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Five-branes wrapped on topological disks
from 7D N =2 gauged supergravity
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We study supersymmetric AdSs x X solutions, for X being a topological disk with nontrivial U(1)
holonomy at the boundary or “half-spindle,” in seven-dimensional N = 2 gauged supergravity coupled to
three vector multiplets. We consider compact and noncompact gauge groups, SO(4 — p, p),for p =0, 1,2,
and find a number of AdSs x X solutions with SO(2) x SO(2) and SO(2);,, residual symmetry from
SO(4) and SO(2,2) gauge groups. We also find an SO(2), C SO(3)g ~ SU(2) symmetric solution,
which can be regarded as a solution of pure N = 2 gauged supergravity with the SO(3), gauge group and
all the fields from vector multiplets vanishing. The solutions preserve % of the original N =2
supersymmetry and could be interpreted as supergravity duals of N = 1 superconformal field theories
in four dimensions. In particular, some of these solutions can be embedded in ten or eleven dimensions, in

which a description in terms of five-branes wrapped on a topological disk can be given.

DOI: 10.1103/PhysRevD.105.066010

I. INTRODUCTION

The AdS/CFT correspondence [1-3] leads to holo-
graphic descriptions of strongly coupled superconformal
field theories (SCFTs). Various aspects of these SCFTs,
including their nonconformal phases, can be studied by the
corresponding dual-gravity solutions in string/M theory or,
at low energy, supergravity theories in ten or eleven
dimensions. In this framework, the conformal field theories
can be considered as world-volume theories on the branes
in the near-horizon limit. A class of solutions that describes
branes wrapping on particular manifolds is of particular
interest, since these can lead to supersymmetric field
theories in lower dimensions arising from world-volume
theories of wrapped branes. These configurations describe
RG flows across dimensions from higher-dimensional
SCFTs to lower-dimensional ones and provide a useful
holographic description of the less-known higher-dimen-
sional SCFTs such as N = (2,0), (1,0) in six dimensions
via four-dimensional SCFTs, of which many aspects are
better understood.

At low energy, these wrapped branes can be described
by supersymmetric AdS,, x M" solutions of gauged
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supergravity in m +n dimensions [4]. M" is an
n-dimensional compact manifold with constant curvature
on which the wrapped (m + n —2)-branes lead to an
(m — 1)-dimensional SCFT from a compactification of
the dual (m + n — 1)-dimensional SCFT on M". The cor-
responding supergravity solutions preserve some amount of
the original supersymmetry by means of a topological twist
[5], implemented by turning on some gauge fields to cancel
the spin connections on the compact manifold M". A large
number of these solutions have previously been found in
various dimensions; see Refs. [6—29] for an incomplete list.
Recently, new classes of AdS x X solutions, in which
unbroken supersymmetry is not realized by a topological
twist, have been found for X being a two-dimensional space
with nonconstant curvature. These solutions describe super-
symmetric branes wrapped on a spindle, which is topologi-
cally a two-sphere with orbifold singularities at the poles
[30-36] (see also Ref. [37] for a more recent result), or on a
topological disk with nontrivial U(1) holonomy on the
boundary or “half-spindle” [38-43]. These lead to new
supersymmetric AdS geometries from gauged supergravities
which are dual to lower-dimensional SCFTs, arising from
compactifications of higher-dimensional SCFT's on a spindle
or a half-spindle. In particular, supersymmetric AdSs x X
solutions from the U(1)? truncation of the maximal SO(5)
gauged supergravity in seven dimensions obtained in
Refs. [38,39] have been shown to be dual to four-dimensional
N =2 SCFTs of the Argyres-Douglas (AD) type [44].
Furthermore, it should be remarked that both the spindle
and half-spindle can be obtained from different global
extensions of the same local solutions, as pointed out recently
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in Ref. [45]. In this work, we are interested in supersym-
metric AdSs x £ solutions from matter-coupled N = 2
gauged supergravity in seven dimensions, as constructed
in Ref. [46]; see Refs. [47-51] for earlier constructions.
We mainly consider N = 2 gauged supergravity coupled to
three vector multiplets with possible gauge groups given by
SO(4) ~S0O(3) x SO(3), S0O(2,2)~S0(2,1)x50(2,1),
and SO(3,1). It is well known that only SO(4) and
SO(3,1) gauge groups admit supersymmetric AdS,
vacua dual to N = (1,0) SCFTs in six dimensions with
SO(3)g R symmetry [52-54]. Furthermore, a number of
interesting holographic solutions have been found in
Refs. [21,28,52,53,55]. We will add more solutions to this
list by finding supersymmetric AdSs x X solutions within
this N = 2 gauged supergravity for X being a half-spindle. It
has been pointed out in Ref. [35] that supersymmetric
AdS;5 x X solutions with X being a spindle do not exist in
minimal or pure N = 2 gauged supergravity with the SO(3)
gauge group; see also Ref. [37]. It turns out that solutions
with X being a half-spindle do exist in pure N = 2 gauged
supergravity. These solutions preserve % of the supersym-
metry and SO(2), C SO(3), and they can be obtained from
a truncation of AdSs x X solutions with SO(2) x SO(2)
symmetry in the SO(4) gauged supergravity considered in
this work. Furthermore, we also find SO(2);,, symmetric
solutions that can be mapped to the solution found in
Ref. [39] from U(1)? truncation of the maximal SO(5)
gauged supergravity.

However, unlike the solutions in Ref. [39] dualto N = 2
SCFTs of the AD type, these solutions preserve only eight
supercharges and should be dual to N = 1 SCFTs in four
dimensions. In addition, most of the solutions found in this
paper currently have no known higher-dimensional origin.
In particular, it has been shown in Ref. [56] that uplifting
seven-dimensional N = 2 gauged supergravity with AdS,
vacua to ten dimensions can be achieved only if there is no
vector multiplet or just one vector multiplet. On the other
hand, the uplift to eleven dimensions can be performed via
an $* truncation if the N = 2 theories are truncations of the
maximal N =4 gauged supergravity. The embedding in
this case can be obtained from the results of Refs. [57,58].
Moreover, pure N = 2 gauged supergravity with the SO(3)
gauge group can also be uplifted to type-IIA supergravity
[59,60]. Finally, we will find AdS5 x Z solutions in N = 2
gauged supergravity with a noncompact SO(2,2) ~
SO(2,1) x SO(2, 1) gauge group. Since this gauged super-
gravity does not admit any supersymmetric AdS; vacua,
the maximally supersymmetric vacua are given by half-
supersymmetric domain walls dual to N = (1,0) non-
conformal field theories in six dimensions according to
the DW/QFT correspondence [61-64]. In this case, the
resulting AdSs x X solutions are expected to describe four-
dimensional N =1 SCFTs arising from six-dimensional
N = (1,0) field theories compactified on a topological disk
or half-spindle. To the best of our knowledge, these are

the first examples of AdSs x X solutions involving half-
spindles with domain wall asymptotics. The paper is
organized as follows: In Sec. II, we give a brief review
of seven-dimensional N = 2 gauged supergravity coupled
to an arbitrary number of vector multiplets. Supersym-
metric AdSs x X solutions in the SO(4), SO(2,2), and
SO(3,1) gauge groups will be considered in Secs. III-V,
respectively. Some conclusions and comments will be
given in Sec. VL

II. MATTER-COUPLED N =2 GAUGED
SUPERGRAVITY IN SEVEN DIMENSIONS

In this section, we give relevant formulas involving
bosonic Lagrangian and supersymmetry transformations of
fermions to find supersymmetric solutions of matter-
coupled N = 2 gauged supergravity in seven dimensions.
We follow most of the conventions and notations in
Ref. [49], in which the detailed construction can be found;
see also Ref. [65] for gaugings using the embedding tensor
formalism in the case of three vector multiplets.

In seven dimensions, the half-maximal N = 2 super-
gravity multiplet contains the following component fields:

(e/I:9 ll/27Ali43)(a’Bﬂl/’ 6)’

given by the graviton eﬁ, two gravitini yy, three vectors AL,
two spin-% fields y“, a two-form field B,,, and the scalar
field or dilaton 6. We denote curved and flat space-time
indices by p,v, ... and ji, 7, ..., respectively. The indices i,
j=1,2,3 and a, b =1, 2 label triplets and doublets of
SO(3)g ~SU(2)g R symmetry, respectively.

The supergravity multiplet can couple to an arbitrary
number n of vector multiplets with the field content

(A 2%, 41" (1)

Each vector multiplet, labeled by an index r =1,...,n,
consists of a vector field A,, two gaugini 4%, and three
scalars ¢. Together with the supergravity multiplet, there
are 3 +n vector fields transforming in a fundamental
representation of the global symmetry SO(3,n), collec-
tively denoted by A/, = (A}, A). The SO(3, n) fundamen-
tal indices I,J =1,...,3 4+ n are lowered and raised,
respectively, by the SO(3, n) invariant tensor and its inverse

=yl = diag(-1,-1,-1,1,...,1). 2
My =n g( \_v_/) (2)

n

Similarly to the dilaton ¢ described by a coset manifold
SO(1,1) ~R*, the 3n scalars ¢ from the n vector
multiplets are parametrized by an SO(3,n)/S0(3) x
SO(n) coset manifold. With A = (i, r) being an SO(3) x
SO(n) index, the associated coset representative can be
written as
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L[A = (L1i7 Llr)~ (3)

L transforms under the global SO(3,n) and the local
SO(3) x SO(n) by left and right multiplication, respec-
tively. The inverse of LA will be denoted by L,/ =
(L, L,") and satisfies the following relations:

LjILIi - 55,

L/L;" =8, ny=-L/'L;/+L/L,".

4)

Note also that the indices i, j and r, s are raised and lowered
by §;; and §,, respectively.

Gaugings of the matter-coupled N =2 supergravity
can be obtained by promoting a subgroup G C SO(3, n)
to be a local symmetry. The embedding of G in SO(3, n) is
described by the SO(3,n) tensor f;;X identified with
structure constants of the gauge group G via the gauge
algebra

[TI’ TJ] = fIJKTK’ (5)

where T;’s are the gauge generators. In the embedding
tensor formalism, f;,X is one of the components of the
embedding tensor; see Ref. [65] for more detail. In order for
the gauging to be consistent with supersymmetry, f;,X
must satisfy the conditions

fux =nxcfut = Sk and f[uLfK]LM =0. (6)

Since #;; has only three negative eigenvalues, any gauge
group can have at most three compact or three non-
compact generators. Therefore, the allowed semisimple
gauge groups are of the form G ~ Gy x H C SO(3, n), with
H being a compact group of dimension dimH < (n+ 3 —
dim Gy) [49]. On the other hand, G can only be one of six
possibilities:  SO(3), SO(3,1), SL(3,R), SO(2,1),
S0O(2,2), and SO(2,2) x SO(2,1).

