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By using the free field worldsheet realization described by Gaberdiel and Gopakumar recently, we
construct the nontrivial lowest generators of the higher spin superalgebra hs(2,2|4). They consist of cubic
terms between the bilinears of ambitwistorlike fields. We also obtain the worldsheet description for the
findings of Sezgin and Sundell twenty years ago given by the familiar oscillator construction. The first
order poles of the operator product expansions (OPEs), between the conformal weight-1 generators of Lie

superalgebra PSU(2,2

4) and the above conformal weight-3 generators of hs(2,2

4), are determined

explicitly and the additional generators appear in the worldsheet theory.

DOI: 10.1103/PhysRevD.105.066006

I. INTRODUCTION

Gaberdiel and Gopakumar have described the world-
sheet description for the AdSs x S° string theory dual to
free four dimensional A/ = 4 super Yang-Mills theory in
[1]. Their free field description is related to the ambitwistor
string theory and the finite set of generalized zero modes
(or wedge modes) in each spectrally flowed sector are
physical. Furthermore, they impose some residual gauge
constraints on the Fock space generated by these wedge
oscillators, and demonstrate the matching of the physical
spectrum of the string theory with that of free N' = 4 super
Yang-Mills theory at the planar level [2]. See also the
relevant works in [3—6] where the tensionless string theory
on AdS; x S°, in the worldsheet theory with free fields, is
studied.

At vanishing gauge coupling constant, the Lie super-
algebra PSU(2,2|4) of N'=4 super Yang-Mills theory
gets enhanced to the higher spin superalgebra hs(2,2[4).
The fundamental unitary irreducible representation of
hs(2,2]4) is the singleton with vanishing central charge
[7-10]. The symmetric tensor product of two singletons
yields the massless AdSs higher spin gauge fields. The
physical fields after gauging are organized by the “levels”
1=0,1,2,...,00 of PSU(2,2|4) multiplets [11,12]. See
also the original paper [13] used in [11]. In particular, the
level [ = 0 multiplet is the five dimensional " = 8 gauged
supergravity multiplet [14] and the hs(2,2|4) generators
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depending on the U(1) charge are classified by the levels
explicitly. See also some relevant papers on the construc-
tion of the composite operators built out of the singleton
[15-17]. Moreover, the spectrum of single trace operators
in the free A/ = 4 super Yang-Mills theory can be decom-
posed into the irreducible representations of the is(2,24)
[18]. See also [19].

As pointed out by [1,2], the worldsheet realization
provides the familiar oscillator construction [7] by consid-
ering each pair of modes of the free fields. In this paper, we
would like to determine the worldsheet realization for the
higher spin generators found in [11]. The first nontrivial
case appears when the level becomes [ = 1 and the higher
spin generators consist of the cubic terms between the
bilinears of ambitwistorlike fields in the worldsheet
approach by counting the number of oscillators [11,18].
Then the generators of PSU(2,2|4) have the conformal
weight-1 while the higher spin generators of hs(2,2|4)
have the conformal weight-3. We will obtain the complete
expressions for the higher spin generators of hs(2,2|4) for
the level / =1 by using the standard operator product
expansions (OPEs) in two dimensional conformal field
theory.'

In Sec. II, we review the free field construction of the
worldsheet theory in [1,2], express the PSU (2, 2|4) explic-
itly and the stress energy tensor is described.

In Sec. 111, we obtain the lowest higher spin generators of
hs(2,2|4) by using the free field construction with the help
of two dimensional conformal field theory.

'See Maldacena’s comment on Gopakumar’s talk in strings
2021.
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In Sec. IV, we write down the complete first order poles
from the OPEs between the generators of PSU(2,2|4) and
those of hs(2,2[4).

In Sec. V, we summarize the main results of this paper
and the future directions of related works are given.

In the Appendix, some details of the previous sections
are presented explicitly.

II. REVIEW
A. Free fields

We consider the weight—% conjugate pairs of symplectic
boson [20] fields (A% ) and (u%,A}) where a, & = 1, 2
and four weight—% complex fermions (y*, 1//2) where a = 1,
2,3,4[1,2]. The @ and « are spinor indices with respect to
two different SU(2)’s and y transforms in the fundamen-
tal representation of SU(4). Note that the conformal
dimension-} fields, (4% u) and (u%, 1)), are bosonic and
they satisfy “quasi” statistics. We will follow most of the
notations presented in [1,2].

Their nontrivial operator product expansions (OPEs) in
the left-moving sector of the worldsheet theory we are
describing are given by

2(2)pp(w) = EEmR AR
B () = s Bt
W) = B+ 1)

The abbreviated parts in (2.1) are the regular terms as usual
in two dimensional conformal field theory. By introducing
the components of ambitwistor fields [21]

Zh= (o ut ), Y= (ulh Ahwl),  (2.2)
we can rewrite the above three OPEs (2.1) as a single one
[22] alternatively

1
(z=w)

The upper and lower indices 7, J stand for a, &, and a. For
the calculations of any OPEs containing the multiple of
ambitwistor fields (2.2), it is useful to use (2.3) rather than
(2.1) and after that we can specify the indices I, J, K - - - of
these from (2.2) later.”

ZN2)Y,(w) =

84 (2.3)

2If we interchange the order of the OPE in (2.3), then we have
Y,(2)Z'(w) = (_l—w) (=1)4drtlsh 4 ... where the grading d; = 2
for the bosonic fields and d; = 1 for the fermionic fields [23-26].
In other words, the additional factor (—1)¢ arises. Note that the
components Z¢ = y“ and Y, =y}, are fermionic.

By constructing the quadratic terms [1,2,21]

JIJ = Y_lzlv (24)

the current algebra version of the oscillator construction [7]
of Lie superalgebra U(2,2|4) can be described by (i) the

generators of Lorentz symmetry, £% and b}’[-}, (ii) the
generator of R symmetry, R%,, (iii) the generators of super
translations, Q“,, Q“,, and Pé‘ﬁ. Moreover, the N =4

super Poincaré algebra obtained by these generators can be
enlarged by the generators of super conformal boosts,

8%, 8%, and K?;. There exist also the U(1) hyper charge

B, the central charge C and the dilatation generator D. Then
the generators [27] of Lie superalgebra U(2,2|4) can be
extended by the following generators in terms of ambit-
wistor fields [1,2]

1 - N U
LoY=YyZ" 8,20 L= Y2~ 8V, 7,

1 .
Ry =YpZ = 5Y Z°.

Qaa — Yazu’ Q&a _ YaZ('z, Paﬁ — Y/}Z(.I,
St =v,z0  8G=Y;z0, KU=Y,Z°
1 . 1 .
B=3(YlZ* 4+ YaZ¥),  C=3(Y,Z"+ YaZP + ¥, 2°).
1 .
D= (Y25~ Yo%) (2.5)

As usual, the repeated indices are summed over the
corresponding indices. As noted in [1,2], each pair of
modes of the free fields provides two copies of the usual
oscillator construction. Therefore, once we restrict to the
zero modes of (2.5) in their (anti)commutator relations, the
known Lie superalgebra U(2, 2|4) [27] can be obtained. We
present their complete OPEs in Appendix A in the
worldsheet theory.3

It is useful to introduce the following U(1) generators
which appear in the above B, C, and D generators

U=v,z, U=Y,Zl, V=YZ. (2.6)

Note that the V appears in the second term of R“; in (2.5)
which is traceless: R, = 0.

*We use the Thielemans package [28] with a Mathematica
[29]. Note that the group indices a, @ and a are fixed. All the
coefficients appearing in the right hand sides of the OPEs are
numerical values. Once we identify the group index structures
both sides of the OPEs, then it is straightforward to calculate all
these coefficients inside a Package explicitly due to the free
fields.
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In particular, the nonzero V-charge for Q% , is equal to —1
and the nonzero V-charge for Q“a is equal to I from the
observation of Eq. (A2). This corresponds to Y-charge in
[11] up to sign. By simply counting the number of
supersymmetry generators in the multiple product of the
generators of (2.5), we can determine the V-charge. The
remaining ten generators have vanishing V-charges.

Note that the ordering of two operators in (2.4) or (2.5) is
important because sometimes we will have additional minus
sign when we interchange the ambitwistor fields each other.

