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A intriguing feature shared by many quantum gravity programs is the dynamical decrease of the spectral
dimension fromDs ¼ 4 at macroscopic toDs ≈ 2 at microscopic scales. In this note, we study the impact of
this transition on the energy loss of static, spherically symmetric black holes due to Hawking radiation. We
demonstrate that the decrease in the spectral dimension renders the luminosity of a black hole finite. While
this slightly increases the lifetime of light black holes, we find that this mechanism is insufficient to
generate long-lived black hole remnants. We briefly comment on the relation of our findings to previous
work on this topic.
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I. INTRODUCTION

Black holes provide a powerful laboratory for testing our
ideas about space and time at both the theoretical as well as
the observational frontier. A striking theoretical prediction
based on quantum field theory in curved spacetime is that
black holes are not entirely black: their event horizon emits
black body radiation with a temperature inversely propor-
tional to the mass of the black hole [1–4]. Owed to this so-
called Hawking effect, the black hole loses mass and
eventually evaporates completely within a finite time span.
The robustness of this scenario has been corroborated in a
number of different ways comprising perturbative compu-
tations in a fixed background spacetime [1], the detector
approach [5–9], as well as by analogy to the Unruh
effect [10].
The Hawking effect gives rise to a series of theoretical

puzzles though. First, one encounters the black hole
information paradox reviewed in [11]. The picture above
suggests that the physical information about how the black
hole was formed could permanently disappear, allowing
many physical states to evolve into the same state.
Basically, there are three viewpoints on this problem
[12,13]: (1) information is indeed lost after the black holes
has evaporated completely, (2) evaporation stops and
information is preserved inside a stable remnant, and
(3) information may be returned outside via Hawking

radiation. In particular, with regard to option (2) it is
important to understand the final configuration emanating
from the black hole evaporation process.
The second puzzle comes from the increase of the

horizon temperature as the black hole becomes lighter
and lighter. For instance, a black hole with a mass of the
order of the Planck mass would have a temperature
Th ≈ 1031 K. Theoretically, it is then predicted that the
final stage of the black hole evaporation process generates a
so-called thunderbolt singularity. From the observational
perspective, this feature leads to the prediction that a black
hole reaching a mass range between 109–1013 g should
create powerful short-lived gamma-ray bursts with energy
of a few hundred MeV [14]. So far, all attempts to detect
such high energy bursts have failed and resulted only in
upper bounds on black hole evaporation rate in the vicinity
of the Earth [15,16].
Third, a cold phase in a black hole’s life gives an

interesting perspective on dark matter [17–19]. If the
evaporation process is halted as some mass (potentially
set by the Planck mass), then one may end up with a stable
configuration which, except for its gravitational interaction,
has no or extremely small interaction with ordinary matter
and hence fits perfectly into the definition of a weakly
interacting massive particle. This has led many authors to
claim that in fact such tiny black holes could explain the
mystery of dark matter in our Universe, see, e.g., [17–19]
for selected references. In Ref. [20] it is shown that no
major constraint can be cast upon the properties of Planck-
size remnants if they play the role of dark matter at a
cosmological scale; nonetheless, the way these remnants
can be produced and their stability could be potential weak
spots of such scenarios [18].
These puzzles, clearly ask for a better understanding of

the black hole evaporation process beyond the quantum
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field theory in curved spacetime analysis. It is conceivable
that the ultimate answer lies in the realm of a theory of
quantum gravity. Since there are currently many different
routes at various stages of development, we take a different
angle on the problem: quite strikingly many quantum
gravity programs, including string theory [21–23], loop
quantum gravity and spin foams [24–27], asymptotically
safe gravity [28–35], causal dynamical triangulations
[36,37], and Hořava-Lifshitz gravity [38–40] predict a
dynamical dimensional reduction of the theories momen-
tum space [41,42] (also see [43] for an early account of this
idea). Specifically, the spectral dimension Ds, probing the
effective dimension experienced by a random walk, drops
from Ds ¼ 4 at macroscopic scales to Ds ≈ 2 at short
distances. For instance, the analysis of geometries obtained
from the causal dynamical triangulations program reported
a scale-dependent spectral dimension [44],