Apart from the usual gaugings, there is also a massive
deformation given by adding a topological mass term to
the three-form field C,,, dual to the two-form field B,,.
This additional deformation is crucial for the gauged
supergravity to admit AdS; vacua. With both of these
deformations, the bosonic Lagrangian of the matter-
coupled N = 2 gauged supergravity is given in differential
form language by

1 1
EZER*I_Ee a”*Ffz)

1 5
—Ee_za*HM) /\H(4) —g*do'/\ do

J
A F(z)

. , 1
_E*PU) A\ P(1> +EH(4) A @(3) —4/’1H<4)
A C(3) -Vl (7)

The constant /& describes the topological mass term for the
three-form C(3) with the field strength H4) = dC3). The
gauge field strength is defined by

1
FfZ = dAé‘) +§fJK1A(Jl) AN AK (8)

) (-

The scalar matrix a;; appearing in the kinetic term of vector
fields is given in terms of the coset representative as
follows:

aypy = LIiLJi + L[rLJr. (9)

The Chern-Simons three-form satisfying dw3) = F‘(’z) A

F 52) is defined by

1
Cl)(3> = Ffz) A\ A{l) _gfIJKAfl) AN A'(Il) AN A(I)K‘ (10)

The scalar potential is given by

1 . 1 42,
V=g (c”c,-, —§C2> + 16h2e% —T\/_heTC, (11)

where C-functions, or fermion-shift matrices, are defined as

1 .
C=——f,“L/L/Lg, 12
\/Efu i Lk (12)

, 1 .
Cir = — KL'IL ]L rgl]k’ 13
\/Ef” j ~k K ( )
Cri = fIJKLrILsJLKi- (14)

The scalar kinetic term is defined in terms of the vielbein on
the SO(3,n)/SO(3) x SO(n) coset as

Py = L"(6Fd + f1,%A{,)) Lk (15)
Supersymmetry transformations of fermionic fields read

V2

a a —Z a 4 o a
oy =2D,e —%e 2CT e —ghe2 [e

I .. .

= 55 4Fhal0’), (3T, 177 = STV, )t
1

“5075 oo (T, TP 4 STV et (16)

1 2 16
oyt = —El“”aﬂoe" + —\3/0_ e 2Ce" — 5 X het
I gFi ia T b 1 s [Hepo ga
_loez W(o) e —60\/§e wwpo €,
(17)
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4 1
5&07’ — 'I“ﬂPlr —_ ZFr I_‘}HJ — —EC”‘ a b‘
iT*Pir(c')" e SeFule —\/Ee (6')4,€e
(18)

In these equations, (6')¢, are the usual Pauli matrices, and
r,= eﬁFﬁ, in which I';’s are seven-dimensional space-
time gamma matrices satisfying the SO(1,6) Clifford
algebra

The dressed field strengths F, i and F,) are defined by
Fl, = L/Fl, and F =L/Fl.  (20)

The covariant derivative of the supersymmetry parameter
€ is given by

| I, 1 oo
D,e" = 0,6 + Za)ﬂ”/’Fﬁf,e“ + WG Qi (c"),eb, (21)
where Q! is defined in terms of the SO(3); composite

connection Q,/ as

iU ikt
O, = EE”‘Qﬂ ; (22)
with
Q;if = L5850, + f1,5A)) L' (23)

For convenience, we also give all the bosonic field
equations derived from the Lagrangian [Eq. (7)]:

1
FI A FI

_ —20 -
0=d(e " x 5o (2)°

Hy)) + 8hH ) (24)
V2H 4 A Fly +*Pl f15L, Ly,

(25)

0= D(e%ayy *F )
0= D(xPih ) =2¢°L/'L;" * Fly A FYy,
- (\L@ e CIC, ek + 4\f2he%"cfr> emy.  (26)
5 1 _
0 :Zd(*da) —Ee"au * F{z) A F(Jz) + €72 % Hyy A Hy,
- E e’ <C"’Cl~, - é C2> +2v2he¥C - 64h2e4"] £r)s

(27)

5 1
0=R, —Zaﬂoa,ﬁ —aye’ (FLpF,{p 1OgWFL(,FJP">
o2 1
_ P/lfPIl/r _ ggﬂyv _ 86_20
3
X (I_IM,()MI_Izzpw1 - Z_Ogﬂvaa/erpaﬁﬂL') . (28)

We finally give a general parametrization of the SO(3,n)/
SO(3) x SO(n) coset which is useful for finding explicit
solutions. We first introduce (n + 3)? basis elements of a
general (n+ 3) x (n+ 3) matrix as follows:

(er) kL = O1xds1- (29)
The composite SO(3) x SO(n) generators are given by

—e i,j=1,2,3,

r,s=1,...,n. (30)

ijs
. @)
SO(n): Jyy = €54+3,r+3 T €ri3,543,

The noncompact generators corresponding to the 37 scalars
are given by

Yii=¢€i,13+ €3 (31)

I1I. SO(4) GAUGE GROUP

We first consider N = 2 gauged supergravity with the
SO(4) ~SO(3) x SO(3) gauge group obtained by cou-
pling the gravity multiplet to n = 3 vector multiplets. The
first SO(3) factor is identified with the SO(3), ~ SU(2)g
R symmetry. The corresponding structure constants are
given by

fuk = ros,...=1273 (32)

(G1€ijk> —ToErst)s

in which g, and g, are coupling constants of SO(3), and
SO(3) generated by JS}) and J\7, respectively.

We are interested in supersymmetric solutions in the
form of a product space between an AdSs and a topological
disk X with a nontrivial U(1) holonomy at the boundary.
Following Ref. [39], we take the ansatz for the seven-
dimensional metric to be

ds? = f(r)a?sfms5 +gi1(r)dr* + g,(r)dz?,  (33)
where the metric on AdSs with unit radius is given by

1
ds?xds5 = 7 (dxi 5 + dp?), (34)

with dx{; = n,,,dx"dx", m,n=0,....3 being the flat
metric on the four-dimensional Minkowski space Mkwy,.
The values r and z are the radial and angular coordinates on
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the topological disk X, respectively, whose ranges will be
determined later on. The seven-dimensional curved and flat
space-time indices will be split into u = (m,p, r,z) and
j = (i, p, 7,2), respectively.

With the vielbein one-forms

M f(r) m p f(r)
ey ==, " =T
e(?l) = Vg (r)dr, efl) =/ g (r)dz, (35)

we can straightforwardly compute all nonvanishing com-
ponents of the spin connections:

ap eﬁz i f/eﬁ‘l
w(l) —_77, a)(l) _Zf\/a’
- > B 2
wl()lr) = se ; wf1’> = dzie- (36)
2f\/g1 2937/ 91

From now on, we will use primes to denote r derivatives
and mostly suppress arguments of the r-dependent func-
tions for convenience.

A. SO(2)g and SO(2) x SO(2) symmetric solutions

We now move to the ansatz for gauge fields in the cases
of SO(2)x € SO(3)g and SO(2) x SO(2) symmetry. Since
the former can be obtained as a truncation of the latter, we
will first consider the case of SO(2) x SO(2) symmetry
and perform a suitable truncation to obtain SO(2), sym-
metric solutions. For SO(2) x SO(2) symmetric solutions,
we will choose the SO(2) x SO(2) subgroup generated by

J (112) and J (122) and turn on the following gauge fields:

Al = [Ay ()8} + Ay(r)B]dz. (37)

The corresponding two-form field strengths are given by

Fly = (A1 + A46L)dr A dz. (38)

)

This ansatz leads to F,, A F!,, = 0. According to the field
"o g

equation of the three-form field given in Eq. (24), we can
consistently set C(3) = 0.

Among the nine scalars from the SO(3,3)/50(3) x
SO(3) coset, there is only one SO(2) x SO(2) singlet
scalar. Following Ref. [52], this scalar field corresponds to
the noncompact generator Y3, and the coset representative
can be written as

L = e, (39)

This singlet scalar ¢ and the dilaton ¢ depend only on
the radial coordinate. It is now straightforward to com-
pute the C-functions appearing in the supersymmetry
transformations:

C =3V2g coshgp,  Cr =—/2g sinhp8is;.  (40)
The scalar vielbein and SO(2), composite connection have
the following nonvanishing components:

P’& = ¢'8i83dr and Q’({) = §AEPdz. (41)

It should be noted here that only A; appears in the
composite connection, because A?l) is the vector field that

gauges SO(2)z C SO(3)g, under which the gravitini and
supersymmetry parameters are charged. With all these and
a similar analysis as in Ref. [39], we can determine all the
BPS equations from the supersymmetry transformations of
fermionic fields. The detailed analysis and relevant results
can be found in the Appendix. In the following, we will
separately consider solutions with SO(2); and SO(2) x
SO(2) symmetries.

1. SO(2)g symmetric solution in pure N =2
gauged supergravity
We first consider a simple case of SO(2); symmetric
solutions which can be obtained by setting A?l) =0.

Equation (A60) then gives
F, = becoshgpf> and F, = —besinh¢pf3, (42)

in which we have written a; = a, = b.
With this explicit form of F; and F,, the BPS condition
in Eq. (AS51) implies that

bhsinh ¢ = 0. (43)

For h =0, the gauged supergravity does not admit any
supersymmetric AdS; vacua, so we will keep & # 0. With
b = 0, all the gauge fields vanish. This clearly does not lead
to any solutions of the form AdSs x X. Therefore, to find
possible AdSs x X solutions with AdS; asymptotics, we
need to set ¢ = 0. Effectively, all the fields from vector
multiplets are truncated out. The resulting solutions can be
then considered as solutions of the minimal or pure N = 2
gauged supergravity with the SO(3), gauge group.

With ¢ = 0, Eq. (A60) implies that A, = 0. All the BPS
conditions from Eqs. (A26) and (A45)—(A57), as well as the
field equation [Eq. (26)] for scalars from the vector multip-
lets, are automatically satisfied. With all these, we are left
with the algebraic conditions of Eqs. (A30)—(A44). First, we
solve for f from Eq. (A40) with the solution given by

fo e (a4
s(16he™ — §)

With this result, Eq. (A32) can be solved for g, giving
rise to
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200V b5 e (6)?

g1 = ‘
(16he¥ — g,)? [32@ e7>7\/s(16he¥ g')]

The condition in Eq. (A41) together with the solution for
Al = A’l in Eq. (A60) gives an ordinary differential equation
of the form

Sg] U/ A

A=—"27 4, 46
L 2(12he¥ - ) (46)

which can be readily solved by

~

Al =c(12h—je7¥) (47)

for an integration constant c. Substituting all these results
into Egs. (A36) or (A41) leads to the following solution

for g,:
cgl [32vbh — e /s 16he2—gl}

9 = . (48)
s(16he¥ — ;)

Finally, it can be verified that all the BPS conditions of
Egs. (A30)—(A44) as well as the dilaton and Einstein field
equations, Egs. (27) and (28), are satisfied by these solutions,
provided that

sign(cgyo’) = +1. (49)

Furthermore, the BPS equations [Egs. (A23)—(A25)] are
satisfied by the following form of the two-component spinor

\/8 BbY + 2se ¥[s(16he¥ — §,)]f

n= €97y oF ,

\/ (hb): — V/2se ¥[s(16he? — §y)]

Bi—

(50)

with the function Y being the solution of an ordinary
differential equation given in Eq. (A16). The explicit form
of the solution for Y can be written as

—0

Yoe

Y= s, 1
[s(16he> —Gy)JF

, (51)

in which Y, is an integration constant. It should be noted that
the solution is characterized by a set of functions that are
determined in terms of the dilaton o together with its
derivative. However, the r-dependent function o(r) is not
determined by the BPS equations. This is very similar to the
solutions obtained in Refs. [39-42].