B. The Lie superalgebra PSU(2,2|4)

We can calculate the OPEs between the conformal
weight-1 currents in (2.4) by using the defining relation
in (2.3) with the help of the footnote and it turns out that

1 1
JI JK — _ -1 d,dKél 51(
J(Z) L(W) W ( ) LYJ +(Z—W)

+ (_1)(dL+dK)(d1+d,)+15KJJIL] (w)
o (2.7)

[61.7%,

The grading d; is defined in the footnote 2. We can also
check, from (2.7), that the second order pole of the OPE
between J*=L'), JT=L? and J=1(L%-LY)
implies that the level is equal to —1. Slmllarly, the OPE
between J —Elz, J- _ﬁzl and J? = ([,2- L i) leads
to the fact that the level is also equal to —1. We obtain
Appendix A from this defining relation (2.7) by specifying
the indices explicitly. The OPEs between the U(1) gen-
erator C appearing in (2.5) and other generators of U(2, 2|4)
do not have any singular terms in Eq. (A1) except the OPE
B(z)C(w). We are left with PSU(2,2|4) after the U(1)
generator C is “quotiented” [1,2].

We can calculate the OPEs between the single J/;(z) and
the quadratic term JX, J¥ y (w) and the OPEs between the
single J',(z) and the cubic term JX; J yJ” 5 (w) but we do
not present them in this paper because they have long
expressions due to the presence of various gradings. Later
we will present the first order pole of the latter explicitly in
next section.

C. The stress energy tensor
By requiring that the ambitwistor fields (2.2) are weight-
% primary and the generators (2.5) are weight-1 primary
(See also the footnote 4), we can determine the stress
energy tensor from the possible quadratic terms from (2.5)
completely and it is given by

1 . . .
r=3 (A% Oud + PO, — gl — 02wl — DAl + 'yl

:%(—1)dz(zfay,—aZ’Y,). (2.8)

As before, the repeated indices are summed. Note that there
is an additional factor for the grading when we change the
order between the ambitwistor fields in the second expres-
sion of (2.8). This stress energy tensor satisfies the usual
standard OPE T'(z)T(w) and the central charge is equal to
zero. We will use the explicit expression (2.8) in order to
calculate the possible (quasi)primary operators in next
section.”

In this section, we summarize the extension of the Lie
superalgebra PSU(2,2|4) generated by (2.5) in the world-
sheet theory. Implicitly it is given by (2.7) or explicitly it is
also given by Eq. (Al). If we focus on the zero modes for
these generators, then this will lead to the standard (anti)
commutator relations [27].

III. CONSTRUCTION OF THE LOWEST
GENERATORS OF THE HIGHER SPIN
SUPERALGEBRA hs(2.2/4)

We would like to construct the worldsheet description for
the higher spin generators of hs(2,2|4) found in [11,12].
We have seen the conformal weight-1 generators which are
primary under the stress energy tensor (2.8). According to
the results of [11], the nontrivial lowest generators consist
of cubic terms in the above weight-1 generators corre-
sponding to the level / = 1 case (For [ = 0 case, they are
linear in the weight-1 generators while for / = 2 case they
are quintic in the weight-1 generators).

We observe that the (21 + 1) can be identified with the
conformal dimension (or weight or spin) under (2.8) in
the worldsheet theory.

From the conformal field theory analysis [30-32], it is
known that in the OPE between the weight-1 operator
(which is a primary) and the weight-3 (quasi)primary
operator, in principle, there appear a (new) weight-1
operator in the third order pole and a (new) weight-2
operator in the second order pole. By simple counting the
relative coefficients for the descendant operators of these
operators which will appear in the second and first order
poles, they do not appear in the first order pole.

‘Therefore, ~we  have  T(z)Z'(w) = a2 (W) +
o 021 (w) + -+ T(R)Y (W) =Y 1 (w) + Z'w Y (w)+---,
T(2)J'y(w) = = W)zJ[ (W) + 704"y (w) + - - - and from these

we can calculate the following OPE T(z)J7,J%, (w) =
(_lw) (_1)d]dK+151 51( = H)* [51JK ( 1)(dL+dK)(d1+dj)+1X
ST )W) + e 20775 () + ey UKL (w) 4 -
which 1mphes that this does not produce the (quasi)primary
operator in general. We can check whether this is really (quasi)
primary or not after specifying the indices explicitly.
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Therefore, we will focus on the first order pole in the
OPE between the weight-1 operator and the weight-3
operator. This first order pole provides a new (quasi)
primary operators. In doing this, we should check that
the weight-3 operator should be (quasi) primary. That
is, at least the third order pole of the OPE between the
|

JIj<Z)JKLJMNJPQ(W)| L

(z=w

stress energy tensor and this weight-3 operator should
vanish.

We have the following first order pole in the OPE
between J';(z) and JX, JMyJ" 5 (w) by using (2.7) suc-
cessively as follows:

— 5ILJKJJMNJPQ<W) 4 (_1)(d1+dK)(d1+dj)+l55(JILJMNJPQ(W)

+ (_1>(d,+dj)(dk+dL)JKL [55VJMJJPQ + (_1)(dN+dM)(d1+dJ)+1594]1N]PQ

+ (—1)(d’+d’)(dN+dM)5IQJMNJPJ + (_1)(d1+dj)(dN+dM+dP+dQ)+15§JMNJ1Q](W)'

Let us emphasize that the right-hand side of (3.1) is a (quasi)
primary operator as before as long as the third order pole of
Eq. (B1) vanishes. We obtain all the information on the
higher spin generators in this section from this (implicit) OPE
(3.1) by imposing the explicit indices on (3.1). In other
words, the first order pole can be written in terms of the
known operators by collecting them appropriately or if not,
then there appears in the new (quasi)primary operator. We do
not have to subtract the contributions from the descendant
operators as we mentioned before. Of course, there are also
fourth, third and second order poles in the above OPE.

We focus on the Tables 4 and 5 of [11] with [ = 1 case
and s =1,3,2,3,3,7 and 4. Their [ is related to the
numbers of bosonic and fermionic oscillators and is given
by the Eq. (3.6) in [11] and their s is related to the numbers
of bosonic oscillators and is given around Eq. (3.18) in
[11]. Furthermore, their Eq. (3.19) contains all the infor-
mation on the above two tables although it is not easy to
read off the relevant quantities properly.5

A. The s=1 case: 1, and 15,

Because their X appearing in Eq. (2.4) in [11] corre-
sponds to our V up to sign and normalization, we can
observe that the SU(4) singlet is a cubic in V which has
vanishing V-charge from Eq. (A2). Moreover, the SU(4)
nonsinglet contains the quadratic in X and we can identify
this as a quadratic in V' together with R“, which is a 15
representation of SU(4). Note that by construction of (2.5),
we observe the fact that R“, vanishes. In the tensor product
of 4 ®4 =1 & 15 [34,35], after subtracting the V part,
we are left with the representation 15. Once again, the
V-charge in the cubic of VVR¢, vanishes.

*For [ = 0in Table 4 of [11], there are generators R¢,, Q%,, Q%,
and P? 5 corresponding to 15y, 4_;, 4; and 1, respectively. Itis easy
to see that they are closed by themselves in Eq. (A1). In the oscillator
construction, the remaining generators of PSU(2, 2|4) acting on the
physical vacuum state vanish [27,33]. We will calculate the OPEs
between these weight-1 operators including the U(1) operator V
relevant to R, and the weight-3 operators in next section. The
algebra from these five weight-1 operators is closed.

(3.1)

|

Therefore we identify the following higher spin gener-
ators corresponding to the representations 1, and 15,
respectively as follows®:

wW=VVV,

Wa/, = VVR“/, + VR“;,V + R“hVV. (32)
We can check these higher spin generators in (3.2) are
quasiprimary operators under the stress energy tensor (2.8).
In other words, the OPEs between the stress energy tensor
and these generators contain nonzero fourth order poles
although the third order poles become zero according to
Eq. (B1) by specifying the indices correctly.

Although the OPE between V and R“; is regular and
they are commuting operators (the second and the third
terms in the right-hand side of YV“; are the same as the first
one), we will keep its form in symmetrical way as in (3.2).
When we act the supersymmetry generators on the W%,
then we will observe that each three terms contributes
differently due to the normal ordering.