DsðσÞ ¼ a −
b

cþ σ
; ð1Þ

where σ denotes the diffusion time and the free parameters
a, b, and c have been fitted to a ¼ 4.02, b ¼ 119, and
c ¼ 54. A similar analysis within Euclidean dynamical
triangulations [45] obtained DsðσÞ ¼ 3.94� 0.16 and
DsðσÞ ¼ 1.44� 0.19 in the limit of long and short dif-
fusion times when extrapolating to the continuum and
infinite volume limits. Generalizing [46], the scale-
dependent spectral dimension along a fixed asymptotically
safe renormalization group trajectory has been computed in
[47], leading to a three plateau structure with DsðσÞ ¼ 4,
DsðσÞ ¼ 4=3, and DsðσÞ ¼ 2 at large, intermediate, and
short distances, respectively (also see [48] for a review).1

In [51] the scale dependence of the spectral dimension
has been linked to the dimensionality of the theories
momentum space: a drop of the spectral dimension
indicates that there are less degrees of freedom at high
energy as compared to the expectation based on the
dimension of spacetime observed at macroscopic scales.
Thus the dynamical dimensional reduction provides a
powerful mechanism for eliminating divergences occurring
at high energies. Within the realm of multiscale models
[52–55], the phenomenological consequences of this
mechanism have been explored, e.g., in the context of
quantum field theory [56], cosmology [57,58], and also for
the Unruh effect [59], see [60] for an up-to-date review.2

In [63] the authors suggested an intricate connection
between dynamical dimensional reduction and the forma-
tion of cold remnants formed at the end of the black
hole evaporation process based on a two-dimensional

dilaton-gravity model. The goal of our work is to comple-
ment this analysis by implementing the effect of a drop in
the spectral dimension in the thermodynamic properties of
a four-dimensional Schwarzschild black hole. As our main
result, we demonstrate that the mechanism of dynamical
dimensional reduction removes the thunderbolt singularity
appearing in the last stages of the black hole evaporation
process. It does not lead to the formation of long-lived
black hole remnants though. The latter requires additional
ingredients, with a change in the topology of the black hole
solution being the most probable one. Our analysis uses the
framework of quantum field theory in a curved back-
ground, incorporating the “quantum gravity effect” of a
dynamical dimensional reduction at the level of the field
forming the Hawking radiation.
The rest of our work is organized as follows. Sections II

and III provide a brief introduction to black hole thermo-
dynamics and the concept of generalized dimensions,
respectively. Our analysis is presented in Sec. IV and we
conclude with a brief discussion and outlook in Sec. V.

II. BLACK HOLE THERMODYNAMICS
IN A NUTSHELL

We start by reviewing the basics of black hole thermo-
dynamics, referring to [64–66] for more detailed, peda-
gogical accounts. For simplicity, we consider spherically
symmetric black holes described by the Schwarzschild
solution. In natural units where G ¼ c ¼ ℏ ¼ kb ¼ 1, the
resulting line element is

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2 − r2dΩ2: ð2Þ

Here dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the line element on the unit
two-sphere and M is the mass of the black hole. The
geometry (2) possesses an event horizon at

rh ¼ 2M: ð3Þ

Based on (2) one readily deduces that the area of this
horizon is

Ah ¼ 4πr2h ¼ 16πM2: ð4Þ

Any object or photon crossing this horizon inevitably has to
move inward, eventually ending at the curvature singularity
at r ¼ 0. Classically, signals emitted at r ≤ rh cannot reach
an observer stationed at r > rh. Hence the terminology
“black hole.”
The analysis within the framework of quantum field

theory in curved spacetime [1] shows, however, that the
event horizon emits black body radiation (Hawking radi-
ation) with a temperature proportional to the surface gravity
at the horizon. For the Schwarzschild black hole (2), this
results in

1For related works in the context of string theory focusing on
the dynamical dimensional reduction of the spacetime dimension
at short distances, see [49,50].