To further analyze the solution, we first define the
parameters

B=8mVb, m=-IL

16/ C =2gihe, (52)

together with the function

S

W =B-—e/s(e” —m). (53)

In terms of these quantities, the seven-dimensional metric
reads

Be? 25Be’(o')?

ds? = dsiys. + - dr?
) s T 2 oE o2
16h21/s(e% — m) A hW(er —m)
C’We°
SR S (54)

4h%\/s(eF —m)

which is singular when W — 0. It turns out that the analysis
near W = 0 is simpler if we fix the solution of ¢ to

2
o= —glnr. (55)

This choice implies r > 0, and the sign condition of
Eq. (49) requires sign(cg;) = —1. Accordingly, the con-
stant C must be negative for i > 0.

In terms of the radial coordinate, the seven-dimensional
metric is given by

2 Br!/10 2 2
ds? = TN [dsXas, + dss),
-1/2 4w
. 2 _ r 2 2
with dss = OWh( =) dr + dz (56)
and

W =B —r?\/s(1 —mr). (57)

The equation W = 0 admits four roots, given by

3 1
1+2mvX+,2 - X+ ——
m\/_ 2 m\/4 3 14]’}13\/)—(

(58)

1
P 4) = 4

with
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94(r)
f(r) 6
5
0.25 4
0.20 3
0.15 2
1
0.10
* * * * r
01 02 03 04 01 02 03 04 01 02 03 04
(a) f solution (b) g1 solution (c) g2 solution
FIG. 1. Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = 1, m = %,
B=h= }‘, and C = —1. All the warp factors are positive in the range 0 < r < r(; _) = 0.456, with the two vertical red dashed lines

representing the two boundaries. (a) f solution, (b) g, solution, and (c) g, solution.

| 42)\35BY
Am* 95 + /81 — 768sB2m’|

B*3[9s + /81 — 768sB’m’|
1873m '

(59)

These roots are all distinct due to different sign choices £
and +, appearing in Eq. (58).

Using Eq. (A22), we find the explicit form of the SO(2),
vector field:

1
Al =— dmr —3) — q|. 60
=g [Cl(4mr =3) — g (60)
In terms of the radial coordinate, the two-component spinor
n is given by

\/\/1_3 + 574 s(1 — mr))s

[s(1 = mr)ls —\/\/E —sr34s(1 = mr))s
(61)

2 1/4,1/40

1= Yo"

The allowed ranges of the radial coordinate r for a regular
solution are constrained by requiring that the dilaton scalar
be real (r > 0) and that all the seven-dimensional metric
functions be positive. There are seven possibilities depend-
ing on the values of the parameters s, m, and B. It should
also be noted that these ranges, together with the corre-
sponding behaviors of the solution, are very similar to those
considered in Ref. [39]. We now discuss these possibilities

in detail.

3V3
16m/m’
For clarity, we plot a representative solution of the warp
factors with s =1, m=3, B=h=1% and C=-1 in
Fig. 1. As seen from the figure, as r — 0, both f and g,
approach zero, while g, diverges to +o0. This is a curvature

singularity of the seven-dimensional metric, as pointed out

CaseI: s=1, m>0,0<B< 0<r<r(+,_>.

in Ref. [39]. Setting r = R*3, we find that the seven-
dimensional metric becomes conformal to a product of
AdSs and a cylinder near R = 0:

1
- dShas, + o dR? +4C2d2 .

9B (62)

As r—ry ), the AdSs warp factor is smooth

and the z circle shrinks due to W(r@—)) = B-
r?f_),/ I —mrg _y=0. By introducing a new radial
coordinate R =, /r; -y =7, we find that g, is finite as

r = r(4-). The seven-dimensional metric near this end
point takes the form of
1/10
Br( o)
1- mr(%_)

N dR* +4C*[3 — 4mr( _)|*R*dz?
—4]-‘}[//(1“(%_))1 /r(+’_>(1 - mr(+,_))3/2 ’

ds? ~

1672 dShas,

(63)

The R — z surface becomes locally an R?/Z; orbifold near
the point r = r(, _ if we set

1
Cl= , 1=1,2,3,.... 64
el =5 (64)

[3 - 4mr(+,_)]

In this case, the function 3 —4mr, _) depends on two
constants, m and B. However, its explicit form obtained
from Eq. (58) is highly complicated, so we will only show
that 3 —4mr(, _ is strictly positive in the range of the r
coordinate under consideration by giving a numerical plot
of 3—4mr _) in Fig. 2.

By using the Gauss-Bonnet theorem and the same
computation as in Ref. [39], we can calculate the Euler
characteristic of X,

066010-7
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1.0

m

FIG. 2. A numerical plot of the function 3 — 4mr, _ appear-
ing in Eq. (64). Note that 3 —4mr. _y —» 3 and 3 —4dmr ) -

3V3

0asB—>00rm—>OandB—>16m\/ﬁ,

respectively.

1
2(x) = [ Revols

o 20e|B - dmr Jr U= mr ]V
VB
1
= 2|C|[3 —4mr(+__)] :7, (65)

which is a natural result for a disk with an R?/Z, orbifold
singularity at r = r(, _y. Note that the integration has been
performed on the interval 0 < r < r _y and 0 < z <2z,

and we have used B = r?f_)

W(r@—)) =0 with s = +1.

In order for the SO(2), gauge field to vanish at
r = r( -, at which the z circle shrinks, we fix the constant
q to be

I —mr _) obtained from

IC|
A =
Y

(67)

[r=rgo)

The explicit form of the Killing spinor at r =r(, _) is
given by

)

0)

Since only the upper component is nonvanishing, only § of
the original supersymmetry, or four supercharges, are
preserved at r = (4.-)- Moreover, 7 is also well behaved
near r = r(4 _, and hence globally defined on the disk X as
in Ref. [39].

Case II: s=1, m<0, B>0, 0<r<r_,). An

n= 23/4Yoe_%r?f_) ( (68)

s

example of numerical solutions with s =1, m = —1,
B=1,h= %, and C = —% is given in Fig. 3. This case
is very similar to Case I. The previous analysis at both the
r=0 and r=r_,) end points can be repeated by
formally ~replacing m — —|m| and r@ ) — r_ ).
However, in order for the z circle to shrink smoothly at
r=reg4) instead of Eq. (64), we have to impose

1

C|l= , 1=1,2,3,....
| | 21[3+4|m|r(_’+)]

(69)

A numerical plot of 3 + 4|m|r_ . is shown in Fig. 4. The
function is very different from 3 — 4mr_ _) in Case I, since
the condition on the constant B in this case is less stringent.

Caselll: s=1,m>0,0 <B <%, F(44) < r<i
Asr — # the AdSs warp factor goes to 4o, as can be seen
from Fig. 5. Setting r =1 —16C*m?B?R*, we find the

seven-dimensional metric of the form

1 1 1
=—|C|[3 —-4mr | = ——, 66 2y - | = 442 2 2
g =—lCll ol =5 (66)  ds? w~ o a0z dShas, T AR +d2 | R0,
giving rise to the SO(2), gauge field of the form (70)
g1 (r) il
f(r) 3.0 3_gof )
3.0 2.5 2.5
2.0 2.0
25 1.5 1.5
2.0 1.0 1.0
0.5 0.5
0.2 0.4 0.6 0.8 r ‘ ‘ ‘ oo r r
' ' ' ' 02 04 06 08 02 04 06 08
(a) f solution (b) g1 solution (c) g2 solution
FIG. 3. Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = 1, m = —1,
B=1h= % and C = —%. The warp factors are positive in the range 0 < r < Fcq) = 0.819, with the two vertical red dashed lines

representing the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.
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3+4|m|r(_ +)

FIG. 4. A numerical plot of the function 3 +4|m|r_
appearing in the condition of Eq. (69). We also note that 3 +
4{m|r_ 4y =3 as B—0orm— 0.

This metric is again conformally related to a product of
AdSs and a cylinder.

By changing the radial coordinate to p = | /F )=

we find the seven-dimensional metric, as r — r(, ), of
the form

1/10
(++)
1 - mr(+’+)
dR* +4C*[3 — 4mr(, )| R*dZ?
' | (71
—4W’(r(+.+)) ) /

Br

2 2
ds; = o dsAdS5

F(+.4) (1- mr+ +)

which is similar to Eq. (63) with r _) replaced by r, ).
The z circle also shrinks smoothly near the end point at
r = r(;4), and the R — z surface is locally an R?/Z, if we
choose

1
C:—7

[=1,2,3,.... 72
2[[3 —4mr(+’+)] ( )

Unlike all previous cases, 3 —4mr(, ) is negative in
the regularity ranges of B and m, as can be seen from
the numerical plot given in Fig. 6. In Fig. 7, we also plot

surface) in Case I. The two join smoothly at B = %,
where 3 —4mr _y =0 =3-4mrq .
To obtain the SO(2); gauge field that vanishes at

r = r(4), we choose

1

q= 6[3 - 4mr(+w+)] = Z ’ (73)

resulting in A; of the form

€]
A= 2 [’”"’(++)] (74)
Since g = % in this case, the Killing spinor # near r =
I(+4) s the same as Eq. (68), with r( _) and z replaced by

T(+.4) and —z.
— 33 ;
CaselV:s =1,m>0,B = o \/-,O<r<r< ).Wlth
B =+ 63‘/\;—, the quantity X in the four roots of W =10
reduces to
1

giving rise to a much simpler form of the r., . solution:

1
r(iliz) :E[l Z|:12j:2 \/—1 :l:l 1] (76)

In this case, there is only one real root of W = 0, given
by r = r(say) = g

However, as pointed out in Ref. [39], the z circle does not
shrink smoothly at r = r, for any value of C, due to the
function W(r = r,) having a double zero. This can also be
seen explicitly in the present work by considering Case I

with B — 5 63‘/\;— In this limit, we cannot impose the con-

dition of Eq. (64), since |C| diverges as 3 —4mr(. _y — 0.

If we set r=-—1

2n — p» the seven-dimensional metric is

3—4mrg ) (blue surface) and 3 —4mr _) (orange  approximately given by
kil g1(r) g(r)
10! 8000 30¢
6000} 25¢
8r 201
6! 4000; ::g b
4l 2000 50
: : : =r ‘ ‘ ‘ -r ‘ ‘ Lr
194 196 1.98 2.00 194 196 198 2.00 194 196 1.98 2.00
(a) f solution (b) g1 solution (c) g2 solution
FIG 5. Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = 1, m = %,
‘ ,h = and C = —1. The warp factors are all positive in the range r(; 1y = 1.93 < r <, = 2, with the two vertical red dashed

hnes representmg the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.
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m - 0.2 0.0

FIG. 7. A numerical plot of 3 — 4mr(, _ (orange surface) and
3 —4mr(, ) (blue surface), which are connected to each other
at B =383

16m/m’

FIG. 6. A numerical plot of the function 3 —4mr(, , appear-
ing in the condition of Eq. (72). The function approaches —1 as

B—0orm—0.As B — 33

16m+/m’

we find that 3 — 4mr ) — 0.

Hr) g1(r)
20! 150}
15¢ 100+
1.0 t 50
0.5}

33/5 dR? 4 64C*m*dz*
2 ~ 2
5N g ) e | R

(77)

as R — +oo. On the other hand, for r —» 0, we find
the seven-dimensional metric given in Eq. (62) as in
Case L.

Case V: s=1, m >0, B:%, Flos) <T <+

Since rp )y =rq_y=r,= ﬁ for B = %, Case IV
and Case V are connected at r = r,.. Therefore, we will give
a representative numerical solution for these two cases
collectively in Fig. 8. For r — r, both from the left and
from the right, the behavior of the metric is given by
Eq. (77). On the other side, as r — % the metric becomes
Eq. (70), as in Case IIL

For the SO(2)y vector, we find that taking r = r, = 2>

4dm
in Eq. (60) results in the SO(2), gauge field
q
A(r,) = ———. 78
() ==L (78)

Therefore, we will set ¢ = 0 in order to make the SO(2),
gauge field vanish at r = r,.

