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We find exact, analytic solutions of the holographic ac conductivity at arbitrary frequency ω and
temperature T, in contrast to previous works where the ac conductivity was analytically obtained usually at
small ω and T. These solutions enable us to study the analyticity properties of the current-current correlator
GðωÞ in detail. The first system we study is the AdS5 planar black hole with momentum dissipation, whose
extremal limit has an AdS2 factor. Then we study AdS4 and AdS5 Einstein-dilaton systems whose special
cases are maximal gauged supergravities. The solutions show how the poles move and how branch cuts
emerge as the temperature varies. As a by-product, we obtain an R-current correlator inN ¼ 4 super-Yang-
Mills theory on a sphere at finite temperature in the large N and strong coupling limit.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3] provides a power-
ful tool to study strongly interacting quantum systems,
where the perturbative method does not work. An example
is condensed matter systems without quasiparticles [4–6].
A key observable to calculate is the electrical conductivity,
which is related to the current-current correlation function
by the Kubo formula. Analyticity properties of correlation
functions are of great interest to theoretical physicists.
There have been a large number of works on calculating the
conductivity. Specifically, the dc conductivity can often be
calculated analytically.
However, analytic solutions of the ac conductivity are

rare. Known solutions are usually from constant curvature
spacetimes, such as pure AdS or the BTZ black hole [7,8].
Another known solution is from the planar AdS5 black
hole, corresponding to the R-current correlator of the
N ¼ 4 super-Yang-Mills (SYM) theory [9,10]. However,
in this system, all finite temperatures are equivalent. It is
desirable to obtain analytic solutions of the ac conductivity
that has a nontrivial temperature dependence. The analy-
ticity properties of the conductivity can be studied as the
temperature varies and the extremal limit is approached.
Momentum dissipation exists in real-world materials.

Without any momentum dissipation, the dc conductivity for
finite density systems is divergent. A simple way to
introduce momentum dissipation is by adding axions
(massless scalar fields) in the system [11–13]. We consider

zero density systems for simplicity. Since the momentum
dissipation introduces another scale, the system has a
nontrivial temperature dependence for the planar black
hole. In the extremal limit, the IR geometry may have an
AdS2 factor or be a hyperscaling-violating geometry.
In this paper, we add momentum dissipation in zero

density systems that are closely related to solutions of
maximal gauged supergravities. Zero density matter with-
out quasiparticles arises at some quantum critical points in
condensed matter systems [4]. One example is graphene, or
electrons on a honeycomb lattice at a density of one
electron per site. Another example is ultracold atoms in
optical lattices with one atom for each minimum of the
periodic potential. Zero density systems are particle-hole
symmetric, and have electrical conductivity due to pair
production. The gravity dual to zero density systems is
neutral black holes.
We obtain a number of analytic solutions of the ac

conductivity in an AdS5 system and a one-parameter family
of AdS4 systems. Especially, the solutions at zero temper-
ature clearly reveal branch cuts, delta functions, and gaps in
certain regions of parameter space, and these features are
challenging to infer numerically. Analyticity properties of
the retarded current-current correlator GRðωÞ are studied.
At finite temperature, there are poles in the lower-half
complex ω-plane. When the extremal limit is taken, the
poles will become branch cuts via different moving
patterns. Finally, as a by-product, an R-current correlator
in SYM theory on a sphere at finite temperature is
analytically calculated.
In Sec. II, we describe the model in a general framework.

In Sec. III, we obtain an analytic solution of the ac
conductivity for the planar Schwarzschild-AdS5 black hole
with momentum dissipation. In Sec. IV, we consider a one-
parameter family of AdS4 systems at both zero and finite
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temperatures. In Sec. V, we consider a one-parameter family
of AdS5 systems. In Sec. VI, we obtain an R-current
correlator in SYM theory. In Sec. VII, we conclude.

II. EINSTEIN-DILATON-AXION SYSTEMS

We study zero density systems dual to AdSdþ1 with
momentum dissipation. The background geometry is
determined by Einstein gravity, a neutral scalar ϕ, and
axions χi (i ¼ 1;…; d − 1). The holographic conductivity
is calculated by perturbing the system with a Maxwell field
Aμ. The Lagrangian density is [14,15]

L ¼ R −
1

4
ZðϕÞF2 −

1

2
ð∂ϕÞ2 − VðϕÞ − 1

2

Xd−1
i¼1

ð∂χiÞ2; ð1Þ

where χi ¼ axi satisfies the equations of motion and breaks
the translation symmetry; a is a parameter describing the
strength of momentum dissipation. We consider solutions
of neutral planar AdS black holes with the metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ UðrÞdx⃗2: ð2Þ

The conductivity as a function of frequency in strongly
coupled systems dual to the AdS gravity can be calculated
from the retarded current-current correlator by the
AdS=CFT prescription. To calculate the ac conductivity,
we perturb the system by an alternating electric field along
the x≡ x1 direction, which is achieved by adding a vector
potential δAxðr; tÞ ¼ e−iωtAxðrÞ. The Maxwell equation for
the zero density system is given by