In next subsections, we will determine the remaining
higher spin generators by acting the supersymmetry gen-
erators Q“, and Q%, on (3.2) successively.

B. The s =3 case: 4_;.4;,20_, and 20,

Now we move on the next column of the Table 4 with
[ =1 of [11]. Eventually we will present all the first order
poles in the OPEs between some weight-1 operators and the
weight-3 operators in next section with Appendix C.
However, in this section, we will focus on some of them
which determine the higher spin generators completely.
One way to determine these particular higher spin gen-
erators is to consider that we can calculate the first order
pole in the OPE between the supersymmetry generator Q¢,,
which is fermionic and W”. which is introduced in
previous subsection (3.2). Either we can use Eq. (Al) or

We denote the higher spin generators as the letter ¥V with
appropriate group indices. For the additional new higher spin
generators we put a hat on V¥V with some indices.
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the previous OPE (3.1) can be used by selecting the
corresponding indices for this particular OPE.
It turns out that by antisymmetrizing the upper indices’

QU (YW (w)|_ = I 1y (w) + SEWP (w)

1
B Z(SL}?WG]IZ(W)ﬁ

(3.3)
where the right-hand side of (3.3) consists of two kinds of
higher spin generators as follows:

W, =VVol, + Vo, V+ 9 VY,
Wbl =yQle RP 4+ Qle YRV 4 Qla R

+VRP, Q4 +RP VO, +RE.Q4, V. (3.4)

Note that the first one in (3.4) is a quasiprimary operator
while the second one in (3.4) is a primary operator
according to Eq. (Bl). Note that the second one is
antisymmetric in the upper indices. As mentioned before,
the weight-1 operator Q“,, has nontrivial OPE with ) [See
also Eq. (A2)] and the ordering between them is not trivial
and if we interchange them, there appears a derivative term
of weight-1 operator. The quasiprimary condition of the
first operator requires all of three terms (this is the reason
why we have three terms in (3.2)) and we can easily
observe that the first operator corresponds to the repre-
sentation 4_; because it contains a single weight-1 operator
which has V-charge —1 (Of course, the V-charge of V is
equal to zero) and it has upper index a which transforms as
a fundamental representation of SU(4).

In the tensor product of 6 ® 4=204 [34,35], we
obtain the representation 20 by subtracting the fundamental
representation 4. The second higher spin generator in (3.4)
consists of the upper antisymmetric combination and the
lower antifundamental one. Therefore, in total, it provides
the tensor product 6 ® 4. Now we consider the contracted
one which is given by W, which transforms as a
fundamental representation 4 of SU(4). Then after sub-
tracting this representation from 6 ® 4, we will eventually
obtain the representation 20_;. Furthermore, it has V-
charge —1 also because there exists a single Q“, and the
operator R} has a vanishing )V-charge. Note that the
expression without the antisymmetric bracket in the second
higher spin generator in (3.4) is itself a primary operator
and it is obvious to see that the higher spin generator W%,
also transforms as a primary operator after taking anti-
symmetric combination.

In this paper, the (anti)symmetric notations are for SU 4)
indices. The bracket [| stands for antisymmetric one and the
bracket () stands for symmetric one without any overall numerical
factors.

Therefore, we should consider the particular antisym-
metric combination in the OPE of (3.3). Without it, we
would not obtain the corresponding right higher spin
generator which transforms properly. In other words, the
antisymmetric combination in the indices a and b is crucial
for the presence of the representation 20_; in the oscillator
construction in [11].8

C. The s=2 case: 14,15,,20,,6 _,,6,,10_,, and 10,

Let us consider the next column of the Tables 4 and 5
with /[ =1 of [I1]. Again, we can use either (3.1) or
Eq. (Al). We can calculate the OPEs between the super-
symmetry generators and the higher spin generators found
in previous subsection.

It turns out, from (3.4), that we have

Q% (IWPp(w)| o = SIWes(w) + W (3.5)

where the right hand side of (3.5) contains the following
higher spin generators

Wiy = VYPY, + VPV + PEVY,
WP = QP Q%Y + Q" VO, + V8, Q"

- Q aQbaV - Q anha - VQ aQba' (36)
Compared with the previous OPE, there is no (anti)
symmetric combination in the SU(4) indices. The first
higher spin generator of (3.6) is a quasiprimary operator by
using Eq. (B1). Because there is no SU(4) index, the V-
charge vanishes and moreover the quadratic expression in V
arises from the oscillator construction, we can identify this
as 1, in [11].°

Let us look at the second higher spin generator in (3.6)
which is a primary operator under the stress energy tensor
(2.8). We can view this as the tensor product of the
representation 4 corresponding to the upper index and
the representation 4 corresponding to the lower index and
moreover its V-charge vanishes because there appear two

$Similarly, we obtain Q (W (w )|_ = W (W)=
5{;1/'\/"'4 (w) +415fcv’v"’d] (w), where the rlght hand side has the
following higher spin generators W%, = VWQ*, + VOV +
QdaVV corresponding to the representation d4;, and
V'Vb&[ac] = V.Qd[aRbg] + Q&[aVRbC] + Q&[QRI’C]V+ VR .Qdaﬁr
Rb [LVQ&Q] + R Qé’ Y corresponding to the representation 20,

from the analysis of the tensor product 6 ® 4 = 20 & 4.
’Note that the OPEs between Ps and the weight-1 operators

are regular except L%, ﬁ“ D, &%, 8“(,, IC" U, and U from
Eq. (Al). In other words, the OPEs between P"ﬂ and the five

weight-1 operators appearing in the footnote 5 do not have the
singular terms.

066006-5



CHANGHYUN AHN

PHYS. REV. D 105, 066006 (2022)

kinds of supersymmetry generators. We do not find this
higher spin generator from the Tables 4 and 5 of [11]. As
mentioned before, we put a hat on this generator because
this is a new primary operator.

Let us move on the following first order pole in the OPE
between the supersymmetry generator and the second
higher spin generator in (3.4) after antisymmetrizing for
the lower two indices

Q% (YW g (w)| o= {w] ap (W) WL ()

1 fea wla
S g (w) =18V gy (),
(3.7)

where the right-hand side of (3.7) contains the following
higher spin generators together with the previous operator
in (3.6)

W,y = VPR, + P4VRY, + PR,V
+ VR, P 4 R4 VP + R PV,
W[“b]d[cd]a = Q[a .Qd Rb]d] + Q[a ] [de
+ RIP,Q ](IQ(IL] - Qa Ql, R,

- Q" RY 40, - RIP, O 1 Q4,. (3.8)

We can easily identify the first operator of (3.8) which is a
primary as the representation 15,. We have already
observed that the weight-1 operator R“, transforms as
this representation under the SU(4). Moreover, there is a
single V in this expression (again from the result of [11])
and it is obvious that the V-charge is equal to zero.

There are two antisymmetric combinations between the
upper indices and lower indices from the second operator of
(3.8). It is known that in SU(4), we have 6 = 6. In the tensor
product of 6 ® 6 = 1 @ 15 @ 20’ [34,35], after subtracting
the first two representations, we obtain the representation 20/,
That is, we observe that when we contract one index from
WIablé .. then the representation 15 corresponds to
Wlabla [ad)a- Further contraction will give us wlab ]“ [abla Which
has a representation 1. Therefore, we obtain the representa-
tion 20’ by restricting to these two conditions. It is easy to see
that the V-charge vanishes. We can check this operator is a
primary under the stress energy tensor 2.8)."

We continue to analyze the next higher spin generators
which have nonzero V-charges. We can calculate the

1(_)We have similar relation Qaa(z)Wbb(w) ‘ﬁ = 5ZW/},Z(W)+

W, .(w) where the generators of right-hand side are given by
3. 6? The SU(4) indices appear separately.