CaseVIl:s =1,m > 0,B > 163‘/§ .0 < r <1 Thiscase
m+/m m

combines the behavior near » = 0 in Case I and the feature

near r = % in Case III. An example of the numerical

solution with m =32, B=1, h=1, and C = -1 is given
in Fig. 9.

CaseVII: s = —1,m > 0,B > 0,% <r< r(+,+).Thisis
the only case with s = —1 with a numerical solution, given

in Fig. 10. In comparison with other cases, we find that this
case is very similar to Case III with the two boundaries
interchanged. As r — L, by setting r = L + 16C*m? B*R*,

g2(r)

0.8}
0.6
04}
0.2

0.2 04 0.6 08 1.0 1.2
(a) f solution

FIG. 8.

0.2 04 0.6 0.8 1.0 1.2
(b) g1 solution

Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = 1, m =3

0.2 04 06 08 1.0 1.2

(c) g2 solution

42

B =1 h=1 and C = —1. The warp factors are positive in the ranges 0 < r < r, = 1 (Case IV)and r, = 1 < r <1 =% (Case V). The
three vertical red dashed lines represent the three boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

-3
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f(r) g1(r) g2(r)
4 8
15}
3 61
2 4} 1.0t
2,
1
0.5
" " L n L L L L r " " r
0.5 1.0 0.2 04 06 08 1.0 1.2 1.4 0.5 1.0

(a) f solution

(b) g1 solution

(c) g2 solution

FIG. 9. Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = 1, m = 3,

B=1h= %, andC = — % The warp factors are positive in the range 0 < r <

1

= %, with the two vertical red dashed lines representing

the two boundaries. (a) f solution, (b) g, solution, and (c) g, solution.

we find the seven-dimensional metric given in Eq. (70).
Thus, the seven-dimensional space-time is conformal to a
product of AdSs and a cylinder, as in Case III.

On the other side, as r — r(, ), we find the following
form of the seven-dimensional metric:

1/10

Br(+’+)

2 2
ds; = dsigs,

16h2 mr(+’+) -1
dR* + 4C*4mr(, ;) — 3]*R*d?

+ b
_4W/(”(+.+))\/”(+.+) (mr(+,+) - 1)3/2

(79)

after changing the radial coordinate to p = | /F( ) =T as
in Case III. The z circle shrinks smoothly if we impose

1
= [=1,2,3,.... 80
|C| 21 ? ’ ’3’ ( )

[4mr(; 4y — 3]

The SO(2), gauge field is given by Eq. (74), with the
constant g chosen to be

-

f(r) 94(r)

= N W Hh 01O

1
q=|Cl[dmr ) -3] = 20 (81)

Unlike all the previous cases with s = 1, only the lower
component of the Killing spinor # is nonvanishing as

F= T4

" 0
iz 2/5
n= —23/4Y062/r<i’+) ( ) ) (82)

We end this section by pointing out that in the matter-
coupled N = 2 gauged supergravity with the SO(4) gauge
group, there are three SO(2) singlet scalars corresponding
to the SO(3, 3) noncompact generators Y3, Y3,, and Ys3.
We have also looked for SO(2), symmetric solutions in
this case. However, in order to satisfy the vector field
equation [Eq. (25)], it turns out that either the SO(2),
gauge field needs to be constant, or all three-vector-
multiplet scalars must vanish. This implies that the
SO(2), symmetric AdSs x X solution can only exist in
pure N = 2 gauged supergravity.

ga(r)
4,

= N W

0.6 0.7 0.8 0.9 1.0
(a) f solution

0.6 0.7 08 0.9 1.0
(b) g1 solution

r
0.6 0.7 0.8 0.9 1.0 11

(c) g2 solution

FIG. 10. Numerical plots of the warp factors for the SO(2) symmetric solution in pure N = 2 gauged supergravity with s = —I,

1

m=2,B=1,h=4 and C = —J. The warp factors are positive in the range - = § < r < r(; ;) = 1, with the two vertical red dashed
lines representing the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.
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2. SO(2) x SO(2) symmetric solution

We now repeat the same procedure for more complicated
solutions with SO(2) x SO(2) symmetry. With the explicit
forms of A} and A given in Eq. (A60), nonvanishing
components of the dressed field strength tensors read

e_”_¢ 5
F, = 2 (a) + aye??)f2,
e_"_‘/’ 5
F, = 5 (a) —axe®)f. (83)

We can now solve Eq. (A51) and find the solution for the
SO(2) x SO(2) singlet scalar ¢ of the form

in which

K = xy/ 10240100265 + (ay — day 5 (85)
and k = £1. We have included a sign factor A = 41, —1 for
later convenience. In the present case of an SO(4) gauge
group, we can set the constant 4 = 1. In the next section, we
will consider a noncompact SO(2,2) gauge group and find
that the solution takes the same form with 4 = —1.

With the solution for ¢ given above, we can solve
Egs. (A40) and (A32), resulting in the following solutions
for f and g;:

¥ he*[(ay +Aay)g + K]
e 2 B 7 2 1)91
¢=1In 3ayh [(ar = Aay)g) + K] |, (84) f= \/E\/ (2561267 — 1) (80)
J
o = 25,600v/2h°2e%K=2(256h%e> — A7) [(ay + Aay)d; + KJP/*(6')? . (7)

[16V2h°2\/(a; + 2a,)i; + K + 4e7 [5(2560€%  47)]

We now determine the function A, defined in Eq. (A22). With all the previous results, the first equation in Eq. (A60)

becomes

A 105,40’ [K2(ay + Aay) — 2Ky (ar — Aay)? + G3(ay + Aay)(ar — Aay)?]

A 88
! KI3K® — 4K (a3 + 2ar) + 7 (a2 — 2] )
Solving this equation leads to the following solution:
A = poso 9K* = 2K?33(5a3 + 224a,ay + 5a3) + i (ay — Aa;)*
) aa,
{ (a3 +2a,(Tha; — y) + ay(a, — 22y)) tan~! (3£)
ug
X exp | —

Auy
(a7 +2a,(72a; +y) + as(a; + 24y)) tanh™" (35) %0
B Avy ' (89)

|

with an integration constant ¢ and Finding the solution for A, in the other SO(2) gauge field is
much more difficult, since with all the previous results, the
o e <2 second equation in Eq. (A60) leads to a highly complicated
w= \/4a1y +4day = Sa; - 22410, = Sa, (90) differential equation. It should also be noted that A, does
not appear in all of the BPS equations which depend only
v = \/4a1y +4layy + 5a3 +22)aya, + 543, (91) on A} and A}. In particular, we have verified that all the
BPS conditions are satisfied by the above solution without
5 > the explicit solution for A,. To make the subsequent
y= \/ ai + 14da a; + a;. (92) analysis of the solutions more traceable, we will further

Similarly, we can find the solution for ¢, as

40073 f°ATe* [K? = (ay = Aay )* ] (0')?
92=73 2 ~ ) 5 (93)
K?g,[3K* — 4K, (ay + Aay) + gi(a, — Aay)”]

simplify the ansatz for vector fields by setting
a; = —ay, = b.

(94)

In this case, we find the nonvanishing components of the
dressed field strength tensors given by
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F, = —be°sinh¢pf~> and F,=be°coshgpf. (95)

The solution found above now takes a much simpler form, with 1 = 1:

~ S
oo 1]
Fe 2v/kbhe’ o7)
o V/3(=256h%e% + P/
51,200V kbh’e® (6')? 08)
91 = ,
| (225602 + G P(32V/kbh® — /e (~256h2e% + 7)1/
2561 h2 e [32V/kbhS — \/se~ (=256 k%™ + 7)/4] (99)
92 =

Ay = c;(192h* — Ge™). (100)

It can also be verified that all of the BPS conditions and the
field equations are satisfied if
sign(c,g,0') = —1. (101)

In addition, the second equation in Eq. (A60) gives the
following differential equation:

A’2 _ 50191 (128]’12 - 9%8_56)0/
\/—256€%°h* + 7

which can be readily solved by

A2 = clgle_s"\/ —2561’12656 + g% + Ch, (103)

with an integration constant ¢,. We also have an explicit
form of the A; solution,

(102)

2
Ay = ;19202 — =50 =22,

. (104)

together with the Killing spinor

Ypeitt

= s1/8(=256h%e> + )i

VAV2(bI): + ste¥(256m2¢% + 7))
X

—\JAVE(bISY — ste~¥ (<256h2e% + )}
(105)

with Y, being a constant.

V/5(=256R%% + g3)1/4 '

[

We now turn to the regularity of the solution. From
the f solution in Eq. (97), it is immediately seen that we
have to impose the conditions —256¢°°h* + 73 > 0 and
% > (. The latter is clearly consistent with the condition
sign(kbs) = +1. As in the previous section, we define the
following parameters:

8h>\/kb )
= , =—, C = 32j,h*c,. (106
NG m 164 gihcy. (106)
The complete solution then reads
Be°
= , 107
s 16h2(—e> + m?)!/4 (107)
B 25Be% (o')?
I 100412 (=% + m)2[B — e (=& + m2) V]’
(108)
CZeﬁB_e—Sa _e50_|_m2 1/4
92 = | 2 55 2\1/4 ) }’ (109)
4h*(—e>° + m*)
A= CB—dmeSTy g, (110)
' 8mh ’
Ce™° 5 5
Ay = o V=€ +m* + ¢y, (111)
¢ = kcosh™ [me™7]. (112)
We will also fix the form of the ¢ solution to
L (113)
c=——Inr
5
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f(r) g4(r) r
1 80; 92(r)
10 30¢
60; 25}
9 20¢
8 40¢ 15t
7 20} 10}
6 5t
11 12 13 14 11 12 13 ro 11 12 13 14
(a) f solution (b) g1 solution (c) g2 solution
FIG. 11. Numerical plots of the warp factors for the SO(2) x SO(2) symmetric solution in SO(4) gauged supergravity with m = 1,
B=1, h= %, and C = 1. The solution is regular in the range # =1<r<r =138, with the two vertical red dashed lines

representing the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

for r > 0. This form of ¢ implies that the constant C can
only be a positive integer due to Eq. (101).

In terms of the radial coordinate, the seven-dimensional
metric can be written as

4 Br1/20
T 16h (mPr — 1)1/
—5/4 4C°W
2 r 2 2
X | dsiags, +64W(m2r— 17 dr- + B dz"|,
(114)
with
W = B — r’/*(m*r - 1)1/4, (115)

while the solutions for ¢, A;, and A, are given by

¢ = kcosh™! [m\/7], (116)
A = (€G- 4m?r) - g] (117)
"7 8mh A
A—£ (m?r—1) + (118)
2 =g/ r(m’r 5.
Finally, the Killing spinor # takes the form
' 1/80 \/\/§+r3/8(m2r— 1)f
n= Yot ———
(m*r — 1) _\/\/E—r3/8(m2r— 1)
(119)

In the present case, we find only one possible range of the
radial coordinate r that leads to a regular solution:

m # 0, B >0, — <r<ry,

— (120)

with r; determined from W(r;) = 0. The explicit form of
rq is given by

1 1 1 3 1
rlzm—l—ix/xl—l—i W_Xl‘FW}TI, (121)

in which

1 4(%)1/338/3
Cdmt (=9 4 \/3(27 + 256B*m))'/3
B*3(=9 + /3(27 + 256B*m®))!/3
N 18'3m? '

X

(122)

Note also that the two possibilities with m > 0 and m < 0
are equivalent. For definiteness, we will only consider the
m > 0 case. An example of numerical plots of the three
warp factors form =1, B=1, h = %, and C =1 is given
in Fig. 11.

