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The goal of the present paper is to calculate the complex structure moduli space Kähler potentials for
hypersurfaces in weighted projective spaces and compare with the partition functions of their mirror gauged
linear sigma models. We explicitly perform the Kähler potential computation and show that the corresponding
formula is well defined in the case of quasismooth hypersurfaces. We then construct the mirror gauged linear
sigma models with an appropriate number of Kähler parameters and discuss the interpretation of its partition
function in terms of mirror symmetry. Namely, it is shown that different contributions to the partition function
are related to various charts of the complex structure moduli space.

DOI: 10.1103/PhysRevD.105.066008

I. INTRODUCTION

The special Kähler geometry of Calabi-Yau (CY) moduli
spaces naturally emerges in the context of superstring theory
compactifications: It determines the Yukawa couplings of
the effective low-energy theory [1,2]. Because of this
connection, we will consider the case of threefolds in this
work. The moduli spaceM½X� of a given CYmanifold X is a
direct product of two distinct parts MC½X� and MK½X�,
associated with the deformations of complex and Kähler
structures of X, respectively. Their dimensions can be
expressed in terms of Hodge numbers: dim MC½X� ¼
h2;1ðXÞ and dim MK½X� ¼ h1;1ðXÞ. In string theory,
MK½X� is naturally complexified, and its geometry acquires
instanton corrections [3], while MC½X� (which is classically
complex) stays the same on the quantum level. Thus, the
geometry ofMC½X� can be computed purely from geometric
considerations. In fact, the Kähler potential KCðXÞ on
MC½X� can be expressed via the (3,0)-holomorphic form Ω:

e−KCðXÞ ¼
Z
X
Ω ∧ Ω̄: ð1:1Þ

The explicit use of this formula, which involves the compu-
tation of periods of Ω over cycles in H3ðXÞ, is rather
complicated and can be performed explicitly only in a limited
number of cases [4,5]. However, in Refs. [6–9], a new

method was developed, which is based on the connection
between H3ðXÞ and a relative homology group Hþ

5 ðC5Þ. It
works when the family of manifolds in MC is defined as the
zero locus of a homogenous polynomial in a weighted
projective space. The Kähler potential is then expressed as
a power series in deformation parameters—in the case of a
large complex structure regime, an analytic continuation is
required. We will discuss this approach in greater detail
in Sec. II.
The quantum-corrected Kähler potential on MK½X�,

which we denote KKðXÞ, can be recovered via mirror
symmetry [4]. Namely, there is a map between CY
manifolds which interchanges the moduli spaces: If Y is
a mirror to X, then MK½X� ¼ MC½Y� and MC½X� ¼ MK½Y�.
We will use two particular mirror manifold constructions:
of Batyrev [10,11] and of Berglund, Hubsch, and Krawitz
(BHK) [12,13].
Yet another way to compute KKðXÞ was conjectured in

Ref. [14]. In this paper, KKðXÞ is connected with a partition
function ZGLSMðXÞ of a gauged linear sigma model
(GLSM) whose vacuum moduli space is X:

e−KKðXÞ ¼ ZGLSMðXÞ: ð1:2Þ

The explicit formula for ZGLSM was found in Refs. [15,16];
also see Ref. [17] for the physical proof of the conjecture.We
will be mainly interested in the mirror symmetry version of
this formula. As we show in Sec. III, Batyrev’s construction
of a mirror manifold naturally yields the corresponding
sigma model. Hence, if Y is a mirror to X, we have

e−KCðXÞ ¼ ZGLSMðYÞ: ð1:3Þ
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In principle, it gives a different method to compute KCðXÞ.
The result obtained this way works for the entire moduli
space, unlike the geometric one. However, we will see that
they coincide only if the GLSM has a particular Landau-
Ginzburg phase, while in other cases the additional
contributions to the partition function can be attributed
to different charts of the moduli space MC½X�.
The rest of the paper is organized as follows. In Sec. II, we

define the class of CY manifolds we work with and their
complex structure moduli spaces. We then briefly discuss the
Kähler potential computation method and obtain an explicit
formula under some additional assumptions. Section III is
dedicated to the construction of the mirror GLSM and the
computation of its partition function. We also compare
the result with the Kähler potential and discuss the source
of the discrepancy. Besides, we investigate the possible
mirror symmetry interpretation. Some additional technical
details and particular examples are provided in appendixes.

II. GEOMETRIC COMPUTATION

A. Hypersurfaces in weighted projective spaces

Following Ref. [6], we consider the hypersurface
defined by zeros of a quasihomogeneous polynomial
WðxÞ in a weighted projective space P4

w1;…;w5
:

Wðλw1x1;…; λw5x5Þ ¼ λwWðxÞ, where w ¼ w1 þ � � � þ w5.
From a geometric point of view, WðxÞ is a section of the
anticanonical bundle OðwÞ, so its zero locus defines the
CY manifold (not necessarily smooth) [18]. Moreover,
different polynomials correspond to hypersurfaces which
are isomorphic as real but generally not as complex
manifolds. Hence, they can be regarded as different points
in complex structure moduli space. In order to do the
practical calculations we need to choose the “reference
point” W0ðxÞ:

W0ðxÞ ¼
X5
i¼1

Y5
j¼1

x
Mij

j : ð2:1Þ

We assume thatM is invertible andW0 is transverse; i.e., the
only solution of ∂iW0ðxÞ ¼ 0 is x ¼ 0. The latter condition
means that the hypersurface X0∶ W0ðxÞ ¼ 0 is quasis-
mooth; i.e., all of its singularities are those of the weighted
projective space [6]. All such polynomials were classified in
Ref. [19]; see also Ref. [20] for more practical notation.
Two polynomials describe the same manifold if they are

related via a coordinate transformation. Therefore, we can
fix the following form of WðxÞ:

WðxÞ ¼ W0ðxÞ þ
Xh
a¼1

ϕaea; ea ¼
Y5
j¼1

x
Saj
j ; ð2:2Þ

where feag span a basis in the degree w part of the Milnor
ring RðW0Þ:

RðW0Þ ¼
C½x1;…; x5�

h∂1W0;…; ∂5W0i
ð2:3Þ

and ϕa are complex deformation parameters. Its convenient
description for transverse polynomials is presented in
Ref. [20]. Note that in generic situation h ≤ h2;1 (see
Ref. [21], for example), so in this way we can describe
only some subspace of the actual moduli space. Hence, our
computations will, in fact, be restricted to this subspace.
We also can slightly generalize this construction by taking

an additional quotient by a finite group G with diagonal
action [i.e., xi ↦ ωixi for ω ¼ ðω1;…;ω5Þ ∈ G]. This
action should preserve W0ðxÞ and the holomorphic form
Ω0 on W0ðxÞ ¼ 0, which can be expressed as follows [6]:

Ω0 ¼ ResW0ðxÞ¼0

x5dx1 ∧ � � � ∧ dx4
W0ðxÞ

: ð2:4Þ

Thus, we find that the monomial x1x2x3x4x5 should be
invariant. Note that it is also of degree w, and, in most cases,
it belongs toRðW0Þ (if, for instance, the highest degrees of xi
in W0 are greater than 2, we will consider only such cases).
So there is always at least one deformation of the form
e1 ¼ x1x2x3x4x5. Of course, after taking the quotient by G,
all other deformations should be G invariant as well.
It is also convenient to consider the transposed poly-

nomial

WT
0 ðxÞ ¼

X5
i¼1

Y5
j¼1

x
Mji

j ; ð2:5Þ

i.e., the one given by MT instead of M. It is quasihomoge-
neous with respect to a different set of weights fw̃ig and has
a degree w̃ ¼ P

5
i¼1 w̃i (we assume that they are positive

integers with minimal possible values). Its zero locus defines
a hypersurface in P4

w̃1;…;w̃5
which (or its quotient by a finite

group) is, in fact, the mirror of X0 according to the BHK
construction [12]. We will return to this fact later in Sec. III;
for now, we will use w̃i to simplify some formulas.

