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Our goal is to find a matrix model with BMS3 constraints built in. These constraints are imposed through
loop equations. We solve them using a free field realization of the algebra and write down the partition
function in eigenvalue form. We comment on the nature of this partition function and its relations with
integrable systems.
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I. INTRODUCTION

Although we are far from understanding the complete
picture of quantum gravity, matrix models have proven to be
very successful in the study of 2D quantum gravity [1,2].
A one-dimensional Hermitian matrix model in the double-
scaling limit describes a two-dimensional string theory
which can be interpreted as a Liouville theory coupled to
c ¼ 1 matter [3]. This connection generated a huge interest
in other possible relations between gravity theories and
matrix models. The 2D quantum gravity models are usually
formulated as conformal field theories, therefore, one natural
direction is to look for a CFT formulation of matrix models
[4]. The connection between random matrix models and
conformal field theory (CFT) is bilateral. While matrix
model techniques can be useful for computing certain
correlators in a conformal field theory, in some cases, the
techniques of CFT might be useful for solving matrix
models. A matrix model possesses an infinite number of
symmetries, which gives rise to a recursive relation between
correlation functions through loop equations [5]. The exist-
ence of infinite symmetries points to a possible integrability
structure, which has been extensively explored in the
literature [6–9]. The partition function of matrix models is
known to play the role of tau-function of some integrable
systems. Their underlying integrability structure makes them

exactly solvable and thus, an extremely important tool in the
study of lower-dimensional quantum field theories. The loop
equations can be reformulated in terms of linear differential
constraints on the partition function, where the differential
operators satisfy an infinite dimensional algebra [10–13].
The most famous example is that of Hermitian one matrix
model for which the operators are known to satisfy the
Virasoro algebra. The matrix model partition function can
then be described as a solution to Virasoro constraints. It is
possible to invert this relation and start from the Virasoro
algebra (in fact any infinite dimensional algebra) to write a
corresponding matrix model partition function. A systematic
approach was developed in [4,14] (see [15] for review).
Their approach gives a formulation of matrix models in
terms of conformal field theory, where the constraints
imposed on the partition function are translated to conditions
imposed on the correlators of a CFT. Our case of interest in
this paper, is the BMS3 algebra that arises as the asymptotic
symmetry algebra of (2þ 1)-dimensional flat space-times
[16,17]. It is extremely important to understand the behavior
of these algebras from the context of flat space holography
[16]. While this serves as an example of the method
developed in [4], our bigger motivation is to look for a
possible connection between matrix models and higher-
dimensional gravity theories. Given the success of matrix
models in the study of 2D gravity, we believe that a
framework for higher-dimensional theories in terms of
matrix models might be useful. A matrix model possessing
BMS3 invariance in its partition function may help us
explore the integrability structure that underlines it. We start
with a set of linear differential constraints, which we refer to
as BMS3-constraints. Assuming that those constraints
describe the loop equations of a matrix model, we use the
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free field realization of BMS3 to write down a solution for
those loop equations. Since this methodology is new in the
BMS3 literature, we review the basics before using them to
compute the desired result. The contents of this paper are
organized as follows: In Sec. II, we briefly discuss the
method of [4], to compute a matrix model partition function
as a solution to a set of infinite constraints. This will be our
guiding principle for this work. In Sec. III, we discuss about
the BMS3 algebra and its free field realization. Here we also
construct the generators of BMS3 in terms of modes of the
free fields. We start Sec. IV by writing the BMS3 generators
in terms of a set of oscillator modes. This construction
translates the constraints of the algebra into infinite coupled
differential equations. Next, we use CFT techniques to write
a matrix model partition function in eigenvalue representa-
tion which satisfies BMS3 constraints.
Our final result is a two-matrix model partition function

written in terms of their eigenvalues. It may be interpreted
as a β1 − β2 matrix model with β1 ¼ −1 and β2 ¼ −2
interacting through the measure of the partition function.