2Along different lines, fractal aspects of black holes have been
considered within the “ungravity program” [61,62].
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Th ¼
1

8πM
: ð5Þ

The resulting luminosity L is then given by

L ¼ AhI; ð6Þ

where I is the integrated black body spectrum. For bosonic
fields as the scalar field considered in this work

I ¼
Z

d3p
ð2πÞ3

E

eE=Th − 1
: ð7Þ

For a massless photon, E ¼ jp⃗j ¼ ω, and one recovers the
standard result [66]3:

Lmassless ¼
8M2

π

Z
∞

0

dω
ω3

e8πMω − 1
;

¼ 1

7680πM2
: ð8Þ

Here we have performed the integral over frequencies
and expressed the result in terms of the black hole mass
M by substituting (5). Lmassless as a function of M is then
illustrated as the blue straight line in Fig. 1. Equation (8)
exhibits the curious feature that black holes become more
and more luminous the lighter they become. In particular L
diverges asM → 0. The presence of this so-called thunder-
bolt singularity suggests that the semiclassical analysis
breaks down when describing the final stage of black hole
evaporation [67–70].
The life-time of a black hole with initial mass M0 can

then be obtained by integrating the mass-loss formula

dM
dt

¼ −L: ð9Þ

Substituting (8) gives the black hole evaporation time

tevap ¼ 2560πM3
0: ð10Þ

Thus the emission of Hawking radiation renders the life-
time of the black hole finite.

The luminosity formula (6) is readily generalized to the
case of a scalar field with mass m. In this case the energy
appearing in (7) is replaced by the relativistic dispersion
relation E2 ¼ p⃗2 þm2. In general, I does not admit a
simple analytic expression. Nevertheless, it is instructive to
study the following limits: ifm=Th ≪ 1, then the particle is
relativistic and one essentially recovers the massless case.
For temperatures m=Th ≫ 1 the particle is nonrelativistic
and the Bose-Einstein distribution in (7) may be approxi-
mated by the Boltzmann distribution. This shows that the
contribution of a massive mode is actually exponentially
suppressed at temperatures Th ≲m. The full expression for
Lmassive as a function of M is obtained by numerical
integration. The result is the orange line shown in Fig. 1.

III. THE SPECTRAL DIMENSION IN A NUTSHELL

An intuitive picture about quantum gravity is that space-
time at short distances will develop nonmanifoldlike fea-
tures. A first step towards characterizing the resulting
structures is to generalize the notion of “dimension” borrow-
ing concepts from fractal geometry [71]. In this way one
naturally distinguishes between the Hausdorff dimension
(based on covering a set of points with balls of decreasing
radius), the spectral dimension (measuring the dimension
“felt” by a diffusing particle), or thewalk dimension (related
to the expectation value of the distance traveled by a random
walk as function of the diffusion time) of an Euclidean space.
While all of these dimensions agree when working on
manifolds, they characterize distinct properties of fractal
spaces. In the present work, the key role is played by the
spectral dimension Ds, which may be interpreted as the
dimension of the theories momentum space [51]. A decrease
of the spectral dimension at high energy may then be
interpreted as “the theory possessing less degrees of freedom
than its analog defined on a background manifold.”
Formally, the spectral dimension ds and its scale-

dependent generalization DsðσÞ is introduced by studying
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FIG. 1. Luminosity of a Schwarzschild black hole as a function
of the mass M. The case of a massless and a massive scalar field
with m2 ¼ 1 are illustrated by the straight blue and orange lines,
respectively.

