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We provide a setup by which one can recover the geometry of spacetime from local measurements of
quantum particle detectors coupled to a quantum field. Concretely, we show how one can recover the field’s
correlation function from measurements on the detectors. Then, we are able to recover the invariant
spacetime interval from the measurement outcomes, and hence reconstruct a notion of spacetime metric.
This suggest that quantum particle detectors are the experimentally accessible devices that could replace the
classical “rulers” and “clocks” of general relativity.
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I. INTRODUCTION

A full theory of quantum gravity is arguably one of the
greatest challenges of modern theoretical physics. Ever
since general relativity was first proposed, different
approaches have been attempted without no definite suc-
cess to date. One of the obstacles for a full theory of
quantum gravity lies in the fact that the current notions of
time and space are defined in terms of the spacetime metric,
which cannot be consistently quantized by usual means.
It is commonly accepted that, at the Planck scale, no

experimentally verified theory provides a framework for
measuring space or time. At these scales the theory of
general relativity can be argued not to be valid anymore
since there is no notion of ruler or clock. Thus, any method
of introducing the notion of spacetime distance must rely
on the only theory suitable on these scales: quantum field
theory (QFT).
In recent pioneering work by Kempf et al. [1–3] it was

shown that the notion of distance could be rephrased in
terms of propagators of quantum fields. This rephrasing of
distance and time intervals in terms of QFTs then allows
one to write the observables of general relativity in terms of
measurable quantities of quantum fields, and in the authors’
opinion represents great progress towards our understand-
ing of the relationship between these two theories.
In this work we provide a physically realizable way of

recovering the geometry of spacetime by means of local
measurements of quantum field theories. The tools we
consider for locally probing quantum fields are the so-
called particle detector models, such as the Unruh-DeWitt
(UDW) detector [4–6]. These tools have been successfully

employed in the study of plenty of phenomena in quantum
field theory, such as the Unruh effect [4–8] and Hawking
radiation [9,10]. Nowadays, many protocols of relativistic
quantum information have been developed through the
use of particle detector models, such as entanglement
harvesting [11–20], quantum and classical communication
[21–28] and quantum energy teleportation [29–32] to cite
some. Moreover, particle detector models have a natural
connection with experimental setups, being able model
the interaction of atoms with light [33–36] and nucleons
with neutrinos [37,38] in more accurate ways than the
typical models employed in quantum optics (e.g., Jaynes-
Cummings model) and nuclear physics. Particle detectors
have also proven to be respectful with fundamental
principles of relativity theory such as causality [39,40]
and general covariance [41,42].
Although particle detector models can be used to obtain

local information about quantum fields, their response is
always a function of the n-point point correlators of the
field, and not only of its propagators. This adds an extra
difficulty to directly apply the results in [1,3] to the
response of detectors. To address this, in this paper we
show that the metric can also be rebuilt from the two-point
function of quantum fields that detectors can directly access
[43]. This is due to the fact that the short distance behavior
of the field correlations in any physical state is only a
function of the proper distance between events. Thus, it is
possible to appropriately manipulate the two-point function
in order to recover the infinitesimal line element or,
equivalently, the spacetime metric.
More concretely, we will extend the results in [43] about

explicitly measuring the field Wightman function along the
worldline of a particle detector to more general scenarios.
Specifically, we will show how to measure field correlators
at timelike and spacelike separated events with pairs of
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particle detectors. This provides an experimentally acces-
sible protocol to probe the two-point function of the field
for any two close enough events. Then we use these results
to provide a protocol with which the spacetime metric can
be explicitly recovered from measurements of probes that
couple to a quantum field. Moreover, we explicitly show
that the short distance behavior of the two-point function of
a free real scalar quantum field is independent of any of its
specific properties, such as the field mass or the field state,
allowing for the measurement of spacetime separations
through the infinitesimal notion of distance provided by the
correlation function of quantum fields captured by particle
detectors. Finally, we also illustrate how the protocol works
and the metric is recovered from measurements of the field
in several example scenarios in flat and curved spacetimes.
This work is organized as follows. In Sec. II we show

how to recover the spacetime metric in terms of the
quantum field’s two-point function regardless of the field
state. In Sec. III we discuss the UDW model and the setup
used to locally probe the quantum field. We apply this setup
to quantum field theories in curved spacetimes and show
how to locally recover the metric and spacetime curvature
in terms of the correlation functions between different
UDW detectors. In Sec. IV we consider multiple examples
and show explicitly how particle detectors can be used to
recover the metric of usual spacetimes, such as Minkowski
spacetime, hyperbolic static Robertson-Walker and de
Sitter spacetimes. We also consider with both pointlike
and smeared particle detectors probing different field states.
The conclusions of our work can be found in Sec. V.

II. THE SPACETIME GEOMETRY IN TERMS
OF THE TWO-POINT FUNCTION

OF QUANTUM FIELDS

This section will be devoted to establishing the relation-
ship between the spacetime geometry and the field corre-
lators as shown in [1–3]. In these references it was shown
that it is possible to recover the spacetime metric in terms of
the Feynman propagator (time-ordered vacuum two-point
function) for a scalar field defined in a curved spacetime.
Here we write the results of [1] in an explicitly coordinate
independent formulation. We then use this to extend some
of the results of [1–3] showing that it is also possible to
recover the metric by means of the (not time-ordered) two-
point function for any field state. We will highlight that
the reason why one can recover the metric from both the
Wightman function and the Feynman propagator is the
specific dependence of these on the spacetime interval
between events, something that is necessary for the fulfill-
ment of the Hadamard condition [44–48].
As a first step, before going through how to recover the

metric in terms of correlators and propagators, we briefly
review the basics of Synge’s world function and Klein-
Gordon quantum fields in curved spacetimes.

A. Synge’s world function

In this subsection we briefly discuss the properties of
Synge’s world function, σðx; x0Þ. In a few words, Synge’s
function takes as input two sufficiently close events in
spacetime and returns one half of the squared geodesic
distance between them. That is, if M is a D ¼ nþ 1
dimensional spacetime, with n ≥ 2, and x; x0 ∈ M are two
events that can be connected by a unique geodesic
γ∶½u1; u2� → M, Synge’s world function can be written as

σðx; x0Þ ¼ 1

2
ðu2 − u1Þ2

Z
u2

u1

dugμνðγðuÞÞ
dγμ

du
dγν

du
: ð1Þ

Or, in the particular case where γ is parametrized by its
proper time/length parameter s ∈ ½0; r� with γð0Þ ¼ x and
γðrÞ ¼ x0, we can write the simpler expression

σðx; x0Þ ¼ r2

2
: ð2Þ

The domain of σ is then the subset ofM ×M consisting of
points that can be connected by a unique geodesic. It is
important to notice that given x ∈ M, there always exists
its normal neighborhood: the largest open set such that
every point within it can be connected to x by a unique
geodesic. This implies that σðx; x0Þ is always locally
defined around each point.
Synge’s world function is particularly useful to talk

about expansions of tensors around a spacetime point.
σðx; x0Þ can be differentiated with respect to each of its
arguments, and its derivatives can be used to extend the
notion of separation vector to curved spacetimes. In fact, it
is possible to show that the derivatives of σðx; x0Þ are
related to the initial tangent vector (i.e., at x) of the
geodesics that connect x and x0.
It is usual to denote differentiation with respect to the first

argument with no prime and differentiation with respect to
the second argument with primes. Namely, we denote

∇μσ ¼ ∂
∂xμ σðx; x

0Þ; ∇μ0σ ¼ ∂
∂x0μ σðx; x

0Þ: ð3Þ

Notice that both elements above can be seen as components
of a tensor of rank (0,1) that depends on two spacetime
points. However, each of the tensors in Eq. (3) lie in different
tangent spaces. That is, ∇μσ ∈ TxM, while ∇μ0σ ∈ Tx0M.
Moreover, it is usual to denote derivatives of the world
function by adding an index to σ instead of explicitly writing
the symbol ∇. We will use this notation in the manuscript
and simply denote

σα0 ≡∇α0σ; σβα ≡∇α∇βσ; ð4Þ

and analogous expressions for higher derivatives. For a
detailed review of Synge’s world function, and the usual
conventions, we refer the reader to [49].
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As we mentioned above, Synge’s world function can be
used to obtain the tangent vector to the geodesics that
connect nearby points, thus generalizing the concept of
separation vector between them. More specifically, the
vector σμðx; x0Þ ∈ TxM is the tangent vector to the
geodesic that connects x and x0 such that its squared norm
corresponds to the squared spacetime interval between
these events. That is,

σ ¼ 1

2
σμσμ: ð5Þ

The vector σμ ∈ TxM can also be used to build Riemann
normal coordinates around the point x. In fact, σμðx; x0Þ
corresponds to the “position vector” of the point x0 in
Riemann normal coordinates. Conversely, σμ

0
is the tangent

vector (at x0) to the geodesic that starts at x0 and reaches x,
with squared norm equal to 2σðx; x0Þ. Synge’s world
function then allows us to write expressions in terms of
Riemann normal coordinates around an event in completely
covariant language, without explicitly relying on coordi-
nate systems.
The notion of coincidence limit is of particular relevance

in this paper. The coincidence limit is the name given to the
limit of a bitensor that depends on x and x0 when x0 → x. In
essence, this limit brings a tensor defined at different points
to a tensor defined at x. Following the usual notation in the
literature, we denote the coincidence limit of a bitensor by
brackets. For instance,

½σαβ0 � ≔ lim
x0→x

σαβ0 : ð6Þ

Notice that Eq. (6) is the coincidence limit of an object that
is a (0,1) tensor at x and a type (0,1) tensor at x0. The limit
yields a (0,2) tensor at x. The coincidence limits of Synge’s
world function will allow us to recover the spacetime
metric from the propagators and two-point functions of a
quantum field. We recall the following coincidence limit
identities for Synge’s world function [49]:

½σα� ¼ ½σα0 � ¼ 0; ð7Þ

½σαβ� ¼ ½σα0β0 � ¼ gαβ; ð8Þ

½σαβ0 � ¼ ½σα0β� ¼ −gαβ; ð9Þ

½σαβγδ� ¼ ½σαβγ0δ0 � ¼ ½σα0β0γ0δ0 � ¼
2

3
RαðγδÞβ; ð10Þ

½σαβ0γ0δ0 � ¼
2

3
RαðβγÞδ: ð11Þ

Notice that since the coincidence limit is always a tensor at
the point x, there are no primed indices on the rightmost
term of the equations above. As we can see in expressions

(8) and (9), it is then possible to recover the spacetime
metric at a point x by taking limits of derivatives of Synge’s
world function.
We end this section with two other examples of biten-

sors: the parallel propagator gα
0
βðx; x0Þ and the Van-Vleck

determinant, Δðx; x0Þ, defined in the same domain as
σðx; x0Þ. The parallel propagator is defined as the bitensor
that maps a vector v ∈ TxM to its parallel transport at
Tx0M along the unique geodesic that connects x with x0. It
is intuitive that its coincidence limit reads ½gα0β� ¼ δαβ . The
parallel propagator is related to Synge’s world function via
σα

0 ¼ gα
0
βσ

β, which can be seen from the fact that tangent
vectors to geodesics are parallel transported. The Van-
Vleck determinant Δðx; x0Þ is defined as

Δðx; x0Þ ¼ detð−gα0αðx; x0Þσαβ0 ðx; x0ÞÞ; ð12Þ

and it naturally arises in expressions for Green’s functions
for different field equations of motions, as it is the solution
to the differential equation ∇αðΔσαÞ ¼ 4Δ. Additionally, it
is important to notice that as x0 → x, the Van-Vleck
determinant behaves as Δ ¼ 1þOðσ2Þ.