B. Kähler potential formula

The method of Kähler potential computation in Ref. [6]
is based on using specific relative cohomology of C5.
Namely, we define the following differential:

D− ¼ d − dW0 ∧; D2
− ¼ 0; ð2:6Þ

and consider the respective cohomology group H5
D−
ðC5Þ

which is isomorphic to RðW0Þ. It is dual to the relative
homology group Hþ

5 ðC5Þ ¼ H5ðC5;ReW0 → þ∞Þ (so we
allow the cycles to have end points at infinity with
ReW0 ¼ þ∞), the corresponding pairing is as follows:
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hQ;fi¼
Z
Q
fe−W0 ; f∈H5

D−
ðC5Þ; Q∈Hþ

5 ðC5Þ: ð2:7Þ

It is straightforward to see that the integral converges and
vanishes for D−-exact forms.
Next, we consider the subgroupH5 ofH5

D−
ðC5Þ invariant

under G ¼ Zw which acts as follows:

xi↦ωwixi; ω¼ exp
�
2πik
w

�
∈Zw; k∈Z: ð2:8Þ

In the case of an additional quotient by G, we should use
G ¼ Zw ⊕ G. The convenient basis is feαd5xg, where
feαg are G-invariant monomials in the basis of RðW0Þ,
α ¼ 0;…; 2hþ 1. It has a natural grading corresponding
to the degree of monomials (under xi → λwixi) divided by
w. The only element of degree 0 is e0 ¼ 1; there is also
only one element of degree 3: e2hþ1 ∼ detð∂i∂jW0Þ.
It is, however, more convenient to use the following
representation:

e2hþ1 ¼
Y5
i;j¼1

x
Mij−2
j : ð2:9Þ

The degree 1 elements are essentially ea, and ehþa ¼ e2hþ1

ea
are elements of degree 2. One can also define the
following pairing:

ηðf;gÞ¼ resx¼0

fgd5xQ
5
i¼1∂iW0

; fd5x; gd5x∈H5: ð2:10Þ

In our basis it is antidiagonal: ηαβ ¼ ηðeα; eβÞ ∼ δα;2hþ1−β.
In fact, there is an injective mapH5 → H3ðX0∶ W0ðxÞ ¼ 0Þ
such that the grading corresponds to Hodge decomposition
and η to Poincaré pairing (up to a sign). Of course, it is an
isomorphism when h ¼ h2;1 [7].
The homology group H5 dual to H5 can be defined as a

quotient ofHþ
5 ðC5Þ by its subgroup orthogonal toH5. Then

it is convenient to define the dual basis of cycles fΓαg:
Z
Γα

eβe−W0d5x ¼ δαβ: ð2:11Þ

These cycles are not geometric: For instance, if fQαg is
some basis of geometric cycles, we find

Qα ¼ TαβΓβ; Tαβ ¼
Z
Qα

eβe−W0d5x: ð2:12Þ

As we will see in the next subsection, matrix elements Tαβ

are essentially complex. Also, the fact that Qα are geo-
metric means that they are real, so the complex-conjugated
cycles are as follows:

Γ̄α ¼ T̄−1
αγ TγβΓβ: ð2:13Þ

It means thatMαβ ¼ T−1
αβ T̄βγ is a real structure matrix; also,

it does not depend on the choice of the real cycles Qα.
The main result of Refs. [6–9] is the following formula:

e−KCðXÞ ¼
X2hþ1

α;β;γ¼0

ð−1ÞjγjσαðϕÞηαβMβγσ̄γðϕ̄Þ: ð2:14Þ

Here, jαj is a degree of eα divided by w, X is a zero locus of
(2.2) in P4

w1;…;w5
, and σα are periods over cycles Γα:

σα ¼
Z
Γα

e−Wd5x: ð2:15Þ

As the exponential Kähler potential itself is defined up
to multiplication by (locally) holomorphic and antiholo-
morphic functions, we can forget about the constant in ηαβ
and consider ηαβ ¼ δα;2hþ1−β. This formula was used in
Refs. [6–8,22,23] to compute e−KCðXÞ in cases of particular
polynomials. Besides, in Ref. [9], it was computed for all
Fermat polynomials (i.e., when M is diagonal). The
general formula was conjectured in Ref. [20], and in
the rest of this section we will derive it and show that it is
well defined.

C. Real structure matrix

First, let us find the real structure matrix Mαβ. To
simplify the expression, we define the following matrices:

B ¼ M−1; Ŝ∶ eα ¼
Y5
j¼1

x
Ŝαj
j : ð2:16Þ

In particular, Ŝ has the following properties:

Ŝαj ¼ Ŝ2hþ1;j − Ŝ2hþ1−α;j; Ŝ0j ¼ 0;

Ŝaj ¼ Saj; a ¼ 1;…; h: ð2:17Þ

There are also some properties attributed to the fact that W
is quasihomogeneous:

X5
j¼1

Mijwj ¼
X5
j¼1

Sajwj ¼ w;

X5
j¼1

Bij ¼
wi

w
;

X5
i¼1

Bij ¼
w̃j

w̃
: ð2:18Þ

Besides, due to Eq. (2.9), we have
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Ŝ2hþ1;j ¼
X5
i¼1

Mij− 2; Ŝ2hþ1;kBkj ¼ 1− 2
w̃j

w̃
: ð2:19Þ

In order to define the cycles fQαg, we make a change of

coordinates xi ¼
Q

5
j¼1 y

Bij

j . Its Jacobian is as follows:

JðyÞ ¼ det
∂xi
∂yj ¼ det B

Y5
i¼1

xi
yi
¼ det B

Y5
j¼1

y
w̃j=w̃−1
j : ð2:20Þ

As W0ðyÞ ¼
P

5
i¼1 yi, it is natural to assume that the cycle

Qα can be factorized into a product of one-dimensional
cycles: Qα ¼

Q
5
i¼1 Q

i
α, where Qi

α belongs to the complex
plane of yi. We also have a requirement that ReW0 → þ∞
at infinity, so the convenient choice of Qi

α is as follows: It
goes from þ∞ to 0 along the real line, turns around 0
counterclockwise Nαi times (Nαi ∈ Z), and goes back to
þ∞. This follows the construction proposed in Ref. [24].
The respective integral can be easily computed in terms of
gamma functions:

Tαβ ¼
Z
Qα

eβe−W0d5x ¼ det B
Z
Qα

Y5
j¼1

ðyŜβkBkjþw̃j=w̃−1
j e−yjÞd5y

¼ det B
Y5
j¼1

½ðe2πiNαjðŜβkBkjþw̃j=w̃Þ − 1ÞΓðŜβkBkj þ w̃j=w̃Þ�: ð2:21Þ

Note that this expression is well defined even at the poles of the gamma function, i.e., when the expression SβkBkj þ w̃j=w̃ is
a negative integer, since it has a finite limit due to the prefactor.
To proceed with calculations, we need to find the relation between T and T̄. We have

T̄αβ ¼ det B
Y5
j¼1

½ðe2πiNαjð1−ŜβkBkj−w̃j=w̃Þ − 1ÞΓðŜβkBkj þ w̃j=w̃Þ�

¼ det B
Y5
j¼1

½ðe2πiNαjðŜ2hþ1−β;kBkjþw̃j=w̃Þ − 1ÞΓðŜ2hþ1−β;kBkj þ w̃j=w̃ÞγðŜβkBkj þ w̃j=w̃Þ�

¼ Tα;2hþ1−β

Y5
j¼1

γðŜβkBkj þ w̃j=w̃Þ; ð2:22Þ

where γðxÞ ¼ ΓðxÞ
Γð1−xÞ. Here, we used the properties (2.17)

and (2.19). Hence, as T̄αβ ¼ TαγMγβ, the real structure
matrix is as follows:

Mαβ ¼ δα;2hþ1−β

Y5
j¼1

γðŜβkBkj þ w̃j=w̃Þ: ð2:23Þ

Some of the matrix elements might be singular if there is
such b that SbkBkj þ w̃j=w̃ ¼ m ∈ Z. However, as we
prove in Appendix A, transverse polynomials have the
following important property: If fnjg is a set of non-
negative integers, then the number of positive integer
elements of fnkBkj þ w̃j=w̃g is always not less than the
number of negative integer elements. In the rest of this
paper, we will refer to it as property A. It means that, in fact,
there are no singularities—the pole of the numerator is
always of not greater order than the one of the denominator.
Still, if there are such b that SbkBkj þ w̃j=w̃ ∈ Z, and,

hence,

Ŝ2hþ1−b;kBkj þ w̃j=w̃¼ 1− ðŜbkBkj þ w̃j=w̃Þ ∈ Z; ð2:24Þ

we have Tαb ¼ Tα;2hþ1−b ¼ 0 due to the same property A.
Therefore, in such cases T is degenerate, meaning that our
choice of Qα is bad. On the other hand, we can still
compute e−KCðXÞ using (2.23), and we will show that it is
well defined and, in some sense, coincides with the result
of GLSM computation. Formally, it can be explained in
terms of the following regularization procedure. We
deform W0 so that the integration measure acquires an
additional factor:

W0 → W0 − i
X
j

pj log
Y5
k¼1

x
Mjk

k ;

d5ye−W0 → d5y
Y5
j¼1

y
ipj

j e−W0 ; pj ∈ R; ð2:25Þ

hence, the integration over Qα is still well defined. Also
note that the symmetries ofW0 given by diagonal action of
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xj are preserved. The new measure simply amounts to the
shift w̃j=w̃ → w̃j=w̃þ ipj in all formulas, so (2.24) cannot
be satisfied and TαβðpÞ is nondegenerate. By simple
calculation similar to Eq. (2.22), we find

MαβðpÞ ¼ δα;2hþ1−β

Y5
j¼1

γðŜβkBkj þ w̃j=w̃þ ipjÞ: ð2:26Þ

We see that after taking the limit pj → 0 it coincides with
Mαβ from Eq. (2.23).

D. Periods and the final answer

In order to calculate the periods σα, we will use the
recursive technique proposed in Ref. [6]. First, we expand
the exponential of the deformations:

e−W ¼ e−W0

Yh
a¼1

X∞
na¼0

ð−1Þna ϕ
na
a

na!
enaa : ð2:27Þ

Then, according to Eq. (2.15) we need to calculate the
integrals of

Q
h
a¼1 e

na
a d5x over Γα with respect to the pairing

(2.7). Hence, we can treat
Q

h
a¼1 e

na
a d5x as a cohomology

class in H5—up to a D−-exact form, it should be some
linear combination of feβd5xg. Knowing the coefficients,

one can then evaluate the integral using Eq. (2.11). The
reduction to feβd5xg is most easily performed step by step.
For instance, one has the following cohomologic equiv-
alence relations [24]:

Y5
j¼1

x
bj
j d

5x ∼ ðbiBij þ w̃j=w̃ − 1Þ
Y5
k¼1

x
bk−Mjk

k d5x: ð2:28Þ

Note that if the lhs is invariant with respect to some group
G which preserves W0, the rhs is also invariant. These
relations allow one to consequently reduce the degree ofQ

5
j¼1 x

bj
j and arrive to one of the feαg monomials, and as

we just discussed such a procedure is consistent with taking
an additional quotient. So, if bj ¼ Ŝβj þ liMij, li ∈ Z for
some β, we find

IαðbÞ ¼
Z
Γα

Y5
j¼1

x
bj
j e

−W0d5x¼ δαβ
Y5
j¼1

ΓðbkBkj þ w̃j=w̃Þ
ΓðŜβkBkj þ w̃j=w̃Þ

:

ð2:29Þ

One can check this directly by calculating the integral over
Qα and using Eq. (2.12) with the explicit expression
for Tαβ:

Z
Qα

Y5
j¼1

x
bj
j e

−W0d5x ¼ det B
Y5
j¼1

½ðe2πiNαjðŜβkBkjþw̃j=w̃Þ − 1ÞΓðbkBkj þ w̃j=w̃Þ� ¼ TαβIβðbÞ: ð2:30Þ

The gamma functions in the numerator of Eq. (2.29)
might be singular. Suppose that bkBkj þ w̃j=w̃ ∈ Z for
exactly l values of j, and then the number of singular
gamma functions is not greater than l=2 due to property A.
Besides, ŜβkBkj þ w̃j=w̃ ∈ Z in such cases due to the
expression for bj. We can use Eq. (2.24):

ŜβkBkj þ w̃j=w̃ ¼ 1 − ðŜ2hþ1−β;kBkj þ w̃j=w̃Þ: ð2:31Þ

Then, by applying property A to Ŝ2hþ1−β;kBkj þ w̃j=w̃, we
find that there are at least l=2 singular gamma functions in
the denominator. Therefore, Eq. (2.29) is finite. Also, by
using property A for both sides of Eq. (2.31), one can show
that l should be even and precisely l=2 elements of
fŜ2hþ1−β;kBkj þ w̃j=w̃g are positive integers. Note that if
bkBkj þ w̃j=w̃ ∈ Z for some j, then J αðbÞ ¼ 0 despite thatQ