II. FROM INFINITE DIMENSIONAL ALGEBRAS
TO MATRIX MODELS

The loop equations for a one-matrix model describing an
ensemble, E of N × N Hermitian matrices, H ∈ E, take the
following from

Xμ1−1
l¼0

�
TrHlTrHμ1−l−1

Yn
i¼2

TrHμi

�

þ
Xn
j¼2

μj

�
TrHμ1þμj−1

Yn
i¼2
i≠j

TrHμi

�

¼
�
TrV 0ðHÞHμ1

Yn
i¼2

TrHμi

�
: ð2:1Þ

They are an infinite set of recursion relations among the
correlation functions that follow from the invariance of the
matrix integral under a change of integration variables [5].
The exact loop equations are difficult to solve for finite N.
However, in the large-N limit, these can be efficiently used
to compute correlation functions, order by order in 1=N
expansion [18]. They also admit a topological expansion
and can be formulated as topological recursion relations
among the correlation functions [19,20]. For a one-matrix
model, the conjugation of ensemble elements by unitary
matrices acts as a gauge symmetry on the partition function,
with the most general form of the potential given by

VðHÞ ¼ −
X∞
k¼0

tkHk: ð2:2Þ

The correlators are obtained as derivatives of the partition
function, with respect to the parameters tk,

hTrHμ1 � � �TrHμni ¼ ∂n

∂tμ1 � � � ∂tμn
Z: ð2:3Þ

This relation can be used to rewrite loop equations as linear
differential constraints,

LnZ ¼ 0 for n ≥ −1; ð2:4Þ
where

Ln ¼
X∞
k¼0

ktk
∂

∂tnþk
þ
Xn
k¼0

∂
∂tk

∂
∂tn−k : ð2:5Þ

The operators Ln satisfy a closed algebra,

½Ln; Lm� ¼ ðn −mÞLnþm; ð2:6Þ

which is similar to the Virasoro algebra, except that
n;m ≥ −1. Therefore, it is referred to as “discrete
Virasoro algebra.” The constraints (2.4) along with

∂
∂t0Z ¼ NZ; ð2:7Þ

are called the Virasoro constraints. The matrix model
partition function is given as a solution of these infinite
set of constraint equations.
A formulation of the matrix model partition function as a

solution to Virasoro constraints points to a connection
between Hermitian one matrix model and 2d CFT [11]. In
[4], a systematic approach was developed to construct
solutions of such constraints [10,21], using the methods of
conformal field theory. The idea is to identify the operators,
Ln with the modes of stress tensor, Tn of a conformal field
theory.
The solution to differential constraints is then obtained as

a correlator in the CFT, and the annihilation of that
correlator by Ln is translated to the annihilation of vacuum
state by Tn. Thus, finding an integral expression of the
partition function essentially involves two main steps:

(i) Finding a t-dependent “Hamiltonian” operator that
relates Ln with the modes of stress tensor of a CFT.
The identification is expressed through

LnhNjeHðtÞ ¼ hNjeHðtÞTn: ð2:8Þ

where hNj is a charged vacuum state of the theory.
(ii) Finding states jGi in the CFT, which are annihilated

by Tn, n ≥ −1,

TnjGi ¼ 0: ð2:9Þ
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Once we find HðtÞ and jGi, the solution is given by

Z ¼ hNjeHðtÞjGi: ð2:10Þ

The construction of operator HðtÞ is somewhat ad hoc.
This Hamiltonian operator, in general, does not have any
relation to the CFT Hamiltonian, since there is no obligation
for a CFT Hamiltonian to satisfy such a relation. However,
the state jGi is well known. It is given by the action of an
operator G which commutes with the stress tensor, on the
uncharged vacuum state,

jGi ¼ Gj0i; where ½Tn;G� ¼ 0; n ≥ −1 ð2:11Þ

Any function of the screening charges satisfy such a
commutation relation. In a CFT, screening charges are
operators with nonzero “charge” under the conserved current
but zero conformal dimension. Thus, adding them to a
correlation function will not change their conformal behavior,
however, it will change their total charge. A solution (2.10)
can be constructed for any algebra of constraints, provided,
the following three conditions are fulfilled:

(i) The algebra admits a free field realization.
(ii) One can find a vacuum annihilated by relevant

generators in the corresponding field theory.
(iii) One can find a free field representation of the

screening charges.
It is well known that a free field realization of the Virasoro
algebra is given by a free bosonic CFT, and a solution to the
Virasoro constraints can be constructed systematically using
the above mentioned procedure. There exist generalizations
to other set of constraints, called the W-constraints, whose
solutions correspond to multi-matrix models. The solution of
Wrþ1-constraints,

WðaÞ
n Z ¼ 0; n ≥ 1 − a; a ¼ 2; � � � rþ 1; ð2:12Þ

where WðaÞ
n satisfy Wrþ1-algebra, is given by an r-matrix

integral [10,21], with r being the rank of the algebra. In this
case, the associated CFT is that of r free scalar fields. For a
construction of the solution to Virasoro and W-constraints,
refer to [4,10,21]. In this paper, we adopt this construction for
the case of BMS3 algebra, which is the asymptotic symmetry
algebra of 3D flat spacetimes.