B. The free real scalar field in curved spacetimes

In this subsection we will briefly review the quantization
of a real scalar quantum field in curved spacetimes. We
consider a D ¼ nþ 1 dimensional spacetime M with a
real scalar field ϕðxÞ associated with the Lagrangian

L ¼ −
1

2
∇μϕ∇μϕ −

1

2
ðm2 þ ξRÞϕ2; ð13Þ

where m is the field’s mass, R is the Ricci scalar and ξ
determines the coupling of the field to curvature. Two
specific values of ξ that are interesting are the conformally
coupled case with ξ ¼ ðD − 2Þ=4ðD − 1Þ and the mini-
mally coupled case with ξ ¼ 0. The equation of motion that
arises from the extremization of the action associated with
the Lagrangian in (13) is the Klein-Gordon equation,

ð∇μ∇μ −m2 − ξRÞϕ ¼ 0: ð14Þ

We quantize the field by choosing a complete set of
solutions to the equation that is orthonormal with respect to
the (nonpositive) inner product defined by the continuity
equation. We denote this set of modes by fukðxÞ; u�kðxÞg,
and imposing canonical commutation relations so that the
field operator can be written as

ϕ̂ðxÞ ¼
Z

dnkðukðxÞâk þ u�kðxÞâ†kÞ; ð15Þ

where âk are the annihilation operators associated with this
mode decomposition. It is then possible to construct a
Hilbert space representation for the QFT, from the vacuum
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state j0i, assumed to be the only state such that âkj0i ¼ 0.
The Fock space associated with this mode decomposition is
then constructed by repeated applications of the creation
operators â†k to j0i. The creation and annihilation operators
satisfy the canonical commutation relations,

½âk; â†k0 � ¼ δðnÞðk − k0Þ: ð16Þ

In QFT there are two scalar distributions that are
particularly relevant: the Feynman propagator, GFðx; x0Þ,
and the vacuum Wightman function, Wðx; x0Þ. These are
defined by the following expressions

GFðx; x0Þ ¼ h0jT ϕ̂ðxÞϕ̂ðx0Þj0i; ð17Þ

Wðx; x0Þ ¼ h0jϕ̂ðxÞϕ̂ðx0Þj0i; ð18Þ

where T is the time ordering operation. As distributions,
GFðx; x0Þ and Wðx; x0Þ act on sufficiently regular functions
f and g according to

GFðf; gÞ ¼
Z
M×M

dVdV 0fðxÞgðx0ÞGFðx; x0Þ; ð19Þ

Wðf; gÞ ¼
Z
M×M

dVdV 0fðxÞgðx0ÞWðx; x0Þ; ð20Þ

where dV is the invariant spacetime volume element.
However, the integrals above are singular when σðx;x0Þ→0,
so that a regulator iϵ must be added which indicates the
contour in the complex plane will be taken to solve the
integrals (19) and (20). After computing the integrals
the limit ϵ → 0 can be taken, yielding a finite result [46].
TheWightman function is particularly important in order

to define which quantization schemes can be associated to
physical vacuum states. It can be shown that the expected
value of the stress energy momentum tensor in j0i can only
be renormalized if the vacuum state satisfies the so-called
Hadamard condition [44–48]. In essence, h0jT̂μνj0i can
only be defined if the Wightman function can be written as

Wðx; x0Þ ¼ Δ1=2ðx; x0Þ
8π2σðx; x0Þ þ vðx; x0Þ ln jσðx; x0Þj þ hðx; x0Þ;

ð21Þ

where Δðx; x0Þ is the Van-Vleck determinant, σðx; x0Þ is
Synge’s world function, hðx; x0Þ is a regular function that
contains the state dependence and vðx; x0Þ can be written as
a power series in σðx; x0Þ, whose coefficients are deter-
mined by the Hadamard recursion relations [49,50]. In this
paper we will assume that the vacuum defined by the mode
expansion in Eq. (15) is a Hadamard state.
The Feynman propagator can also be related to the

Wightman function by

GFðx; x0Þ ¼ Wðx; x0Þθðt − t0Þ þWðx0; xÞθðt0 − tÞ;
¼ Re½Wðx; x0Þ� þ iεðt − t0ÞIm½Wðx; x0Þ�; ð22Þ

where θðtÞ denotes the Heaviside step function and εðtÞ ¼
θðtÞ − θð−tÞ denotes the sign function. In particular, due to
the fact that the imaginary part of the Wightman function
goes to zero in the coincidence limit, it is possible to
formally write

lim
x0→x

GFðx; x0Þ ¼ lim
x0→x

Wðx; x0Þ; ð23Þ

where the equality has to be understood in a distribu-
tional sense.

C. The spacetime metric in terms of the
Wightman function

We start this subsection by reformulating the results of
[1] in an explicitly covariant way in terms of Synge’s world
function and coincidence limits. In [1] it was shown that in
a D ¼ nþ 1 dimensional spacetime, the metric can be
obtained from the Feynman propagator of Klein-Gordon’s
equation via the expression

gμν ¼−
1

2

�
ΓðD

2
− 1Þ

4πD=2

� 2
D−2

lim
x0→x

∂
∂xμ

∂
∂x0ν ðGFðx;x0ÞÞ 2

2−D; ð24Þ

whereGFðx; x0Þ is the Feynman propagator associated with
a given quantization framework. This result was established
by studying the short distance behavior of the Klein-
Gordon equation with a Dirac-delta source. In [1], the
equation for the propagator was solved using Riemann
normal coordinates around a point.
It is possible to rewrite Eq. (C21) in [1] for the short-

separation behavior of the Feynman propagator in terms of
Synge’s world function:

GFðx; x0Þ ¼ G0ðσðx; x0ÞÞð1þ fðx; x0ÞÞ; ð25Þ

where G0ðσÞ is the massless Minkowski spacetime
Feynman propagator as a function of the half squared
spacetime interval between events, σ, and fðx; x0Þ → 0 as
x0 → x. G0ðσÞ can be explicitly computed, and its short
distance behavior is given by

G0ðσÞ ¼
ΓðD

2
− 1Þ

2ð2πÞD=2

1

σ
D−2
2

; ð26Þ

which corresponds to the Wightman function of a massless
scalar field in Minkowski spacetime. The fact that the two
coincide close to the coincidence limit is not surprising as
argued in Eq. (23).
Hence, by taking the 2=ð2 −DÞth power of Eq. (25), one

obtains the proportionality
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ðGFðx; x0ÞÞ 2
2−D ∝ σðx; x0Þ; ð27Þ

where the remaining terms are negligible in the short
distance limit. If one now wishes to recover the spacetime
metric, then it is enough to compute the derivatives of
Synge’s world function with respect to its different argu-
ments together with the coincidence limits in Eq. (9). In
fact, by differentiating (27) with respect to x and x0, one
obtains

∂μ∂ν0 ðGFðx; x0ÞÞ 2
2−D ≈

�
ΓðD

2
− 1Þ

2ð2πÞD=2

� 2
2−D

σμν0 ; ð28Þ

where the “≈” symbol denotes that the expression above is
only valid when x0 → x. By taking the coincidence limit on
both sides and isolating the ½σμν0 � term, we then have

−gμν ¼ ½σμν0 � ¼
1

2

�
ΓðD

2
− 1Þ

4πD=2

� 2
D−2½∂μ∂ν0 ðGFðx; x0ÞÞ 2

2−D�;

ð29Þ

which establishes the result of Eq. (6) in [1] in an explicitly
covariant manner.
We now shift focus to the vacuumWightman function of

a real scalar quantum field. In essence, in order to write the
metric in terms of the Wightman function, we notice that—
same as the Feynman propagator—the Wightman function
Wðx; x0Þ for a massive field can be written in terms of the
massless (vacuum) Wightman function in Minkowski
spacetime [G0 in Eq. (26)] added to corrections that
become negligible in the short distance limit. This implies
that Eq. (29) still holds when one replaces the Feynman
propagator GFðx; x0Þ by the vacuum Wightman function
Wðx; x0Þ. This result can also be obtained from Eq. (23),
where we see that the real part of GFðx; x0Þ and ofWðx; x0Þ
is the same. Given that the limit yields a real function (the
components of the metric gμν are real), we obtain the
desired result. Namely, we can write the metric as the
following coincidence limit of the vacuum Wightman
function,

gμν ¼ −
1

2

�
ΓðD

2
− 1Þ

4πD=2

� 2
D−2½∂μ∂ν0 ðWðx; x0ÞÞ 2

2−D�: ð30Þ

We now discuss whether the assumption that the field is
in the vacuum state is necessary for this protocol. In
Appendix B, we show that the Wightman function on
any normalized field state ρ̂ϕ can always be written as

Wρϕðx; x0Þ ≔ hϕ̂ðxÞϕ̂ðx0Þiρ̂;

¼ Wðx; x0Þ þ
X∞
m¼0

FmðxÞG�
mðx0Þ þ H:c:; ð31Þ

for a given set of functions Fm and Gm. We also show that
these functions are regular in the limit x0 → x. In particular,
this implies that they are negligible compared to the
(singular) vacuum Wightman function in this limit. As
discussed in Sec. II B, any Hadamard state of a quantum
field theory will be such that the Wightman function can be
written as in Eq. (21). As we show in Appendix B, the
singular part of the Wightman function of any state in a
given quantization scheme is the same as that of the
vacuum. That is, using the quantization scheme discussed
in Sec. II B and under the assumption that j0i is a
Hadamard state, we can write

gμν ¼ −
1

2

�
ΓðD

2
− 1Þ

4πD=2

� 2
D−2½∂μ∂ν0 ðWρϕðx; x0ÞÞ

2
2−D� ð32Þ

for any normalized field state ρ̂ϕ. In particular, this implies
that no matter the state of the field, it is possible to recover
the metric by means of the limit of Eq. (32). This will be
key in order for us to recover the geometry of spacetime
from local measurements of the quantum fields.
It is worth noting that it is not straightforward to try to

recover the spacetime curvature directly via further differ-
entiation from the Wightman function by using Eqs. (10)
and (11). This is so because repeated differentiations of a
scalar bitensor with respect to the same point require
covariant derivatives. Thus, we would need to have prior
knowledge of the connection in order to perform these
computations. However, it is true that the spacetime
curvature can be written as

RαðγδÞβ ¼
3

4

�
ΓðD

2
−1Þ

4πD=2

� 2
D−2½∇α∂β∇γ0∂δ0 ðWðx;x0ÞÞ 2

2−D�; ð33Þ

which comes from Eq. (10). The equivalent computations
that come from Eqs. (10) and (11) are also valid, but again,
require prior knowledge of the connection to compute the
right hand side. The same is true if one tries to differentiate
ðWðx; x0ÞÞ 2

2−D twice with respect to the same argument and
employ Eq. (8) to recover the metric: we would need to
know the Christoffel symbols in order to obtain the metric
through this procedure.