A00
x þ

ð ffiffiffiffiffiffi−gp
ZðϕÞgrrgxxÞ0ffiffiffiffiffiffi−gp
ZðϕÞgrrgxx A0

x þ
ω2

jgttjgrr
Ax ¼ 0; ð3Þ

where the prime denotes derivative with respect to the
radial coordinate r. To obtain the retarded Green’s function,
we impose the infalling boundary condition at the horizon
r ¼ rh: Ax ∝ ðr − rhÞ−iω=jf0ðrhÞj. At the AdS boundary
r → ∞, the leading and subleading terms of AxðrÞ are

AxðrÞ ¼ Aþ B
L2ðd−2Þ

rd−2
þ B̃

L2ðd−2Þ

rd−2
logðΛrÞ; ð4Þ

where Λ is a cutoff scale taken to be 1. In AdS5,
B̃ ¼ Aω2=2, while in AdS4, B̃ ¼ 0. According to the
AdS=CFT prescription [2,3,16], A and B are the dual
source of the current O and its expectation value hOi in the
boundary field theory, respectively. Then the retarded
Green’s function corresponding to the current-current
correlator hJxJxi is [17]

GðωÞ ¼
�
B=A for AdS4;

2B=A − ω2=2 for AdS5:
ð5Þ

By the Kubo formula, the conductivity is σðωÞ ¼ G=iω.

III. PLANAR BLACK HOLE IN ADS5

We start with the planar Schwarzschild-AdS5 black hole
with momentum dissipation. We take V ¼ −12=L2, Z ¼ 1
and ϕ ¼ 0 in Eq. (1). The blackening factor of the metric
with UðrÞ ¼ r2 is

fðrÞ ¼ 1

L2

�
r2 þ r2h −

a2L2

4

��
1 −

r2h
r2

�
; ð6Þ

where rh is the horizon size. The Hawking temperature of
this black hole is

T ¼ 8r2h − a2L2

8πrhL2
: ð7Þ

The extremal limit is at a ¼ 2
ffiffiffi
2

p
rh=L, at which the IR

geometry is AdS2 ×R3 [11]. As a comparison, the geom-
etry at T ¼ 0 without axions is the pure AdS. Without loss
of generality, we set L ¼ 1 and rh ¼ 1.
The solution of the perturbation equation (3) with the

infalling boundary condition at the horizon is

Ax ¼
�

r2 − 1

r2 − 1þ 2πT

�− iω
4πT

2F1

�
−
iωð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2πT
p Þ
4πT

;

−
iωð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2πT
p Þ
4πT

; 1 −
iω
2πT

;
r2 − 1

r2 − 1þ 2πT

�
; ð8Þ

where the parameter a in the metric has been replaced by
the temperature T. To obtain the Green’s function, we
expand AxðrÞ at asymptotic infinity as Eq. (4). By Eq. (5),
the Green’s function is

GðωÞ ¼ iω −
1

2
ω2

�
ψ

�
1 −

iωð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2πT

p Þ
4πT

�

þ ψ

�
1 −

iωð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2πT

p Þ
4πT

�
þ logð2πTÞ þ 2γ

�
;

ð9Þ

where ψ is the digamma function ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ and γ
is Euler’s constant. The poles of the Green’s function are at

ωn ¼ −2inð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2πT

p
Þ; n ¼ 1; 2; 3;…: ð10Þ

Interestingly, the real part of the conductivity can be
expressed by an elementary function as
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Re½σðωÞ� ¼ πω

4

�
coth

ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2πT

p Þω
4T

þ coth
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2πT
p Þω
4T

�
: ð11Þ

From the indefinite integral over the real part of the
conductivity, we obtain the following identity

Z
∞

0

�
Re½σðωÞ� − πω

2

�
dω ¼ π

3
ð1 − πTÞ ¼ πa2

24
: ð12Þ

When a ¼ 0, i.e., without the momentum dissipation, the
right-hand side is zero, which matches the sum rule in [18].
This implies that the sum rule depends on the conservation
of momentum.
When the axions vanish (a ¼ 0), the poles of the retarded

Green’s function are distributed below the real axis in the
complex ω-plane, where the solution can be found in
Ref. [9]. As the temperature decreases, i.e., a increases, the
poles move toward the negative imaginary axis. Once a
equals a critical value a0 ¼ 2rh=L, the poles become
constrained on the negative imaginary axis. As the temper-
ature is lowered, the poles become denser. More precisely,
the poles which were on the right of the imaginary axis

become sparser, and the poles which were on the left
become denser. The quasinormal frequencies as poles of
the Green’s function are shown in Fig. 1.
When the temperature is zero, AxðrÞ with the infalling

boundary condition at the horizon can be solved by the
Whittaker functions Wκ;μðzÞ:

Ax ¼ Wiω
4
;1
2

�
−

iω
r2 − 1

�
: ð13Þ

The Green’s function is

GðωÞ ¼ iω −
1

2
ω2

�
ψ

�
1 −

iω
4

�
þ log ð−iωÞ þ 2γ

�
: ð14Þ

There are poles at ωn ¼ −4in (n ¼ 1; 2; 3;…) and a branch
cut due to the logarithmic term on the negative imaginary
axis of the complex ω-plane, which matches perfectly with
the extremal limit of the finite temperature result.

