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By using the free field worldsheet realization described by Gaberdiel and Gopakumar recently, we
construct the nontrivial lowest generators of the higher spin superalgebra hsð2; 2j4Þ. They consist of cubic
terms between the bilinears of ambitwistorlike fields. We also obtain the worldsheet description for the
findings of Sezgin and Sundell twenty years ago given by the familiar oscillator construction. The first
order poles of the operator product expansions (OPEs), between the conformal weight-1 generators of Lie
superalgebra PSUð2; 2j4Þ and the above conformal weight-3 generators of hsð2; 2j4Þ, are determined
explicitly and the additional generators appear in the worldsheet theory.
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I. INTRODUCTION

Gaberdiel and Gopakumar have described the world-
sheet description for the AdS5 × S5 string theory dual to
free four dimensional N ¼ 4 super Yang-Mills theory in
[1]. Their free field description is related to the ambitwistor
string theory and the finite set of generalized zero modes
(or wedge modes) in each spectrally flowed sector are
physical. Furthermore, they impose some residual gauge
constraints on the Fock space generated by these wedge
oscillators, and demonstrate the matching of the physical
spectrum of the string theory with that of freeN ¼ 4 super
Yang-Mills theory at the planar level [2]. See also the
relevant works in [3–6] where the tensionless string theory
on AdS3 × S3, in the worldsheet theory with free fields, is
studied.
At vanishing gauge coupling constant, the Lie super-

algebra PSUð2; 2j4Þ of N ¼ 4 super Yang-Mills theory
gets enhanced to the higher spin superalgebra hsð2; 2j4Þ.
The fundamental unitary irreducible representation of
hsð2; 2j4Þ is the singleton with vanishing central charge
[7–10]. The symmetric tensor product of two singletons
yields the massless AdS5 higher spin gauge fields. The
physical fields after gauging are organized by the “levels”
l ¼ 0; 1; 2;…;∞ of PSUð2; 2j4Þ multiplets [11,12]. See
also the original paper [13] used in [11]. In particular, the
level l ¼ 0 multiplet is the five dimensionalN ¼ 8 gauged
supergravity multiplet [14] and the hsð2; 2j4Þ generators

depending on the Uð1Þ charge are classified by the levels
explicitly. See also some relevant papers on the construc-
tion of the composite operators built out of the singleton
[15–17]. Moreover, the spectrum of single trace operators
in the free N ¼ 4 super Yang-Mills theory can be decom-
posed into the irreducible representations of the hsð2; 2j4Þ
[18]. See also [19].
As pointed out by [1,2], the worldsheet realization

provides the familiar oscillator construction [7] by consid-
ering each pair of modes of the free fields. In this paper, we
would like to determine the worldsheet realization for the
higher spin generators found in [11]. The first nontrivial
case appears when the level becomes l ¼ 1 and the higher
spin generators consist of the cubic terms between the
bilinears of ambitwistorlike fields in the worldsheet
approach by counting the number of oscillators [11,18].
Then the generators of PSUð2; 2j4Þ have the conformal
weight-1 while the higher spin generators of hsð2; 2j4Þ
have the conformal weight-3. We will obtain the complete
expressions for the higher spin generators of hsð2; 2j4Þ for
the level l ¼ 1 by using the standard operator product
expansions (OPEs) in two dimensional conformal field
theory.1

In Sec. II, we review the free field construction of the
worldsheet theory in [1,2], express the PSUð2; 2j4Þ explic-
itly and the stress energy tensor is described.
In Sec. III, we obtain the lowest higher spin generators of

hsð2; 2j4Þ by using the free field construction with the help
of two dimensional conformal field theory.
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In Sec. IV, we write down the complete first order poles
from the OPEs between the generators of PSUð2; 2j4Þ and
those of hsð2; 2j4Þ.
In Sec. V, we summarize the main results of this paper

and the future directions of related works are given.
In the Appendix, some details of the previous sections

are presented explicitly.