III. LOCALLY PROBING A QUANTUM FIELD

In this section we will consider multiple particle detec-
tors probing a real scalar quantum field so that the
information they obtain can be used to extract the spacetime
metric. In [43] it was shown how to use one particle
detector to recover the two-point function of a real scalar
field between two timelike separated events using detector
measurements. Here we will review this concept and extend
it by showing how to use two detectors to recover the two-
point function of the quantum field for spacelike separated
events in terms of the correlations acquired by the detectors.
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A. The setup

Consider a real scalar quantum field ϕ̂ðxÞ in an (nþ 1)-
dimensional globally hyperbolic spacetime M. Let Σt be a
foliation of M by a family of Cauchy surfaces, where t
denotes a future oriented timelike coordinate. We will
consider a set of particle detectors that undergo timelike
trajectories ziðτiÞ inM, where τi is denotes their respective
proper times. We use the convention that at Σ0, the τi
parameters also take the value 0, in order to simplify future
computations.
We assume all detectors to be two-level quantum

systems with the same proper energy gap Ω. Their free
Hamiltonians (generating translations with respect to their
respective proper time τi) are given by

Ĥi ¼ Ωσ̂þi σ̂−i ; ð34Þ

where σ̂�i are the raising and lowering operators for each
detector two-level system. We further assume the detectors
to couple with the same coupling strength λ to the field,
according to the following scalar interaction Hamiltonian
weight1:

ĥiðxÞ ¼ λΛiðxÞμ̂iðτiÞϕ̂ðxÞ; ð35Þ

where μ̂iðτiÞ ¼ eiΩτiσþi þ e−iΩτiσ−i is the monopole
moment of the ith probe, ΛiðxÞ is a function that controls
the spacetime localization of the interaction of the probes
with the field.
We will assume the probes to start in their ground states

jgiihgij ¼ σ̂−i σ̂
þ
i , and the field to be in an arbitrary state ρ̂ϕ

so that the initial state of the full system will be given by

ρ̂0 ¼ ⨂
i
σ̂−i σ̂

þ
i ⊗ ρ̂ϕ: ð36Þ

We are interested in computing the final state of the system,
given by

ρ̂ ¼ Ûρ̂0Û
†; ð37Þ

where Û is the time evolution operator,

Û¼ T exp

�
−i

Z
dVĥIðxÞ

�
; ĥIðxÞ≡

X
i

ĥiðxÞ; ð38Þ

where dV is the invariant spacetime volume element. To
proceed, we employ a perturbative approach, by means of
the Dyson expansion, Û ¼ 1þ Ûð1Þ þ Ûð2Þ þ…, where
we assume each of the ÛðkÞ terms to be of order k in the
coupling constants λ. The ÛðkÞ terms are explicitly given by

ÛðkÞ ¼ ð−iÞk
k!

Z
…

Z
dV1…dVkT ĥIðx1Þ…hIðxkÞ; ð39Þ

where T denotes the time ordering operation. With this,
the final state of the system after the interaction will be
given by

ρ̂ ¼ ρ̂0 þ
X∞
k¼1

ρ̂ðkÞ; ð40Þ

where

ρ̂ðkÞ ¼
Xk
l¼0

ÛðlÞρ̂0Ûðk−lÞ†: ð41Þ

For simplicity, we will work under the assumption that the
initial state of the field ρ̂ϕ is a zero-mean Gaussian state
(e.g., vacuum, squeezed vacuum, thermal states, etc.), so
that the two-point function of the system will be enough to
fully describe it.
The next step to compute the final state of the detectors

after the interaction, ρ̂D, is to evaluate the partial trace over
the field’s degrees of freedom, ρ̂D ¼ trϕðρ̂Þ.
The state of the field-detectors system after the

interaction, to second order in perturbation theory, is given
by ρ̂ ¼ ρ̂0 þ ρ̂ð2Þ þOðλ4Þ, where the second order correc-
tion is

ρ̂ð2Þ ¼ −λ2
X
ik

Z
dVdV 0ΛðxÞΛðx0Þ

× ðθðt − t0Þμ̂iðτiÞμ̂kðτ0kÞρ̂ð0ÞD ϕ̂ðxÞϕ̂ðx0Þρ̂
− μ̂iðτiÞρ̂ð0ÞD μ̂kðτ0kÞϕ̂ðxÞρ̂ ϕ̂ðx0Þ
þ θðt0 − tÞρ̂ð0ÞD μ̂iðτiÞμ̂kðτ0kÞρ̂ ϕ̂ðxÞϕ̂ðx0ÞÞ; ð42Þ

partial tracing over the field’s degree of freedom,
we obtain

ρ̂ð2ÞD ¼ −λ2
X
ik

Z
dVdV 0ΛiðxÞΛkðx0Þhϕ̂ðxÞϕ̂ðx0Þi

× ðθðt − t0Þμ̂iðτiÞμ̂kðτ0kÞρ̂ð0ÞD − μ̂kðτ0kÞρ̂ð0ÞD μ̂nðτnÞ ð43Þ

þθðt0 − tÞρ̂ð0ÞD μ̂iðτiÞμ̂kðτ0kÞÞ: ð44Þ

And we have

μ̂iðτiÞμ̂kðτ0kÞρ̂0 ¼
8<
:

⊗
m
σ̂−mσ̂

þ
me−iΩðτi−τ

0
iÞ; i ¼ k

⊗
m≠i;k

σ̂−mσ̂
þ
mσ̂

þ
k σ̂

þ
i e

iΩðτiþτ0kÞ
; ð45Þ

1The Hamiltonian weight is related to the Hamiltonian density
as follows hIðxÞ by hIðxÞ ¼ ffiffiffiffiffiffi−gp

ĥIðxÞ.
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ρ̂0μ̂iðτiÞμ̂kðτ0kÞ ¼
8<
:

⊗
m
σ̂−mσ̂

þ
me−iΩðτi−τ

0
iÞ; i ¼ k

⊗
m≠k;i

σ̂−mσ̂
þ
mσ̂

−
k σ̂

−
i e

−iΩðτiþτ0kÞ
; ð46Þ

μ̂kðτ0kÞρ̂0μ̂iðτiÞ ¼
8<
:

⊗
m≠i

σ̂−mσ̂
þ
mσ̂

þ
i σ̂

−
i e

−iΩðτi−τ0kÞ; i ¼ k

⊗
m≠k;i

σ̂−mσ̂
þ
mσ̂

þ
i σ̂

−
k e

−iΩðτi−τ0kÞ
: ð47Þ

With these, we obtain

ρ̂ð2ÞD ¼⨂
i
σ̂−i σ̂

þ
i þ λ2

X
i

⨂
m≠i

σ̂−mσ̂
þ
m½σ̂þi ; σ̂−i �Lii

þλ2
X
i≠k

⨂
m≠i;k

σ̂−mσ̂
þ
mðσ̂−k σ̂þi Lik− σ̂þk σ̂

þ
i N ik− σ̂−k σ̂

−
i N

�
ikÞ;

ð48Þ

where

Lik ¼
Z

dVdV 0ΛiðxÞΛkðx0Þe−iΩðτi−τ0kÞhϕ̂ðxÞϕ̂ðx0Þi;

N ik ¼
Z

dVdV 0ΛiðxÞΛkðx0ÞeiΩðτiþτ0kÞθðt− t0Þhϕ̂ðxÞϕ̂ðx0Þi:

ð49Þ

The terms associated to each individual detector are given
by the diagonal terms

Lii ¼
Z

dVdV 0ΛiðxÞΛiðx0Þe−iΩðτi−τ0iÞhϕ̂ðxÞϕ̂ðx0Þi: ð50Þ

These terms are precisely the excitation probability of each
of the individual detectors. These probabilities were thor-
oughly studied in [43], where it was shown that it is
possible to reconstruct the two-point function for the
observable ϕ̂ðt; xÞ for timelike separated events in terms
of the transition probabilities of the detector and the proper
time separation of the events.
We remark that if the interaction regions defined by

ΛiðxÞ are nonpointlike, all quantities in the second order
expansion considered in this section are finite. Moreover,
even when ΛiðxÞ are singular Dirac delta functions, we
have that the Lij terms are finite for i ≠ j, even though the
individual excitation probabilities diverge. The reason for
the divergence of the Lii terms in this limit is that the
integrals that define it sample the correlation function only
at x ¼ x0, and hϕ̂ðxÞϕ̂ðx0Þi is divergent at this limit.

B. Measuring the two-point function
of the quantum field

In this subsection, we will review how to extract the two-
point function of a scalar quantum field extending the

results [43] for timelike separation and generalizing these
results to the case of spacelike separated events.

1. Timelike separated events

As discussed above the two-point correlation function of
a quantum field in timelike separated events can be
recovered from the excitation probability of a single
particle detector interacting with the field twice [43]. As
mentioned in Sec. III A, this probability for the ith detector
interacting with the field is given by the term Lii.
The Lii term depends on the spacetime localization of

the interaction between the detector and the field. For
simplicity, we assume a very fast switching modeled by a
delta coupling2 (see, e.g., [52]) between the detector and
field twice at two different times, at τi ¼ t1 and at the latter
time τi ¼ t2. Although a true delta-coupling interaction is
unphysical, it can be well modeled by interactions of
sufficiently small systems that interact with the quantum
field for times of the order of their light-crossing time.
Nevertheless, it is important to mention that for interactions
that happen this fast are extremely difficult to be imple-
mented in experimental setups.
The assumption of delta-coupling translates into the

following choice of spacetime smearing function

ΛiðxÞ ¼ δðx − ziðt1ÞÞ=
ffiffiffiffiffiffi
−g

p þ δðx − ziðt2ÞÞ=
ffiffiffiffiffiffi
−g

p
: ð51Þ

In Appendix Awe show that this choice for ΛiðxÞ splits Lii
into two different kinds of terms: the local terms at each of
the interaction times and the ones that depend on the field
correlations τi ¼ t1 and at τi ¼ t2. Namely,

Lii ¼ Piðx1Þ þ Piðx2Þ þ cosðΩΔtÞRehϕ̂ðx1Þϕ̂ðx2Þi
þ sinðΩΔtÞImhϕ̂ðx1Þϕ̂ðx2Þi; ð52Þ

where Δt ¼ t2 − t1 and PiðxÞ denotes the excitation prob-
ability of the detector after a delta coupled interaction at the
event x.
Now, if one wishes to obtain the two-point function, one

must subtract the probabilities for the single interactions
PiðxÞ from the total probability after the two interactions.