The result is very similar to Case VII in the previous
section. As r — le, the seven-dimensional metric becomes
conformal to a product of AdSs and a cylinder. With the
new radial coordinate R given by r = -1 + 256C*m*B*R®,
the metric near R = 0 is given by Eq. (70). On the other
side, as r — r;, the seven-dimensional metric is approx-
imately given by

Bl
16h%(m?r; — 1)1/4
dR? +4C?[3 — 4m?r |’ R?dz?
—16W’(r1)r?/4(m2r1 — 1)7/4 ,

ds? ~

X |dsigs, (123)

in which R is the new radial coordinate, defined by
R = \/ri — 7. The z circle shrinks smoothly, giving rise
to an R?/Z, orbifold at r = r, if we impose
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0.0

1.0

-1 3-4m?r,
-2

0.0
0.5

m

1.0

FIG. 12. A numerical plot of the function 3 — 4m?r, appearing
in the condition of Eq. (124). Note also that 3 — 4m?r; < —1 in
the regularity range of Eq. (120).

1
C=—r—s

[=1,2,3,...
21[3 — 4m?r|]

(124)

As in the previous section, the explicit form of 3 — 4m?r, is
very complicated, so we will not give it here, but only show
that this function is negative and less than —1 in the
regularity range by a numerical plot in Fig. 12.

In order for the SO(2) x SO(2) gauge fields to vanish at
r = ry, we fix the constants ¢ and ¢, to be

1
qg=—-C[3—4m’r|| = —

21
C 7 5 CB
and C2——E r1(1+m rl)——ﬁ, (125)
leading to
mC
1 E(rl_r)

and Azz%[\/r(mzr—l)—\/rl(mzrl—l)] (126)

We also note that A is well defined for all values of r, while

A, is complex for r < -1

The Killing spinor # at the end point r = r; is given by

iz 1
0= varen (). (127)

B. SO(2)
We now consider AdSs x X solutions with SO(2);,, C

SO(2) x SO(2) symmetry generated by J 212) +J 222) In this
case, the two SO(2) gauge fields are related by

diag SYmmetric solution

hAy = §1Ay, (128)

resulting in the following ansatz for the gauge fields:

Al :A1<5g +%5{3> dz. (129)

The corresponding two-form field strength is given by

Fly = A (55 + %%) dr A dz. (130)

We can also consistently set C3y =0, as in the pre-
vious cases.

Apart from the SO(2) x SO(2) singlet scalar ¢ corre-
sponding to the noncompact generator Y3, there are two
additional scalars from the SO(3,3)/SO(3) x SO(3) coset
that are invariant under SO(2);,,- These scalars correspond
to the noncompact generators

?1 = Yll +Y22 and ?2 = Y12—Y21. (131)
The coset representative then takes the form
L = elﬂlf/l PIRES e(ﬂzflz' (132)

This leads to the following nonvanishing C-functions:

3
C = —=[g, cosh ¢ — g, sinh ¢ + cosh 2¢, cosh 2¢, (G, cosh ¢ + G, sinh @)],

V2

1
C''=C% = —75@1 cosh ¢ + §, sinh ¢) sinh 2¢,

1
C12=_C2 = _ﬁ (g1 cosh ¢ + g, sinh @) cosh 2¢; sinh 2¢,,

1
C33 —
V2

[G> cosh ¢ — §; sinh ¢p — cosh 2¢; cosh 2¢, (g, cosh ¢ + g, sinh ¢)].

(133)
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The scalar vielbein is given by

¢} cosh 2¢, 7 0
Py = —¢h  @jcosh2p, O |dr, (134)
0 0 ¢
while the composite connection takes the form of
Qll) = € (¢} sinh 2¢,dr — §1Adz).  (135)

With all these, the vector field equation [Eq. (25)] gives
rise to the following equations:

/
@b = %coth 2¢, sinh4¢,, (136)
Al = _[S_f’_g_’l_g_'z+6/
2f 291 29
2(g, cosh2¢ + g, sinh 2¢0) ¢’ Al (137)
G, cosh 2¢) + g, sinh 2¢ I
A/]/ — _|:5f/_g/1_g/2_|_5/
2f 29, 29,
2(g, cosh2¢ + g, sinh 2¢) ¢’ A (138)
g1 cosh2¢) + g, sinh 2¢p v

Consistency between the last two equations for ¢’ # 0
requires

9 = £01, (139)

leading to a differential equation for the SO(2)
field:

diag gauge

5 g ¢
Al = (2L _ 2 L 5 120 | A 140
i <2f 29 29 O EM ) A 140)

The plus/minus sign arises from that in the relation
g, = £g,. From now on, we will choose §, = g, for
definiteness and find

F, =F, = be 3. (142)
Unlike the previous cases, there are additional BPS con-
ditions arising from the transformations 514 =0 and
8% = 0, resulting in

¢icosh2gp, . 1 )
0= [—1 Jor ’r ——\/Ee 3CM | (01),e”
(0/2 7 U el 2va b
+ 71—‘ —7§€ 2C (U ) h€ . (143)

We note here that the projector in Eq. (A14) implies
(144)
Therefore, with the supersymmetry parameter [Eq. (A9)],
we can rewrite the above condition as
0= L (¢ cosh 2, + igh)o’n
Vau

c

I 4 701252
-5 i) i), (145)

There are 17 BPS conditions obtained from the vanishing
of the matrices A, 5, and C derived from this BPS equation.
Two of these are given by

N

0= (¢ cosh2¢, + ig)}), (146)
Vg ! ? ?
0= —%e‘/’A’l(sinh 20, + icosh2¢, sinh2¢,).  (147)

For nonvanishing §; and A}, the second condition is
satisfied only by setting ¢; = ¢, = 0. All the remaining
conditions are also satisfied by this result.

In addition, repeating the same procedure as in the
previous sections with ¢; = ¢, = 0, we find the same set
of BPS conditions [Eqgs. (A30) to (A57)]. The resulting
SO(2)4,, Symmetric solution is then given by

diag
Al =AY = be [ 0 f 3. (141)
_ 2V2G,bhe” 148
Nonvanishing components of the dressed field strength f= \/ 2S6H2e5T — ’ (148)
tensors are given by s e’ = i)
|
204, 800v/2+/5,bh°e® (o')? (149)
g = ’
(256h2% — )2 [32ﬁ\/bh5 — e\ [s(256h%e% - g%)]
1,024 h2e° [32\@\/9119115 - e—Sff\/s(256h2e5” - é?)] (150)
9 = ’

/5256125 — 72)
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56 16h
__+1n[~ ] 151
b=+ (1s1)
2 =2 5 2q
Ay = c(12802 — ge=57) = =1 (152)
91

with the usual sign condition sign(cg;6’) = +1. The
Killing spinor is given by

Yoeiqz+%

[5(25612¢ — )

7]:

V836 + seF[2s(256h2¢ - g3

=

X
—\/ 8(g1bhd)i — se"T[25(256h%e> — 7))
(153)

It should be remarked that the half-spindle solution found
in Ref. [39] from the U(1)? truncation of the maximal
seven-dimensional gauged supergravity can also be
recovered from the above solution by the following
identification:

2 _ 8B?
o = gl, gl = 2m, b = F,
c? m
- an=Z 154
¢ 2m? 8 (154)

where A, B, m, and C are the scalar field and constants used
in Ref. [39]. In more detail, the nonvanishing gauge field in
the solution of Ref. [39] is given by

1

Al = A2 :§(A3 + A%) = A3, (155)

with A® = A3, The scalar fields are related by the following
form of the unimodular matrix:

o

o (2
N -5 [ 72 )
b.=5+ .=5+4.20)

. c
T, = dlag(—§—¢, >

(156)

with 6 = =2(4; + 4,) and ¢ = A, — 4,. In this equation, 4,
and A, are the two scalars of the U(1)? truncation of N = 4
gauged supergravity used in Ref. [39]. Therefore, in a
sense, the SO(2);,, symmetric solution found in this work
contains the solution of Ref. [39] for a special value of the
gauge coupling constant, §; = 16h. However, the present
solution preserves only eight supercharges, corresponding
to N = 1 superconformal symmetry in four dimensions.

To further analyze the solution, we introduce the
following constants, as in the previous cases:

B =2V2i2\/b,  m=-L

— 297 12
T6h C = 32§, h°c.

(157)

We will also take the solution for ¢ as given in Eq. (113).
The seven-dimensional metric reads

) B3/10 ) 372 )

ds; = d + d
RARRTTS s(l—mzr){ A T oW s (1—m2n)

16C*°W
4 16C dzz}, (158)
B
with

W =B —/sr(l —m?r). (159)

The scalar field ¢ and the SO(2)y,, gauge field are
given by

1
¢ = —Elnr—lnm and
1
A = ~3 2|C|(1 = 2m?r) 4 q], respectively. (160)

Since we have used o < 0, it follows that the constant C
must be negative due to the condition of Eq. (49). The
Killing spinor takes the form of

1/8,3/40

[s(1—m?2r)s

VB +sr4s(1 = m2r)

—\/\/E—srl/4[s(1 —m?r)]
(161)

n="Ypelt

Bi—

The behaviors of the solution are very similar to those given
in Sec. IIl A 1 and in Ref. [39]. However, the first equation
in Eq. (160) implies that  and m must be positive in order
to find a real solution for ¢. Therefore, there is no regular
solution with m < 0 as in Case II of Sec. IIl A 1. For
convenience, the remaining six possibilities with m > 0
will be combined into four different cases as follows:

(i) s = +1, 0<B<ﬁ, rG(O,r_)U(u,#),
(if) s = +1, B:ﬁ, re(O,r*)U<r*,%>,
(iii) s = +1, B>—m, re <0,%),

iv)s=-1, B>0, re (# r+>, (162)
in which
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f(r) ga(r) r
4l 7o g2(r)
1.2} 8 4
1.0t 6 3
0.8} 4 2
04 : 1

A r
" ~2 i : 1 w 3 '

1 2 3 -4 ‘ \
(a) f solution (b) g1 solution (c) g2 solution

FIG. 13.  Numerical plots of the warp factors for the SO(2);,, symmetric solution in the SO(4) gauge group in Case i with s = 1,
m =3 B=4%h=4andC = —1. All the warp factors are positive in the ranges 0 < r < r_ =0.8and r; =32 <r < # = 4, with the

four vertical red dashed lines representing the four boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

are the two roots of W =B —

B:m

with
]"+ =r_ = r* =

1+ V1 —4sB*m?

ry =

s =+1,
1
2m?

the

roots

(163)

sr(1 =m?r) =0. For

are equal,

Examples of numerical solutions for the warp factors in
these four cases are given in Figs. 13—16, respectively.

f(r)
1.5
1.0

0.5

g1(r)
8

[=2]

I

N

-

The end-point behaviors are also similar to the
SO(2) symmetric solution. As r— 0 or r — -5 the
seven-dimensional metric is conformal to a product of
AdSs and a cylinder. The explicit form of the metric in
these limits can be found in the same way as in Case I with
r — 0 and in Case III with r — -1,

The more interesting behaviors as r — ry are in Case i
and Case iv. In terms of the new radial coordinate

g2(r)
8!