III. THE BMS3 ALGEBRA

In (2þ 1) dimensions, pure gravity has no propagating
degrees of freedom which makes all the solutions of
Einstein’s equation locally equivalent. The only nontrivial
features are global and it can be shown that with proper
boundary conditions on metric components, an infinite
number of degrees of freedom can live at the boundary.
These boundary conditions specify the asymptotic phase
space of the theory, and BMS3 is the symmetry associated

with it. This makes the problem of finding a matrix model
partition function with BMS3 invariance extremely
interesting.
In 3D, the oldest set of boundary conditions on the

metric was given by Brown and Henneaux [22] for
asymptotically AdS3 spacetimes. The flat limit of these
conditions were studied by Barnich et al. [17,23]. They
take the 3D analogue of BMS ansatz,

ds2 ¼ e2β
V
r
du2 − 2e2βdudrþ r2ðdϕ − UduÞ2; ð3:1Þ

which was originally put forward in four dimensions
[24,25]. The fall-off conditions are then specified as the
large u behavior of the functions V, β,U all of which are, at
this point, arbitrary function of the coordinates fu; r;ϕg.
The chosen fall-off are

V
r
¼ Oð1Þ; β ¼ Oð1=rÞ; U ¼ Oð1=r2Þ: ð3:2Þ

Demanding that these also satisfy Einstein’s equation gives
the form of the asymptotic metric for our case,

ds2 ¼ Mdu2 − 2dudrþ 2N dudϕþ r2dϕ2; ð3:3Þ

whereM,N are two arbitrary functions of fu;ϕg that span
the asymptotic phase space. The asymptotic symmetries
would be the infinitesimal transformations that keep the
above form of the metric unchanged. Thus, we solve for the
asymptotic killing vector field, ξ that satisfies

Lξgrr¼0 Lξgrϕ¼0 Lξgϕϕ¼0

Lξgur¼oð1=rÞ Lξguu¼oð1Þ Lξguϕ¼oð1Þ: ð3:4Þ

This vector field equipped with a modified Lie bracket
gives the BMS3 algebra. BMS3 algebra is spanned by
two spin-2 fields, Tn and Mn and their commutators are
given by

½Tn; Tm� ¼ ðn −mÞTnþm þ c1
12

nðn2 − 1Þδnþm;0;

½Tn;Mm� ¼ ðn −mÞMnþm þ c2
12

nðn2 − 1Þδnþm;0;

½Mn;Mm� ¼ 0: ð3:5Þ

A. Free field realization of BMS3

As it turns out, there exists a free field realization of this
algebra in terms of the β − γ bosonic ghost CFT. It was
shown [26] that a twisted ghost system with spin (2,-1) of
the fields, respectively, can realize the above algebra (3.5).
The bosonic β − γ system (see [27]) generically has a

field β with spin λ and γ with spin 1 − λ and they satisfy the
following OPE,
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γðzÞβðwÞ ∼ βðwÞγðzÞ ∼ 1

ðz − wÞ ; ð3:6Þ

while the OPE among the fields with themselves vanishes.
Our interest lies in the case where λ ¼ 2. For this system,
the holomorphic parts of the primary fields can be
expanded as

βðzÞ ¼
X
n∈Z

βnz−n−2; γðzÞ ¼
X
n∈Z

γnz−nþ1; ð3:7Þ

The stress tensor of the theory,

TðzÞ ¼ −λ∶βðzÞ∂zγ∶þ ð1 − λÞ∶γðzÞ∂zβ∶ ð3:8Þ

¼ −2∶βðzÞ∂zγ∶ − ∶γðzÞ∂zβ∶ ðfor λ ¼ 2Þ; ð3:9Þ

has the mode expansion

TðzÞ ¼
X
n∈Z

Tnz−n−2; ð3:10Þ

with

Tn ¼
X∞
m¼0

ð2nþmÞβ−mγmþn þ
X∞
m¼0

ðn −mÞγ−mβmþn

þ 1

2

X
aþb¼n
a;b≥0

ð2aþ bÞβaγb ð3:11Þ

From the OPE (3.6), it is clear that the above stress tensor
satisfies the following expansions:

TðzÞTðwÞ ∼ 1

2

26

ðz − wÞ4 þ
2TðwÞ
ðz − wÞ2 þ

∂TðwÞ
ðz − wÞ ð3:12Þ

TðzÞβðwÞ ∼ 2βðwÞ
ðz − wÞ2 þ

∂βðwÞ
ðz − wÞ ð3:13Þ

This suggests that the modes of TðzÞ and βðzÞ satisfy an
algebra that is almost like BMS3 except that the central
charges are different. The central charges of BMS3 (3.5) are
arbitrary, whereas in this system c1 ¼ 26 and c2 ¼ 0. To
get around this problem, [26] twisted the above stress
tensor with

TðzÞ → TðzÞ − a∂3γ ð3:14Þ

This twist introduces an arbitrary central charge of 12a in
the OPE of TðzÞ with βðzÞ. So now we may say that the
modes of the stress tensor gives the Tn generator whereas
the modes of the field β acts asMn. Of course, the c1 central
charge is still fixed to be 26. But we can change that by
coupling this system with arbitrary chiral matter whose
stress tensor has some non-zero central charge. We ignore

this extra complication for now as whatever we derive with
the twisted β − γ system described above would go through
even in that case.

IV. A BMS3 INVARIANT MATRIX MODEL

We impose an infinite set of differential constraints

Ba
nZ ¼ 0; n ≥ −1; a ¼ 1; 2: ð4:1Þ

such that the operators Ba
n satisfy BMS3 algebra (3.5). The

explicit form of these operators is given in (4.3) and (4.4).
We call these constraints the BMS3-constraints, and claim
that a solution of (4.1) gives a BMS3 invariant matrix model
partition function. The constraints (4.1) should describe the
loop equations of that matrix model.

A. Loop equations

In order to define the differential operators correspond-
ing to loop equations, we first observe that the OPE (3.6)
gives the following relation between the modes:

½γn; βm� ¼ δnþm;0; ð4:2Þ

while the rest of the commutators vanish. Thus, the pair
fγk; β−kg behaves like creation and annihilation operators
of a simple harmonic oscillator (SHO) and can be equated
with f ∂

∂tk ; tkg for k > 0. A similar set of equivalence can be

made for k < 0modes, with another set of SHOs f ∂
∂ t̄k ; t̄kg.

1

Thus, the differential operators of relevance become

B1
n ≡ Ln ¼

X∞
m¼0

ð2nþmÞtm
∂

∂tmþn
þ
X∞
m¼0

ðm − nÞt̄m
∂

∂ t̄mþn

þ 1

2

X
aþb¼n
a;b≥0

ð2aþ bÞ ∂
∂ta

∂
∂ t̄b ; ð4:3Þ

B2
n≡Mn ¼

∂
∂ t̄n ; n > 0; Mn ¼ t−n; n < 0; ð4:4Þ

which satisfy

½Ln; Lm� ¼ ðn −mÞLnþm;

½Ln;Mm� ¼ ðn −mÞMnþm;

½Mn;Mm� ¼ 0: ð4:5Þ

This is the classical version of BMS3 algebra. The matrix
model partition function is obtained as a solution to the
constraints

1A semiclassical oscillator construction of BMS3 algebra was
also done in [28]. We thank Shouvik Datta for pointing out this
reference.
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LnZN ¼ 0; and MnZN ¼ 0 for n ≥ −1; ð4:6Þ

where the suffix N of the partition function indicates the
charge of the vacuum under the Uð1Þ current of the system,

jðzÞ ¼ −∶γβ∶ ð4:7Þ

The rest of this paper is devoted to finding a solution to
(4.6). To solve the above constraints, we will use our
knowledge of the free field realization of the algebra. Our
objective would be to translate the constraints in terms of a
CFT correlator in the β − γ model.