2It is important to think of the delta coupling as a mathematical
approximation for very fast switching. We remark that a delta
coupling can introduce divergences in the model (that were
studied in detail in [43,51,52]). However, these divergences can
appear in the local terms associated with each interaction, and do
not play any role in the correlations between detectors that we
will use for the purpose of recovering the metric. If, e.g., very
sharp Gaussians are used instead of Dirac deltas we would obtain
basically the same results for the correlations while keeping the
system divergence free at the price of complicating the calcu-
lations beyond the scope of the paper. For all purposes, one can
think that we take any spacetime smearing function ΛðxÞ centered
at xi with unit integral and consider the family of spacetime
smearings 1

η4
Λðx=ηÞ in the limit η → 0.
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To do this we require that the two-point function can be
considered to be the same during the total time duration of
the experiment,3 where all the measurements necessary to
obtain the individual and joint probabilities occur, as
argued in [43]. Under these assumptions, it is possible
to use Eq. (52) to express the field’s correlations in terms of
experimentally accessible quantities:

cosðΩΔtÞRehϕ̂ðx1Þϕ̂ðx2Þi þ sinðΩΔtÞImhϕ̂ðx1Þϕ̂ðx2Þi
¼ Lii − Piðx1Þ − Piðx2Þ: ð53Þ

Notice that in order to extract both the imaginary and real
parts of the Wightman function between the events, it
would be necessary to perform experiments with detectors
of different energy gaps, so that ΩΔt can take the values of
nπ and ðnþ 1

2
Þπ, which will give the real and imaginary

parts of the Wightman function, respectively [43]. Finally,
notice that this derivation assumes pointlike localized
detectors, but the same result can be obtained with sharply
smeared detectors. As long as the smearing scale is much
shorter than any of the other relevant scales, Eq. (53) will
still hold approximately. This is not just “in principle” but
rather a practical statement. Indeed, in Sec. IV wewill show
an example of how smeared detectors are able to accurately
recover the spacetime metric from their correlations.

2. Spacelike separated events

In this section we will discuss how to extend the
techniques of [43] to measure the two-point function of
a quantum field for spacelike separated events by using
pairs of detectors. In particular we will obtain the two-point
function of the field in terms of the correlation function of
probes that interact at different spacelike separated events.
We start by computing the correlation function of

different probes whose interaction region is located around
different points. First, notice that for i ≠ k, we have

trðρ̂Dσ̂þi σ̂þk Þ ¼ −λ2Mik; ð54Þ

trðρ̂Dσ̂−i σ̂−k Þ ¼ −λ2M�
ik; ð55Þ

trðρ̂Dσ̂þi σ̂−k Þ ¼ λ2Lik; ð56Þ

trðρ̂Dσ̂−i σ̂þk Þ ¼ λ2Lik ¼ λ2L�
ik; ð57Þ

where Mik ≔ N ik þN ki. With this we can compute the
correlation function for the monopole moments μ̂i at a
given spatial slice Σ0 defined by t ¼ t0. At time t0, the ith

detector will have a value of its proper time τi ¼ τ0i , which
corresponds to the point of their trajectory that lies in Σ0.
Using μiðτ0i Þ ¼ eiΩτ

0
i σ̂þi þ e−iΩτ

0
i σ̂−i , the correlation func-

tion between detectors i and k gives

Cði; kÞ ¼ trðρ̂Dμ̂iðτ0i Þμ̂kðτ0kÞÞ;
¼ 2λ2ReðeiΩðτ0i−τ0kÞLik − eiΩðτ

0
iþτ0kÞMikÞ: ð58Þ

This form of the detector-system two-point function is
computed explicitly in Appendix A.
We now reduce this expression to the case where

each detector interacts with the quantum field with a delta
coupling. The ith detector switches on its interaction at the
point xi, such that xi and xk are spacelike separated for all
i ≠ k. We label the proper time where the interaction takes
place for each detector as ti ¼ τiðxiÞ, such that zðtiÞ ¼ xi
(see Fig. 1), so that it is possible to write the correlation
function between the detectors in terms of the two-point
function of the field. Formally, this corresponds to the
choice of spacetime smearing ΛiðxÞ ¼ δðnÞðx − xiÞ= ffiffiffiffiffiffi−gp

.
We obtain the following expression for the correlation
function

Cði;kÞ¼4λ2sinðΩðtiþτ0ÞÞsinðΩðtkþτ0ÞÞRehϕ̂ðxiÞϕ̂ðxkÞi;
¼4λ2sinðΩðtiþτ0ÞÞsinðΩðtkþτ0ÞÞhϕ̂ðxiÞϕ̂ðxkÞi;

ð59Þ

where τ0 ¼ ðτ0i þ τ0kÞ=2. Notice that we can remove the
“Re” from the equation since the two-point function is real.
This is because the microcausality of the quantum field
theory implies that the commutator of ϕ̂ðxÞ with itself at
different spacelike separated points must vanish. In par-
ticular, this means that the detectors two-point correlator in
Eq. (59) is proportional the field two-point function. This
allows one to recover the two-point function of the field in

FIG. 1. The setup described in Sec. III B 2, where two pointlike
detectors interact between the slices Σ0 and Σt0 .

3This assumption is not very restrictive in many relevant
setups, such as in quantization schemes associated with time
translation symmetries when there is a timelike Killing vector
field. The reason is that if one performs an experiment and waits
enough time for local perturbations to propagate away one can
repeat measurements in (locally) identical conditions.
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terms of observables of the probe system for spacelike
separated events.
In the particular case of Minkowski spacetime, the setup

described here takes a rather simple form. If the detectors
are inertial and comoving, and the foliation Σt is associated
with their rest space, then t can be chosen as their proper
time parameter. If we further assume that both detectors
interact at time t ¼ 0 and are measured at a later time t0,
then Eq. (59) reads

Cði; kÞ ¼ 4λ2sin2ðΩt0Þhϕ̂ðxiÞϕ̂ðxkÞi; ð60Þ

where here xi and xk are assumed to lie in the slice Σ0.
In particular, for smeared detectors, one would expect

that for sufficiently localized probes, (60) holds approx-
imately. In this case, Eq. (60), combined with Eq. (58),
implies that for any choice of measurement time t0 in this
setup, we have

sin2ðΩt0Þhϕ̂ðxiÞϕ̂ðxkÞi ≈
1

2
ReðLik − e2iΩt0MikÞ ð61Þ

in the limit where the size of the interaction region goes to
zero and the spacetime smearing functions are thought to be
nascent Dirac deltas. We can pick t0 ¼ nπ=Ω for integer
values of n, so that within the regime of validity of Eq. (61),
we have

ReLik ≈ ReMik: ð62Þ

In order to explicitly write the field correlator in terms of
the correlation function between the detectors, we use
Eq. (61) again, but we now pick the measurement time t0 as
t0 ¼ ðnþ 1

2
Þπ=Ω, where n is an integer. We then obtain a

simple proportion between the detectors’ correlation func-
tion at time t0 and the correlation function of the quantum
field,

hϕ̂ðxiÞϕ̂ðxkÞi ≈
1

4λ2
Cði; kÞ ≈ ReðLikÞ; ð63Þ

where we used Eq. (61) and the approximation from
Eq. (62).
Therefore, as a summary of this section, we have shown

how it is possible to approximately recover the correlation
function of the quantum field using sufficiently localized
UDW detectors via Eqs. (53) and (63).

IV. RECOVERING THE SPACETIME METRIC
THROUGH LOCAL MEASUREMENTS OF

QUANTUM FIELDS

In this section we will study in detail a setup that allows
one to explicitly recover the spacetime metric by combin-
ing the results of Secs. II and III.

A. The general setup

We discussed in Sec. II how one can obtain the spacetime
metric from the Wightman function. On the other hand, the
results of Sec. III show that it is possible to obtain the exact
form of the Wightman function in different points of
spacetime if we have precise enough measurements of
the correlations between UDW detectors. Putting these
together, we can now show how it is possible to recover the
spacetime metric from local measurements of quantum
fields with particle detectors.
We propose the following setup in order to recover the

spacetime metric by locally measuring a quantum field in
different events:
(1) Couple local probes to a quantum field.
(2) Measure the correlation between the probes at

different spacetime points.
(3) From the correlation between the detectors, compute

the field two-point function between the correspond-
ing events.

(4) Compute the metric by taking the coincidence limit
in Eq. (32).

Although these steps might in principle seem simple, one
must be careful with their implementation. Indeed, in order
to obtain the spacetime metric with some precision, the
limit of step four needs to be taken with enough precision.
This relies on coupling probes separated by small enough
spacetime intervals, so that the limit can be approximated
well enough. In practice this requires significant control of
the probe systems. However, in principle, it is possible to
recover the spacetime metric with arbitrary precision using
this procedure, provided that the probes are small enough
and their coupling with the field can be regulated with
enough precision.
In the remaining subsections we will consider different

spacetimes with UDW detectors. Wewill consider detectors
that are either pointlike, or sufficiently small, that couple fast
enough to the quantum field. This allows us to use the
approximations (53) and (63). We will compute the (exper-
imentally accessible) correlation function between detectors
placed in a local region of spacetime separated by a
coordinate separation L and adapt Eq. (32) to this discrete
setup. In essence, given that the interaction happens very
approximately pointlikewise in spacetime, we will effec-
tively have access to the Wightman function associated to a
discrete lattice of points.We then take the discrete derivative
of theWightman function using the points in the lattice given
by the center of the interaction of the detectors.4

In our setup, we will assume that the experimentalist can
use a coordinate system xμ ¼ ðx0; xiÞ to label the events in
spacetime where the measurements take place but does not
have access to any local notion of space or time separation.
In other words, with this information it is possible to label

4We will explicitly analyze the effect of a finite region of
interaction in Sec. IV H.
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events, but it is not possible to compute any physical
spacetime distance. Mathematically, this is saying that
spacetime can locally be regarded as a D-dimensional
manifold, but that there is no known spacetime metric. Our
goal is to use particle detectors that interact at events which
are labeled with values of xμ ¼ ðx0; xiÞ, and from the read
outs of those detectors, infer a spacetime metric compo-
nents in the lab coordinates.
We consider a set of Nn detectors parametrized by

ðj1;…; jnÞ where each ji runs from 1 to N. For simplicity,
let us work under the assumption that the detectors undergo
trajectories associated to the coordinate system xμ, so that
they move along the curves xi ¼ xiji ¼ const. Then, xiji are
the constants that determine the spatial coordinates of each
detector. This simplifying assumption will allow us to
easily compute the metric in the xμ coordinates.
We consider that each detector interacts N0 times with

the field. The time coordinate of the center points of the
interactions will be given by x0 ¼ x0j0, with j0 running from
1 to N0, corresponding to the values of time where the
interactions happen. In this setup, we obtain a D-dimen-
sional lattice of points labeled by ðj0; j1;…; jnÞ associated
to the events in which the detector interactions take place.
We can then apply the formalism described in Sec. III B by
choosing the surfaces Σt as the spacelike surfaces deter-
mined by x0 ¼ const. This allows one to obtain (from the
readouts of the detectors) an approximation to the corre-
lation function of the quantum fieldWðx; x0Þ when x and x0
are events in the lattice.