Su

N

FIG. 14. Numerical plots of the warp factors for the SO(2)

2
(a) f solution

2

(b) g1 solution

3 4 1 2 3 4

(c) g2 solution

diag Symmetric solution in the SO(4) gauge group in Case ii with s = 1,

m= %, B=1h= %, and C = —1. The warp factors are positive in the ranges 0 < r < r, =2 and r, = 2 < r < 1, = 4, with the three
vertical red dashed lines representing the three boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

m>

f(r) 296 (r) ga(r)
3.5 ' 35
3.0 30
> 15 e
2.0 10 20
1.5} 15
1.0 0.5 10
0.5 5
2 3 r 1 2 3 4" 1 2 3 4 "

(a) f solution

(b) g1 solution

(c) g2 solution

FIG. 15. Numerical plots of the warp factors for the SO(2)4;,, symmetric solution in the SO(4) gauge group in Case iii with s = 1,
m= %, B=2h= %, and C = —1. The warp factors are positive in the range 0 < r < # = 4, with the two vertical red dashed lines
representing the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.
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(r) " 9x(r)
o 0.7
0.50 0.08 10
0.45 0.06 8
6

0.40 0.04
0.35 4
0.30 0.02 2

- - - - r : : . r ~r

02 04 06 08 1.0 00 02 04 06 08 1.0 02 04 06 08 1.0
(a) f solution (b) g1 solution (c) g2 solution

FIG. 16. Numerical plots of the warp factors for the SO(2)4;,, Symmetric solution in the SO(4) gauge group in Case iv with s = —1,

m=4,B=4h= %, and C = —1. The warp factors are positive in the range m% =0.0625 < r < r, = 1.03, with the two vertical red
dashed lines representing the two boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

R = ,/r —r, the seven-dimensional metric, as r — r,, is
approximately given by

N Bri/m

T 6R2\/5(1 — mPry)

dR? 4 16C*[1 — 2m?r  J*R*dz?
—4W’(ri)ri/2(1 —m?ry)3?

2
57

X a’szAdS5
(164)

The z circle shrinks smoothly near these end points r = r_.
if we impose

1 1
4L =2m*ry| 411 — 4sB>m®’

c| = 1=1,2.3,....

(165)

Unlike in the previous solutions, this condition can be
written explicitly in terms of B and m, since r takes a
much simpler form than r(, ;) and r;.

In order for the SO(2)4;,, gauge field to vanishat r = r..,
we fix the constant g such that

1
q =F 2[C||1 - 2m*r.| ::FZ and A} =——(r—ru),

which gives rise to the Killing spinor # at r = r;. of the
form

(167)

iz s + 1
n= 2_3/8Yoe$ﬂri/5< : )
s —

Finally, it should be pointed out that if B = ﬁ we find that

|C| diverges due to V'1 — 4B?m?* = 0. This implies that the

z circle does not shrink smoothly at r = r, = 2—;12 in Case ii

as in Cases IV and V of the SO(2), symmetric solution.

As r — r,, the seven-dimensional metric is approximately
given by

1 dR? + 64C*m*dz?
ds? v ————————— [2dsis. + ha A
32(24/5)h2m8/5 5 R2
(168)
with the new radial coordinate R given by r = 2~ — % and

R — +oc0. In order for the SO(2);,, gauge field to vanish at
r = r,, we have to set ¢ = 0 resulting in the z-independent
Killing spinor as in Case IV and Case V of the pure
supergravity solution.

IV. SO(2.2) GAUGE GROUP

In this section, we consider N = 2 gauged supergravity
with the noncompact SO(2,2)~SO(2,1) x SO(2,1)
gauge group. The embedding of this gauge group in
SO(3, n) requires at least n = 3 vector multiplets. We will
work with the minimal number of n = 3 and choose the
following SO(2,2) structure constants:

Tk = (91€55 —0a€rsi)- (169)

Indices i,j,...=1, 2, 6 and 7,5,... =3, 4, 5 are two

sets of SO(2,1) indices raised and lowered by ;7 =
diag(—1,—1,1) and #5;5 = diag(—1,1,1), respectively.
Moreover, §; and §, are coupling constants for the
two SO(2,1) subgroups, respectively, generated by the

generators

T) =Y, T, =-Ys, T = J(l]2)’ (170)

2
Ty =33, Ty=TYs, Ts=-Y3. (171)

These satisfy SO(2,1) x SO(2,1) algebra:
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[T7.T5] = &5 Tt

ij [T;,T5) = &:5'T;, (T3, T5] = 0.

(172)

The compact SO(2) x SO(2) subgroup is generated by T3
and T. In this case, T generates the SO(2), subgroup of
the SO(3), R symmetry, while T3 generates the other
SO(2) in the SO(3) symmetry of the vector multiplets. We
now repeat the same procedure of finding AdSs x X
solutions as in the previous section. Unlike the SO(4)
gauge group, this gauged supergravity does not admit any
supersymmetric AdS; vacua. The maximally supersym-
metric vacua are given by half-supersymmetric domain
walls dual to nonconformal N = (1, 0) field theories in six
dimensions [53]. In this case, AdSs x £ solutions would
describe conformal fixed points in four dimensions of six-
dimensional N = (1,0) field theories on a half-spindle.

A. SO(2) x SO(2) symmetric solution

As in Sec. III, supersymmetric AdSs x X solutions pre-
serving SO(2)x SO(2) c SO(2,1)xS0(2,1)~S0(2,2)
can be found by using the same metric ansatz
[Eq. (33)], SO(2) x SO(2) gauge fields [Eq. (37)], and
SO(2) x SO(2) singlet scalar ¢ corresponding to the
noncompact generator Y33. As in the SO(4) gauge group,

we can consistently set C(3) = 0 due to F fz) AF fz) =0.

With the coset representative [Eq. (39)], the scalar
vielbein is still given by Eq. (41). However, the composite
connection for SO(2), is now given by
|

51,200V bR0e% (')

QE’I | = AP dz. (173)
The C-functions take the form of
C=-3V2g sinhgp,  C" =25, coshpsiss. (174)

By the same analysis, we can derive a similar set of BPS
equations with A; and A, interchanged. General solutions
for ¢, f, g1, A,, and g, are given in Egs. (84), (86), (87),
(89), and (93), respectively, with A = —1. As in the case of
the SO(4) gauge group, we are not able to determine an
analytic solution for the second SO(2) gauge field in this
case given by A;. Therefore, to explicitly write down a
complete solution and discuss some properties of the
solution, we further simplify the BPS equations by choos-
ing a; = —a, = b as in the SO(4) case. It should be noted
here that setting a; = a, = b is also possible in this case
but does not lead to any new solutions.

Repeating the same analysis as in the SO(4) case, we can
eventually solve all the BPS conditions and find the
SO(2) x SO(2) symmetric solution:

~ S
¢ = sinh™! {ﬁ}

oh (175)

e 2v/bhe’
V/s(256h%e> + g3)1+

(176)

a1 =

(256126 + )2 [32VbRS — /567 (256%™ + ) /4)

_ 256¢Th?Gre[32Vbh — \[s5e737(256h%e> + 7)Y

(177)

92

Al = —c13,€7771/256h%e> + G 4+ c5,  (179)

2
Ay = ¢, (1922 + Pe50) = 22,

- (180)

together with the sign condition sign(cg,6’) = +1. The
explicit form of the Killing spinor is given by
Yoelss

" S1/8(25612¢% + )

VAVA) + s /e % (256h2e% + )}
X

n

’

—\JAVA(IbY - Ve F (256m2 e + )t
(181)

with Y, being a constant.

Vs(256Rn% % + 7)1/ ’

(178)

|

The analysis of the regularity of the solution proceeds as
in the previous cases. We first take the solution for the
dilaton as in Eq. (113) and introduce the following
parameters:

8h*\/b a1
B = , =, C = 325, h%c,. 182
NG m 164 g1n=cy (182)
The seven-dimensional metric reads
Brl/20
2 2
W= 16121+ ) [dsAdss
ro5/4 AW
+ dr* + dz*|, 183
caW(l + m2ryt " T ] (183)
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ga(r)
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3o 2.0
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2.6 1.0
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(a) f solution
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04 06 08 r
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FIG. 17. Numerical plots of the warp factors for the SO(2) x SO(2) symmetric solution in the SO(2,2) gauge group with m = 1,

B =1, h— ,and C = —

}—r The solution is regular in the range 0 < r < r, = 0.819, with the two vertical red dashed lines representing

the two boundanes. (a) f solution, (b) g; solution, and (c) g, solution.

with
W =B —r¥/*(1 +m?r)'/3, (184)

while the solutions for ¢, A;, and A, are given by

¢ = sinh™! [m+/7], (185)
ICl
A = r(1 4+ m?r) + c,, (186)
2h
1
Ay = ——[|C|(4m? —q. 187
2= =g llCl@mr £3) gl (187)
The Killing spinor 7 takes the form
3/8 2.0\1
' 1780 \/\/E—l—r (1 + m?r)s
n=Yoe 4¢
(1+mr16 \/\/—_'3/8 +mr)8
(188)
It should be noted that since we have chosen sign(c) = —1,
we need to impose the condition sign(c;g;) = —1, result-

ing in sign(C) = —1.
There is only one possible range for the radial coordinate
r in order to obtain a regular solution:

m#0, B >0, 0<r<r,, (189)

where r, is determined from W(r,) =0 as

11 1 /3 1
rQZ—W—E\/X—Z—l—E M_X2+m’ (190)

1 4(2/3)"/3B%/3
4m* (/81 + 768B*m® — 9)1/3

B*3(V/81 4 768B*m® — 9)1/3
* 183 m? '

(191)

There are two possibilities with m >0 and m < 0.
However, these are related to each other by a sign change
in the ¢ solution. In the following, we will choose m > 0
for definiteness. An example of numerical plots for the
three warp factors is given in Fig. 17.

This is very similar to Case Il in Sec. Il A 1. As r — 0,
the seven-dimensional metric is again conformal to a
product of AdSs and a cylinder. With the new radial
coordinate R = r¥/%, the metric near R = 0 is given in
Eq. (62). As r — r,, the seven-dimensional metric is
approximately given by

o Brl/zo e
TR T612(1 + miry) /% | AdSs

dR? +4C*[3 + 4m*ry|*R*dz?
—16W'(r2)r3* (1 4 m?r) /%

] (192)

with the coordinate R defined by R = ,/r, — . The z circle
shrinks smoothly, giving rise to an R?/Z; orbifold at r = r,
after imposing the condition

1
C=e . [=1,2.3,...

) 193
213 4 4m?r,] (193)

Since the explicit form of 3+ 4m?r, derived from
Eq. (190) is rather complicated, we only numerically show
that this function is always greater than 3 in the regularity

range in Fig. 18.
Fixing the constants

q |C|[3+ m r2] 21’

S v g <}

we obtain the SO(2) x SO(2) gauge fields

(194)
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0.0 m

FIG. 18. A numerical plot of the function 3 + 4m?r, appearing
in the condition of Eq. (193).