3In general, the power contained in the Hawking radiation
associated with a massless scalar field has the form P ¼P

l

R∞
0 dωPlðωÞ with the lth multipole contributing with

PlðωÞ ¼ Ah
8π2

TlðωÞω3ðeω=Th − 1Þ−1. Our analysis focuses on the
l ¼ 0 sector and neglects the gray-body corrections TlðωÞ. Since
the latter encode the transmission probability of Hawking
radiation reaching future infinity without being backscattered
by the gravitational barrier surrounding the black hole, one
expects that these will lead to an additional suppression of the
massive contributions as compared to the massless ones. Based
on Eq. (23) one then expects that the inclusion of the TlðωÞ will
further inhibit the formation of remnants while leaving the
leading order analysis unaffected.
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the diffusion of a test particle on a d-dimensional Euclidean
spacetime with metric gμν with respect to the fiducial
diffusion time σ. Denoting the Laplacian constructed from
gμν by Δ≡ −gμνDμDν, and introducing FðΔÞ≡GðΔÞ−1
with GðΔÞ, being the position-space representation of the
particles propagator, the motion of the test particle is
captured by the generalized heat equation

∂
∂σKgðξ; ξ0; σÞ ¼ −FðΔÞKgðξ; ξ0; σÞ ð11Þ

subject to the boundary condition

Kgðξ; ξ0; σÞjσ¼0 ¼ δdðξ − ξ0Þ: ð12Þ

Here Kgðξ; ξ0; σÞ is the heat-kernel associated with FðΔÞ. It
describes the probability of the particle defusing from the
initial point ξ0 to ξ during the time-interval σ. In particular,
one recovers the standard heat-equation for FðΔÞ ¼ Δ. The
return probability PgðTÞ is then defined by the particle
returning to its initial point after time σ

PgðσÞ≡ V−1
Z

ddξ
ffiffiffi
g

p
Kgðξ; ξ; σÞ: ð13Þ

Here V ≡ R
ddξ

ffiffiffi
g

p
is the volume of the space. Based on

(13) the spectral dimension ds is then defined as

ds ≡ −2 lim
σ→0

d lnPgðσÞ
d ln σ

: ð14Þ

For the standard heat-equation on a smooth manifold
ds ¼ d agrees with the topological dimension of the
manifold. At this stage, it is convenient to generalize
(14), allowing for a scale-dependent spectral dimension

DsðσÞ≡ −2
d lnPgðσÞ
d ln σ

: ð15Þ

DsðσÞ takes into account the possibility that long random
walks may experience a different spectral dimension than
the infinitesimal ones entering in the definition (14).
On a flat Euclidean space Rd with metric δμν the

generalized heat-equation (11) can be solved using
Fourier-techniques

Kδðξ; ξ0; σÞ ¼
Z

ddp
ð2πÞd e

ipðξ−ξ0Þe−σFðp2Þ: ð16Þ

The resulting return probability is

PδðσÞ ¼
Z

ddp
ð2πÞd e

−σFðp2Þ: ð17Þ

For Fðp2Þ ¼ p2, the return probability evaluates to

PδðσÞ ¼ ð4πσÞ−d=2: ð18Þ

Substituting this result into (15) shows that DsðTÞ ¼ d is
independent of σ and agrees with the dimension of the
momentum space integral entering (17).
The computation is readily generalized to the case where

the function Fðp2Þ has a fixed scaling behavior Fðp2Þ ¼
p2þδ.4 Rewriting the integral in (17) in terms of the
dimensionless variablex ¼ p2þδσ, one readily finds that [47]

DsðσÞ ¼
2d

2þ δ
; ð19Þ

which is again independent of the diffusion time T.
Based on (19) it is then straightforward to construct

a simple multiscale model that interpolates between
DsðσÞ ¼ 2 at microscopic and DsðσÞ ¼ 4 at macroscopic
scales [59]. Starting from the momentum-space propagator

Gðp2Þ ¼ 1

p2
−

1

p2 þm2
; ð20Þ

one obtains Fðp2Þ ¼ 1
m2 p2ðp2 þm2Þ. Thus Fðp2Þ interpo-

lates between Fðp2Þ ∝ p2 for p2 ≪ m2 and Fðp2Þ ∝ p4 for
p2 ≫ m2. Evaluating (19) in these scaling regimes suggests
that one recovers the desired behavior of the spectral
dimension at microscopic and macroscopic scales. The
integrals determining PδðσÞ can be performed analytically
and can be expressed in terms of error functions. The
resulting spectral dimension is shown inFig. 2. This confirms
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FIG. 2. Illustration of the scale-dependent spectral dimension
DsðσÞ obtained from the two-scale model (20) with m2 ¼ 1.
DsðσÞ interpolates smoothly between Ds ¼ 4 for σ=m ≫ 1 and
Ds ¼ 2 for σ=m ≪ 1.