As discussed, to recover the spacetime metric we will
employ the discrete derivative of the Wightman function.
We can obtain it directly from experimentally measurable
detector data from the local measurements centered at the
points parametrized by j ≔ ðj0; j1;…; jnÞ. We denote the
coordinates of the interaction point ðx0j0 ; x1j1 ;…; xnjnÞ by xμj ,
so that after measuring the quantum field with the particle
detectors, we obtain Wðxj; xlÞ for all values of the multi-
indices j and l.
In order to write the discrete derivative in a simple way,

we define the object

1μ ¼ ð0;…; 0|fflfflffl{zfflfflffl}
μ−1

; 1; 0;…; 0Þ: ð64Þ

With this convention and the labeling xμj for the coordinates
of the events, given a scalar function fðxÞ, it is possible to
write its discrete derivative as

∂f
∂xμ

����
x¼xj

≈
fðxjþ1μÞ − fðxjÞ

xμjþ1μ
− xμj

: ð65Þ

Intuitively, Eq. (65) compares the value of the function fðxÞ
at nearby points and divides it by the step. In order to
recover the spacetime metric, we will compute the deriv-
atives of the function ðWðx; x0ÞÞ 2

2−D. Its discrete derivative at
ðxj; xlÞ with respect to its different arguments can be
written as

∂
∂xμ0

∂
∂xν W

2
2−Dðx; x0Þ

����
x¼xj
x0¼xl

≈
W

2
2−Dðxjþ1ν ; xlþ1μÞ −W

2
2−Dðxj; xlþ1μÞ −W

2
2−Dðxjþ1ν ; xlÞ þW

2
2−Dðxj; xlÞ

ðxμjþ1μ
− xμj Þðxνlþ1ν

− xνlÞ
: ð66Þ

This expression should give an approximate form for
Eq. (32), so that we expect to recover the spacetime metric
in the case where the detectors are separated by small
enough values of the coordinate separation xμjþ1μ

− xμj .

To simplify the formalism for a proof of principle, we
will assume the detectors to be separated by a coordinate
distance L in all directions (including the time direction).
We can then rewrite Eq. (66) using that the coordinates
of xjþ1μ are x

μ
j þ L1μ. It is important to remark that in this

case, the parameter L does not represent physical
spacetime interval separation: it is merely a coordinate
parameter. However, continuity ensures that when the
coordinate separation between events go to zero, so does
the spacetime interval between them. For this reason,
Eq. (66) will be used in the examples we study below, so
that we assume that the detector coordinate separation is
L in all directions in the coordinate system that deter-
mines their trajectories. It is then expected that if L is
small enough, Eq. (66) will yield a good approximation

for the spacetime metric, once the numerical factor from
Eq. (32) is included. In fact, as we will see in the
following examples, for pointlike detectors the metric
will be precisely recovered when L → 0, and very
approximately recovered for smeared detectors when
the distance between detectors approach the detec-
tors size.

B. Example one: Inertial pointlike detectors in
Minkowski spacetime

In this subsection we consider the spacetime (unknown
to the experimenter) to be (3þ 1)-dimensional Minkowski,
with a quantum field quantized according to an inertial
frame. Then the quantum field can be written in terms of the
creation and annihilation operators as

ϕ̂ðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffi
2ωk

p
�
eik·x

ð2πÞ32 âk þ
e−ik·x

ð2πÞ32 â
†
k

�
: ð67Þ
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We then consider the inertial coordinate system
x ¼ ðt; xÞ¼ ðt; x; y; zÞ, and build the lattice of particle
detectors in a local region of spacetime according
to Sec. III. For simplicity, in this first example, we
consider detectors that interact via delta couplings. In
this case, we know it is possible to recover the Wightman
function of the quantum field exactly, as was shown in
Sec. III. We can then use Eq. (66) to approximate the
spacetime metric. We obtain the estimates for the metric
shown in Fig. 2. It is possible to see that the readouts
of the detector approximate the metric coefficients
as the distance between the detectors decreases. Moreover,
the imaginary part of the approximate (experimentally
obtained) metric goes to zero faster than the real compo-
nents as L → 0, so that we are only left with real
expressions, which yield the expected value gμν ¼
diagð−1; 1; 1; 1Þ.

C. Example two: Uniformly accelerated pointlike
detectors in Minkowski spacetime

In this section we consider uniformly accelerated
pointlike detectors probing the Minkowski vacuum. The
goal of this example is to see whether it is still possible to
recover the spacetime metric in different coordinate
systems built from particle detectors in different states
of motion. We then consider Rindler coordinates
ðT; X; y; zÞ in Minkowski spacetime, associated to the
inertial coordinates ðt; xÞ from Sec. IV B by�

t ¼ X sinhðaTÞ
x ¼ X coshðaTÞ ; ð68Þ

with X > 0 and T ∈ R. The Minkowski line element in
this coordinate system then reads

ds2 ¼ −a2X2dT2 þ dX2 þ dy2 þ dz2: ð69Þ

The lattice of detectors which is associated to this
coordinate system is such that each detector follows a
trajectory defined by X ¼ const: with constant values of y

and z. That is, each detector is uniformly accelerated with
different proper acceleration given by 1=X. We consider a
massless field, and detectors interacting along different
Dirac deltas situated along the corresponding motions of
the Rindler flow. Performing the computation in Eq. (66),
we find the estimates for the spacetime metric shown in
Fig. 3 for metric as a function of the coordinate X for
detector separations of L ¼ a−1 in the top plot and L ¼
0.1a−1 in the bottom plot.
In the limit of L ¼ 0 we recover the metric exactly, as

would be expected. Overall, we recover the expected
behavior of the metric components with the coordinate
distance X between the detectors. The smaller the value of
L, the better the fit between the curves. Also notice that for
higher values of aX, we find more discrepancies between
the estimated metric components and the actual Minkowski
metric. This is due to the fact that the time separation
between the interactions is proportional to aX. Overall, we
find that it is possible to recover the spacetime metric even
when the detectors are in different states of motion, giving
rise to different coordinate systems which express the same
spacetime metric. This is a general feature of the setup
we have considered: it is generally covariant, so that
regardless of the relative motion of the detectors, one
can recover the metric in the coordinate system associated
with their trajectories.

FIG. 2. Estimation of the metric coefficients in terms of the
coordinate distance between detectors, L, for inertial comoving
detectors in Minkowski spacetime.

FIG. 3. Metric coefficients obtained from the correlation
function of the quantum field in Minkowski spacetime with
accelerated detectors. The metric coefficients are plotted as a
function of the coordinate aX of the detectors. The detectors were
separated by a coordinate distance L ¼ a−1 in the top plot and
L ¼ 0.1a−1 in the bottom plot.
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D. Example three: Hyperbolic static
Robertson-Walker spacetime

Consider the hyperbolic cosmological spacetime with a
constant scale factor a. Then the metric in comoving
coordinates coordinates can be written as

ds2 ¼ −dt2 þ a2ðdχ2 þ sinh2ðχÞðdθ2 þ sin2θdϕ2Þ; ð70Þ

We then reparametrize it using the conformal time param-
eter η ¼ t=a, so that the coordinates read

ds2 ¼ a2ð−dη2 þ dχ2 þ sinh2ðχÞðdθ2 þ sin2θdϕ2Þ: ð71Þ

Quantizing a conformally coupled real scalar quantum field
ϕ̂ðxÞ with respect to the conformal time, we can expand it
in terms of creation and annihilation operators,

ϕ̂ðxÞ ¼
X∞
k¼1

Xk−1
l¼0

Xl

m¼−l

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ωk

p
× ðe−iωkηΠð−Þ

kl ðχÞYm
l ðθ;ϕÞâk þ H:c:Þ; ð72Þ

where ωk ¼ k2 þ μ2 and μ2 ¼ a2ðm2 þ ðξ − 1
6
ÞRÞ, where R

is the Ricci scalar, which is constant in this spacetime. The

explicit expression for Πð−Þ
kl ðχÞ can be found in, e.g., [53].

The vacuum Wightman function can then be explicitly
computed and reads

Wðx; x0Þ ¼ iμðχ − χ0ÞHð2Þ
1 ðμ½ðη − η0Þ2 − ðχ − χ0Þ2�Þ

8πa2 sinhðχ − χ0Þ½ðη − η0Þ2 − ðχ − χ0Þ2� ; ð73Þ

where Hð2Þ
1 is the Hankel function.

The results of particle detectors separated by a coor-
dinate distance l in the ðη; χÞ coordinates coupled to this
spacetime can be found in Fig. 4. We then see that in the
limit of L → 0, we recover the exact metric coefficients.

E. Example four: de Sitter spacetime

In this example we recover the metric of four-dimen-
sional de Sitter spacetime by probing it with particle
detectors. de Sitter spacetime has a constant curvature with
scalar curvature, R ¼ const: > 0. It is then possible to write
the Riemann curvature tensor as

Rμνρσ ¼
1

l2
ðgμρgνσ − gμσgνρÞ; ð74Þ

where l is the curvature radius of the spacetime. This will
be the first example we investigate where the metric
components explicitly depend on the coordinates we use
to prescribe the detector’s trajectories.
We consider conformal coordinates in de Sitter space-

time, so that the metric can be written as

ds2 ¼ l2

η2
ð−dη2 þ dx2 þ dy2 þ dz2Þ: ð75Þ

The quantization of a real scalar field with respect to the
modes adapted to this coordinate system yields the follow-
ing vacuum Wightman function [53]:

Wðx;x0Þ ¼ 1

16πl2

�
1

4
−ν2

�
secðπνÞ

× 2F1

�
3

2
þν;

3

2
−ν;2;1þðΔηÞ2− jΔxj2

4η0η

�
; ð76Þ

where 2F1 is the Hypergeometric function and we write
x ¼ ðη; xÞ and x0 ¼ ðη0; x0Þ. We define Δη ¼ η − η0 and
Δx ¼ x − x0. The parameter ν contains the information
regarding the mass of the field and its coupling to curvature.
It is explicitly given by

ν2 ¼ 9

4
− 12

�
m2

R
þ ξ

�
: ð77Þ

In order to recover the metric in this spacetime, we
consider delta-coupled particle detectors that undergo
trajectories defined by x ¼ const., separated by a coor-
dinate distance L. We consider these detectors to interact
at conformal times which are multiples of L, as detailed in
Sec. IVA. In Fig. 5, we plot the metric approximation for
two values of L as a function of η. As expected, when
L → 0, we approximate the function �l2=η2 with high
precision. Also notice that the method yields better
approximations for larger values of η=l. This is due to
the fact that at a given fixed value of conformal time η, the
proper space separation between neighboring detector
trajectories is given by l

η L, which is smaller for larger
values of η=l.