5
j¼1 x

bj
j d

5x corresponds to the nontrivial element
eβd5x ∈ H5. Once again it reflects the fact that our choice
of Qα is unsuitable for such cases, so the calculations
should be understood in the sense of the limit discussed at

the end of the previous subsection. We will describe it in
more detail later.
It is also important to understand when eðbÞd5x ¼Q
5
j¼1 x

bj
j d

5x is nontrivial in H5. It means that one of the
monomials from the basis, say, eα, can be replaced with
eðbÞ and the corresponding new set of dual cycles fΓβg is
well defined; i.e., M is nondegenerate and nonsingular.
Besides, we should also be able to replace e2hþ1−α with
eðb̄Þ, b̄j ¼ Ŝ2hþ1;j − bj, as it has a nontrivial pairing (2.10)
with eðbÞ:

ηðeðbÞ; eðb̄ÞÞ ¼ 1; ð2:32Þ

where we omitted the constant in η. Elements of b̄might be
negative, but in the previous subsection we discussed that
the integrals over Qβ are well defined regardless. We also
assume that we do not replace e1 or e2hþ1. Via calculations
similar to Eqs. (2.21) and (2.22) used for the new basis of
monomials, we find
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Mα;2hþ1−α ¼
Y5
j¼1

γðbkBkj þ w̃j=w̃Þ: ð2:33Þ

We will denote this expression by MðbÞ. Because of
property A, it is finite if bj ≥ 0. Hence, we assume that
eðbÞd5x is nontrivial iff MðbÞ ≠ 0. Using property A,
this condition can be reformulated as follows: The number
of integer elements of fbkBkj þ w̃j=w̃g is even, and
precisely half of them are positive. Before, we have shown
that it is satisfied for the original basis of monomials.
Now we have all of the ingredients to write the final

answer. Using Eqs. (2.14), (2.23), (2.27), and (2.29) and
omitting the constant factor in ηαβ, we find

e−KCðXÞ ¼
X2hþ1

α¼0

ð−1ÞjαjjσαðϕÞj2
Y5
j¼1

γðŜαkBkjþw̃j=w̃Þ;

σαðϕÞ¼
X∞
na¼0

ðnaSak−ŜαkÞBkj∈Z

Y5
j¼1

ΓðnaSakBkjþw̃j=w̃Þ
ΓðŜαkBkjþw̃j=w̃Þ

Yh
a¼1

ð−1Þnaϕna
a

na!
:

ð2:34Þ

This expression coincides with one of Ref. [20]. Let us also
slightly transform it. First, note that

ΣαðnÞ ¼ ð−1Þjαj
Y5
j¼1

ΓðnaSakBkj þ w̃j=w̃Þ
ΓðŜαkBkj þ w̃j=w̃Þ

Yh
a¼1

ð−1Þna

¼ ð−1Þjαj
Y5
j¼1

ΓðnaSakBkj þ w̃j=w̃ÞΓðŜαkBkj þ w̃j=w̃Þ
γðŜαkBkj þ w̃j=w̃ÞΓðŜαkBkj þ w̃j=w̃ÞΓð1 − ŜαkBkj − w̃j=w̃Þ

Yh
a¼1

ð−1Þna

¼
Y5
j¼1

sin½πðnaSakBkj þ w̃j=w̃Þ�ΓðnaSakBkj þ w̃j=w̃ÞΓðŜαkBkj þ w̃j=w̃Þ
πγðŜαkBkj þ w̃j=w̃Þ

¼
Y5
j¼1

ΓðŜαkBkj þ w̃j=w̃Þ
Γð1 − naSakBkj − w̃j=w̃ÞγðŜαkBkj þ w̃j=w̃Þ

; ð2:35Þ

and in the third equality we used that

Xh
a¼1

na − jαj ¼
X5
j¼1

ðnaSak − ŜαkÞBkj; ðnaSak − ŜαkÞBkj ∈ Z: ð2:36Þ

Now we can rewrite Eq. (2.34) as follows:

e−KCðXÞ ¼
X2hþ1

α¼0

X∞
na;na¼0

ðnaSak−ŜαkÞBkj∈Z
ðn̄aSak−ŜαkÞBkj∈Z

Σαðn̄Þ
Y5
j¼1

γðŜαkBkj þ w̃j=w̃ÞΓðnaSakBkj þ w̃j=w̃Þ
ΓðŜαkBkj þ w̃j=w̃Þ

Yh
a¼1

ð−1Þnaϕna
a ϕ̄n̄a

a

na!n̄a!

¼
X∞

na;n̄a¼0
ðna−n̄aÞSakBkj∈Z

Y5
j¼1

ΓðnaSakBkj þ w̃j=w̃Þ
Γð1 − n̄aSakBkj − w̃j=w̃Þ

Yh
a¼1

ð−1Þnaϕna
a ϕn̄a

a

na!n̄a!
: ð2:37Þ

The extension of the summation region can be explained
as follows. Consider the particular term with some n and n̄
and assume that it is nonzero; for simplicity, we denote

mjðnÞ ¼ naSakBkj þ w̃j=w̃: ð2:38Þ

In the region of summation mjðnÞ and mjðn̄Þ can be
integer only simultaneously, let l be the number of integer
elements of fmjðnÞg. So, due to property A, there are at
most l=2 singular gamma functions in the numerator of the
chosen term of Eq. (2.37), and at least l=2 of them in its

denominator—the expression is always finite. As this
term is nonzero, l is even and exactly l=2 of integer
elements of fmjðnÞg and of fmjðn̄Þg are positive. Hence,
as we have shown before, MðnSÞ ≠ 0, Mðn̄SÞ ≠ 0, and,
therefore, the corresponding monomials define nontrivial
elements of H5. It means that all of the nonzero terms of
Eq. (2.37) are present in Eq. (2.34) and the zero terms
correspond to trivial elements of H5.
The main advantage of Eq. (2.37) is that it does not

contain terms with Ŝ and summation over α, although it is
not manifestly symmetric in na and n̄a unlike Eq. (2.34).
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Besides, such a form will be much more convenient for
comparison with the GLSM computation.
Similar calculations can also be performed for the shifted

W0 (2.25). In order to find the cohomologic relations forQ
5
j¼1 x

bj
j d

5x, we can use Eq. (2.28) for
Q

5
j¼1 x

bjþipkMkj

j d5x
due to the pairing (2.7). It leads to the same shift w̃j=w̃ →

w̃j=w̃þ ipj as in the previous subsection. Besides,Q
5
j¼1 x

bj
j d

5x is always nontrivial in the case of nonzero
pj (even if it cannot be reduced to eαd5x for some α), so the
basis feαd5xg should be extended. The final result is as
follows:

e−KCðXjpÞ ¼
X∞

na;n̄a¼0
ðna−n̄aÞSakBkj∈Z

Y5
j¼1

ΓðnaSakBkj þ w̃j=w̃þ ipjÞ
Γð1 − naSakBkj − w̃j=w̃ − ipjÞ

Yh
a¼1

ð−1Þnaϕna
a ϕ̄n̄a

a

na!n̄a!
: ð2:39Þ

We use KCðXjpÞ to denote this result simply for conven-
ience: The zero locus (2.25) is not even well defined in
P4
w1;…;w5

if pj ≠ 0, so there is no connection with CYmoduli
spaces. However, Eq. (2.25) can be viewed as a super-
potential of some Landau-Ginzburg model, just as W0.