IV. CONDUCTIVITIES IN ADS4

If we change the dimension to d ¼ 3 and perform the
same calculation, we obtain that the conductivity is a
constant. Without momentum dissipation, it is well known
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FIG. 1. Quasinormal modes in the complex ω-plane for planar Schwarzschild-AdS5 black hole with momentum dissipation as the
temperature decreases.

ANALYTIC AC CONDUCTIVITIES FROM HOLOGRAPHY PHYS. REV. D 105, 066013 (2022)

066013-3



that the conductivity is a constant due to an electromagnetic
self-duality [19]. However, nonconstant conductivity in
AdS4 can be obtained in other systems. We take the
potential of the scalar field ϕ given by [20]

VðϕÞ ¼ −
2

ð1þ α2Þ2L2
½α2ð3α2 − 1Þe−ϕ=α

þ 8α2eðα−1=αÞϕ=2 þ ð3 − α2Þeαϕ�; ð15Þ
and ZðϕÞ ¼ e−αϕ,1 where α is a parameter, and the values
of α ¼ 1=

ffiffiffi
3

p
, 1, and

ffiffiffi
3

p
correspond to special cases of

STU supergravity. We call them 3-charge, 2-charge, and
1-charge black holes in AdS4, respectively.

2 The system
is invariant under α → −α and ϕ → −ϕ, and we assume
α > 0 in the following.
There is a neutral planar black hole solution for the

system (1) with the potential (15) [21,22]. The factors fðrÞ
and UðrÞ in the metric (2) and the scalar field ϕ are

fðrÞ ¼ −
a2

2

�
1 −

b
r

�1−α2

1þα2 þ r2

L2

�
1 −

b
r

� 2α2

1þα2 ;

UðrÞ ¼ r2
�
1 −

b
r

� 2α2

1þα2 ; eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 ; ð16Þ

where a is associated with momentum dissipation, and b is
associated with the scalar field. The scaling dimension
of the dual scalar operator is Δþ ¼ 2 or Δ− ¼ 1. The
interpretation of the parameter b depends on the boundary
condition of the scalar field ϕ at the AdS boundary. For
the Dirichlet boundary condition, b is proportional to the
source of the dual scalar operator in the standard quantiza-
tion. A sourceless (mixed) boundary condition compatible
with this solution is also applicable when a multitrace
deformation is present; b is proportional to the expectation
value of the dual scalar operator in the alternative quan-
tization [21]. Note that the parameter b can be either
positive or negative. For α ≠ 0, there are curvature singu-
larities at r ¼ b and r ¼ 0. When a ≠ 0, the curvature
singularities are always enclosed by a horizon at r ¼ rh at
finite temperature. Either a or b will be replaced by the
black hole horizon size rh as needed.
First, we consider the case without momentum dissipa-

tion. When a ¼ 0, Eq. (16) describes a spacetime without a
regular horizon. Since the AdS boundary is at r → ∞, the
IR is at r ¼ b when b > 0, and at r ¼ 0 when b < 0.
Moreover, the IR geometry is a hyperscaling violating
geometry:

ds2 ¼ r̃θ
�
−
dt2

r̃2z
þ dr̃2 þ dx⃗2

r̃2

�
; ð17Þ

with

z ¼ 1; θ ¼
(

2
1−α2 ðb > 0Þ;
2α2

α2−1 ðb < 0Þ:
ð18Þ

For the background (16) with a ¼ 0, the perturbation
equation (3) can be solved by modified Bessel functions as3

Ax ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 −

b
r

r
½C1Iνð−ixÞ þ C2Kνð−ixÞ�; ð19Þ

where

ν ¼ 1þ α2

2ð1 − α2Þ ; x ¼ 2νωL2

b

�
1 −

b
r

� 1
2ν

: ð20Þ

It is crucial to examine the boundary conditions in the IR
[23]. We assume b > 0 first, in which case the IR is at
r ¼ b. When 0 < α < 1, there is no infalling wave, and we
require that the solution is normalizable at r ¼ b. Thus the
solution is Eq. (19) with C2 ¼ 0.4 When b > 0 and
0 < α < 1, the Green’s function is

GðωÞ ¼ iω
Iν−1ð−2iνωL2=bÞ
Iνð−2iνωL2=bÞ : ð21Þ

The Green’s function has poles on the real axis of the
complex ω-plane. When α > 1, we can impose infalling
boundary condition in the IR, and it is more convenient to
choose the modified Bessel function Kν (or Hankel

function Hð1Þ
ν ). When b > 0 and α > 1, the Green’s

function is

GðωÞ ¼ iω
Kν−1ð2iνωL2=bÞ
Kνð2iνωL2=bÞ : ð22Þ

The Green’s function has a branch cut on the negative
imaginary axis of the complex ω-plane. When α ¼ 1, the
result is Eq. (35) below. For all α > 0, the real part of the
conductivity has a delta function at ω ¼ 0, despite this is a
zero density system.
For the case b < 0, the IR geometry is at r ¼ 0. When

0 < α < 1, there is infalling wave in the IR, and the
Green’s function is Eq. (22). When α > 1, the boundary
condition in the IR is normalizability, and the Green’s

1When Z ¼ 1, the conductivity is a constant for arbitrary
α and a.