FIG. 4. Metric coefficients gηη, gηχ , gχη and gχχ in terms of the
coordinate distance between detectors, L in the hyperbolic static
Robertson-Walker spacetime with choices of mass and conformal
parameters such that μ ¼ am.
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F. Example five: The half Minkowski space with
Dirichlet boundary conditions

In this example we study the effect of boundary con-
ditions in our protocol for recovering the spacetime metric.
We analyze a massless Klein-Gordon field in the half
Minkowski space x ¼ ðt; x; y; zÞ with z ≥ 0 and Dirichlet
boundary conditions at z ¼ 0. This effectively restricts the
basis of solutions for the Klein Gordon equation and
changes the field’s two-point function. The vacuum state
that respects the symmetries of this spacetime then yields
the Wightman function [53,54]

Wðx; x0Þ ¼ 1

8π2
1

σ
−

1

8π2
1

σ�
; ð78Þ

where σ ¼ σðx; x0Þ and σ� ¼ σ�ðx; x0Þ are given by

σ¼ 1

2
ð−ðt− t0Þ2þðx−x0Þ2þðy−y0Þ2þðz− z0Þ2Þ;

σ� ¼
1

2
ð−ðt− t0Þ2þðx−x0Þ2þðy−y0Þ2þðzþ z0Þ2Þ: ð79Þ

Then, it is possible to verify that whenever x or x0 lies at the
plane z ¼ 0, Wðx; x0Þ ¼ 0, as expected.
We then consider pointlike particle detectors at rest with

respect to the spatial part of the x ¼ ðt; x; y; zÞ coordinate
system separated by a coordinate distance L which interact
with the quantum field at events separated in coordinate
time by L. Then, following the procedure outlined in

Sec. IVA, we estimate the metric coefficients using
Eq. (66). In Fig. 6 we plot the obtained metric coefficients
as a function of the ration between the coordinate distance z
and the separation between the detectors. As we see, the
further away from the boundary, the better the metric
estimation is. Moreover, due to the fact that Wðx; x0Þ ¼ 0
at the boundary, the computation of Eq. (66) yields a
divergent result at z ¼ 0, showing that at the boundary,
it is not possible to estimate the metric coefficients.
Nevertheless, we highlight that for any z > 0, the limit
L → 0 yields the exact Minkowski metric coefficients.
Overall, we see that the presence of a boundary disturbs

the metric estimation, and fails at the boundary itself.
Nevertheless, for any point that is not at the boundary, the
correlation function of particle detectors can be used to
accurately yield the metric of spacetime same as in the
previous cases.

G. Example six: One-particle Fock states in
Minkowski spacetime

In this example we consider one-particle Fock wave
packets in Minkowski spacetime instead of the vacuum to
show with an example how the recovery of the spacetime
geometry is independent of the field state. We consider the
same setup as that of Sec. IV B, with the expansion of
Eq. (67). With respect to these modes, a general normalized
one-particle state jψi can be written as

jψi ¼
Z

d3kfðkÞâ†kj0i; ð80Þ

where f is an L2ðR3Þ normalized function. The two-point
function of the field in the state jψi will be given by (see,
e.g., [38])

Wψ ðx; x0Þ ¼ W0ðx; x0Þ þ FðxÞF�ðx0Þ þ Fðx0ÞF�ðxÞ; ð81Þ

FIG. 5. Metric coefficients calculated from the correlation
function of the quantum field in de Sitter spacetime. The metric
coefficients are plotted as a function of the coordinate η=l of the
detectors and we choose ν ¼ 9=4. The detectors were separated
by a coordinate distance L ¼ e−7.5l in the top plot and L ¼
e−7.5l=2 in the bottom plot.

FIG. 6. Metric coefficients calculated from the correlation
function of a massless quantum field in the half Minkowski
space with Dirichlet boundary conditions at z ¼ 0. The metric
coefficients are plotted as a function of the coordinate ratio
between their z coordinate and the separation between the
detectors, L.
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where W0ðx; x0Þ is the Minkowski vacuum Wightman
function and

FðxÞ ¼ 1

ð2πÞ32
Z

d3kffiffiffiffiffiffiffiffi
2ωk

p fðkÞeik·x: ð82Þ

For a concrete example, we consider the field to be
massless (m ¼ 0) and prescribe the momentum profile
function that defines ψ as a Gaussian centered at k ¼ 0with
standard deviation σ,

fðkÞ ¼ 1

ðπσÞ3=4 e
− k2

2σ2 : ð83Þ

We use delta-coupled detectors interacting in events sep-
arated by a time/space coordinate separation of L. Figure 7
shows the value of the approximated metric coefficients
obtained from the detector measurements as a function of
the separation between detector interaction events. This
allows us to recover the Minkowski metric in the limit
where L → 0. We also find that for larger values of L the
results begin to show state dependence (compare Figs. 2
and 7). This is expected since it is only when the detectors
are close to each other that the measurements converge to
the coefficients of the metric independently of the state.

H. Example seven: Smeared detectors probing the
Minkowski vacuum

In this subsection we consider the example of nonpoint-
like inertial detectors probing the vacuum of Minkowski
spacetime in order to recover the spacetime metric. Unlike
the pointlike case, it is not possible to recover the
Wightman function of the quantum field exactly using
smeared particle detectors. However, if the detectors are
small, we can resort to the approximation pointed out in
Eq. (63). Although it is expected that smeared detectors
will provide a less accurate measurement of the spacetime
metric, these models represent realistic physical systems
that are not infinitely localized, such as, for example, atoms
interacting with the electromagnetic field [33–36,55].

In this example we consider a lattice of inertial Gaussian-
smeared detectors labeled by j, whose interactions are
centered at sites xj such that spacetime smearing function
can be written as

ΛjðxÞ ¼
XN0

j0¼1

e−
ðx−xjÞ2
2σ2

ð2πσ2ÞD=2 ; ð84Þ

where ðx − xjÞ2 ¼ δμνðxμ − xμj Þðxν − xνj Þ. For each detector
trajectory, we sum over the different interaction times j0.
Notice that this corresponds to an interaction that lasts for a
time equal to the light crossing time of the detector’s spatial
profile. We consider such interaction because Eq. (63) is
only expected to be valid in the limit σ → 0, wherewe obtain
ΛðxÞ → δðx − xjÞ. This limit is only true if the spatiotem-
poral profile of the interaction are approximately equal.
In Fig. 8 we plot the approximated metric obtained from

detector measurements as a function of their coordinate
separation L, when one considers the approximate
Wightman function from Eq. (63). For detector separations

FIG. 7. Estimation of metric coefficients obtained using particle
detectors in Minkowski spacetime when a massless field is in a
Gaussian one-particle state. The metric coefficients are plotted in
terms of the coordinate distance between detectors, L.

FIG. 8. Metric coefficients extracted by Gaussian smeared
particle detectors in Minkowski spacetime when the field is in
the vacuum state. We have chosenΩ ¼ m, wherem is the mass of
the field and σ ¼ 10−2Ω. The metric coefficients are plotted in
terms of the proper distance between detectors, L. The vertical
line on the left indicates σ ¼ 6L.

FIG. 9. Metric coefficients extracted by Gaussian smeared
particle detectors in Minkowski spacetime when the field is in
the vacuum state. We have chosenΩ ¼ m, wherem is the mass of
the field and σ ¼ 10−2Ω. The metric coefficients are plotted in
terms of the proper distance between detectors, L.
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smaller or comparable to 5σ, the detectors’ spacetime
smearings have a significant overlap, which makes this
regime unphysical. In Fig. 9 we show a scaled version of
the plot, where the approximated metric is shown for
smaller values of L, and the spurious behavior for small
L. Nevertheless, the metric is accurately recovered when L
is between 5σ and 10σ even when one considers smeared
detectors.

V. CONCLUSIONS

We showed how one can recover the spacetime metric
through local measurements of quantum fields. More
concretely, we generalized the results of [43], showing
that it is possible to use particle detectors to obtain the two-
point function of a quantum field evaluated at both timelike
and spacelike separated events. Armed with this knowl-
edge, we mapped the (measurable) correlations acquired by
arrays of particle detectors to the two-point function of the
field. With this data—and inspired by the results of Kempf
et al. [1,3]—we were able to accurately recover the
spacetime metric as the detectors separations become
sufficiently small. We also showed how due to the fact
that all (reasonable) states behave similarly to the vacuum
at short scales, our result is valid for any physical state of
the quantum field.
We have fully analyzed several explicit examples where

pointlike detectors were used to recover the metric in flat
and curved spacetimes. Namely, we studied Minkowski
spacetime, the hyperbolic static Robertson-Walker space-
time and de Sitter spacetime. In all cases we found that as
the detector separation goes to zero, we recover the exact
metric at the location of interaction from local measure-
ments on the detector observables. We also studied the case
of finite-sized detectors in Minkowski spacetime, where we
found that it is possible to recover the metric in the limit
where the detector separation is small enough, but larger
than the detectors size. Even with Gaussian smearings,
when the separation is larger than 5σ, we are able to recover
the metric coefficients with great precision.
In summary, we were able to obtain a notion of space and

time intervals based on the measurement outcomes of (in

principle experimentally realizable) quantum particle
detectors. This shares the philosophy of recent work on
the formulation of quantum reference frames [56–60],
where the notions of space and time separations between
observers are formulated in terms of shared quantum
resources.
Finally, as outlook, we conjecture that these explorations

together with the pioneering work in [1,3] could pave the
way for a formulation of causal structure exclusively in
terms of local quantum probes. These quantum particle
detectors are the measurement devices that should perhaps
replace the rulers and clocks of Einstein’s relativity in
scales where classical rulers or clocks stop making sense,
and provide some insight on the microscopic structure of
what we call spacetime.
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APPENDIX A: THE POINTLIKE LIMIT OF THE
CORRELATION FUNCTIONS

In this Appendix we show Eqs. (52) and (58) from
Sec. III B that express the field correlation in terms of
measurable detector observables.
We start by considering the case where the field

correlator is evaluated at timelike separated points analyzed
in Sec. III B 1. In this setup we consider a single probe
interacting with the quantum field twice at spacetime
points x1 and x2 such that τiðx1Þ ¼ t1 and τiðx2Þ ¼ t2.
The corresponding spacetime smearing function is given by
ΛiðxÞ ¼ δð4Þðx − x1Þ= ffiffiffiffiffiffi−gp þ δð4Þðx − x2Þ= ffiffiffiffiffiffi−gp

. We can
then compute the term Lii from Eq. (50):

Lii ¼
Z

dVdV 0ΛiðxÞΛiðx0Þe−iΩðτi−τ0iÞhϕ̂ðxÞϕ̂ðx0Þi;

¼
Z

dVdV 0ðδð4Þðx−x1Þ=
ffiffiffiffiffiffi
−g

p þδð4Þðx−x2Þ=
ffiffiffiffiffiffi
−g

p Þðδð4Þðx0−x1Þ=
ffiffiffiffiffiffi
−g

p þδð4Þðx0−x2Þ=
ffiffiffiffiffiffi
−g

p Þe−iΩðτi−τ0iÞhϕ̂ðxÞϕ̂ðx0Þi;

¼hϕ̂ðx1Þϕ̂ðx1Þiþhϕ̂ðx2Þϕ̂ðx2Þiþe−iΩΔthϕ̂ðx2Þϕ̂ðx1ÞiþeiΩΔthϕ̂ðx1Þϕ̂ðx2Þi;
¼Piðx1ÞþPiðx2Þþ cosðΩΔtÞRehϕ̂ðx2Þϕ̂ðx1Þiþ sinðΩΔtÞImhϕ̂ðx1Þϕ̂ðx2Þi; ðA1Þ

where Δt ¼ t2 − t1 and PiðxÞ denotes the delta coupling interaction of detector i with the field at spacetime
point x. Also notice that hϕ̂ðx2Þϕ̂ðx1Þi ¼ hϕ̂ðx1Þϕ̂ðx2Þi�, so that Rehϕ̂ðx2Þϕ̂ðx1Þi ¼ Rehϕ̂ðx1Þϕ̂ðx2Þi.
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We have studied the relationship between the field two-
point function and the detector correlators for spacelike
events in Sec. III B 2. In this setup we consider two
detectors that interact at spacelike separated regions,
according to the setup depicted in Fig. 1 and detailed in
Sec. III B 2. Plugging in the explicit expressions for Lik and
N ik from Eq. (49) we obtain:

ReðeiΩðτ0i−τ0kÞLik − eiΩðτ
0
iþτ0kÞðN ik þN kiÞÞ

¼ ReðeiΩðτ0i−τ0kÞLik − eiΩðτ
0
iþτ0kÞN ik − e−iΩðτ

0
iþτ0kÞN �

kiÞ:
ðA2Þ

We then work with the second expression. We have

eiΩðτ
0
i−τ

0
kÞLik− eiΩðτ

0
iþτ0kÞðN ikþN kiÞ

¼
Z

dVdV 0ΛiðxÞΛkðx0Þhϕ̂ðxÞϕ̂ðx0Þiðe−iΩðτiðxÞ−τkðx0ÞÞ− eiΩðτ
0
iþτ0kÞeiΩðτiðxÞþτkðx0ÞÞθðt− t0Þ− e−iΩðτ

0
iþτ0kÞe−iΩðτiðxÞþτkðx0ÞÞθðt0− tÞÞ;

¼ 2i
Z

dVdV 0ΛiðxÞΛkðx0Þhϕ̂ðxÞϕ̂ðx0ÞiðsinðΩðτkðx0Þþ τ0ÞÞe−iΩðτiðxÞþτ0Þθðt0− tÞ− sinðΩðτiðxÞþ τ0ÞÞeiΩðτkðx0Þþτ0Þθðt− t0ÞÞ;

ðA3Þ

where we used 1 ¼ θðt − t0Þ þ θðt0 − tÞ, and we have defined

τ0 ≔
τ0i þ τ0k

2
: ðA4Þ

When each detector interacts with a symmetric delta coupling, there is no need to time order the exponential that defines the
time evolution operator and we can simply replace θðt − t0Þ → 1=2 (see Appendix D of [61]). This gives us an expression for
the equal time correlation function above when we choose ΛðxÞ ¼ δð4Þðx − xiÞ= ffiffiffiffiffiffi−gp

, denoting τiðxiÞ ¼ ti. Namely, we
obtain

eiΩðτ
0
i−τ

0
kÞLik−eiΩðτ

0
iþτ0kÞðN ikþN kiÞ¼ iðsinðΩðtkþ τ0ÞÞe−iΩðtiþτ0Þ− sinðΩðtiþ τ0ÞÞeiΩðtkþτ0ÞÞhϕ̂ðxiÞϕ̂ðxkÞi;

¼ 2sinðΩðtiþ τ0ÞÞsinðΩðtkþ τ0ÞÞhϕ̂ðxiÞϕ̂ðxkÞi; ðA5Þ

which establishes the result of Eq. (59).

APPENDIX B: STATE INDEPENDENCE OF THE
SHORT DISTANCE LIMIT BEHAVIOR OF THE

WIGHTMAN FUNCTION

In this Appendix we show that the behavior of the
Wightman function of a free scalar field in the coincidence
limit is independent of the state of the field. As an
intermediate step, we will also show that the two-point
correlator of any regular enough field state can be written as
the vacuumWightman function plus state dependent terms.
Specifically, we will show for any normalized pure state

jψi, we have that

Wψ ðx; x0Þ ¼ hψ jϕ̂ðxÞϕ̂ðx0Þjψi

¼ Wðx; x0Þ þ
X∞
m¼0

FmðxÞG�
mðx0Þ þ H:c:; ðB1Þ

where FmðxÞ and Gmðx0Þ are state dependent regular func-
tions in the limit x0→x andWðx;x0Þ¼h0jϕ̂ðxÞϕ̂ðx0Þj0i is the
vacuumWightman function, hence the behavior ofWψðx; x0Þ
in this limit is independent of the state of the field. Although
the coincidence limit is formally divergent,we show is that the
singular part of Wψðx; x0Þ is the same as that of the vacuum

Wightman function Wðx; x0Þ. Notice that by showing this
result for pure state, the result also follows for arbitrary
normalized mixed states, as these are given by convex
combinations of pure states.
A general pure state jψi in the Fock space associated to a

quantum field ϕ̂ðxÞ, in the quantization scheme discussed
in Sec. II B is given by

jψi¼
X∞
m¼0

Z
dnk1…dnkmfmðk1;…;kmÞâ†k1…â†km j0i; ðB2Þ

where the functions fm define the momentum profile of
the m particle content of the state. Notice that due to the
bosonic nature of the field, the functions fm are symmetric
with respect to all of their arguments. Also notice that the
function f0 is a constant, which allows for superpositions
between the particle sectors and the vacuum state.
It is possible to find a condition for the L2 norm of the

functions fm using the following result,

h0jâpr…âp1 â
†
k1
…â†km j0i

¼ δrm
X
σ∈Sm

δðk1 − pσð1ÞÞ…δðkm − pσðmÞÞ; ðB3Þ

T. RICK PERCHE and EDUARDO MARTÍN-MARTÍNEZ PHYS. REV. D 105, 066011 (2022)

066011-16



where Sm denotes the set of all permutations of m elements. With this, we have that

hψ jψi ¼ 1 ⇒
X∞
m¼0

m!

Z
dnk1…dnkmjfmðk1;…; kmÞj2 ¼ 1: ðB4Þ

This condition will be important later to show that the two-point function of any state can be written as the vacuum
Wightman function added to a regular term.
We proceed to compute the two-point function on jψi explicitly. Using the expansion of the free scalar quantum field

from Eq. (15) we have

hψ jϕ̂ðxÞϕ̂ðx0Þjψi ¼
Z

d3p0d3k0hψ jðup0ðxÞâp0 þ u�p0ðxÞâ†p0Þðuk0ðx0Þâk0 þ u�k0ðx0Þâ
†
k0
Þjψi;

¼
X∞
m;r¼0

Z
d3p0d3p1…d3prd3k0d3k1…d3kmf�rðp1;…; prÞfmðk1;…; kmÞ

× h0jâp1…âprðup0ðxÞâp0 þ u�p0ðxÞâ†p0Þðuk0ðx0Þâk0 þ u�k0ðx0Þâ
†
k0
Þâ†k1…â†km j0i; ðB5Þ

¼
X∞
m;r¼0

Z
d3p0d3p1…d3prd3k0d3k1…d3kmf�rðp1;…; prÞfmðk1;…; kmÞ

× ðup0ðxÞuk0ðx0Þh0jâp1…âpr âp0 âk0 â
†
k1
…â†km j0i þ u�p0ðxÞuk0ðx0Þh0jâp1…âpr â

†
p0 âk0 â

†
k1
…â†km j0i

þ up0ðxÞu�k0ðx0Þh0jâp1…âpr âp0 â
†
k0
â†k1…â†km j0i þ u�p0ðxÞu�k0ðx0Þh0jâp1…âpr â

†
p0 â

†
k0
â†k1…â†km j0iÞ: ðB6Þ

Let us compute each of the matrix elements that show up above separately. The third term is immediately computed from
Eq. (B3). It yields

h0jâp1…âpr âp0 â
†
k0
â†k1…â†km j0i ¼ δrm

X
σ∈Smþ1

δðk1 − pσð1ÞÞ…δðkmþ1 − pσðmþ1ÞÞ; ðB7Þ

where we identify 0 ¼ mþ 1 for the permutations above. The first and last matrix elements in Eq. (B6) can also be
computed by means of Eq. (B3). That is, if we denote p0 ¼ prþ1 and k0 ¼ prþ2, we have

h0jâp1…âpr âp0 âk0 â
†
k1
…â†km j0i ¼ δm;rþ2

X
σ∈Srþ2

δðk1 − pσð1ÞÞ…δðkm − pσðmÞÞ: ðB8Þ

Regarding the fourth term, if we now denote k0 ¼ pmþ1 and p0 ¼ kmþ2, we have,

h0jâp1…âpr â
†
p0 â

†
k0
â†k1…â†km j0i ¼ δr;mþ2

X
σ∈Smþ2

δðk0 − pσð0ÞÞ…δðkm − pσðmÞÞ: ðB9Þ

Finally, for the second term in Eq. (B6), we must use the canonical commutation relations in order to obtain

h0jâp1…âpr â
†
p0 âk0 â

†
k1
…â†km j0i ¼ −δðk0 − p0Þh0jâp1…âpr â

†
k1
…â†km j0i þ h0jâp1…âpr âk0 â

†
p0 â

†
k1
…â†km j0i;

¼ −δðk0 − p0Þδrm
X
σ∈Sm

δðk1 − pσð1ÞÞ…δðkm − pσðmÞÞ

þ δrm
X

σ∈Smþ1

δðk1 − pσð1ÞÞ…δðkmþ1 − pσðmþ1ÞÞ; ðB10Þ

where in the second term we are denoting k0 ¼ prþ1 and p0 ¼ kmþ1. Noticing that the first term above corresponds to the
permutations on Smþ1 that leave mþ 1 fixed, we can rewrite the whole term as

h0jâp1…âpr â
†
p0 âk0 â

†
k1
…â†km j0i ¼ δrm

X
σ∈Slastmþ1

δðk1 − pσð1ÞÞ…δðkmþ1 − pσðmþ1ÞÞ; ðB11Þ

where Slastmþ1 denotes the set of permutations of mþ 1 elements that do not leave the last term fixed.
Notice that the fact that fm are symmetric with respect to its arguments can be translated into the statement that

fmðk1;…; kmÞ ¼ fmðkσð1Þ;…; kσðmÞÞ; ðB12Þ
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whenever σ ∈ Sm. We then have

X∞
m;r¼0

Z
d3p0d3p1…d3prd3k0d3k1…d3kmf�rðp1;…; prÞfmðk1;…; kmÞup0ðxÞuk0ðx0Þh0jâp1…âpr âp0 âk0 â

†
k1
…â†km j0i

¼
X∞
m;r¼0

Z
d3prþ1d3p1…d3prd3prþ2d3k1…d3kmf�rðp1;…; prÞfmðk1;…; kmÞup0ðxÞuk0ðx0Þh0jâp1…âpr âp0 âk0 â

†
k1
…â†km j0i;

¼
X∞
r¼0

Z
d3prþ1d3p1…d3prd3prþ2d3k1…d3krþ2f�rðp1;…; prÞfrþ2ðk1;…; krþ2Þ

× uprþ1
ðxÞuprþ2

ðx0Þ
X
σ∈Srþ2

δðk1 − pσð1ÞÞ…δðkrþ2 − pσðrþ2ÞÞ;

¼
X∞
r¼0

X
σ∈Srþ2

Z
d3prþ1d3p1…d3prd3prþ2d3k1…d3krþ2f�rðp1;…; prÞfrþ2ðk1;…; krþ2Þ

× uprþ1
ðxÞuprþ2

ðx0Þδðkσð1Þ − p1Þ…δðkσðrþ2Þ − prþ2Þ;

¼
X∞
r¼0

X
σ∈Srþ2

Z
d3prþ1d3p1…d3prd3prþ2d3kσð1Þ…d3kσðrþ2Þf�rðp1;…; prÞfrþ2ðkσð1Þ;…; kσðrþ2ÞÞ

× uprþ1
ðxÞuprþ2

ðx0Þδðk1 − p1Þ…δðkrþ2 − prþ2Þ;