The con]ugated version of (3.7) appears as fol-

lows: Q (1( )Wc bd]( )| ]‘ 75[bWC a(w)_’_w[ac [bd)a ( )
[dWC ba (w)— 5 W“
the relations (3. 6) and (3. 8)

j«(w) together with the footnote 8, and

following OPE and obtain the first order pole, from
(3.4), as follows:

where the right-hand side of (3.9) consists of the following
higher spin generators

W[ab]ccaﬂ = _Q[aaRb]c Qc/} _ R[bc Qa] a QC/), - Q[aaQCﬂRb]e
+ QcﬂR[hc Qu]a + R[bc Qcﬂ Qa]a + Qcﬂ Q[aaRb] ¢’
W[ab] ap = VQ[aa Qh]ﬁ + Q[a(lvgb]ﬁ + Q[a(l Qb]ﬂv

—VQ“’/,Q“](,— Q[bﬁyga]a - Q[bﬂga]av (3.10)
Note that the upper and lower index a is summed in the left-
hand side of the OPE of (3.9). We can identify the first
operator of (3.10) as 6_, because the two upper SU(4)
indices are antisymmetric together with the contraction for
other two and due to the two supersymmetric generators,
the V-charge becomes —2 as before. On the other hands, the
second operator of (3.10), which has also V-charge —2 and
consists of the tensor product of 4 and 4 (again 6_,) of
SU(4), can be regarded as a new primary operator which is
not present in [11]. We can check this is a primary operator
from Eq. (B1). As done before, we can obtain the
conjugated version of (3.9) with the footnote and there
exists a relevant generator.12

Finally, by considering the following OPE from (3.4)
we determine the higher spin generator having nonzero
V-charge, after symmetrizing the upper indices,

QU ()W) 5(w)] 4

— \lab)
e w aﬁ(w)v

(3.11)

where the right-hand side of (3.11) can be written as

Wb, =V, Qs+, VP +Qle, QP sV

—VQ(bﬂQ”)a - Q(%vgu)g - Q(bﬁ Q9. V. (3.12)

It is obvious to see that this (3.12), which is a primary, has
the representation 10_, from the symmetric combination of
the upper two indices. Simple counting of V-charge implies

“That is, we have the following first order pole, from
the footnote 8, Q"a(z)W"ﬂ[bd]( )| L :—Wﬂ bdla(W)+

%V\Vﬂa‘[bd](W) Whe.re WCdﬂ[ab]CE—Qd[‘? b] Qﬁ RC Q ]Qﬂc_
Qa[a Q/}cRcb] + QﬁcRc 12 Qaa] +R¢ 2 Qﬁc Q a) + Q'I c Q [aRL p) €OI-
responding to the representation 6, and the new higher spin
generator Waﬁ[a,,] = VQ&[a o b T Qd[aVQﬂb] + Q&[aQﬁ 0V =

VQ/}[b Qdu] - Qﬁ [vada] - Q/} b Q"’a]v which transforms as 6,.
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that this higher spin generator has —2. Furthermore, it has
linear dependence of V as in [11].13

D. The s=3 case: 4_,4;.4_3.4320_y, and 20,

From now on, all the higher spin generators can be
related to the corresponding multiplets in the Table 3 of
[11]. In the previous three cases, there are some mismatches
between the Table 3 and the Tables 4 and 5 of [11]. As done
in previous subsection, we compute the following OPE
from (3.8) and focus on the first order pole, after anti-
symmetrizing the upper indices,

Q[aﬁ(Z)Wb]dcy(Wﬂ | :Wab]a

(z=w)

(W) + 5 bl

by Ayali
—Za[cwl 5 (W), (3.13)

where the right-hand side of (3.13) provides the following
higher spin generators

Wady =V QP + QU VP, + Q% PY, YV
+ VP, Q% +PHVQy+ P, QY
W[ub]ixcﬁy = Q[aﬁRb]C'])[zy +R[chu]/j'P&7 + Q[aﬁfpdbe]c
+ payR[bc Qu]ﬂ + R[bcp{zy Qu]ﬁ + P’iy Q[a/}Rh] .
(3.14)

We can see that the first generator of (3.14) has the
representation 4_; with V-charge —1. For the second
generator of (3.14), there are two upper antisymmetric
indices with a single lower index. We have seen the similar
structure around (3.4). As long as the SU(4) representation
with V-charge is concerned, there is no difference whether
there is a factor V in (3.4) or 77”",; in (3.14). This implies that
the above generator transforms as the representation 20_;
by subtracting the trace part (with a contraction in the
indices) with V-charge —1. They are primary under the
stress energy tensor.'’

PWe obtain Q7 @z W ( )| i :—W&ﬁ(ah)(w) together
with Wﬂab VQ Qﬁ +Q VQﬁ +Qd QﬁbV—

VQﬂ ;;Q el ;,VQ Q) — o ,,Q «)V corresponding to 10,.

We can determme the snmlar OPE, by antisymmetrizing
the liower 1nd1<:esi, o (WP g, (w)] L= WP “lacly(W)—
Ef’awﬁdc]y—l—%5f’c W/}dc]y(w) with two higher spin generators
W, = vo pi, + & vpi, + &Py + Vet
P VQ/} + 77“ Qﬂ V transforming as 4, and Wbﬂ“[ac =
O Ry P, + RO P, + O PR+ PR D+
R PE yQﬁ J+ P o ««R" which transforms as 20,.

The next case can be obtained from the following OPE
result by using the higher spin generator (3.10) properly
(complete antisymmetrization of the upper indices)

QU (WPl (w)| s = =57 WPy ()

)

1 (dy v sbea
+Z5gwb LaW),  (3.15)

where the right-hand side of (3.15) contains the following
higher spin generator

W[abc]aﬂy = Q[aaQbﬂQC]y + Q[C}/Qaagb]ﬂ + Q[bﬂQCyQa]a
- Ql,07,Q%; - 01,0, - O, Q%4 Q7
(3.16)

First of all, the V-charge of (3.16) is given by —3. From the
tensor product of 4 @ 4 ® 4 [34,35] due to the three
upper indices, we obtain the following decomposition
4 @20 @20 @ 20". Then by taking the totally antisym-
metric combination of the indices, the representation 4_1_3
with V-charge can be obtained and we can check this (3.16)
is a primary operator."’

E. The s =3 case: 1;,15,,6_,, and 6,

Now we analyze the following OPE, from the previous
result in (3.14),

Q% (YW 5(w) | = SV 5(w)

FWPES(w),  (3.17)

where the right-hand side of (3.17) has the following higher
spin generators

Wib o = ypi Phy P Yy 4 i phy
+ VPP, 4 Phiype, 4 phipi )

Weab, o= i OF Pis 4 Qu PP, 4 Py OF,
_ Qﬂbgayfpd{s _ Qﬂbpdégay _ QadeEQ/b}'
(3.18)

For the first generator of (3.18), there is no SU(4) index and
the V-charge is equal to zero. Then we can identify this
with the representation 1j. For the second generator, the
V-charge vanishes also and it is given by the tensor product

“In this case, we  have Qd[a(z)debcd](w) L=

%Wﬁ Mbcd](w)—%équﬁ P (W) together with the  higher
spin  generator W*'7, = 07,0, 07 + & 0%, O+
QY - Q4O Dy - Q0,9 - 900,

transforming as 4;.
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between the representation 4 and 4. In the construction
of [11], we cannot find this higher spin generator. We can
check that they (3.18) are primary operators.16

Now we describe the following OPE together with (3.14)

Qda(z)W[b ]ﬂdyﬁ( )|(‘_.‘ = 5a Wcaﬂ ( )
+ 5[aCWh] adyé(w)

1 CAR a
_Zﬁgwb]ﬁ ayé(w)’ (319)

where the right-hand side of (3.19) contains the following
higher spin generator

Wby 5 = Pt PPR®, + PR PP + R P, PP
+ PPspi Ra, 4+ PhsR,PE, + R, PEPE
(3.20)

which transforms as 15, with a vanishing V-charge and is a
primary operator.'’