A = g [\/r(l +m?r) — \/r2(1 + m2r2)} ,

B. SO(2)4;,y symmetric solution

To find solutions preserving SO(2);;,, Symmetry gen-
erated by T3 + T in SO(2,2) gauge group, we use the
following ansatz for vector fields:

Al = A, (% S+ 5g> dz. (197)

There are three SO(2)

compact generators Y55 together with ¥, and ¥, given in
Eq. (131). As in the SO(4) gauge group, solving the vector
field equations [Eq. (25)] requires §, = £7,. We again
choose g, = §;, giving rise to nonvanishing components of
the dressed field strength tensors in Eq. (142).

Repeating the same procedure as in Sec. III B, we can
solve all the BPS conditions and find the solution

diag Singlets corresponding to non-

~2h
m|C|
A, = -r), 195 5 16h
2= (ra =) (195) ¢:76+1n [_a], @1 =0, =0, (198)
which vanish at r = r,. The Killing spinor at the end point
r = ry is explicitly given by
2v/2\/=G,Dhe°
1 =- : (199)
n=V2Yqeiry? <o>‘ (196) \/s(256h2e5" +7)
|
204, 800v/2+/ =g, bh°e% (6')? (200)
g1 = s
(256h2¢% + 72)? [32ﬁ —Gibh° + ¢\ [5(25612¢ + g%)]
1,024c2h2e" [32\/5 “Gbh + e‘s"\/ 5(256h2e% + g%)]
\/3(2562¢% + )
[
o sov 29 _2V2h/=gibh _ 4  amx 12
A2:c(128h2+g%35)—a, (202) B__T’ m=1on. C=32g 0
(204)

together with the Killing spinor

Y, elazts

[25(256h2e% + )]s

V/B(=anbI ) + e ¥ [25(25612% + )
X

]1:

—\/B(=g1bh) — e F[25(256026% + )}
(203)

and the sign condition sign(cg;6’) = +1. We also note that

the ¢ solution in Eq. (198) requires 1;—” < 0. Defining the

1
parameters

and using the solution for ¢ from Eq. (113), we find the
seven-dimensional metric given by

7-3/2

2 2
dSags, + 16W (1 1 m2r)2 dr

Br3/]0

ds%z—[
16h2V1 + m*r
16C°W
+ 3 dz},

(205)
with

W =B —\/r(1 +m?r).

(206)
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f(r)

P
0.15/ .5
0.10/ 1.0
0.05 08
01 02 03 04 05 06 -05

(a) f solution

FIG. 19. Numerical plots of the warp factors for the SO(2)

. 0.
01 02 03 04 05 06

(b) g1 solution

01 02 03 04 05 06"
(c) g2 solution

diag SYmmetric solution in the SO(2,2) gauge group with m = -1, B = 1,

h = % and C = —1. The solution is regular in the range 0 < r < r; = 0.618, with the two vertical red dashed lines representing the two

boundaries. (a) f solution, (b) g; solution, and (c) g, solution.

The scalar ¢, and the gauge field can be written as

1
¢y = —Elnr —In[-m| and

__ 1 2
A, = - 2|C|(1 4+ 2m=r) + q]. (207)

Furthermore, since we have chosen ¢ < 0, the constant C
must be negative. Finally, the Killing spinor reads

VB +[r(1 + mnf
VB = [r(1 + w2}

_— 91/8,3/40
n=rope

(1+m? r)é
(208)

As in the SO(2) x SO(2) symmetric solution, there is
only one possible range of the radial coordinate  in order to
obtain regular solutions. This is given by

=1+ VI+4Bm?

2 tl

(209)

m<0, B>0, 0<r<r;, nr;

2m

with r; determined from W(r;) =0. An example of
numerical plots for the three warp factors is given
in Fig. 19.

As r — 0, the seven-dimensional metric becomes a
conformal rescaling of a product between AdSs; and a
cylinder, as in Case I of the SO(4) gauge group. As r — r3,
the metric is approximately given by

B30
dssm——— 3 [dsids
16]’12\/ 1 + m2r3 s
dR? + 16C*[1 4 2m*r3)*R*dz?
AW ()3 (1 )

}, (210)

with the new radial coordinate R defined by R = /r3 — 1.

The z circle shrinks smoothly, giving rise to an R?/Z,;
orbifold at r = r3 for

1 1
Cl = = , 1=1,2,3,....
€l 4l[1 +2m*r3] 411 + 4B*m?
(211)
With the constant g chosen to be
5 1
g = =2|C|[1 +2m rz}:—z—l, (212)
the SO(2)4;,, gauge field takes the form
m|C
A2 = 2|h|(r3—r) (213)

The Killing spinor at the end point » = r, is given by

s/
n= 25/8Y0ez—fr§/5<0>. (214)

V. 50(3.1) GAUGE GROUP

In this section, we consider the noncompact SO(3,1)
gauge group, which can also be embedded in SO(3, 3). The
gauge structure constants are chosen to be

fx = =9(€ijes €rsi) r.s,...=12.3, (215)

with a coupling constant §. The SO(3, 1) generators can be
written as 7; = (T;, T,), with the explicit form in terms of
SO(3,3) generators given by

066010-23



PARINYA KARNDUMRI and PATHARADANAI NUCHINO

PHYS. REV. D 105, 066010 (2022)

1 2 1 2 1 2
Tl:J(23)_J(23)v T22J51>+ng)’ T3:J<12)—J§2),
T\ =Yn+Ysy, Ty=Y;3-Yy, T3=-Y,-Y,,

(216)

satisfying SO(3, 1) algebra:

A

[Ti’ Tj] = Eijkav [Ti, Tr] =&, T,

The T;’s are compact generators of the maximal compact
subgroup SO(3) € SO(3, 1), while T,’s are noncompact
generators.

We now look for supersymmetric AdSs x X solutions
preserving SO(2) € SO(3) symmetry by using the same
analysis as in the previous two gauge groups. The metric is
still given by Eq. (33), and the nonvanishing SO(2) gauge
field takes the form of

(218)

There are three SO(2) singlet scalars, corresponding to the
noncompact generators

Y\ =YYy, Y=Yy Ys=Y,p+Yy, (219
and the coset representative is given by
L = et1V1ph2V2 p3Ys (220)

With all these, the vector field equation [Eq. (25)] gives
rise to

/
P, = % tanh 2¢, sinh 4¢5, (221)

5 / / /
A = - % - 2%1 - 29—;2 + 0’ + 2¢} tanh 244 AL (222)
1

An:_r_f”_i_g_’z

+ 6 +2¢) coth2¢}A’. 223
2f 29, 29, 2 ? (223)

Consistency between Eqs. (222) and (223) requires ¢, = 0
for A’ # 0. We will write the constant ¢, as c. This leads to
a single differential equation for A:

5 ! / /
A”:_[i_ﬂ_ﬂ_,_o-/]/" (224)
2f 291 29
with the solution
A" = be "\ /gignf (225)

for an integration constant b. The dressed field strength
tensors are now given by

F, = bcoshce™f3 and F, = bsinhce™f3. (226)

In this case, nonvanishing conponenets of the C-functions
read

C = —3V/2§(cosh ¢ — sinh ¢ sinh 2¢; cosh 2¢5),
C!' = —C2 = —\/2gsinh ¢ cosh 2¢),,
C'2 = 2! = —\/2§sinh ¢ sinh 2¢; sinh 2¢;,

C3 = \/2j(sinh ¢ — cosh ¢ sinh 2¢; cosh 2¢5). (227)

The scalar vielbein and the SO(2) composite connection
are given by

@', cosh 2¢h3 A 0
Py = ¢ —¢ cosh2gpy O |ar (228)
0 0 0
and
0f} = & (¢) sinh 2¢sdr — gAdz).  (229)

(1)

With the supersymmetry parameter [Eq. (A9)] subject to
the projector [Eq. (A14)], the supersymmetry transforma-
tions 514! = 0 and 61“> = 0 give the same BPS condition,
while 5143 = 0 gives another equation. These equations
take the form

0 = gsinh ce~%[cosh 2¢); + i sinh 2¢; sinh 2¢b5](ic?n)

1
+ —— ¢ cosh2¢5 — igps|on, 230
\/gT[ I 3 — i3] (230)
0 = ge~3[sinh ¢ — cosh ¢ sinh 2¢; cosh 2¢5]n
— efbe sinh cf 767y (231)

Solving these conditions gives ¢; = 0, ¢ = 0, and ¢} = 0.
Since the constant ¢; does not appear in other equations,
we can simply set ¢p; = 0 without losing any generality.
However, with ¢ = ¢, = ¢p; = 0, all matter fields from
the vector multiplets vanish. The resulting solution turns
out to be the same as the SO(2); symmetric solution
given in pure N =2 gauged supergravity discussed in
Sec. IIT A 1.

VI. CONCLUSIONS

We have found supersymmetric AdS5 x X solutions in
which X is a topological disk with a nontrivial U(1)
holonomy at the boundary or a half-spindle from matter-
coupled N = 2 gauged supergravity in seven dimensions
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with SO(4) and SO(2,2) gauge groups. These solutions
preserve eight supercharges and SO(2)g, SO(2) x SO(2),
and SO(2);,, symmetries. These solutions represent a new
class of supersymmetric solutions of N = 2 gauged super-
gravity in seven dimensions and might be useful in holo-
graphic studies. We have also extensively discussed various
possible ranges of the radial coordinate in which the
resulting solutions are regular. The SO(2)r symmetric
solution requires the vanishing of all fields from the vector
multiplets and can be considered as a solution of pure N =
2 gauged supergravity with the SO(3) gauge group.

For the SO(3,1) gauge group, we have found only
solutions with SO(2), C SO(3), symmetry. Furthermore,
we have also considered other possible gauge groups—
namely the SL(3,R), SO(2,1),and SO(2,2) x SO(2,1) ~
SO(2,1) x §O(2,1) x SO(2,1) gauge groups. However,
all of these gauge groups do not lead to AdSs x X solutions
with nonvanishing fields from vector multiplets. On the
other hand, these gauge groups do admit a solution with
SO(2), symmetry which appears to be a universal solution
to all gauge groups.

Similar to the result of Ref. [35], the solutions should be
dual to N =1 SCFTs in four dimensions obtained from
compactifications on a half-spindle of six-dimensional N =
(1,0) SCFTs in the case of the SO(4) gauge group or N =
(1,0) nonconformal field theory in the case of the SO(2, 2)
gauge group. Solutions of pure N = 2 and SO(4) gauged
supergravity with equal SO(3) coupling constants, §; = ,,
can be embedded in eleven-dimensional supergravity via
consistent truncations constructed in Refs. [57,58]. In this
case, the uplifted solutions would describe M5-branes
wrapped on a half-spindle as in Ref. [35], but the brane
configurations preserve only % of the maximal supersym-
metry rather than 1. For the SO(2,2) gauge group, an
embedding in ten-dimensional type-I or heterotic theories
via a truncation on a hyperbolic space H>? might be
obtained by extending the result of Ref. [66] to SO(2,2)
gauged supergravity with a nonvanishing topological mass
for the three-form field. In this case, the uplifted solutions
would describe D5-branes or NS5-branes wrapped on half-
spindles.