¼
X∞
r¼0

X
σ∈Srþ2

Z
d3prþ1d3p1…d3prd3prþ2d3k1…d3krþ2f�rðp1;…; prÞfrþ2ðk1;…; krþ2Þ

× uprþ1
ðxÞuprþ2

ðx0Þδðk1 − p1Þ…δðkrþ2 − prþ2Þ;

¼
X∞
r¼0

ðrþ 2Þ!
X
σ∈Srþ2

Z
d3p1…d3prd3prþ2d3prþ1uprþ1

ðxÞuprþ2
ðx0Þf�rðp1;…; prÞfrþ2ðp1;…; prþ2Þ: ðB13Þ

In the chain of equalities above, we have, respectively,
(1) relabeled p0 as prþ1 and k0 as prþ2, (2) used the result
from Eq. (B9), (3) dragged the sum over σ to outside the
integral and made the change of variables over σ, σ → σ−1

so that the permutations now act on the ki argument of the
Dirac delta functions, (4) made the change of variables in
the integrals over kp, kp → kσðpÞ, (5) used symmetry of fm
in its arguments to get rid of the permutations over σ, and

(6) performed the integration over the Dirac delta functions.
Notice how the assumed of fm allows us to “contract” the
modes with any argument of frþ2 and simplify the result.
Notice that in the equation above, the mode functions
always show up multiplied by integrable functions, which
implies that the term above is regular.
The contribution to the Wightman function from the

second term reads

X∞
m;r¼0

Z
d3k0d3k1…d3krd3k0d3k1…d3kmf�rðp1;…; prÞfmðk1;…; kmÞ

× u�p0ðxÞuk0ðx0Þδrm
X

σ∈Slastmþ1

δðk1 − pσð1ÞÞ…δðkmþ1 − pσðmþ1ÞÞ;

¼
X∞
m¼0

X
σ∈Slastmþ1

Z
d3kmþ1d3k1…d3kmd3pmþ1d3k1…d3kmf�mðp1;…; pmÞfmðk1;…; kmÞ

× u�kmþ1
ðxÞupmþ1

ðx0Þδðk1 − pσð1ÞÞ…δðkmþ1 − pσðmþ1ÞÞ;

¼
X∞
m¼0

X
σ∈Slastmþ1

Z
d3p1…d3pmd3pmþ1upmþ1

ðx0Þu�pσðmþ1Þ ðxÞf�mðp1;…; pmÞfmðpσð1Þ;…; pσðmÞÞ: ðB14Þ
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Notice that in the expression above the permutations in
Slastmþ1 are precisely those that do not leave the last term
fixed. This implies that the functions u�pσðmþ1Þ ðxÞ and
upmþ1

ðx0Þ will never be contracted with each other (the
term “contracted” here refers to integrals over the repeated

momentum variables in the product of two functions).
Together with the normalization condition for the functions
fm, this implies that all terms in Eq. (B14) are regular
functions of x and x0.
The third term in Eq. (B14) can be written as

X∞
m;r¼0

Z
d3k0d3k1…d3krd3k0d3k1…d3kmf�rðp1;…;prÞfmðk1;…;kmÞup0ðxÞu�k0ðx0Þδrm

X
σ∈Smþ1

δðk1−pσð1ÞÞ…δðkmþ1−pσðmþ1ÞÞ;

¼
X∞
m¼0

X
σ∈Smþ1

Z
d3kmþ1d3k1…d3kmf�mðp1;…;pmÞfmðkσð1Þ;…;pσðmÞÞupmþ1

ðxÞu�kmþ1
ðx0Þ: ðB15Þ

Now notice that in the equation above we only have that the modes are contracted with each other in the terms that leave
mþ 1 fixed. This allows us to split the sum over the permutations as

X
σ∈Smþ1

¼
X
σ∈Sm

þ
X

σ∈Slastmþ1

: ðB16Þ

The terms that involve Slastmþ1 are related to the matrix element of Eq. (B14) by conjugation, while the terms associated with
the permutations in Sm are given by

X∞
m¼0

X
σ∈Sm

Z
d3kmþ1d3k1…d3kmf�mðp1;…; prÞfmðpσð1Þ;…; pσðmÞÞu�pmþ1

ðxÞukmþ1
ðx0Þδðkmþ1 − pmþ1Þ

¼
X∞
m¼0

X
σ∈Sm

Z
d3kmþ1d3k1…d3kmf�mðp1;…; prÞfmðp1;…; pmÞu�pmþ1

ðxÞukmþ1
ðx0Þδðkmþ1 − pmþ1Þ;

¼
Z

d3k0d3k0u�k0ðxÞuk0ðx0Þδðk0 − p0Þ ¼
Z

d3k0u�p0ðxÞuk0ðx0Þ;

¼ W0ðx; x0Þ; ðB17Þ

where we have used the symmetry of the fm terms and the
normalization condition from Eq. (B4).
We have thus shown that in a quantization scheme

associated to modes as in Eq. (15), the Wightman function
in any pure state can be written as the vacuum Wightman

function added to regular terms in the limit x0 → x, which
also generalizes to mixed states. In particular, this means
that the major contribution will be due to the divergences in
the vacuum Wightman function, and the other terms
become negligible in the x → x0 limit.

[1] M. Saravani, S. Aslanbeigi, and A. Kempf, Spacetime
curvature in terms of scalar field propagators, Phys. Rev.
D 93, 045026 (2016).

[2] A. Kempf, Quantum gravity, information theory and the
CMB, Found. Phys. 48, 1191 (2018).

[3] A. Kempf, Replacing the notion of spacetime distance by
the notion of correlation, Front. Phys. 9, 247 (2021).

[4] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev.
D 14, 870 (1976).

[5] W. G. Unruh and R. M. Wald, What happens when an
accelerating observer detects a rindler particle, Phys. Rev. D
29, 1047 (1984).

[6] S. Takagi, Vacuum noise and stress induced by uniform
acceleration: Hawking-Unruh effect in rindler manifold of
arbitrary dimension, Prog. Theor. Phys. Suppl. 88, 1 (1986).

[7] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, The
Unruh effect and its applications, Rev. Mod. Phys. 80, 787
(2008).

GEOMETRY OF SPACETIME FROM QUANTUM MEASUREMENTS PHYS. REV. D 105, 066011 (2022)

066011-19

https://doi.org/10.1103/PhysRevD.93.045026
https://doi.org/10.1103/PhysRevD.93.045026
https://doi.org/10.1007/s10701-018-0163-2
https://doi.org/10.3389/fphy.2021.655857
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1143/PTPS.88.1
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787


[8] T. R. Perche, General features of the thermalization of
particle detectors and the Unruh effect, Phys. Rev. D
104, 065001 (2021).

[9] S. W. Hawking, Black hole explosions, Nature (London)
248, 30 (1974).

[10] P. Candelas and D.W. Sciama, Irreversible Thermodynam-
ics of Black Holes, Phys. Rev. Lett. 38, 1372 (1977).

[11] B. Reznik, A. Retzker, and J. Silman, Violating bell’s
inequalities in vacuum, Phys. Rev. A 71, 042104 (2005).

[12] J. Silman and B. Reznik, Long-range entanglement in the
Dirac vacuum, Phys. Rev. A 75, 052307 (2007).

[13] A. Valentini, Non-local correlations in quantum electrody-
namics, Phys. Lett. A 153, 321 (1991).

[14] S. J. Olson and T. C. Ralph, Entanglement between the
Future and the Past in the Quantum Vacuum, Phys. Rev.
Lett. 106, 110404 (2011).

[15] E. Martín-Martínez, E. G. Brown, W. Donnelly, and A.
Kempf, Sustainable entanglement production from a quan-
tum field, Phys. Rev. A 88, 052310 (2013).

[16] M. Cliche and A. Kempf, Vacuum entanglement enhance-
ment by a weak gravitational field, Phys. Rev. D 83, 045019
(2011).

[17] E. Martín-Martínez, A. R. H. Smith, and D. R. Terno,
Spacetime structure and vacuum entanglement, Phys.
Rev. D 93, 044001 (2016).

[18] A. Pozas-Kerstjens and E. Martín-Martínez, Entanglement
harvesting from the electromagnetic vacuum with hydro-
genlike atoms, Phys. Rev. D 94, 064074 (2016).

[19] A. Sachs, R. B. Mann, and E. Martín-Martínez, Entangle-
ment harvesting and divergences in quadratic unruh-dewitt
detector pairs, Phys. Rev. D 96, 085012 (2017).

[20] A. M. Sachs, R. B. Mann, and E. Martin-Martinez, Entan-
glement harvesting from multiple massless scalar fields and
divergences in unruh-dewitt detector models, arXiv:1808
.05980.

[21] D. M. T. Benincasa, L. Borsten, M. Buck, and F. Dowker,
Quantum information processing and relativistic quantum
fields, Classical Quant. Grav. 31, 075007 (2014).

[22] A. G. S. Landulfo, Nonperturbative approach to relativistic
quantum communication channels, Phys. Rev. D 93,
104019 (2016).

[23] R. H. Jonsson, K. Ried, E. Martín-Martínez, and A. Kempf,
Transmitting qubits through relativistic fields, J. Phys. A 51,
485301 (2018).

[24] R. H. Jonsson, E. Martín-Martínez, and A. Kempf, Infor-
mation Transmission Without Energy Exchange, Phys. Rev.
Lett. 114, 110505 (2015).

[25] R. H. Jonsson, Information travels in massless fields in
1mathplus1 dimensions where energy cannot, J. Phys. A 49,
445402 (2016).

[26] R. H. Jonsson, Quantum signaling in relativistic motion and
across acceleration horizons, J. Phys. A 50, 355401 (2017).

[27] A. Ahmadzadegan, E. Martin-Martinez, and A. Kempf,
Quantum shockwave communication, arXiv:1811.10606.

[28] P. Simidzija, A. Ahmadzadegan, A. Kempf, and E. Martín-
Martínez, Transmission of quantum information through
quantum fields, Phys. Rev. D 101, 036014 (2020).

[29] M. Hotta, Quantum measurement information as a key to
energy extraction from local vacuums, Phys. Rev. D 78,
045006 (2008).

[30] M. Hotta, Energy entanglement relation for quantum energy
teleportation, Phys. Lett. A 374, 3416 (2010).

[31] M. Hotta, J. Matsumoto, and G. Yusa, Quantum energy
teleportation without a limit of distance, Phys. Rev. A 89,
012311 (2014).

[32] N. Funai and E. Martín-Martínez, Engineering negative
stress-energy densities with quantum energy teleportation,
Phys. Rev. D 96, 025014 (2017).

[33] E. Martín-Martínez and P. Rodriguez-Lopez, Relativistic
quantum optics: The relativistic invariance of the light-
matter interaction models, Phys. Rev. D 97, 105026 (2018).

[34] R. H. Jonsson, E. Martín-Martínez, and A. Kempf, Quantum
signaling in cavity QED, Phys. Rev. A 89, 022330 (2014).

[35] N. Funai, J. Louko, and E. Martín-Martínez, p̂ · â vs x̂ · ê:
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