Finally, in this subsection, we consider the following
OPE with complete antisymmetric upper indices

Vg (00)| i = =BV ()

1 e ala
+25£1Wb i (W), (3.21)
where the right-hand side of (3.21) contains the following
higher spin generator

W[ab]d/}yé = Q[ali Qb]y’Pé’g + Q[aﬂpdé Qb]y + pézﬁg[aﬂ Qb]y
- Q[byQ[aﬁ,Pdg - Q[bypd{sga]/} - Q[aﬁpd{sgb]w
(3.22)

which transforms as 6_, (from the antisymmetric combi-
nation of upper two indices) with V-charge —2 and is a
primary operator. In this case, we have the conjugated
version of this higher spin generator with corresponding
OPE as follows."®

"By using the higher spin generator appearing in the foot-
note 14, we obtain Q% (z )W/}'b(;( )\+—5“W7ﬁa5( )—i—W“’ﬂ

where the relations in (3.18) are used
'"Again by using the higher spin generator in the footnote 14

Q4 ()W 5w )Iﬁ*yw"” as(W) —
5“ Wclﬁb]w;( )—0—15C VV“M;, «5(w) where the relations (3.18)

and (3 20) are used,
BThat s, o [a (z )W Mbd (w )| =5 —5 Wﬂa bd]/( w) =

lédeﬁ "yba;,(w) with the higher spm generator Whte labls =
Q/f Q}’ 'Pa(s-l—Qﬁ 'paégyb] +73u5Qﬂ aQ}’ Q}’bQﬁ Ppa 5—
Q}' 7_3"5Q/j Qﬁ ’P’%QV corresponding to the representa-
tion 6,.

we  determine

F. The s=1 case: 4_; and 4,

By using (3.22), we calculate the following OPE and
read off the first order pole

(w) =B WPIB (),
(3.23)

QF (W 5 ()| o =B Wi,

where the right-hand side of (3.23) contains the higher spin
generator

Wad‘byée = Qayrpo’zérpﬁe + fpdéQa}lfpﬁg + pdﬁpﬂegay

+ Q4 PP s+ PP, P
+ P P Qe (3.24)

which transforms as 4_; from the upper index a with
V-charge —1 and is a primary operator. Furthermore, there
exists a relevant OPE with the conjugated higher spin
generator."”

G. The s =4 case: 1,
We obtain the following OPE, by using (3.24),

Qy (WP, (W) = SOV 5y, (w),

- (3.25)

where the right-hand side of (3.25) has the higher spin
generator

Wib s, = PasPP Y, + Pl PP+ PP PP

+ PPl PP 4 PP PPt

+ P PP PL. (3.26)
Again this transforms as 1, with V-charge zero because
there is no SU(4) index. As described in the footnote 9, the
OPEs between the supersymmetry generators and the Pdﬂ
do not have any singular terms, we do not find any new
higher spin generators from (3.26).%°

In this section, the higher spin generators are obtained in
(3.2), (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.16),
(3.18), (3.20), (3.22), (3.24), (3.26), the footnotes 8, 12,
13, 14, 15, 18, and 19 explicitly. They are written in terms
of the cubic terms between the weight-1 operators and are

®In other words, from the higher spin generator in the
footns)te 18, we have Q“a(z?Wﬁ‘S’[bc]g( )‘@f —5f‘bW C](,,e(w)—
FNT oe(w) and W7 5 = OF PUPP 4 PA Q7 PP, +
PasPP QO + O PP P+ PPO P + PP PO,
formmg as 4.
S1m11arly, from the higher spin generator in the footnote 19,

there is a relation Q. (z)WV/7°,,,(w )lﬁ = 5“Wﬂ75a€p(w)

trans-
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TABLE I

The higher spin generators with SU(4) representation and V-charge in the worldsheet theory,

corresponding to the Tables 4 and 5 with the level / = 1 of [11]. We can observe that the two SU(2) spins of the
higher spin generators are given by the number of each indices a, 3,7, - - - and @, ﬁ 7, - - - divided by 2. For example,
the higher spin generator with s = 4 has the corresponding spins (j.. jz) = (3.3). Note that the spin s is given by
s = 1+ j; + jg. The V-charge is given by the number of lower indices of SU(4) minus the number of upper indices

of SU(4).
Higher spin generators

s = 31 o W) W (15)
s=3 W (4) W (4), W[“h]c-a(20—1)3 W (201) _
$=2 W5 (1) W95 (150), WIaPIE s (200) VI 5(6_2) VP 141 (62) W) 15 (10_5), WP 4 (10,)

_5 . o 1.1' — abe — . (.l' . bl . ad' R
$=3 W(mﬂy("’—l)’ w ﬁayK4l)’ W[ b ]a/?y(4—3)7 w ﬁy[abc] (43)7 W[ ] Fﬂy(zo—l)» w ﬁ[bc]y(zol)
s =3 WEP 5(19), Wah, 5(15), WIabliy 5(6_5), W7 1,(6,)

_7 s s
$=3 Waa/}y&e(“—l)’ w ﬂyaée(“l)
s=4

W15 (1)

summarized by the Table I with SU(4) representations and
V-charges.

IV. SOME OPEs BETWEEN THE GENERATORS
OF PSU(2,2|4) AND THE LOWEST
GENERATORS OF hs(2,2(4)

A. Primary or quasiprimary fields

By using the explicit OPE result in Eq. (B1), we can
determine the (quasi)primary fields of higher spin gener-
ators. As described before, only after checking this (quasi)
primary condition, then the first order poles in the OPEs
between the weight-1 operators and the weight-3 operators
provide the right (quasi)primary operators of weight-3 we
would like to construct.

The quasiprimary operators in the Table I are given by
the higher spin generators containing the quadratic V terms
including the cubic V term. The remaining higher spin
generators are primary operators.

B. The OPEs between the weight-1 generators
and the weight-3 generators

In Sec. III, we have computed some of the OPEs between
the conformal dimension-1 generators and the conformal
dimension-3 generators in order to determine the higher
spin generators. In Appendix C, we will present the
remaining OPEs between them. We observe that the first
order poles in the right-hand sides of these OPEs (together
with the symmetric or antisymmetric combinations of the
left-hand sides of the OPEs) contain the higher spin
generators as well as the new higher spin generators.Z]
In general, in these OPEs, there are also fourth, third and
second order poles we do not analyze them in this paper
explicitly. In the view point of two dimensional worldsheet

“In the right-hand sides of all these OPEs, the higher spin
generator ¥V in (3.2) does not appear at the first order poles.

theory, it is important to calculate them in order to see their
algebraic structures.

Of course, we can calculate the OPEs between the
conformal dimension-3 generators and analyze the first
order pole in order to determine the next higher spin
generators which consist of the quintic terms of weight-5
operators. We will not consider all these computations in
this paper although it is straightforward to do so.

C. The additional generators

We have obtained the new higher spin generators (3.6),
(3.10), the footnote 12, (3.18) and Eq. (CI)

AL A A ap

Waab/i ’ W[ab] afs 4% [ab]»

ned A aba A aap

Waaﬂbyév W acﬁy’ %% bey- (4.1)

These also appear in the classical version of the OPEs
where there are no multiple contractions between the
operators. They appear in the computation of the higher
spin generators of s = 2,3 and s = 3. Of course, we can
further compute the OPEs between the weight-1 operators
and the above higher spin generators (4.1) of weight-3 and
expect that the first order poles of the right hand sides of
these OPEs contain the higher spin generators in Table I
and the ones of (4.1). At the moment it is not clear to
observe what are the roles of (4.1). We need to calculate
further OPEs between the weight-1,2,3 operators including
(4.1). We do expect that when we consider the cases [ > 2,
the similar additional higher spin generators occur.

D. The next generators of hs(2,2

4)

So far, we have considered the [ = 1 case of [11]. When
[ = 2 case, we observe that the lowest spin s = 2 higher spin
generator contains the following expression VVVVPZ + -
corresponding to 1, because there is no SU(4) index.
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According to (2.2) and (2.6), for the multiple product of V
whose number is greater than 4, there are still various
nonzero derivative terms between the fermionic fields
although there is no nonderivative term between them (Of
course, if we consider the classical OPEs inside the
Thielemans package [28], then the above multiplet product
of Vis identically zero). On the other hands, in the oscillator
construction, the corresponding X’s in [11] appears only up
to the quartic term because the five product of fermionic
fields vanishes. The higher spin generators at / = 2 consist
of the quintic terms in the weight-1 operators we have
considered. That is, they have weight-5 operators. One way
to obtain these higher spin generators is to calculate the
OPEs between the weight-3 higher spin generators and look
at the first order pole. It would be interesting to examine the
details. Contrary to the construction of [11,12], the multiple
product of V, where the number of Vis greater than four, can
occur due to the above analysis.

V. CONCLUSIONS AND OUTLOOK

The world sheet realization of the higher spin generators
of [11] at [ = 1 is obtained. They are summarized in the
Table I in addition to (4.1).