4Generically, any function Fðp2Þ for which the integral (16) is
not the Fourier transform of a Gaussian will result in diffusion
kernels Kgðξ; ξ0; σÞ, which are not positive semidefinite. The
occurrence of negative probabilities can be cured by going to
fractional calculus [54]. Since this is not relevant in the present
analysis, we do not dwell on this technical feature at this point.
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that the model indeed interpolates between Ds ¼ 4 for
σ=m ≫ 1 and Ds ¼ 2 for σ=m ≪ 1. Equation (20) then
defines a generic toy model realizing the dynamical dimen-
sional reduction encountered in the full-fledged quantum
gravity analysis. The lattermay also fix the crossover scalem
based on microscopic considerations.
At this stage, the following clarifications concerning our

toy-model are useful. The massive contribution in Eq. (20)
has the structure of a massive ghost field, coming with a
wrong sign of the kinetic term. We stress that this
contribution should not be interpreted as a particle akin
to the ghost degree of freedom found, e.g., in quadratic
gravity [72].5 It merely serves the purpose of implementing
the decimation of states in the phase space of the theory at
energies above m2 in a rather minimalistic way. A realistic
quantum theory will provide a more refined way for
generating this effect, see, e.g., [75] for a specific model
achieving this without the introduction of ghost fields.
Moreover, the modified dispersion relation (20) retains

local Lorentz invariance. This entails that typical problems
associated with Lorentz-symmetry breaking effects, such
as, e.g., the ambiguity in defining the event horizon of the
black hole and its corresponding temperature [76], are
avoided. For both components in (20) the event horizon
appears in the same location and there is no ambiguity in
defining the horizon temperature. Finally, the detector
approach [5–9] derives the black body nature of the
Hawking radiation based on the two-point function of
the field. This derivation is irrespective of its overall sign of
the propagator. Thus the energy loss owed to the massive
term can be obtained from a thermal emission spectrum.

IV. BLACK HOLE THERMODYNAMICS
INCLUDING A NONTRIVIAL SPECTRAL

DIMENSION

At this stage we are in a position to combine our
discussions on the thermodynamical properties of black
holes and dynamical dimensional reduction. Throughout
this section we will assume that the radiation emitted by the
event horizon remains thermal also for very light black
holes, see [77–79] for a detailed analysis supporting this
assumption. The goal of this section is then to go beyond
the semiclassical analysis utilizing the concepts of gener-
alized dimensions and dynamical dimensional reduction.
Our discussion takes place in the framework of quantum
field theory in a nonfluctuating, curved spacetime with the
“quantum gravity input” being captured by a change of
dimension in the momentum space of the radiated scalar
particle.

A. Single-scale analysis

From the perspective of generalized dimensions the
luminosity formula (6) contains two distinguished elements.
First, the black body factor I contains an integral over the
theories momentum space. This suggests that the dimension
appearing in this term is the spectral dimension