B. The Hamiltonian function

The procedure to find the partition function that satisfies
(4.6) involves two vital steps [15]. Firstly, we find a
“Hamiltonian” operator that relates the differential operators
with the modes of the operators of our CFT.
This relation is expressed in terms of the following

expressions:

LnhNjeHðt;t̄Þ ¼ hNjeHðt;t̄ÞTn; and

MnhNjeHðt;t̄Þ ¼ hNjeHðt;t̄Þβn: ð4:8Þ

The state hNj is a vacuum of the theory which is charged.
We propose the following operator:

Hðt; t̄Þ ¼
X
k>1

tkγk þ
X
k≥−1

t̄kβk: ð4:9Þ

Using (4.3), we have

LnhNjeHðt;t̄Þ ¼ hN
����
�X∞

p¼0

ð2nþpÞtpγnþpþ
X∞
p¼0

ðp−nÞt̄pβnþp

þ1

2

X
aþb¼n;a;b≥0

γaβb

�
; ð4:10Þ

whereas to work out the right-hand side (rhs) of (4.8), we
make use of the BCH formula

eXY ¼ YeX þ ½X; Y�; ð4:11Þ

and also use the fact that the vacuum state hNj is annihilated
by the modes β−k; γ−k for k > 0. It can be easily shown that
the first equation of (4.8) is satisfied.
We also need to check the second equality in (4.8). This is

relatively easy to check since the left-hand side (lhs) gives

MnhNjeHðt;t̄Þ ¼ hNjβneHðt;t̄Þ: ð4:12Þ

This result is also obtained from the rhs quite straightfor-
wardly as βn commutes with the Hamiltonian for n > 0 and
hence, our choice of Hamiltonian function is justified.

C. Screening charges

To complete our analysis, we now require a ket state jGi
such that

TnjGi ¼ 0MnjGi ¼ 0 ð4:13Þ

If such a state is found, then we may claim that the full
partition function of the theory is given by

ZN ¼ hNjeHðt;t̄ÞjGi; ð4:14Þ

which from the properties of (4.8) and (4.13) satisfies all
our constraints.
Generic states, which commute with all positive modes

of stress tensor [first equation of (4.13)] are generated by
screening operators. Unfortunately, for a β − γ system of
spin (2,-1) we do not have a spin 1 primary at hand. Hence,
the construction of these operators is not straightforward.
For this we need to take an indirect route which we chalk
out below.
For a generic bosonic β − γ system of dimension

ðλ; 1 − λÞ the system has a background charge ð1 − 2λÞ,
which implies that our system has a background charge −3.
The presence of a background charge makes the Uð1Þ
symmetry anomalous and the current (4.7) is no longer a
primary of the theory.
To get a better handle in the theory, we fermionize the

theory [27]. We take a free scalar field, ϕwhich satisfies the
OPE

ϕðzÞϕðwÞ ∼ lnðz − wÞ; ð4:15Þ

and two fermionic fields, η and ξ such that ηðzÞ and ∂ξðzÞ
are primary fields of dimension one. Their OPE is given by

ηðzÞξðwÞ ∼ 1

ðz − wÞ : ð4:16Þ

Then in terms of these fields, we can write

βðzÞ ¼ e−ϕðzÞ∂ξ; γðzÞ ¼ eϕðzÞηðzÞ: ð4:17Þ

This map gives us an incredible advantage. Since we know
that free scalar fields have vertex operators

Vαðz; z̄Þ ¼ ei
ffiffi
2

p
αϕðz;z̄Þ; ð4:18Þ

which are primary operators with dimension2 α2. Hence,
we can construct dimension one primaries now, which in
turn gives us our screening charges. Of course we also have
fermionic primaries in our theory. It turns out the relevant
screening charges in this new theory are

2In absence of a background charge. Otherwise hVα
¼

α2 − 2α0α.
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Q1 ¼
I

e−ϕðzÞ; Q2 ¼
I

e−2ϕðzÞ; ð4:19Þ

as Tn andMn both commute with them.3 It also implies that
we can take any function of these charges acting on vacuum
as our state jGi.

