 0ÞOðx2; tÞTttðx3; t3ÞiCFT

¼ COO
dþ 2

dþ 1

x2 þ t2 − ðdþ 1Þt2
ðx2 þ t2Þd2þ2

ð4:17Þ

However, it is important to note that (4.16) does not include
contact terms. These terms go as [45,46]:

hTttðxÞOðx1ÞOðx2Þi ⊃ Cðδðdþ1Þðx − x1Þ þ δðdþ1Þðx − x2ÞÞ
× hOðx1ÞOðx2Þi ð4:18Þ

We fix the coefficient of the contact term by requiring that
the equal x correlator does not gain any logarithmic
corrections. This can be motivated by looking at the
correction to the action in (2.6) containing two time
integrals leading to no ‘log t’ dependence for disorder
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profiles with short range correlations (disorder at different
points are not necessarily statistically independent), evalu-
ating the integral in (4.14) we obtain

Z
ddx1ddx2dt1dt2GðΛjx1 − x2jÞhOð0; 0ÞOðx1; t1Þi

× hOð0; tÞOðx2; t2Þi ∼ Λdþ2
CFT; ð4:19Þ

Z
ddx1ddx2dt1dt2GðΛjx1 − x2jÞhOð0; 0ÞOðx1; t1Þi

× hOðx; 0ÞOðx2; t2Þi ∼
ΛCFT

xdþ1
þ logðxΛÞ

xdþ2
þ � � � : ð4:20Þ

The former integral indicates that without further OPE
corrections in the scalar channel (which we do not consider
in this paper), the correction to the scaling exponent Δ is
fixed by the requirement that the equal-x correlator does not
gain an anomalous dimension with t.
Combining (4.17) with (4.18), we find that this happens

when (recall Δ ¼ 1þ d=2):

C ¼ dΔ
dþ 1

: ð4:21Þ

Hence we find

hOað0; 0ÞOaðx; tÞiD
¼ COO

ðx2 þ t2Þ1þd
2

�
1þDCOOTðdþ 2Þx2 log b

CTTðx2 þ t2Þ
�

ð4:22Þ

We find that with the contact term (4.18), the results for
equal x and t correlators are in line with holographic results
from [47]. For the vector case, we did not need to worry
about contact terms since J is a conserved current even
under renormalization.
Now plugging in the rescaled correlator (4.13), we can

see that the divergence appearing in the renormalized
correlator is removed by choosing

ZOO ¼ 1 −
ðdþ 2ÞDCOOT logb

CTT
: ð4:23Þ

This leads to the scalar operator gaining an anomalous
dimension given by

γO ¼ 1

2

∂ZOO

∂ logb ¼ −
ðdþ 2ÞDCOOT

2CTT
: ð4:24Þ

The final step is to find the relation between Dbare and D
(renormalized):

Dbare ≈DR

�
1 −

dDRCOOT

CTT
logb

�
: ð4:25Þ

Or, we can rewrite it as

DR ≈Dbare

�
1þ dDbareCOOT

CTT
logb

�
: ð4:26Þ

Let us put this in the form of a conventional Wilsonian RG
equation. Assuming that the only important contribution to
the flow of D arises due to the stress tensor channel, we
conclude that

b
∂D
∂b ¼ −

dD2jCOOT j
CTT

: ð4:27Þ

We have used that COOT < 0. At energy scale E, we
conclude that the effective disorder strength is given by

DðEÞ ¼ DðΛÞ
1þDðΛÞ djCOOT j

CTT
logb

: ð4:28Þ

Hence, disorder is marginally irrelevant. We can also see
what happens to the flow of the dynamical critical exponent
z. Analogous to the vector disorder case, upon integrating

−
d log t
d logb

¼ 1þDðEÞ jCOOT j
CTT

þ � � � ð4:29Þ

using (4.28), we find that

−
d log t
d log b

¼ 1þ
DðΛÞ jCOOT j

CTT

1þDðΛÞ djCOOT j
CTT

log b
ð4:30Þ

leading to

− log t¼ logbþ 1

d
log

�
1þDðΛÞdjCOOT j

CTT
logb

�
: ð4:31Þ

The effective dynamical critical exponent at energy scale
E < Λ is given by

zðEÞ¼−
logt
logb

¼1þ
logð1þDðΛÞdjCOOT j

CTT
logΛ

EÞ
dlogΛ

E

: ð4:32Þ

The true infrared theory has irrelevant disorder given by
(4.28), and the unusual effective dynamical critical expo-
nent (4.32). These two results are precisely what was found
in [18]. We also see that the anomalous dimension is in
agreement between the two theories from (4.10) and (4.24)
indicating that that what we have in (4.18) is indeed the
correct contact term.

V. CONCLUSIONS

We have discussed, both using gauge-gravity duality
and scaling arguments inspired by conformal perturba-
tion theory, the RG flows of Harris-marginal disorder in
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strongly coupled CFTs. We find that scalar disorder is
marginally irrelevant while charge disorder is marginally
relevant, when the dominant coupling is of these operators
to the stress tensor. This assumption is indeed the case in
the matrix-large-N field theories that have weakly coupled
holographic dual descriptions.
The essential difference between our calculation and that

of those performed in [13,15] is that we have included the
backreaction of the metric perturbation while solving for
the gauge field solution. Hence our results are valid deep in
the IR as well. Our work provides a more physical picture
to the more heuristic construction of bulk geometries
advocated in [18]; in particular, in this paper we have
been able to precisely match the field theoretic flows of
coupling constants to the evolution of the bulk geometry in
the 2d model with charge disorder. As such, we conclude
that the speculative Lifshitz fixed points of [11] do not exist
as genuine IR fixed points (at least at weak coupling). It
may, unfortunately, be quite challenging to resolve the
endpoint of the RG flow, since as we emphasized above,
the energy scales where the “tree level” calculation of z
becomes inaccurate are exponentially small. In this sense,
the Lifshitz fixed point can appear for a wide range of
scales.
In more practical physical systems, it is less clear

whether our assumption is justified. In principle, one
may wish to perform loop calculations within conformal
perturbation theory to try and compute the RG flow of

disorder etc. without resorting to general scaling argu-
ments, as we did in this paper. We leave a more systematic
development of that method to future work.
Our approach provides an interesting alternative to the

more conventional methods for studying the interplay of
disorder and strong interactions. Usually in the field theory
literature, one either starts with a theory with a vector large-
N limit, which is for practical purposes weakly coupled in
any spatial dimension, or by doing an ϵ-expansion about an
upper critical dimension. Each of these approaches relies
on conventional Feynman diagrammatics and the validity
of this approach at a strongly coupled fixed point is not
clear. Our approach does not assume anything about the
strength of coupling constants, instead assuming the
dominant OPE channels. In this sense it complements
existing approaches. We hope that our approach can
provide a useful new tool for future studies of strongly
interacting and disordered field theories.
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