III. MIRROR SYMMETRY AND GLSM
PARTITION FUNCTION

A. Mirror GLSM

The way to construct the mirror GLSM with h of
Kähler parameters was considered in Refs. [24,25]. Let us
clarify the connection between this approach and the one
proposed by Batyrev [10]. First, we need to represent
P4
w1;…;w5

as a toric manifold defined by a fan. The one-
dimensional cones of this fan are generated by vectors of
the integral lattice vi ∈ N4, i ¼ 1;…; 5, such that
viwi ¼ 0. These vectors should generate the lattice or
its quotient by a finite group G if we consider P4

w1;…;w5
=G.

All higher-dimensional cones correspond to the faces of
the simplex formed by fvig. One can also define an
anticanonical polytope ΘX ¼ fu∶ hu; vii ≥ −1g, where
h; i is a standard scalar product. The original construction
of Ref. [10] is based on the assumption that ΘX is a lattice
polytope—then, the cones over faces of ΘX define a
mirror fan. The mirror family is represented by zeros of
sections of the corresponding anticanonical bundle.
Additionally, ΘX should be reflexive. Both of these
conditions are satisfied only if w is divisible by wi,
i.e., when there is a Fermat polynomial W0 [26]. As
we wish to consider more general cases, we need some
generalization of this construction.
In Ref. [11], it was proposed to consider the convex hull

of some of the integer points of ΘX instead and construct a
fan out of cones over its faces. In fact, such points
correspond to the quasihomogeneous monomials with
respect to fwig. The exact map is as follows:

n ↦
Y5
j¼1

x
hn;vjiþ1

j ; n ∈ N4 ∩ ΘX: ð3:1Þ

In particular, the image of the origin is e1. If we choose the
points corresponding to the monomials of W0, we obtain
precisely the fan for P4

w̃1;…;w̃5
(or its quotient by a finite

group)—it is consistent with the BHK construction.
However, we will also add the points corresponding to
ea monomials for a > 1 and subdivide the fan, assuming
that all of the chosen points generate one-dimensional
cones, not just the ones being vertices of the hull. Hence,
the toric manifold we obtain is a blowup of one corre-
sponding to the convex hull. We will see that such a method
allows one to construct a GLSM with precisely h Kähler
parameters, which in some cases is a mirror to X.
The most suitable description of toric manifolds for our

purposes is the one in terms of projective coordinates. In our
case, we have hþ 4 one-dimensional cones; hence, there
should be hþ 4 projective coordinates z1;…; z5; z7;…; zh.
The reason for such peculiar numeration will become clear
later. We also need to find the integral basis of linear relations
between the vectors generating one-dimensional cones, the
space of these relation h-dimensional. Because of Eq. (3.1),
we can useMij − 1 and Saj − 1 instead of such vectors, so it
is convenient to define the matrix Vμi, μ ¼ 1;…; hþ 5, as
follows:

Vij ¼ Mij; V5þa;j ¼ Saj: ð3:2Þ

We will encode the basis of relations into a matrix Qμa:

X
μ≠6

QμaðVμi − 1Þ ¼ 0: ð3:3Þ

As V6i ¼ S1i ¼ 1, it is equivalent to the basis of relations
of Vμi:

Q6a ¼ −
X
μ≠6

Qμa; QμaVμi ¼ 0: ð3:4Þ

The toric manifold is defined as a quotient ðChþ4 − ZÞ=C�h
[18], where the invariant set Z is defined by the higher-
dimensional cones of the fan and C�h acts as follows:
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zμ↦
Yh
a¼1

λ
Qμa
a zμ; μ¼1;…;5;7;…;hþ5; λ∈C�h: ð3:5Þ

We will denote it YB. The section of its anticanonical
bundle is a polynomial WðyÞ which has the following
transformation properties under Eq. (3.5):

W ↦
Yh
a¼1

λ

P
μ≠6

Qμa

a W: ð3:6Þ

So a representative of the mirror family is defined by
WðyÞ ¼ 0. We can use Eq. (3.1) to construct a particular
example W0:

W0ðyÞ ¼
X5
i¼1

Y
μ≠6

z
Vμi
μ : ð3:7Þ

In particular, in the chart zμ ≠ 0, μ > 6 (so we can set
these zμ to 1 using the action of C�h), which is equivalent
to the quotient of P4

w̃1;…;w̃5
by some finite group GT ,

W0ðyÞ coincides with the transposed polynomial (2.5). In
Ref. [27], it was shown that GT is the same as in BHK
construction.
Now we wish to construct a GLSM whose vacuum

moduli space is also defined by W ¼ 0 in the same toric
manifold. As we will see, in general, it will be the case only
for a particular chart. Toric manifolds arise naturally in case
of GLSM [18]: The homogeneous coordinates correspond
to the scalar fields, and the action of C�h is defined by the
charge matrix of Uð1Þh gauge group. The vacuum mani-
fold, however, is given by a critical locus of an invariant
polynomial—a superpotential of the model. So we intro-
duce a new coordinate z6 and define

ŴðyÞ ¼ z6W; ð3:8Þ

which is invariant with respect to the charge matrixQμa due
to Eqs. (3.4) and (3.6). Its critical locus Y is defined by
the system W ¼ 0, z6∂μW ¼ 0, μ ≠ 6. As

Phþ5
μ¼1 Qμa ¼ 0,

this is indeed a CY manifold.
Besides, the toric manifold YGLSM in this case is given in

terms of symplectic quotient as a solution of the following
equations:

Xhþ5

μ¼1

Qμajzμj2 ¼ ra; ra ∈ R; ð3:9Þ

considered up to Uð1Þh action:

zμ ↦ e2πiQμaβazμ; βa ∈ R: ð3:10Þ

Here, ra are Kähler parameters, and their number coincides
with the number of complex deformations considered in the

previous section. Note that the corresponding fan is defined
in five-dimensional space, as there are hþ 5 coordinates
and h relations. Hence, it is not a subdivision of the fan of
YB. The hypersurface z6 ¼ 0 defines the toric manifold
with the same one-dimensional cones as YB, as the relation
matrices coincide, but the higher-dimensional cones may
differ.
In the case of YB, it is important to have integer Qμa in

order to correctly define the action of C�h (3.5). On the
other hand, the construction of YGLSM allows us to do an
arbitrary real change of basis of relations, as Eq. (3.1) is still
well defined in this case. In fact, the most convenient
expression for Qμa is generally noninteger:

Q5þa;b ¼ −δab; Qja ¼ SakBkj: ð3:11Þ

Equations (3.9) are then as follows:

X5
j¼1

SakBkjjzjj2 − jz5þaj2 ¼ ra: ð3:12Þ

Let us return to the chart zμ ¼ 1, μ > 6, considered
previously for YB. If we assume that r1 > 0, at least one
of zj, j ¼ 1;…; 5, should be nonzero. Also note that
S1kBkj ¼ w̃j=w̃ > 0, so the equation for a ¼ 1 has sol-
utions. Hence, if in this caseW is transverse with respect to
fzjg, then ∂iW ≠ 0. Therefore, z6 ¼ 0—this hypersurface
in the considered chart is once again precisely the P4

w̃1;…;w̃5

(or its quotient) from BHK construction, and the critical
locus is defined by W ¼ 0. For simplicity, from now we
will consider the following particular superpotential:

Ŵ0 ¼ z6W0 ¼
X5
i¼1

Yhþ5

μ¼1

z
Vμi
μ : ð3:13Þ

The GLSM has multiple phases [28], which are deter-
mined by values of ra. In the previous section, we used the
small complex structure decomposition (ϕa → 0) to find
the Kähler potential. Hence, it is natural to expect that it
should correspond to the partition function in the phase
ra ≪ 0. Let us examine this phase in more detail.
First, if SakBkj ≥ 0, we have z5þa ≠ 0 ∀ a. So we can

fix z5þa ¼ 1, and what is left is the quotient ofC5 by a finite
group whose coordinates are fzig. Also, Ŵ0 ¼ WT

0 , so this
phase corresponds to a Landau-Ginzburg model with
superpotential WT

0 : The vacuum is given by critical points
of WT

0 , and so it is f0g due to transversality of WT
0 . It is

consistent with the BHK construction, and, in the next
subsection, we will see that the partition function indeed
coincides with Eq. (2.37). This is always the case
for Fermat polynomials, as Bjk ¼ 1

Mjk
δjk > 0, but in

Appendix B 1 we show that there are less trivial examples
as well.
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On the other hand, if there are b and j such that
SakBkj < 0, then z5þb might be zero, so we cannot fix
all of z5þa anymore. Thus, we have a mixed phase. The
partition function will have additional contributions con-
cerning Eq. (2.37), which can be attributed to different
charts of MC½X�.

B. The partition function

The partition function of GLSM on a sphere calculated in
Refs. [15,16] is as follows:

ZGLSMðYÞ ¼
X

Qμama∈Z

Z
C1

� � �
Z
Ch

dτ1…dτh
ð2πiÞh e4πτara−iθama

Yhþ5

μ¼1

×
ΓðQμaðτa −ma=2Þ þ qμ=2Þ

Γð1 − qμ=2 −Qμaðτa þma=2ÞÞ
: ð3:14Þ

Here, the contours fCag go upward parallel to the imagi-
nary axis. The parameters qμ are R charges of the scalars
and should be chosen in such a way that the charge of
superpotential is 2. The convenient choice is as follows:

qi ¼ 2
w̃i

w̃
; q5þa ¼ 0; a ¼ 1;…; h: ð3:15Þ

Using Eq. (3.11), one can easily check that condition on
total R charge of Ŵ is equivalent to its invariance with
respect to Q1μ. In Appendix B 2, we show that a different
choice of qμ leads to the same answer up to a product of
holomorphic and antiholomorphic functions. The Kähler
moduli space is complexified by an addition of theta
parameters θa to ra. It is also convenient to introduce
the holomorphic coordinates ζa:

ζa ¼ e−2πraþiθa : ð3:16Þ

Also, in the original papers, this formula was derived
assuming Qμa ∈ Z; in this case, the summation goes along
the standard integral lattice. We used a generalization to an
arbitrary basis of charges proposed in Ref. [25].
Now we can rewrite Eq. (3.14) using Eqs. (3.11)

and (3.15):

ZGLSMðYÞ ¼
X
ma∈Z

maSakBkj∈Z

Z
C1

� � �
Z
Ch

dτ1…dτh
ð2πiÞh

Y5
j¼1

Γððτa −ma=2ÞSakBkj þ w̃j=w̃Þ
Γð1 − w̃j=w̃ − ðτa þma=2ÞSakBkjÞ

×
Yh
a¼1

�
Γð−τa þma=2Þ

Γð1þ τa þma=2Þ
ζ−τaþma=2
a ζ̄−τa−ma=2

a

�
: ð3:17Þ

As ra ≪ 0, we can close Ca at Reτa ≫ 0, so the integral is
equal to sum of residues in poles with Reτa ≥ 0 (the overall
sign should be negative, as the contour is oriented clock-
wise). First let us assume that SakBkj ≥ 0. Gamma functions
have poles in integer nonpositive points, so suppose that

ðτa−ma=2ÞSakBkjþ w̃j=w̃¼−n; n≥0; n∈Z: ð3:18Þ

Then, we have

1 − w̃j=w̃ − ðτa þma=2ÞSakBkj

¼ 1þ n −maSakBkj

¼ 1 − 2τaSakBkj − 2w̃j=w̃: ð3:19Þ

Because of the ma summation region and τa ≥ 0, we find
that this expression is a nonpositive integer. Hence, poles of

numerators of the first five gamma functions are canceled by
respective denominators. It means that we need to consider
only poles of the following form:

−τa þma=2 ¼ −na; na ≥ 0; na ∈ Z: ð3:20Þ

It is also convenient to change the summation variable. We
define

n̄a ¼ τa þma=2 ¼ ma þ na: ð3:21Þ

As 2τa ¼ na þ n̄a, all non-negative values of n̄a satisfy
τa ≥ 0. Besides, as n̄a ∈ Z, terms with negative n̄a have
poles in denominator and, hence, do not contribute.
After calculating the residues and changing the summa-

tion variable to n̄a, we find

ZGLSMðYÞ ¼
X∞

na;n̄a¼0
ðna−n̄aÞSakBkj∈Z

Y5
j¼1

ΓðnaSakBkj þ w̃j=w̃Þ
Γð1 − naSakBkj − w̃j=w̃Þ

Yh
a¼1

ð−1Þnaζ−naa ζ−n̄aa

na!n̄a!
: ð3:22Þ
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We see that it coincides with the exponential of the Kähler
potential (2.37) if

ϕa ¼
1

ζa
: ð3:23Þ

So the conjecture of Ref. [14] is satisfied, and the mirror
map is defined by Eq. (3.23). Also, the initial expression
(3.17) allows one to analytically continue this result to the
region of large ϕa (or small ζa) and, thus, explore the large
complex structure regime by closing the contours at
Reτa ≪ 0.
Now we move to the case with some of SajBjk being

negative. Some poles of the first five gamma functions in
the numerator of Eq. (3.17) are no longer canceled, so we
have to take them into account as well. Still, the residue
sum over the same poles (3.20) as before is once again the
expression (3.22), which is well defined thanks to property
A and coincides with Eq. (2.37) if we use the mirror map.
Also note that the modification of R charges qj → qj þ
2ipj (which is formally not allowed) leads to Eq. (2.39), so
it is dual to the shift of W0 (2.25).
Now we consider the generic situation when gamma

functions with numbers μa have poles. We also change the
R charges in such a way that qμa ¼ 0. Let us denote

Q̂ab ¼ Qμab, so the poles are defined by

Q̂abðτb −mb=2Þ ¼ −na: ð3:24Þ

Similarly to the previous computation, we also define
n̄a ¼ −Q̂abðτb þmb=2Þ. However, not all integral non-
negative sets fnag and fn̄ag are possible, as

na þ n̄a ¼ −2Q̂abτb ð3:25Þ

and τb ≥ 0. It means that, unless Q̂ is nondegenerate and
the elements of Q̂−1 are all nonpositive, some of fnag and
fn̄ag cannot be realized. If we define a negative cone in Rh

as the one spanned by f−eag, where feag is a standard
basis, this condition can be reformulated. Namely, the
elements of Q̂−1 are nonpositive iff the cone spanned by
rows of Q̂ contains the negative cone. In fact, if it is not
satisfied, one can show that the corresponding residue sum
vanishes [29]. To demonstrate this property, we provide a
simple example in Appendix B 3.
Having Q̂−1

ab ≤ 0, we can do the following change of
coordinates:

τa¼−Q̂−1
ab τ̃b; ma¼−Q̂−1

abm̃b; ζa¼
Yh
b¼1

ζ̃−Q̂ba
b ; ð3:26Þ

which does not change the way we close the contours Ca.
The result of this change coincides with formula (3.14)
written in a different basis of charges, where Qμab ¼ −δab.
It has an interesting interpretation in terms of polynomial
W. Namely, such a choice of charges (or relations) means

that we consider
Q

5
j¼1 x

Vμaj

j as deformations and the sum of

the rest of the monomials as the reference polynomial W̃0.
So we define S̃aj ¼ Vμaj, compose a matrix M̃ij from the
rest of the rows of V, and consider

W̃0 ¼
X5
i¼1

Y5
j¼1

x
M̃ij

j ; W̃ ¼
X5
i¼1

Y5
j¼1

x
M̃ij

j þ
Xh
a¼1

ϕ̃a

Y5
j¼1

x
S̃aj
j :

ð3:27Þ

It defines a different chart in the complex moduli space with
the reference point W̃0 ¼ 0. This polynomial can be obtained

fromW by coordinate rescaling xj →
Q

h
a¼1 ϕ

Rja
a xj such that

the coefficients at
Q

5
j¼1 x

M̃ij

j become unity. Then ϕ̃a can be
expressed in terms of ϕa, and, as we show in Appendix B 4,
these expressions are consistent with the mirror map (3.23)
and the change (3.26):

ϕ̃a ¼
Yh
b¼1

ϕ
−Q̂−1

ba
b ¼ 1

ζ̃a
: ð3:28Þ

Thus, it is natural to assume that the GLSMwe constructed is
a mirror to a collection of charts of the complex moduli space
MCðXÞ: Each chart corresponds to a particular set of poles
(3.24). The charts themselves are defined by the condi-
tion Q̂−1

ab ≤ 0.
Note that all degrees in Eq. (3.23) here are non-negative,

so ϕ̃ → 0 when ϕ → 0. Besides, one can define the R
charges as q̃j ¼ 2

P
h
i¼1 B̃ij (we changed the order of

gamma function in the same way we changed the rows
of Vμi), where B̃ ¼ M̃−1, and obtain the formula similar to
Eq. (3.22) for a given set of poles (3.24). If we also shift
q̃j → q̃j þ 2ipj, the residue sum we consider becomes as
follows:

ZGLSMðYjfμag;pÞ ¼
X∞

na;n̄a¼0
ðna−n̄aÞS̃akB̃kj∈Z

Y5
j¼1

ΓðnaS̃akB̃kj þ q̃j þ ipjÞ
Γð1 − n̄aS̃akB̃kj − q̃j − ipjÞ

Yh
a¼1

ð−1Þna ζ̃−naa
¯̃ζ
−n̄a
a

na!n̄a!
: ð3:29Þ
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We see that it is indeed dual to the result of the geometric
computation for W̃ given by Eq. (2.39) with an appro-
priate change of parameters. The duality is established by
the mirror map (3.28). However, we are also interested in
the limit pj → 0 in order to restore the connection with
MC½X�. As W̃0 is not generally transverse, property A no
longer holds. It was essential for the existence of such a
limit, so without it some terms of Eq. (3.29) might be
singular when pj ¼ 0. They correspond to nonsimple
poles of the integrand of Eq. (3.14)—the residue sum at
pj ¼ 0 should be computed more accurately. For instance,
nonsimple poles lead to terms logarithmic in ζ̃a and,
hence, logarithmic in ϕ̃a. It means that the behavior of the
residue sum at ϕ̃a → 0 is singular. This is not surprising: If
W̃0 is not transverse, it corresponds to the singular point of
the moduli space. So it is natural to assume that the residue
sum represents the actual Kähler potential computed in the
corresponding chart of MC½X�.
Another interesting question is whether it is possible to

construct a GLSM which is a mirror just to one initial chart
of MC½X� for a generic transverse W0. It seems that the
answer is no, but there is a formal procedure which leads to
the desired result. Namely, replace SakBkj in the arguments
of gamma functions in Eq. (3.17) with some genericQja ≥ 0

(the summation region stays the same). Then only the set of
poles (3.20) has a nonzero contribution, and the complete
residue sum is just slightly modified (3.22). By subsequent
analytic continuation of Qja back to SakBkj, we restore
Eq. (3.22) and, hence, obtain e−KCðXÞ calculated in the
appropriate chart. In principle, this procedure can be used to
study the large complex structure regime as well: The
analytic continuation from non-negative Qja should be done
after the calculation of the residue sum as before.

IV. CONCLUSION

We discuss the method of computation of Kähler
potential on complex structure moduli space for CY
manifolds in weighted projective spaces. The particular
case of transverse polynomials is considered. We compute
the periods and the real structure structure matrix in a
specific basis of cycles; the general formula for the
potential is derived. We also show that the obtained
expressions are well defined thanks to the specific
property of transverse polynomials. Besides, a particular
logarithmic deformation of the original polynomial W0 is
discussed to avoid the situations when the chosen basis of
real cycles is ill defined.
Then we construct the mirror GLSM using Batyrev’s

approach to mirror symmetry. We show that, in the case of
non-negative charges Qja, it has a Landau-Ginzburg phase
consistent with the Berglund-Hubsch-Krawitz mirror con-
struction. We demonstrate that the GLSM partition function
coincides with the exponential of the Kähler potential and
allows one to define a mirror map.

Finally, we study the case of some of the charges Qja
being negative. We argue that it is a mirror to a collection of
charts of the complex moduli and show that such an
interpretation is consistent with the obtained mirror map.
The deformation of R charges is demonstrated to be dual to
the discussed logarithmic deformation of W0. Finally, a
way to obtain a mirror to only one chart via analytical
continuation from the model with positive charges is
provided. We speculate on the possibility to use this
method to investigate the large complex structure regime
as well.
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APPENDIX A: AN IMPORTANT PROPERTY OF
TRANSVERSE POLYNOMIALS

We wish to prove the following property of the transverse
polynomial W0: If fnjg is a set of non-negative integers,
then the number of positive integer elements of fnkBkj þ
w̃j=w̃g is always not less than the number of negative ones.
For simplicity, we denote Ωj ¼ nkBkj þ w̃j=w̃. According
to Ref. [13], transverse polynomials consist of the following
elementary blocks:

xa11 þ� � �þ xaKK −Fermat; xa11 x2þ xa22 x3þ �� �þ xaKK − chain;

xa11 x2þ xa22 x3þ� � �þ xaKK x1 − loop; ðA1Þ

where K ≤ 5. The matrices M and B are block diagonal, so
we can consider these blocks separately. Hence, the limits of
all summations over repeated indices in this sections are 1
and K. We will also slightly abuse the notation, denoting the
particular block by W0. The property under consideration is

obviously satisfied for Fermat blocks, as Bkj ¼ δkj
ak

≥ 0. The
cases of other two types are less trivial.
To proceed, we will need an auxiliary observation.