D. The matrix model partition function

If we choose G to be an exponential function, then we
realize that charge conservation of CFT correlators demand
that only the Nth term of the exponential operator would
survive. Thus, the final partition function is given by

ZN ¼ hNjeHðt;t̄ÞjGi;¼ 1

N1!N2!
hNjeHðt;t̄ÞðQ1ÞN1ðQ2ÞN2 j0i;

with N1 þ N2 ¼ N:

To evaluate the above integral, we first write our
Hamiltonian in terms of fields,

Hðt; t̄Þ ¼
X
k>1

tkγk þ
X
k≥−1

t̄ βk

¼ −
I

VðzÞ∂γðzÞ −
I

UðzÞ∂βðzÞ; ð4:20Þ

where

VðzÞ ¼
X
k>1

tk
zk−1

k − 1
; UðzÞ ¼

X
k≥−1

t̄k
zkþ2

kþ 2
: ð4:21Þ

Thus, in terms of fields our partition function becomes

ZN ¼ 1

N1!N2!
hNj∶e−

H
VðzÞ∂γðzÞ−

H
UðzÞ∂βðzÞ∶

YN1

i¼1

I
Ci

dxi∶e−ϕðxiÞ∶
YN2

j¼1

I
Cj

dyj∶e−2ϕðyjÞ∶j0i

We will also need the OPE relations between the original
fields and the new fields, which are

∂βðzÞϕðz0Þ ∼ βðz0Þ
z − z0

; ð4:22Þ

∂γðzÞϕðz0Þ ∼ −
γðz0Þ
z − z0

: ð4:23Þ

Finally, to evaluate the correlator, we use the identity of
exponentiated operators

h∶eA1∶∶eA2∶…:∶eAn∶i ¼ exp
Xn
i<j

hAiAji: ð4:24Þ

Using these, we get

ZN ¼ 1

N1!ðN − N1Þ!
YN1

i¼1

I
Ci

dxieXðxiÞ
YðN−N1Þ

j¼1

I
Cj

dyjeYðyjÞ
1

▵ðxÞ▵4ðyÞ▵2ðx; yÞ ; ð4:25Þ

where

XðxiÞ ¼ VðxiÞγðxiÞ −UðxiÞβðxiÞ;
YðyjÞ ¼ VðyjÞγðyjÞ − UðyjÞβðyjÞ ð4:26Þ

▵ðxÞ¼
YN1

i<k

ðxi−xkÞ; ▵ðyÞ¼
YN2

j<k

ðyj−ykÞ;

▵ðx;yÞ¼
Y
i;j

ðxi−yjÞ ð4:27Þ

This is our final result. A β-matrix model is defined for any
complex β with the integral measure

dM ¼ j▵ðΛÞjβdΛdUHaar; ð4:28Þ

for an ensemble Eβ
N of N × N matrices M. dΛ is the

measure on eigenvalues and dUHaar defines the measure on
the corresponding circular ensemble (diagonalizing matri-
ces). The values β ¼ 1, 2, 4 correspond to an ensemble of
real symmetric matrices, complex Hermitian matrices and
quaternionic Hermitian matrices, respectively. Our matrix
model (4.25) appears to be a hybrid two matrix model with
β1 ¼ −1 and β2 ¼ −2, interacting through the measure.

V. DISCUSSION

In this work, we have found a matrix model partition
function with BMS3 constraints. The BMS3 constraints are
imposed through loop equations which suggests it might
also be possible to formulate a topological recursion relation.

3This is the reason we could not use the fermionic screening
operators. Mn does not commute with them.
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In recent times BMS symmetry has appeared in many
different contexts. For example, in the description of
tensionless strings [29] and in nonrelativistic holography
[30]. Following these, there has been a lot of work trying to
understand the possible connections between BMS3 algebras
and integrability [31]. It is natural to expect the partition
function given in (4.25) sheds some light in this direction. In
case of the Hermitian matrix models, the recursion relations
turn out to be the τ functions of some well-known integrable
systems (see [32] and references therein). Whether our
constraints also reduce to a similar form will be an interest-
ing study. In particular, the relation between these constraints
and the integrable system described in [31] would require
further investigations.
BMS3 algebra is also linked with flat limits of Liouville

theory [33] and it would be interesting to understand the
connection between this 2D gauge theory and our resulting
matrix model.

Another possible direction would be to understand
Super-BMS3 algebras [34–37] in terms of matrix
models. They appear as the asymptotic symmetry group
of supergravity theories in 3D flat spacetimes and their
free field realization were discussed in [38]. The non-trivial
features resulting from fermionic constraints on a
Matrix model partition function would be interesting
to study.
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