2There are Uð1Þ4 gauge fields in STU supergravity in AdS4
with charges Qi. We call the system 3-charge black hole if Q1 ¼
Q2 ¼ Q3 ¼ Q and Q4 ¼ 0; 2-charge black hole if Q1 ¼ Q2 ¼ Q
and Q3 ¼ Q4 ¼ 0; 1-charge black hole if Q1 ¼ Q and
Q2 ¼ Q3 ¼ Q4 ¼ 0.

3The (modified) Bessel functions ZνðzÞ have branch points at
z ¼ 0 and z ¼ ∞, and the branch cut is conventionally chosen as
the negative real axis.

4For certain values of α, there are ambiguities for the boundary
condition in the IR. This can be seen more clearly by writing
Eq. (19) as combinations of JνðxÞ and J−νðxÞ. See [15,23].
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function is Eq. (21). The conductivity no longer has a delta
function at ω ¼ 0. Depending on the parameters b and α,
the above dilatonic model has rich features analogous to
strongly correlated electronic systems, such as the twisted
bilayer graphene [24].
For a given a ≠ 0, the system shares the same blackening

factor as hyperbolic black holes, whose thermodynamics
was studied in Ref. [22]. We emphasize that the extremal
limit of the a ≠ 0 geometry may not be the a ¼ 0 geometry.
To make this clear, consider the relation among a, b, and rh
obtained by fðrhÞ ¼ 0:

a2 ¼ 2

L2
r
3−α2

1þα2

h ðrh − bÞ3α
2−1

1þα2 : ð23Þ

The extremal geometry and its IR geometry is summarized
as follows.

(i) b > 0. The curvature singularity closer to the hori-
zon is at r ¼ b.
(i) α > 1=

ffiffiffi
3

p
. The extremal geometry has a ¼ 0

and rh ¼ b, and its IR is a hyperscaling-
violating geometry.

(ii) 0 < α < 1=
ffiffiffi
3

p
. The extremal geometry has

a ≠ 0 and rh > b, and its IR is AdS2 ×R2.
(ii) b < 0. The curvature singularity closer to the hori-

zon is at r ¼ 0.
(i) 0 < α <

ffiffiffi
3

p
. The extremal geometry has

a ¼ 0 and rh ¼ 0, and its IR is a hyperscaling-
violating geometry.

(ii) α >
ffiffiffi
3

p
. The extremal geometry has a ≠ 0 and

rh > 0, and its IR is AdS2 × R2.
The hyperscaling-violating geometry is the extremal limit
of a regular black hole, if the Gubser criterion is satisfied
[25]. The values α ¼ 1=

ffiffiffi
3

p
for b > 0 and α ¼ ffiffiffi

3
p

for
b < 0 are precisely the bound of the Gubser criterion.5

Moreover, for a given a ≠ 0, the black hole has a minimum
temperature when 1=

ffiffiffi
3

p
< α <

ffiffiffi
3

p
.

When the momentum dissipation is nonzero, the solution
(16) describes finite temperature black holes. The dc
conductivity is finite and can be calculated by the method
in Refs. [14,26,27]:

σdc ¼ Z½ϕðrhÞ� ¼
�
1 −

b
rh

�
− 2α2

1þα2 : ð24Þ

In the limit a → 0, we have σdc → ∞ for b > 0, and
σdc ¼ 0 for b < 0. This matches the delta function in
Eqs. (21) and (22) at ω ¼ 0 for b > 0. In the following,
we obtain analytic solutions of the holographic ac con-
ductivity from the 3-charge, 2-charge, and 1-charge black
holes in AdS4 with momentum dissipation. We have
checked that the ω → 0 limit of the ac conductivities below
agrees with the dc result.

A. 3-charge black hole in AdS4

The solution for the 3-charge black hole in AdS4 is given
by Eq. (16) with α ¼ 1=

ffiffiffi
3

p
. The temperature is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhðrh − bÞp
2πL2

; ð25Þ

where rh ¼ aL=
ffiffiffi
2

p
. The solution of the perturbation

equation (3) with the infalling boundary condition at the
horizon is

Ax ¼
r − b
rþ rh

�
r − rh
rþ rh

�
− iω
4πT

2F1

�
ã; b̃; c̃; x̃

r − rh
rþ rh

�
; ð26Þ

where 2F1ðã; b̃; c̃; x̃Þ is the hypergeometric function and

ã ¼ 1 −
iωL2

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh þ bÞp �
;

b̃ ¼ 1 −
iωL2

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhðrh þ bÞp �

;

c̃ ¼ 1 −
iωL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp ; x̃ ¼ bþ rh
b − rh