According to the Table 3 of [11], there exist various
N =8 AdSs PSU(2,2|4) multiplets with the levels
[=0,1,2,...,00. As mentioned before, the [ = O case is
the five dimensional N/ = 8 gauged supergravity multiplet.
The USp(8) representation in each level can be decom-
posed into the SU(4) with V-charge. See also [36] for this
[ = 0 multiplet in terms of two product of singletons.

The level /=1 multiplet can be interpreted as the
“massless” Konishi multiplet in the context of N =4
conformal supermultiplet in four dimensions [16].
According to the observation of [12], this multiplet can
be also obtained by the tensor product of the above [ = 0
supergravity multiplet (characterized by 42, 48,, 27, 8%,

1, with USp(8) representation together with SO(3) spin)
with the SU(4) singlet of SO(3) spin-2 (1,). After then we
obtain 1, 8%, 28,, 56%, 70,, 56%, 28;, 8%, and 1, where the
subscript s is the spin index appearing in the Table 1.
The physical states [11,12] arise in the sectors of the
master scalar field and the master gauge field (in the five
dimensional higher spin gauge theory) corresponding to the
higher spin generators we have described in the above
Table 1. Note that there exists one-to-one correspondence
between the Table 3 and Tables 4 and 5 only for s = % 3,%
and 4 corresponding to 56%, 285, 8% and 1. That is, the

representations for s = 0,% (1, and 8% ) (and the represen-
tations 6 and 6 for s = 1, the representations 4 and 4 for
s =3, and the representations 1 and 1 for s = 2) appear in

the Table 6 of [11]. See also (5.1) for their V-charges.
There are the following future directions we can study.

®

(i)

(iii)

(iv)

066006-10

The complete OPEs.

In this paper, we have focused on the construction
of the higher spin generators having weight-3. We
understand that there are weight-2 operators in the
OPEs between the weight-1 operators and the weight-
3 operators. Furthermore we did not consider the
OPEs between the weight-1 operators (the generators
of Lorentz symmetry and the generators of super
conformal boosts) (2.5) and the weight-3 operators
we have constructed in the world sheet theory. It
would be interesting to determine the complete OPEs
between these generators of weight-1,2,3 in the
context of the higher spin superalgebra hs(2,2|4).
Moreover, it will be interesting how they survive
when we act them on the physical vacuum state by
recalling the footnote on the weight-1 operators along
the line of [1,2]. Eventually, we would like to
construct the complete higher spin algebra which
contains the higher spin generators appearing in the
Tables 4 and 5 of [11] in closed form.

In the theory of N = 4 super Yang-Mills coupled to
the N' = 4 conformal supergravity.

As before, in [12], the conserved currents corre-
sponding to the higher spin gauge theory described
in the Table 3 of [11] can be described from the
singleton superfield based on [15,16,36] for [ =0
and [/ = 1. Furthermore, in [9], their Tables 6 and 7
are related to the four dimensional NV = 4 conformal
supergravity multiplet. They claim that the / =1
case of the Table 3 of [11] can be obtained also from
the tensor product of above Tables 6 and 7 (See also
[37] on the one loop contributions of N =4
conformal supergravity multiplet). It would be
interesting to study precise correspondence explic-
itly in the context of [38—40]. See also the review
paper [41] for conformal supergravity and [42] for
the twistor string theory description of conformal
supergravity.

The action of the higher spin generators on the
vacuum state.

In the oscillator construction, it is known that the
N = 4 super Yang-Mills multiplet can be identified
with the multiple product of the various oscillators
acting on the physical vacuum state [27]. The similar
construction in the world sheet theory is obtained
from the multiple product of the various zero modes
of the ambitwistor fields acting on the Ramond
ground state [1,2]. As we have the complete ex-
pressions for the higher spin generators, we can
determine the precise action on the physical vacuum
state as mentioned before.

When the coupling of N =4 super Yang-Mills
becomes nonzero.

As the N/ =4 super Yang-Mills interaction is
turned on, then the higher spin generators in the
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Tables4 and 5 of [11]with/ = 1,2, ..., co will be no
longer conserved. As observed in [12], the
hs(2,2|4) higher spin gauge theory maybe described
by a string theory having a left-moving and right-
moving PSU(2,2|4) Kac-Moody superalgebra with
a critical level k = 1. We have seen that this theory
admits a singleton representation [1,2]. Then the
question is whether the affine Kac-Moody extension
of the hs(2,2[4) will give us some hints in order to
describe the theory for nonzero coupling of N = 4
super Yang-Mills in four dimensions beyond the free
field construction of this paper. See also the previous
relevant paper [43].
(v) Any algebraic symmetries in the DDF-like operators.
In [1,2], the DDF-like operators [44] which are
given by the product of the modes of ambitwistor
fields (2.2) are introduced. They satisfy the nontrivial
(anti)commutator relations depending on the magni-
tude of the sum of the two each modes. The structure
constants appearing in the right-hand side of these
relations are given by the ones in the superalgebra
U(2,2|4). They claim that the nontrivial triple prod-
ucts for the specific three modes vanish identically. It
would be interesting to describe the above products
for any three modes and observe whether there exist
any nontrivial behaviors or not.
(vi) How to interpret the mismatch between the Table 3
and the Tables 4 and 5 of [11].
There are some multiplets in Table 6 of [11]*

s=1: 6., 6,
3
=2 45, 4,
s ) 3 3
s=2: 1,4, 1,. (5.1)

These are the elements of the Table 3 but their
corresponding higher spin generators do not appear
in the Tables 4 and 5. However, it seems that for
[ > 2, we can check the sum of the representations in
Table 4 [11] is given by 2-1 9 4-42-16 ®

|

4 -24 & 36 and this is equal to 182 and the sum of
the representations in Table 5 is given by 2-1 &
4-4®4-6@2-16 and this is 74. This leads to
182 4+ 74 = 256. Then there is no mismatch be-
tween the Table 3 and the Tables 4 and 5 for [ > 2. It
is an open problem to understand how the higher
spin generators corresponding to (5.1) are not
allowed for small spin s in the oscillator construction
(or in the worldsheet theory).

(vii) Can the even power of oscillators survive in the
world sheet description?.

In the construction of [11], the higher spin
generators with equal odd numbers of oscillators
can appear only. See also [18] for relevant discus-
sion. It is not obvious to see this restriction in the
world sheet theory because in the OPEs between the
weight-1,2,3 operators, in general, the weight-2,4
operators as well as the weight-5 operators can
appear. See also [45] for different kinds of higher
spin generators. It would be interesting to study this
direction in order to describe the above restriction in
the world sheet theory.
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APPENDIX A: THE PSU(2.2|4); CURRENT
ALGEBRA

1. The algebra from the generators in (2.5)

We present the various OPEs between the generators in
(2.5) which did not appear in the literature before (although
some of (anti)commutator relations between them are in
[2]) and we take the order of generators as in
(L%, L%5. R4, B.C.D, Q. Q. P4, 8%,. 8. K%;) as
follows:

£ £150) = E 535 5;5;] g P = )
£)(2) Q) = o }sg@a/f - ;a;;gay} (W) 4.

£ ) = (s |35 = 5P )+

LS 0) = s [+ 505 )+

*In addition to these, there are 1, for s =0 and 4, @ 4_, for s = % as before.
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£ = s {—5;;@,-} + %5;;/0,3] W)+,

(@) w) = (z—l—w)2 B si6] - 55;5;} e ! O~ L))+
LY5(2)Q o(w) = G _1 - :—52Q"’a + %52@2} W)+,

EE5(IPTal0) = s |80 08T ) -

t“",;(z)S“?(w) e _1 " :6;"8“B - %523’14 (W) +---,

R e Bty = R

R (2)Rea(w) =

1 > a sc 1 aqc ca
)2 |:_15Z5§1_6d6h:| +m[6d72 b _517R d](W) + -,

[ 1
RO al0) = s |55 0% + 5105 | 00+ -

TP B
5?@;}—15?@ c](W)‘f'"',

1 [ 1
RS 0) = (s [085% = 135S | ) 4 -

-w
R4y (2)S o (w) = G _1 = :—5;;"9”{, + ia;;sa.,] (W) + -,
BB =~ _lw)2 Ho BEC) = —
BE)Q% ) = g Lulw) oo BP0 = s ) +
BE)S () = = =g Sl + BES () = =g Sl +
DEDM) ==t D) = 3 Q) +
DY) = g3 Q)+ DEPY(w) = s Pil) +
DS () =~ 5 Sulw) oo DT al) = s S alw) +
D) =~ K00+ Q) = P )+
Qu(a)S () = (= 90 s R+ 0124 3000C+ D) ) -
QI (0) = = s 2" ) +
Q% (2)8(w) = G _1w)2 b7 + a _1 ) :5;;73”(, +OLY + %525;;@ - ’D)] (W) + -,
Q5 (0) = s ) oo PS) =~ 00 ) +
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. . 1 .
'Pa/,'(Z)Sa}',(W) = 75?Qa/,'(W) + -,

(z—=w)
. 1 . 1 o .
. 1
et b _ a,
S%(2)S”5(w) = =) SoIC () + -+ (A1)

The OPEs between the generators of (R4, V, Q%,,, Qda, P ) with ) = 2(C — B) are closed by themselves. See also Eq. (A2).