Ids ¼
Z

dds−1p
ð2πÞds−1

E

eE=Th − 1
: ð21Þ

Second, the horizon area is related to position space proper-
ties. This suggests that this term is sensitive to the Hausdorff
dimension of the (quantum) spacetime.Owing to the lackof a
concretemodel that would allow us to describe such an effect
for the event horizon, we refrain from including such an
effect. If a concrete model is available, then this feature may
be included rather straightforwardly in the present setting by
considering an effective dimension build from a linear
combination of the spectral and Hausdorff dimension.
The generalization (21) then allows us to determine the

threshold on the spectral dimension ds required for creating
a long-lived black hole remnant from dynamical dimen-
sional reduction in the momentum space. For this purpose
we consider (21) for a massless scalar field in a scaling
regime where ds is constant but not necessarily identical to
the topological dimension d of the spacetime. Convergence
of the integral requires ds > 1. Assuming convergence,
Ids ¼ c̃M−ds , where c̃ is a numerical constant. In combi-
nation with the classical horizon area (4) the luminosity
obtained from the spectral dimension is

Lds ¼ 16πc̃M2−ds : ð22Þ

The mass-loss formula (9) then shows that the generation of
a remnant for which tevap is infinite requires ds − 2 ≤ −1 or,
equivalently, ds ≤ 1. This is, however, in conflict with
requiring convergence of Ids . Thus just modifying the
spectral dimension for the fields constituting the Hawking
radiation is not sufficient to create a long-lived remnant. In
particular, the black hole evaporation does not stop if ds
drops below three.

B. Dynamical dimensional reduction

Notably, the luminosity (6) is linear in the two-point
correlation function of the corresponding fields. The
Euclidean multiscale model following from (20) then
suggests the following generalization to the black hole
context. First, the Euclidean flat-space propagators are
analytically continued to Lorentzian signature using a
standard Wick rotation. Subsequently, the principle of
covariance is used to promote the derivatives appearing
in the position space representation to covariant derivatives.
In this way one naturally arrives at the conclusion that the
luminosity LDs

of a black hole, in a situation where the
scalar field modeling the Hawking radiation exhibits

5Note that the presence of the ghost in this context does not
automatically entail the violation of unitarity, see [73,74] for
recent discussions.
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dynamical dimensional reduction, is given by the sum of a
massless and massive contribution weighted by a relative
minus sign:

LDs
ðM;mÞ ¼ LmasslessðMÞ − LmassiveðM;mÞ: ð23Þ

From the general analysis in Sec. II we then conclude that the
contribution of the second term is exponentially suppressed
for M ≫ m. As a result, LDs

ðM;mÞ agrees with the semi-
classical analysis in this regime. Conversely, forM ≲m both
terms contribute with equal magnitude. As a result LDs

remains finite as M → 0. The crossover between these two
regimes together with the removal of the thunderbolt
singularity is illustrated in Fig. 3, where LDs

has been
evaluated numerically for m2 ¼ 1.
The taming of the luminosity for light black holes arises

from the interplay of the massless and massive degrees of
freedom that provides a Pauli-Villars-type regularization
for Lmassless. We stress that this feature does not result from
introducing an additional ghost field. It is a direct result of
the reduced number of degrees of freedom exhibited by the
theory at scales jp⃗j≳m.
The result shown in Fig. 3 together with a detailed

numerical analysis reveals that LDs
ðM;mÞ can be very well

approximated by a simple interpolating function

LDs
ðM;mÞ ¼ c

bm−2 þM2
; ð24Þ

where

c ¼ 1

7680π
; b ≈ 0.0125: ð25Þ

The value for b has been obtained from fitting the ansatz
(24) to LDs

ðM;mÞ, obtained via numerical integration, at
values M ≪ 1.

The analytic formula (24) again allows us to compute the
Hawking evaporation time of the black hole analytically.
Integrating Eq. (9) yields

tevap ¼ 2560πM3
0 þ

b
c
M0

m2
: ð26Þ

Thus the dynamical dimensional reduction leads to an
increase of the black hole lifetime. Since the scale m where
the dynamical dimensional reduction sets in is expected to be
the Planck scale, this is a rather tiny effect though. Evaluating
the term linear in M0 for m ¼ mPlanck ¼ 2.18 × 10−5 g and
M0 ¼ 109 g yields that the change in the lifetime of the black
hole is given by Δtevap ¼ 7.46 × 10−28 s. Thus the structure
of (26) indicates that a luminosity that is constant asM → 0
does not lead to a long-lived remnant with a lifetime
comparable to cosmic timescales.