: ð27Þ

By the AdS=CFT prescription, the Green’s function is
given by

GðωÞ ¼ −
b
L2

−
rh
L2

�
c̃þ 2ã b̃ x̃

c̃
· 2
F1ð1þ ã; 1þ b̃; 1þ c̃; x̃Þ

2F1ðã; b̃; c̃; x̃Þ

�
:

ð28Þ

We need to treat the zero temperature limit more care-
fully, since the b < 0 and b > 0 cases have different
extremal geometries. When b < 0, the extremal limit is
at rh ¼ 0, in which case the axions vanish (a ¼ 0). The
conductivity is given by Eq. (22). When b > 0, the
extremal limit is at rh ¼ b, in which case the axions do
not vanish. For the b > 0 extremal geometry, we solve the
perturbation equation (3) and obtain the Green’s function at
T ¼ 0. After imposing the infalling boundary condition in
the IR, the solution of AxðrÞ is

Ax ¼ Kν̃

�
−ν̃

ffiffiffiffiffiffiffiffiffiffiffi
rþ b
r − b

r �
; ν̃ ¼ iωL2ffiffiffi

2
p

b
: ð29Þ

The Green’s function is

GðωÞ ¼ iωffiffiffi
2

p
�
Kν̃þ1ð−ν̃Þ
Kν̃ð−ν̃Þ

þ 1

�
: ð30Þ5In these two special cases, the extremal geometry is a

hyperscaling-violating geometry with a ≠ 0.
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The Green’s function has a branch cut on the negative
imaginary axis of the complex ω-plane.

B. 2-charge black hole in AdS4

The solution for the 2-charge black hole in AdS4 is given
by Eq. (16) with α ¼ 1. The temperature is

T ¼ 2rh − b
4πL2

¼ 2r2h þ a2L2

8πrhL2
; ð31Þ

where a2L2 ¼ 2rhðrh − bÞ. There is a minimum temper-
ature. The extremal limit is always at a ¼ 0, in contrast to
the 3-charge black hole in AdS4. The extremal geometry
apparently has a finite temperature despite there is no
horizon enclosing the spacetime singularity. The solution of
the perturbation equation (3) with the infalling boundary
condition at the horizon is

Ax ¼
�

r − rh
rþ rh − b

�
− iω
4πT

Hl
�ð2rh − bÞb

r2h
;

−
iωL2b
r2h

; 0; 2; 1 −
2iωL2

2rh − b
; 1;

bðr − rhÞ
rhðr − bÞ

�
; ð32Þ

where Hlðã; q̃; α̃; β̃; γ̃; δ̃; z̃Þ is the (local) Heun function.
The Green’s function is given by

GðωÞ ¼ iω −
ðrh − bÞb
rhL2

×
Hl0

�
ð2rh−bÞb

r2h
;− iωL2b

r2h
; 0; 2; 1 − 2iωL2

2rh−b
; 1; brh

	
Hl

�
ð2rh−bÞb

r2h
;− iωL2b

r2h
; 0; 2; 1 − 2iωL2

2rh−b
; 1; brh

	 :

ð33Þ

where Hl0ðã; q̃; α̃; β̃; γ̃; δ̃; z̃Þ is the derivative of the Heun
function.
The conductivity without momentum dissipation has

been obtained in Ref. [15] for b > 0. The following result is
for general b. When the axions vanish (a ¼ 0), the solution
of AxðrÞ is

Ax ¼ C1

�
r − b
r

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ω2L4

p
2b þ C2

�
r − b
r

�b−
ffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ω2L4

p
2b

: ð34Þ

When 2ωL2 > jbj, the first term with the ω → ωþ iϵ
prescription describes infalling wave in the IR for either
b > 0 or b < 0. Thus the infalling boundary condition
requires C2 ¼ 0. The Green’s function is given by

GðωÞ ¼ −
1

2
ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ω2L4

p
Þ: ð35Þ

There are branch cuts 4ω2L4 > b2 on the real axis of the
complex ω-plane. For small a, the branch cuts become
dense poles in the lower-half plane. As a increases, the
poles become increasingly sparser and closer to the
imaginary axis of the complex ω-plane. The quasinormal
frequencies as poles of the Green’s function are shown
in Fig. 2.
The conductivity is obtained by σ ¼ G=iωjω→ωþiϵ, and

the real part is

Re½σðωÞ� ¼ πb
L2

θðbÞδðωÞ þ θð4ω2L4 − b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2L4 − b2

p

2ωL2
;

ð36Þ

where θðxÞ is the Heaviside step function. There is a delta
function at ω ¼ 0 when b > 0, and there is a gap in
0 < 2ωL2 <jbj. When a is close to zero, we expect that the

FIG. 2. Quasinormal modes in the complex ω-plane for the 2-charge black hole in AdS4 with momentum dissipation. The arrows
illustrate the moving of poles as the extremal limit (a ¼ 0) is approached.
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delta function becomes a Drude-like peak. Note that the
system is at zero density. It was pointed out that this type of
delta function at ω ¼ 0 together with the hard gap is closely
related to superconductivity [28], and an example was
given in Ref. [29]. Figure 3 shows the real part of the
conductivity calculated from Eq. (33) as the extremal limit
is approached.