2. Some OPEs with different U(1) generators in (2.6)
By using (2.6), we can rewrite some OPEs in Eq. (Al) as follows:

1

U(Z)U(W):—m2+"'v M(Z)B(W)_—(Z_W)z :
1 1
U(Z)C(W):—m-f—"', U(Z)D(W):—m+ ,
1 . o
U(z) Q% (w) = =w) Qlu(w) + -+, U(2)Pp(w) ZWP pW) 4+,
U(2)S,(w) = @ _1 m S%(w) + -, U)Ky (w) = — @ _1 ™ Koy(w) + -,
UU(w) = ( _1W)2 +o UR)BW) = - e _1 ERIE
1 : 1
U(z)C(w) *—m+-“, U(z)D(w) = (Z—W)2+ ’
UEP S0 = == P+ P = = =Pyl +
g oa o 1 oa J a. — 1 a. (1 -
USAw) = 2y Saln) +0 UDKG0) = s Kylo) oo
1 1
V) = s VRC) = 24
V(D) QaW) = = Qi) s V(DD () = e O () 4,
(z—=w) (z—w)
VRS ) = g Sl oo VS =~ S + - (A2)

Note that the nonzero V-charge can be obtained from the last four OPEs of (A2).

APPENDIX B: THE OPEs BETWEEN THE STRESS ENERGY TENSOR AND J!,j%, JMy

We write down the OPE between the stress energy tensor and the cubic term as follows:

T(Z)JIJJKLJMN(W) =

(Z - W)S [(_l)dde+15£511\(]5y + (—1)(dL+dK)(d1+dJ)+deM5§55V(sII‘:1]
1

(z—w)

+ (_1)(dM+dN)(dK+dj)+151L§JMJKN

(=130 4 (1) 18]35 M
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(_1)(dL‘*‘dK)(dl"'dJ)""l(‘jf(‘j{V]ML + <_1)(dL+dK)(d1+dj)+(dM+dN)(d1+dJ)5§51LV1]{V

(_1)(d'+d’>(dL+dK)+dde+155v5/JWJKL 4 51L§11\</JMJ} (w)

(81 JK My + (=1)detdi(drtd)+1 6K gt gM

+ o+ + + o+ +

(z—w)’
(—1)(d1+d/>(dL+dK)5§VJKLJMJ
(_1)(d1+d,)(dL+dK+dM+dN)+1594]KLJIN + 5}1\(JJIJJML
1
(=) 1 (0) s 310 )
1
W O, TK LIM ) (W) + -+ - (B1)

We should obtain the weight-3 operators which transform as a quasiprimary.

APPENDIX C: THE REMAINING FIRST ORDER POLES IN THE OPEs DESCRIBED IN SEC. III

In this Appendix, we present the remaining first order poles in the OPEs between the weight-1 operators and the weight-3
operators.
Let us classify according to the spin of weight-3 operators.
(i) The s = 1 case.
In addition to the corresponding OPEs of Sec. III B, there are the following OPEs with first order poles

QL (W) =Waw), QU (W(w)| L = -Wi(w),

[E=n)
— WL, (w) = S (w).

(i) The s =3 case.

There are the following first order poles in the OPEs as well as the ones in Sec. III C

V(@)W a(w)]_ = =W (w),
Ry (W, w)] = 5, ) + 3 SV,
V(W (w)] = =W, (),

Ry (YW )] = =S5 W 0) + S ) + S () = SR o),
V()W (w) L= WP (w).

R (YW g (W)] 1 = SV (w) = iéfbw”’"’ce] (W) + By (w) = BV (),

V@)W ()] = W, (w),

Ry (YW ()| = W, () — 3 B ().

(iii) The s = 2 case.
There are the first order poles of the following OPEs in addition to the ones in Sec. III D
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1 —50mea( ) 52Wadda(w)’

z-w)

Rab(Z)WCdda( )

VW g5(w)] i = =2V Py (w),
R ()W) = W5 0) + 355 0) + B 0) = LW 10,
QT (W) ()] = =WV (w) 4 WOy, (w) = S5 WP, (),

QL (AW, (W) = W (w), QW ()| = =W, (),

Rl (Z)ch]ddf]ﬁ(w)|+w = _5{che]ddf]ﬁ(w) + 5{ZWC€ “arp(w) + 5%;ch]ddb]ﬁ(w) - 5%cha}ddf}ﬁ(w),

. ’ POy 1 n pali
Q[aa(z)wbd]ﬁ[ce]y(w)|(Z_1w) 5{0th] [e]r ( ) + 5%ewhd1ﬁc]ya(w) - 75? Wh ]ﬂc]ya(w)’
i A blajp blap
QWD ()] = SN ) = A )+ LR ),

v<z>w“ﬂ<ab><w>|ﬁ = Wﬂ(ab)(w),
R (W g ()] = 8L () - éazbv'v% (W) + 8 4 (),
QW oy (W) = W aw) 3, W72 o 0) = 8077, (o).
V()W gy = =2V (),

a cd|e _ “IAja C dyrscale
RIy (WAl () | = B 08) 5 5 1) = B2 uaﬁ(w),

O (YW ()| = SVVIH: 1 () = SVt () = STV >+ SEWEL s (w),
VW e ()] = 204 . (),
ACa a Y\ ICA 1a'ca'z' g.Cd.
beW ﬂde]c(W)|(zjw):5[dW ﬂbe]c(W)_E(S[bW ﬂde]c<w>+6[ew ﬁdb]c(w),

where the new higher spin generators are given by

Wbt , =0, 0,09, - Q0% 0%, + 9,09 O, — 9%,09,Q" s+ Q9),0%, Q" ; — 99, Q") ;O .
Wl = 0%, ol , 07, — ol , 0% 0 + QP ;0 OF, — 0%, 0l Ol + Qlc, % QP , — Ol QP , O

Rbaﬂ & . g . & i N g . i N
Wy =08, 08,00 - &b, &% + & 000, - @, 0% Oy + O 00, Oy - 0O 00,
Rbdﬁ . Sy . i . S ‘o N S . ‘o N

W =or, & 0%, - 08, Q%+ &, Q%) Q" - Q", Q% Oy + Q. Q" Dy - Q% O D,

(iv) The s =3 case.
There exist the first order poles of the following OPEs (and the ones of Sec. III E)

V(Z)W[ab]&cﬂy(w)|(7_lw = —W[ah]&cﬂy(w)’
N e 1 a cd)a Ay edla cala
WCd e,b’y( )l(— - _5[ w dia e/)‘y( ) +15£; w d e/}'y(w) + 6[6 w q bﬁy(w) - 5£;dW ] eﬂy(w),
VAW, ()] o = =W o)

a CYN)aa 1 AV e
Rub(Z)WC /3Y(W)|(Z_1W) = _6bW [;Y(W) +15bW /}y(w)s
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Qe (YW, () 1 = WPl (w), V(o)W ey (W)| s = W iy (W),
Ra[b (Z)Wm/jde]y(wﬂ_#‘ - 50 Wca be]y(w) - _5a Wcaﬁ 7(W) + bﬁWCd/jdb]y(W) - 5[Cewadﬁdb]y(w)a

VW, (w)| =W, (w),

=W

. - 1o
RV o (W)l = Wy, (w) = 25 o, (w),

+w) = _Wdﬁ};[ab]}/(w>7 V( )W[abc ( )l L= _3W[abc]aﬂy(w)v

z—w)

3
a cde _ CYAade dyrscae €A )cda Ay Acde
RE (@YWl (W)| e = =8 Wiy, (1) = 8, V5L, () = 85 Wl () + 5 8 Wl (),

Q&a (Z)W[de]aﬂy(WHF'W) = 5£lbWCd]dﬂya(W)’ V(Z)Wdﬁf/[abc] (W)|(z_lw) - 3W{Xﬁ})[abc](w)’

N p a VA YRYS 1 A BT 3a'r'1.'
R W g (w)| = GV () + ST () + SV gy () =3IV g (w),
Q (Z)Wa/jy[bcd](wﬂ L _5aW 7 cd]a( )

(v) The s = 3 case.
We have the following OPEs with first order poles in addition to the ones of the subsection III. 6

V(z) Wby 5(w))| £ =2 bl 5(w).