V. CONCLUSIONS AND DISCUSSION

Motivated by the observation that light black holes with a
mass given by the Planck mass MPl ≈ 10−5 g may con-
stitute valid dark matter candidates [17–19,80], we used
black hole thermodynamics to investigate the luminosity
and lifetime of spherically symmetric black hole solutions.
Our work stepped out of the perturbative framework of
quantum field theory in curved spacetime by including the
effect of a dynamical dimensional reduction of the theories
momentum space. As this is a feature shared by many
approaches to quantum gravity [41,42], it is intriguing to
investigate whether this mechanism leads to the formation
of long-lived black hole remnants. While we showed that
the dynamical dimensional reduction mechanism generi-
cally removes the divergences in the black hole luminosity
encountered in the last stage of the evaporation process, the
results do not provide any evidence supporting the for-
mation of long-lived remnants.
At this point the following remarks on the scope and

limitations of our analysis are in order. Our work imple-
mented the mechanism of dynamical dimensional reduction
at the level of the degrees of freedom constituting the
Hawking radiation. In this course we did not modify the
topology of the background black hole solution that is
given by the Schwarzschild solution. This entails that our
spacetimes exhibit just one horizon, the event horizon, and
that there is no inner horizon. This feature is at variance
with many proposals for quantum gravity inspired black
hole metrics as, e.g., the Hayward metric [81], the renorm-
alization group improved black hole solutions constructed
by Bonanno and Reuter [82], or the Planck stars inspired by
loop quantum gravity [83]. A direct consequence of our
topology is that the black holes in our work do not have a
critical mass where the two horizons coincide and the
surface gravity (and hence the Hawking temperature) is
zero. By disentangling the effects of dynamical dimen-
sional reduction and the topology of spacetime, our
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FIG. 3. Luminosity LDs
of a Schwarzschild black hole with

massM arising from the two-scale model (20) with m2 ¼ 1 (blue
line). The inclusion of the massive mode triggering the dynamical
dimensional reduction renders the luminosity finite as M → 0.
The massless case is added as the dashed line for reference.
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analysis clearly reveals that it is the latter ingredient that is
decisive for forming a light black hole remnant during the
final stages of black hole evaporation.
This observation is also the key for reconciling our

results with the ones reported by Carlip and Grummiller
[63]. In this case the effect of dynamical dimensional
reduction was essentially incorporated through generaliz-
ing the scaling law for the event horizon,

Ah ¼ 4πrdh−2h ; ð27Þ

and subsequently identifying dh ¼ ds. Within the single-
scale analysis of Sec. IVA this modification with dh ¼ 2 or
dh ¼ 3would not lead to a stop of the Hawking evaporation
process. A careful analysis of the dilaton model used in [63]
shows, however, that the underlying black hole solutions
must come with a second horizon: in this way one can
approach a critical configuration if the generalized dimen-
sion of the dilaton model DðXÞ ¼ 3. This picture then
corroborates our conclusion that it is actually the topology
of the (quantum) black hole and not the effect of a
dynamical dimensional reduction that is crucial for forming
light long-lived remnants.

Based on our findings, it would be interesting to extend
our work in two directions. First, one may seek to under-
stand under which conditions quantum gravity corrections
lead to a change in the horizon structure of a Schwarzschild
black hole, generating a second (inner) horizon. A detailed
understanding of this effect will be essential for determin-
ing whether the theory can give rise to light, long-lived
remnants. Complementary, one could derive the dynamical
dimensional reduction scenario underlying our work from a
first-principle derivation. This will require detailed knowl-
edge about the momentum dependence of the theories two-
point functions. Notably, the form factor program for
asymptotic safety [84] has recently made substantial
progress along these lines [75,85–89]. The black hole
luminosity then constitutes an interesting observable which
is sensitive to a nontrivial momentum dependence in the
propagators of the fields. We hope to come back to these
points in the future.
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