C. 1-charge black hole in AdS4

The solution for the 1-charge black hole in AdS4 is given
by Eq. (16) with α ¼ ffiffiffi

3
p

. The temperature is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhðrh − bÞp
2πL2

; ð37Þ

where rh ¼ aL=
ffiffiffi
2

p þ b. The solution of the perturbation
equation (3) with the infalling boundary condition at the
horizon is

Ax ¼
rþ rh − 2b

r

�
r − rh

rþ rh − 2b

�
− iω
4πT

×Hl
�
ã; q̃; α̃; β̃; γ̃; δ̃; z̃

r − rh
rþ rh − 2b

�
; ð38Þ

where Hl is the Heun function and

ã ¼ 1 −
2b
rh

; q̃ ¼ −ãþ iωL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhðrh − bÞp þ ω2L4b

2r2hðrh − bÞ ;

α̃ ¼ −1 −
iωL2

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrh − bÞðrh − 2bÞp �

;

β̃ ¼ −1 −
iωL2

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrh − bÞðrh − 2bÞp �
;

γ̃ ¼ 1 −
iωL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðrh − bÞp ; δ̃ ¼ 0; z̃ ¼ −ã: ð39Þ

By the AdS=CFT prescription, the Green’s function is
given by

GðωÞ ¼ iω
ffiffiffĩ
b

p
þ rhã

L2

�
1þ 2b̃

Hl0ðã; q̃; α̃; β̃; γ̃; δ̃; z̃Þ
Hlðã; q̃; α̃; β̃; γ̃; δ̃; z̃Þ

�
;

ð40Þ
where b̃≡ 1 − b=rh, and Hl0 is the derivative of the Heun
function.
We need to treat the zero temperature limit more carefully,

since the b < 0 and b > 0 cases have different extremal
geometries. When b > 0, the extremal limit is at rh ¼ b, in
which case the axions vanish (a ¼ 0). The conductivity is
given by Eq. (22). When b < 0, the extremal limit is at
rh ¼ 0, inwhich case the axions do not vanish. For theb < 0
extremal geometry, the perturbation equation (3) can be solve
in terms of a confluent Heun function.

V. CONDUCTIVITIES IN ADS5

The AdS5 counterpart of the preceding section is as
follows. We take the potential of the scalar field ϕ given
by [30]

VðϕÞ ¼ −
12

ð4þ 3α2Þ2L2
½3α2ð3α2 − 2Þe−4ϕ

3α

þ 36α2e
3α2−4
6α ϕ þ 2ð8 − 3α2Þeαϕ�; ð41Þ

and ZðϕÞ ¼ e−αϕ, where α is a parameter, and the values of
α ¼ 2=

ffiffiffi
6

p
and 4=

ffiffiffi
6

p
correspond to special cases of STU

supergravity. We call them 2-charge and 1-charge black
holes in AdS5, respectively.

6

There is a neutral planar black hole solution for the
system (1) with the potential (41). The solution of the
metric gμν and the scalar field ϕ is

ds2 ¼ −fðrÞdt2 þ gðrÞ−1dr2 þ UðrÞdx2; ð42Þ

eαϕ ¼
�
1 −

b2

r2

� 6α2

4þ3α2

; ð43Þ

with

f ¼ −
a2

4

�
1 −

b2

r2

�4−3α2

4þ3α2 þ r2

L2

�
1 −

b2

r2

� 3α2

4þ3α2

;

g ¼ fðrÞ
�
1 −

b2

r2

� 3α2

4þ3α2

; U ¼ r2
�
1 −

b2

r2

� 3α2

4þ3α2

; ð44Þ

where the parameter b2 (b > 0) can be either positive or
negative. For α ≠ 0, there are curvature singularities at r2 ¼
b2 > 0 and r ¼ 0. When a ≠ 0, the curvature singularities
are always enclosed by a horizon at finite temperature.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e(

)

FIG. 3. Real part of the conductivity as a function of frequency
plotted for the 2-charge black hole in AdS4. We take b ¼ 1 and
L ¼ 1. The red, green, blue, and purple curves are for a ¼ 1.2,
0.6, 0.2, and 0.05, respectively.

6There are Uð1Þ3 gauge fields in STU supergravity in AdS5
with charges Qi. We call the system 2-charge black hole if Q1 ¼
Q2 ¼ Q and Q3 ¼ 0; 1-charge black hole if Q1 ¼ Q and
Q2 ¼ Q3 ¼ 0.
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When a ¼ 0, Eq. (44) describes a spacetime without a
regular horizon. Since the AdS boundary is at r → ∞, the
IR is at r ¼ b when b2 > 0, and at r ¼ 0 when b2 < 0.
Much less analytic solutions of the ac conductivity are

available in AdS5 than in AdS4. We can obtain analytic
solutions in two special cases without momentum dissipa-
tion, which are 2-charge black hole in AdS5 with b2 < 0

and 1-charge black hole in AdS5 with b2 > 0. The solution
for the later case has been found in Ref. [28].
2-charge black hole in AdS5 (α ¼ 2=

ffiffiffi
6

p
) with b2 < 0.