1 gy o .
R[a[b (Z)WCd] /Jya( ) = _5 we ]a/iya(w) + zég, WCd]a/iya(W) - 6£}dWca]aﬂya(W)’

|1
[e=n)

V()W ﬂy[ab]&( )= 2W“ﬂy[ ps(W),

=W

WERW P go(w)| 1= = V7 5() ——5“ W (o w) + ST s(w),

R“b(Z)Wmﬁdya(W)

=W

L= 5ZWwﬁby5(W) - bwaa/jdyé(w)v

z=w)

i f A\ e 1 YN f
Qanz(z))/vc /jdyﬁ( )| = 5 w /}ayﬁ( )_Z(SdW /jayﬁ(w)a

a By NPT 1 CIN IS T
Q a(Z)Wcﬁyd/fy(W” _‘ 5 = =5, WV ﬁydﬁy(w) + Zédw ﬁyaﬁy(w)’

Q' ()W, (W)l = W7 5 (W), Qda(Z)WMﬁy(W)|+ = _Waﬂyaﬁr(w)'

(vi) The s =7 case.
As well as the OPEs in Sec. Il G there are following OPEs with first order poles

V( )Waaﬁyﬁe( )| = _Waaﬁyée( )

—W,

By AP 1 AN BT
Rab(z)wcﬂyaﬁy(w)|(z_1w) = _5bW ﬂy(z/)’}'(w) + Zébw ﬂya/)’y(w)'

(vii) The s = 4 case.
Finally, we have the following first order poles

V(Z)debae(w)h,' _ = Wd”bae(w),

- B i lu'&.'
Rab(Z)W ﬂyc&e(w)(w)hz_lw) = 6CW /}yhée(w) _Zéhw ﬁycée(w)-
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Therefore, we have calculated the first order poles in the OPEs between five weight-1 operators and the weight-3
operators appearing in the Table 1.

APPENDIX D: THE COMPLETE OPE BETWEEN J/;(z) AND JX J" \J¥ 5 (w)

From the defining OPE in (2.7), we can calculate the remaining fourth, third, and second order poles of the OPE
J(z)J5 LM\ JP 5 (w). The first order pole is given by (3.1).

The fourth order pole can be written as
L (2) I TM VTP o ( (—1)(d+di)(dr+dy)+1

( )djdp+151 5K 5MQ5P ( 1)(dN+dM)(d,ﬁ—d,)+deP51L5M15KQ5PN+

% [(—1)deP+1(SK151N5MQ5PL + (_1)(dN+dM)<d1+dL)+deP5KJ5ML51Q5PN]- (Dl)

The third order pole is summarized by

J () TE LM N TP o (w)|

(z-w)3

— [(_l)deM+161L5KN5MJJPQ + 51L5KN5MQJPJ

+( 1) (dp+dp) dM+d,)+151 5K 5PJJMQ +( 1)(dN+dM)(dK+d,)+151L5MJ5MJ5KQJPN
+(=1) (dy+dy)(dg+dy)+(dp+do)(dg+dy) 51 5MJ5PNJKQ
=+ ( 1) (dx+d;)(dy+dy)+d; dp+1gl 5KQ5PJJMN
+(=1) (dp+dg)(di+dy) FH((=1)edut1 8K 51N5MLJPQ + 5KJ51N5MQJP
+( 1) (dp+dp) dM+dL)+15K 51N5PLJMQ +( 1) dN+dM)(d,+dL)+15K M 5IQJ
+(=1) (dy-+dy)(dr+dp) +(dpdo) (dr+dy) 5K | 5M 5PNJ1Q
+( 1) (dy+dy) dN+dM)+dep+15K 51Q5PLJ N)
+(=1) (dy+d;)(dg+dy) ((=1)dsdet1gl 5MQ5PJJK
)

+ (=1)dvrdu)drrdy) +dvdr M 51 5P K )] (w), (D2)

Finally, the second order pole is described by

J () TE LI N TP o (w)|

(z-w)?

— [(_])d,d,(+151L5KJJMNJPQ + 61L5KNJMJJPQ

-1 (dy+dy) d,(+d,)+151 M JKNJPQ+( 1)(dK+d,)(dN+dM)51L5KQJMNJPJ
-1 (dg+dy) dN+dM+dp+dQ)+161 5P JMNJK

-1 (dp+dyg)(d+d; +15K (51NJMLJPQ+( 1)(dN+dM)(d,+dL)+15MLJ1NJPQ
( 1) d,+dL)(dN+dM+dp+dQ)+15PLJMNJ1Q)
-1 (dy+dy)(dx+dy) JK ((_l)d,dM+151 5MJJPQ+51N5MQJPJ

-1 (dp+dyp) dM+d,)+151 5P JMQ+( 1)(dN+dM)(d,+d,)+15MJ51QJPN

-1 (dy+dy)(di+dy)+ (dp+dQ)(d,+dN)5M 5PNJIQ

+ + + + + + + o+

/\/—\/\/\/\/\/—\/\

)
)
)
—1)(drtdy)dydu) g1 M TP,
)
)
)
)

—1)(drtdy)dy+di)+dsdpt L5 5P T )] (),

(D3)

Therefore, the complete OPE is given by Egs. (D1)—~(D3) and (3.1).
|

We can also express the various (anti)commutator  second order pole is given by —%5’;673‘5’,3 +Vb”"a,3 with

relations by using the above OPE. See the Ref. [31] for
explicit formula. Let us consider the first OPE in (3.5)
having an extra generator. It is obvious to obtain that the
third order pole is given by 6273‘3’/; from Eq. (D2) and the

Vb =—385VP% 300, 0%, +3850P%, from Eq. (D3).
Here we intentionally split the second order pole into the
descendant of the weight-1 operator 62776’/,’ and the (quasi)
primary operator. The first order pole is again given in (3.5).
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Then we obtain the following anticommutator relation
by using the formula in [31] or performing the two contour
integrals in conformal field theory explicitly

" 1 R
{(Q a)m’ (Wbﬁ)n} = Em(zm + n)éla)(Paﬁ)m—&-n
+ m(vb&uﬁ)m+n + 52 (W&/i)ern

+ (Wbaaﬁ)m+n' (D4)
Note that the coefficients, $m(2m +n), m, 1 and I,
appearing in the right-hand side of Eq. (D4) hold for
any (anti)commutator relations we are considering in the
OPEs between the weight-1 operator and the weight-3
operator. The nonzero central terms can appear in the
corresponding (anti)commutator relations. We should sub-
tract the right descendant terms with coefficient —% in the
second order pole explained before in order to use the

above general behavior. The weight-3 operator is not a
quasiprimary operator, in general, from Eq. (B1). In order
to use the formula in [31], we should check the quasipri-
mary condition on the weight-3 operator.

Compared to the result of [11,13], the first three terms of
Eq. (D4) should appear and the last term reflects the new
generator coming from the world sheet symmetry algebra.
We expect that all the other (anti)commutator relations like
as Eq. (D4) with possible central terms or new generators
can be obtained and they (without new generators) with
some normalizations should appear in hs(2,2|4) in the
work of [11,13]. Although we observe that there are no
vanishing terms of the right-hand sides in Eq. (D4) under
the restriction of wedge modes, it is an open problem to
check whether the possibility of vanishings for the right-
hand sides in the (anti)commutator relations under the
wedge constraints (when we consider other OPEs for
higher weights) arises or not.
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