Namely, note that for a given l the only nontrivial elements
of the lth column of M are Ml−1;l and Mll (we identify
l ¼ −1 with l ¼ K). As

ΩjMjl ¼ nl þ 1 > 0; ðA2Þ

the following condition is satisfied:

Ωl > 0 or Ωl−1 > 0: ðA3Þ

It can be improved in the case l ¼ 1 for chain polynomials,

as for them Bj1 ¼ δj1
a1

≥ 0:
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Ω1 > 0: ðA4Þ

Another important fact is that xj ↦ e2πiBkjxj is a
symmetry of the transposed polynomial WT

0 . In particular,
it means that xj ↦ e2πiΩjxj is also its symmetry due to the
definition of w̃j=w̃ (2.18). We denote this symmetry
generator by gðΩÞ. The transposed chain and loop poly-
nomials are as follows:

WT
0;chain ¼ xa11 þ x1x

a2
2 þ � � � þ xK−1x

aK
K ;

WT
0;loop ¼ xKx

a1
1 þ x1x

a2
2 þ � � � þ xK−1x

aK
K : ðA5Þ

Now suppose that Ωm ∈ Z, and then gðΩÞ acts trivially on
xm. As gðΩÞ is a symmetry of W0, from Eq. (A5) we
inductively find that gðΩÞ acts trivially on xj for 1 ≤ j ≤ K
if W0 is a loop and for 1 ≤ j ≤ m if W0 is a chain (in this
case, we assume that the action on xmþ1 is nontrivial).
Hence, Ωj ∈ Z for corresponding j. To conclude the proof,
assume the opposite to property A.

(i) For loop polynomials, it means that there are more
than K=2 of nonpositive Ωj, 1 ≤ j ≤ K. Hence, there
should be at least two consecutive nonpositive
elements of fΩjg (Ω1 and ΩK are assumed to be
consecutive as well). It is impossible due to Eq. (A3).

(ii) For chain polynomials, it means that there are more
than m=2 of nonpositive Ωj, 2 ≤ j ≤ m; here, we
used (A4) to exclude Ω1. Again, it means that there
should be at least two consecutive nonpositive
elements of fΩjg, 2 ≤ j ≤ m, which is forbidden
by Eq. (A3).

In both cases, we obtained a contradiction; thus, the proof is
finished.

APPENDIX B: PROPERTIES OF PARTITION
FUNCTION AND RELEVANT EXAMPLES

1. Non-Fermat polynomial with non-negative
charges Qja

Consider the non-Fermat transverse polynomial

W0 ¼ x41 þ x42x1 þ x53 þ x54 þ x55 ðB1Þ

in P3;5;4;4;4 with an additional Z5 quotient defined by the
following generator:

g∶

0
BBBBBB@

x1
x2
x3
x4
x5

1
CCCCCCA

↦

0
BBBBBB@

x1
ωx2
x3
x4

ω−1x5

1
CCCCCCA
; ω¼e2πi=5: ðB2Þ

One can find that h ¼ 5 and the deformation and charge
matrices are as follows:

S¼

0
BBBBBBB@

1 1 1 1 1

0 0 2 3 0

0 0 3 2 0

1 1 0 2 1

1 1 2 0 1

1
CCCCCCCA
; SB¼ 1

5

0
BBBBBBB@

1 1 1 1 1

0 0 2 3 0

0 0 3 2 0

1 1 0 2 1

1 1 2 0 1

1
CCCCCCCA
; ðB3Þ

so the charges Qja ¼ SakBkj are all non-negative.

2. The dependence on R charges

Let us consider the arbitrary choice of R charges q̂μ.
They should satisfy q̂μVμi ¼ 2, and we already know a
particular solution (3.15) of this equation and a basis of
relations for Vμi. Hence,

q̂μ ¼ qμ þ 2Qμaχa; ðB4Þ

where qμ are defined by Eq. (3.15). Looking at Eq. (3.14),
we see that we can get rid ofQμaχa by change τa → τa − χa
(we assume that the contours Ca do not cross poles after
this change). So the partition function simply acquires a
factor

Q
h
a¼1ðζaζ̄aÞχa which does not change the Kähler

potential.

3. An example of vanishing poles

Consider the following integral:

I ¼
Z
C1

Z
C2

dτ1dτ2
ð2πiÞ2 Γð−τ1ÞΓð−τ1 − τ2Þe−r1τ1−r2τ2 ; ra > 0:

ðB5Þ

The cone spanned by vectors ð−1; 0Þ and ð−1;−1Þ clearly
does not contain the negative cone. The contours go parallel
to the imaginary axis slightly left to Reτa ¼ 0. We close Ca
at Reτa ≫ 0 and calculate the τ1 integral first:

I ¼
Z
C2

dτ2
2πi

X
n≥0

ð−1Þn Γð−n − τ2Þ
n!

e−nr1−τ2r2

þ
Z
C2

dτ2
2πi

X
k≥0

ð−1Þk Γðτ2 − kÞ
k!

e−τ2r2eτ2r1−kr1 : ðB6Þ

We numerate the poles as follows: τ2 ¼ m and in the case
of the second integral n ¼ k −m ≥ 0. So we find

I ¼
X∞
n;m¼0

ð−1Þnð−1Þnþm

n!ðnþmÞ! e−nr1−mr2

−
X∞
n;m¼0

ð−1Þnð−1Þnþm

n!ðnþmÞ! e−nr1−mr2 ¼ 0; ðB7Þ

as we expected.
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4. Change of variables

We will prove the consistency with a mirror map
inductively. Namely, consider the case

μa ¼ f6; 7;…; h − 1; 1g; ðB8Þ

i.e., when we exchange the first and last rows in Vμi. The

rescaling xj →
Q

h
a¼1 ϕ

Rja
a xj should preserve the coeffi-

cients at
Q

5
j¼1 x

Mij

j for i > 1 and transform the coefficient

ϕh at
Q

5
j¼1 x

Shj
j to unity. The matrix Rja satisfying this

requirements is as follows:

Rja ¼ BjkUka; Uja ¼ −
δj;1δa;h
ShkBk1

: ðB9Þ

Using this expression, one can easily find ϕ̃a: For a < h,
they are coefficients at the same monomials as ϕa, and ϕ̃h is

a coefficient at
Q

5
j¼1 x

M1j

j . We find

ϕ̃a ¼ ϕa

Yh
b¼1

ϕ
SajRjb

b ¼ ϕaϕ
−SakBk1=ShlBl1
h ; a < h;

ϕ̃h ¼
Yh
a¼1

ϕ
M1jRja
a ¼ ϕ−1=ShkBk1

h : ðB10Þ

The matrix Q̂ab and its inverse are as follows:

Q̂ab ¼
�−δab; a < h;

SbkBk1; a ¼ h;

Q̂−1 ¼
�−δab; a < h;

SbkBk1=ShkBk1; a ¼ h:
ðB11Þ

From these expressions, one can see that Eq. (3.23) is
satisfied. The case of a more general change can now be
proven inductively.
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