We define b̄2 ¼ −b2 > 0 (b̄ > 0), and the curvature sin-
gularity is at r ¼ b̄. When the axions vanish (a ¼ 0), the
solution of AxðrÞ is

Ax ¼
�
r
b̄

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffi
b̄2−ω2L4

p
b̄

2F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̄2 − ω2L4

p

2b̄
;

−
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̄2 − ω2L4

p

2b̄
; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̄2 − ω2L4

p

b̄
;−

r2

b̄2

�
: ð45Þ

When ωL2 > b̄, the above solution with the ω → ωþ iϵ
prescription describes infalling wave in the IR. The Green’s
function is given by

GðωÞ ¼ −ω2

�
ψ

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̄2 − ω2L4

p

2b̄

�
þ log b̄þ γ

�
: ð46Þ

There are branch cuts ω2L4 > b2 on the real axis of the
complex ω-plane.
1-charge black hole in AdS5 (α ¼ 4=

ffiffiffi
6

p
) with b2 > 0.

The IR is at r ¼ b. It is more convenient to define r̄2 ¼
r2 − b2 so that the IR is at r̄ ¼ 0. When the axions vanish
(a ¼ 0), the solution of Axðr̄Þ is

Ax ¼
�
r̄
b

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
b2−ω2L4

p
b

2F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2L4

p

2b
;

3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2L4

p

2b
; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2L4

p

b
;−

r̄2

b2

�
: ð47Þ

When ωL2 > b, the above solution with the ω → ωþ iϵ
prescription describes infalling wave in the IR. The Green’s
function is given by

GðωÞ ¼ −
2b2

L4
− ω2

�
ψ

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2L4

p

2b

�
þ logbþ γ

�
:

ð48Þ

There are branch cuts ω2L4 > b2 on the real axis of the
complex ω-plane. The only difference between Eqs. (48)
and (46) is that Eq. (48) has an extra term that gives a delta
function at ω ¼ 0 in the real part of the conductivity.
The conductivity is obtained by σ ¼ G=iωjω→ωþiϵ, and

the real part is

Re½σðωÞ� ¼ 2πb2

L4
δðωÞ

þ πω

2
θðω2L4 − b2Þ tanh π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2L4 − b2

p

2b
; ð49Þ

where θðxÞ is the Heaviside step function. There is a delta
function at ω ¼ 0, and there is a gap at 0 < ωL2 < b. This
result was in Ref. [28]. The AdS4 counterpart of this result
is Eq. (36). When a is close to zero, we expect that the delta
function becomes a Drude-like peak.
For a given a ≠ 0, the system shares the same blackening

factor as hyperbolic black holes, whose thermodynamics
was studied in Ref. [22]. We emphasize that the extremal
limit of the a ≠ 0 geometry may not be the a ¼ 0 geometry.
To make this clear, consider the relation among a, b, and rh
obtained by fðrhÞ ¼ 0:

a2 ¼ 4

L2
ðr2hÞ

8−3α2

4þ3α2ðr2h − b2Þ6α
2−4

4þ3α2 : ð50Þ

The extremal geometry and its IR geometry is summarized
as follows.

(i) b2 > 0. The curvature singularity closer to the
horizon is at r ¼ b.
(i) α > 2=

ffiffiffi
6

p
. The extremal geometry has a ¼ 0

and rh ¼ b, and its IR is a hyperscaling-
violating geometry.

(ii) 0 < α < 2=
ffiffiffi
6

p
. The extremal geometry has a ≠

0 and rh > b, and its IR is AdS2 ×R3.
(ii) b2 < 0. The curvature singularity closer to the

horizon is at r ¼ 0.
(i) 0 < α < 4=

ffiffiffi
6

p
. The extremal geometry has

a ¼ 0 and rh ¼ 0, and its IR is a hyperscal-
ing-violating geometry.

(ii) α > 4=
ffiffiffi
6

p
. The extremal geometry has a ≠ 0

and rh > 0, and its IR is AdS2 ×R3.
The hyperscaling-violating geometry is the extremal limit
of a regular black hole, if the Gubser criterion is satisfied.
The values α ¼ 2=

ffiffiffi
6

p
for b2 > 0 and α ¼ 4=

ffiffiffi
6

p
for b2 < 0

are precisely the bound of the Gubser criterion. More-
over, the black hole has a minimum temperature when
2=

ffiffiffi
6

p
< α < 4=

ffiffiffi
6

p
.