It would be interesting to explicitly identify the four-
dimensional N = 1 SCFTs that are dual to the supergravity
solutions found in this paper. Uplifting the solutions in the
SO(2,2) gauge group and in the SO(4) gauge group with
different SO(3) coupling constants to ten or eleven dimen-
sions is of particular interest in the holographic context and
could lead to new configurations of D5-/NS5-branes or
MS5-branes wrapped on half-spindles. This could be done
along the lines of Ref. [67], in which the embedding of
maximal N =4 gauged supergravity with various gauge
groups has been given by using SL(5) exceptional field
theory. In the present case of half-maximal gauged super-
gravity, the results on SO(3,n) double field theory and
nongeometric fluxes in Refs. [56,68—70] would be very

useful. We hope to come back to these issues in
future works.
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APPENDIX: DERIVATION OF BPS EQUATIONS
IN THE SO(4) GAUGE GROUP

In this Appendix, we analyze first-order BPS conditions
derived from fermionic supersymmetry transformations.
We begin with the first condition, dyj; = 0, along the m, p,
r, and z directions. These are given, respectively, by

1 A f )
0=20,,¢" ———=I,IPe" + IMe?
v 2f\/_
2 o 4 o PN
- [% e2C + ghez"] e+ % &F (6?), I, I7%eb,
(A1)
f V2 . 4
=20, [Met — |==e75C he?’
,€° +2f\/_ e 30 e +5
i z a [
+§eZF1(G3) pU, I %€l (A2)
2
0= 20,9 ﬁ[%e zC+5h 2ﬂ]rr a
4i .
- 5 VEeR ()T (A3)
0= 20.e0——L et 4 g4, (%),
29192
2 4
0 [% e2C+ - 3 hez"] e
4i g 3\a T b
5 VI (), e (A4
The next condition, dy* = 0, yields
o 2 16
0=-— et + V2 e 5C — —he* | et
2\/_ 30 ¢ 5
—gezF,( 03), [P 2eb, (A5)

From the supersymmetry transformation of the gaugini,
only 6A%3 = 0 gives rise to nontrivial conditions, given by
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1 PRI
(63)4, el — —e73C33(63)4e? + iefF, 7 e,
V2
(A6)

In these equations, for convenience, we have introduced the
notations F; and F, for nonvanishing components of the
dressed field strength tensors via

Fi, =L,'Fl,, =F 8" At and

B

@
()

( )

() N3

F, =L,/F (A7)

Explicitly, in the case of SO(2) x SO(2) symmetric sol-
utions, these are given by

1
F, = A" cosh ¢ + A, sinh¢p) and
1 o (A} 2 )
1
F, = A’ sinh ¢ + A, cosh ¢ A8
2= —( )- (A8)

To solve the resulting BPS equations, we follow Ref. [39]
and use the supersymmetry parameters of the form

e =n'9 Q. (A9)

Here, n“ signifies two components of a constant object in
the doublet representation of SO(3),, while 7 is a two-
component spinor depending on the r and z coordinates.
On the other hand, 9 is a four-component Killing spinor on
AdSs, satisfying

VadSsg = %y&& (A10)

where @ = (/1,p) = 0, 1, ..., 4 is a flat space-time index on
AdSs, s = £1 is an arbitrary sign, and y, are five-dimen-
sional 4 x 4 gamma matrices satisfying the Clifford algebra

{rasvp} = 2n4p Nap = diag(— +++ +). (A1)

In terms of y,, we further decompose the seven-dimen-
sional gamma matrices as

I,=7a®0, T;=10,080¢, =1, (Al2)

in which 1, is an n x n identity matrix.

With the supersymmetry parameter in Eq. (A9), the first
two BPS equations given in Eqs. (A1) and (A2) reduce to a
single equation:

s fTer [V2
0:— ~ ﬂ a e A—
R T [30

—l—%e%F] (6%)%, Tl 2P

4
eSC+che ZH]F e

n(va9) ® {\;7’7 +5 f{/@?
[\/5

4 1,
%e‘%’—b-sh 2"] (6377)—562Fm},

(ic°n)
(A13)

in which we have expressed all the supersymmetry param-
eters in terms of two- and four-component spinors and
imposed the projector

(6®)4,n? = n?. (Al4)
By using the same procedure in the remaining conditions,

we find the following set of BPS equations on the two-
component spinor 7:

> (ic*n) — Bge—-c+ hez”] (*n)

Vi 2f\/_

1 o
——eFn,
5 exkn

0_

(A15)

0=20,n— \/_{\/—76_76’—}—4}162”}0n——\/_eZFl(m'n)

5
(A16)
. . 9%
= =2i0,n+ §1A\n— o’n
) i 2919
4
; ﬁz[ie-zc ‘1 he%] (io™n)
+ g\/g_2€%Flo'l’7’ (A17)

o \/E .. 16 1,
(A18)
= 4 oln—ie‘%C”n—e%szﬁn. (A19)
Vo V2

As in Ref. [39], we assume a definite charge under the
U(1), isometry for the two-component spinor leading to
the ansatz for 7 of the form

n(r.z) = e'q(r) (A20)
with a constant g. With this explicit form of #, it follows
that the combination (—2i0, + §,A;)n = (2¢ + §1A;)n in
Eq. (A17) is invariant under the transformations
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2
9

n— ei“l‘zn, (AZ])

where o is an arbitrary constant. It is then convenient to
define

G1A1 =2q+ 0iA (A22)
with A} = A/. With suitable left-multiplications by Pauli

matrices and additions of Eq. (A18) to Egs. (Al5) and
(A17), we find the following set of algebraic equations:

s 1 [f
0= — — | (ic’n) — 4he* 6y,  (A23)
Vbt dvatd
glAl 1 1 , :| ) 26 .3 4
0=2"14 2= — o' | (ic*n) — 4he**c°n + e2F 7,
V92 2/g1 {92

(A24)

5 / o C 20 o
0="7 oy — e‘i[ L] (ic*n) + 5F o'y,

N 3v2
(A25)
0= i03l1 _ L e2C¥(io’n) + eFyo'n.  (A26)
Vi V2

These equations are of the form MWy =0, where
x =1, 2, 3, 4 label the BPS equations in Egs. (A23)-
(A26), respectively. The four 2 x 2 matrices M) can be
parametrized by

<)1]2 +X gl +X (102)+X

MY = (A27)

Following [39], for each matrix M ), we define the two-

component vectors
@ _ X(1X) + Xéx) W XE)X) _ X:(;X)
v W (), 0
—xt 4 x§

(x) (x)
—Xo = X5
(A28)
together with
AX.V = det(y(x)|w(y)>’ BX)’ = det(v(x)“}(y))’
e — det(w) W), (A29)

The notation (a|b) denotes a 2 x 2 matrix obtained from a
juxtaposition of the two-column vectors a and b. As
pointed out in Ref. [39], the vanishing of A, B, and
CY gives a number of necessary conditions for the
existence of a nontrivial solution for #. We will separately

determine the conditions from the supergravity and vector
multiplets by splitting the index x = (¥,4) withx = 1, 2, 3.

Starting from the first matrix 4", the vanishing of the
diagonal components A** gives the following conditions:

1 1 ! 2
0=——16h%* + — [——a} : A30
f 4g, Lf ( )
1 2 A2
0=e“<F1)2+—[ﬁ—a/} _16m2ete — GA)”
4g, 19> 9
(A31)
256/2 C . 2
0= + e’ (F 2—6_”[——16he‘7} . (A3
49, (Fy) 3.2 (A32)

The vanishing of the off-diagonal symmetric components
AY + AT (x # ) yields

0=— |2 —0¢'| |22 =06'| + —=F, — 16h2e*, A33
49, [f 9 VF l (A33)

!
0 = 20he* ¢’ — ¢~ - 16he%"] [? - a} (A34)

%[_C
3v2
_20he*s’ 7% 20,65

= Ohe 6—6—2 {L—l6h ][——a’]— 9162A1F1,

(A35)

while the off-diagonal antisymmetric components A*Y —
A'¥ =0 give

s 8she*” 7 [f’ } .
0= 8he2F, — A, A36
o véi - Vg Lf ! (A36)
o / 5
0_€7|:7—0':|F1+\/7 (A37)

[f/z+4 ]F +

27, [ C
9

w— V% 13v2

Matrices B and C* are both antisymmetric in xy indices.
It turns out that the resulting BPS conditions arising from
the combinations B* £+ C* = 0 take a simpler form. The
combinations B*7 +C*Y =0 give the following condi-
tions:

- 16heﬂ/§1. (A38)

_ el [L’ B 0/} F s [gfz o"] 8§1h62"A
Nl 11— N N 1
(A39)
0 = 4he™F, + —= [i - 16he%] (A40)
Vi 13v2 ’
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53,0 C
0:% 1—1—2[%—12};@54&, (A41)
V Il

while the combinations B*Y — C*¥ = 0 lead to

2he?e {f’ g’z} ST A
0= 22 4 Ay, A42
Vo f @l Vo (A42)
2s¢€s 56/ [f' ] { C 54,]
O0=—F, —— |~—=06'| + 8he~ — 16he~ |,
Vii e 29, {f 3v2
(A43)
56 [ x| C st
0=2¢(F ) -— |2 - ’}—i—SheT[ —16he?}
(F1) 291[ ? 3\/§
(A44)

There are, in total, 15 algebraic conditions obtained from
the BPS equations of the supergravity multiplet in
Eqgs. (A23)-(A25).

Extending this procedure to the BPS equation (A26)
from vector multiplets gives additional BPS con-
ditions derived from the vanishing of A*, B*, and C™.
The first condition obtained from A* = 0 takes the form

/\2 -0
0= eome — T emp. (ads)
91 2
The symmetric part A% + A* = 0 gives
_ 32 41 33 fl /
0 = 16he¥ ¢’ —\/2C 7 (A46)
1 S0 4 33 45, e° .
_ I6he*¢! _ v2C VZ 4 I pA,  (A47)
VIt Vi V%
! ]
0= _ Jrpoc [— - 16hez} + 2¢°F,F,,
5
(A48)

while the antisymmetric part A™ — A% = 0 results in

2s¢/ |:f/ /:|
0= F , A49
RN (A49)
2e°¢ e’ [dh /] V25,C% .
0= F D_o|F, + Y94 (A50
7 T m [92 Ay (A450)

C S5¢
0= CBF —fz{—— 16heT]F ) AS1
| 35 2 (A51)

Moreover, the combinations B* +C* =0 and B™ —
C* =0 lead to the following sets of extra conditions,
respectively:

251" 4

0= Ay 4+ V2CPF, + 8he¥F,, (A52)
V9192
0 =2¢'F, — 56'F,, (A53)
2 C33
0= fjf + 8he™F, (A54)
and
¢ {f’ ] 2se3 30
0="|"—0| - "= F,—4V2he¥C3,  (A55)
a Lf Vf
¢ [, 3
0=" [2 - g'] —2¢°F,\F, — 4\2he?C3,  (A56)
91 92

C
0= 5\/§Ojcﬁ3 —4 /{____
¢3ﬁ

Finally, the BPS equation [Eq. (A16)] will be used to
determine the explicit form of #(r, 7).

We now turn to the vector fields and determine the
explicit forms of A} and A} which are relevant for solving
the BPS conditions obtained previously. With only the
SO(2) x SO(2) singlet scalar being nonvanishing, we find
that *Pé’l)f”KL,’LK,» = 0. Together with C(3 =0, the
field equation [Eq. (25)] reduces to

- 16he574} . (AS7)

50 4 9
Al = 2¢/ Al — <———1——2+a/ Al (AS8
1 2 Zf 291 292 1 ( )
5[ 9 9
Al = 2¢/A) — (———‘——2+a' Ay (AS9
2 1 2f' 291 292 2 ( )

The most general solution to these equations is given by

—0—-2¢
Ay = 2 (a; + 02€4¢)\/9192f_% and
/ e 4 -3
A, = B (al —me )\/9192 2, (A60)

where a; and a, are constants.
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