VI. R-CURRENT CORRELATOR
OF N = 4 SYM ON A SPHERE

Although the planar black holes with momentum dis-
sipation are from the bottom-up approach, they are closely
related to spherical black holes in the top-down approach.
The blackening factor for a hyperbolic black hole is the
same as a planar black hole with momentum dissipation
[14,22,31]. By analytic continuation of the solution for a
hyperbolic black hole, we can obtain the solution for a
spherical black hole.
An R-current correlator of N ¼ 4 SYM on a sphere at

finite temperature in the largeN and strong coupling limit is
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obtained as follows, as a generalization of the previous
result in which the CFT lives on flat space [9,10]. The
metric for the spherical Schwarzschild-AdS5 black hole is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
3; ð51Þ

where dΩ2
3 ¼ dρ2 þ sin2 ρðdθ2 þ sin2 θdφ2Þ is the metric

for a 3-dimensional sphere with unit radius. The solution of
fðrÞ is Eq. (6) with a2 ¼ −4.7 The boundary CFT lives on a
sphere with radius L. The temperature is given by

T ¼ 2r2h þ L2

2πrhL2
: ð52Þ

The black hole has a minimum temperature at rh ¼ L=
ffiffiffi
2

p
.

There is a Hawking-Page phase transition between the large
black hole and thermal AdS [32,33].
We perturb the system by8

δAφ ¼ e−iωtAφðrÞ: ð53Þ

The Maxwell equation is exactly the same as Eq. (3),
provided that we use the new fðrÞ for the spherical
geometry. The solution with the infalling boundary con-
dition at the horizon is

Aφ ¼
�

r2 − r2h
r2 þ r2h þ L2

�
− iω
4πT

2F1

�
ωL2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ L2

p
− irhÞ

2ð2r2h þ L2Þ ;

−
ωL2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ L2

p
þ irhÞ

2ð2r2h þ L2Þ ;

1 −
iωL2rh
2r2h þ L2

;
r2 − r2h

r2 þ r2h þ L2

�
: ð54Þ

By the AdS=CFT prescription, the Green’s function is
obtained as

GðωÞ ¼ −iω
rh
L2

−
1

2
ω2

�
ψ

�
ωL2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2h þ L2
p

− irhÞ
2ð2r2h þ L2Þ

�

þ ψ

�
−
ωL2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ L2

p
þ irhÞ

2ð2r2h þ L2Þ
�

þ 2γ þ log ð2r2h þ L2Þ
�
: ð55Þ

The poles of the Green’s function are at

ωnL2 ¼ 2n
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ L2

q
− irh

	
; ð56Þ

where n ¼ 1; 2; 3;….

VII. DISCUSSION

We have obtained analytic solutions of the ac conduc-
tivity at arbitrary frequency and temperature from the
planar Schwarzschild-AdS5 black hole and dilatonic black
holes with momentum dissipation. In the extremal limit,
these black hole solutions have distinctive IR geometries
characterizing low energy properties of the dual condensed
matter systems. With the analytic solutions in hand, we
study analyticity properties of the Green’s function, espe-
cially how the poles move in the complex ω-plane move as
the temperature varies. Typically, branch cuts emerge when
the extremal limit is approached. At zero temperature, the
real part of the conductivity can have a delta function at
ω ¼ 0 and a hard gap. The ground states have rich
properties, depending on the parameters a (momentum
dissipation), b (scalar field), and α (potential). Ground state
properties of the AdS4 dilatonic system are summarized in
the following table.

b α a σdc σðωÞ
b > 0 0 < α < 1=

ffiffiffi
3

p
a ≠ 0 Finite Gapless

1=
ffiffiffi
3

p
< α < 1 a ¼ 0 ∞ Gapped

α > 1 a ¼ 0 ∞ Gapless

b < 0 0 < α < 1 a ¼ 0 0 Gapless
1 < α <

ffiffiffi
3

p
a ¼ 0 0 Gapped

α >
ffiffiffi
3

p
a ≠ 0 Finite Gapless

A number of aspects need more study in the future.
(i) We have not explored the full parameter space for the
dilatonic models in AdS4 and AdS5. It may shed some light
on understanding strongly correlated materials. (ii) The
2-charge black hole in AdS5 and the 3-charge black hole in
AdS4 are also called the Gubser-Rocha model [34] and
have been intensely studied. Other black holes in STU
supergravity also have distinctive and interesting proper-
ties. (iii) How does the strongly coupled result relate to the
weakly coupled result as we tune the coupling constant
[35,36]? It would be interesting to make a comparison
between the correlators calculated by AdS=CFT and field
theory techniques.

ACKNOWLEDGMENTS

J. R. thanks Christopher Herzog, Elias Kiritsis, and Li Li
for helpful discussions. This work was supported in part by
the NSF of China under Grant No. 11905298.

7By setting a2 ¼ 4, we can obtain a hyperbolic black hole; the
boundary theory lives in a hyperbolic space with radius L.

8The same perturbation equation can be obtained by δAρ ¼
e−iωtAρðrÞ csc2 ρ or δAθ ¼ e−iωtAθðrÞ csc θ.
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