II. REVIEW

A. Free fields

We consider the weight-1
2
conjugate pairs of symplectic

boson [20] fields ðλα; μ†αÞ and ðμ _α; λ†_αÞ where α; _α ¼ 1, 2
and four weight-1

2
complex fermions ðψa;ψ†

aÞ where a ¼ 1,
2, 3, 4 [1,2]. The α and _α are spinor indices with respect to
two different SUð2Þ’s and ψa transforms in the fundamen-
tal representation of SUð4Þ. Note that the conformal
dimension-1

2
fields, ðλα; μ†αÞ and ðμ _α; λ†_αÞ, are bosonic and

they satisfy “quasi” statistics. We will follow most of the
notations presented in [1,2].
Their nontrivial operator product expansions (OPEs) in

the left-moving sector of the worldsheet theory we are
describing are given by

λαðzÞμ†βðwÞ ¼
1

ðz − wÞ δ
α
β þ � � � ;

μ _αðzÞλ†_βðwÞ ¼
1

ðz − wÞ δ
_α
_β
þ � � � ;

ψaðzÞψ†
bðwÞ ¼

1

ðz − wÞ δ
a
b þ � � � : ð2:1Þ

The abbreviated parts in (2.1) are the regular terms as usual
in two dimensional conformal field theory. By introducing
the components of ambitwistor fields [21]

ZI ≡ ðλα; μ _α;ψaÞ; YJ ≡ ðμ†α; λ†_α;ψ†
aÞ; ð2:2Þ

we can rewrite the above three OPEs (2.1) as a single one
[22] alternatively

ZIðzÞYJðwÞ ¼
1

ðz − wÞ δ
I
J þ � � � : ð2:3Þ

The upper and lower indices I, J stand for α; _α, and a. For
the calculations of any OPEs containing the multiple of
ambitwistor fields (2.2), it is useful to use (2.3) rather than
(2.1) and after that we can specify the indices I; J; K � � � of
these from (2.2) later.2

By constructing the quadratic terms [1,2,21]

JIJ ≡ YJZI; ð2:4Þ

the current algebra version of the oscillator construction [7]
of Lie superalgebra Uð2; 2j4Þ can be described by (i) the
generators of Lorentz symmetry, Lα

β and _L _α
_β, (ii) the

generator of R symmetry, Ra
b, (iii) the generators of super

translations, Qa
α, _Q _α

a, and P _α
β. Moreover, the N ¼ 4

super Poincaré algebra obtained by these generators can be
enlarged by the generators of super conformal boosts,
Sα

a; _S
a
_α, and Kα

_β. There exist also the Uð1Þ hyper charge
B, the central charge C and the dilatation generatorD. Then
the generators [27] of Lie superalgebra Uð2; 2j4Þ can be
extended by the following generators in terms of ambit-
wistor fields [1,2]

Lα
β ¼ YβZα −

1

2
δαβYγZγ; _L _α

_β ¼ Y _βZ
_α −

1

2
δ _α_βY _γZ_γ;

Ra
b ¼ YbZa−

1

4
δabYcZc;

Qα
a ¼ YαZa; _Q _α

a ¼ YaZ _α; P _α
β ¼ YβZ _α;

Sα
a ¼ YaZα; _Sa

_α ¼ Y _αZa; Kα
_β ¼ Y _βZ

α;

B¼ 1

2
ðYαZαþY _αZ _αÞ; C¼ 1

2
ðYαZαþY _αZ _αþYaZaÞ;

D¼ 1

2
ðYαZα−Y _αZ _αÞ: ð2:5Þ

As usual, the repeated indices are summed over the
corresponding indices. As noted in [1,2], each pair of
modes of the free fields provides two copies of the usual
oscillator construction. Therefore, once we restrict to the
zero modes of (2.5) in their (anti)commutator relations, the
known Lie superalgebraUð2; 2j4Þ [27] can be obtained. We
present their complete OPEs in Appendix A in the
worldsheet theory.3

It is useful to introduce the following Uð1Þ generators
which appear in the above B, C, and D generators

U ≡ YγZγ; _U ≡ Y _γZ_γ; V ≡ YcZc: ð2:6Þ

Note that the V appears in the second term of Ra
b in (2.5)

which is traceless: Ra
a ¼ 0.

2If we interchange the order of the OPE in (2.3), then we have
YJðzÞZIðwÞ ¼ 1

ðz−wÞ ð−1ÞdIdJþ1δIJ þ � � � where the grading dI ¼ 2

for the bosonic fields and dI ¼ 1 for the fermionic fields [23–26].
In other words, the additional factor ð−1ÞdIdJ arises. Note that the
components Za ¼ ψa and Ya ¼ ψ†

a are fermionic.

3We use the Thielemans package [28] with a Mathematica
[29]. Note that the group indices α; _α and a are fixed. All the
coefficients appearing in the right hand sides of the OPEs are
numerical values. Once we identify the group index structures
both sides of the OPEs, then it is straightforward to calculate all
these coefficients inside a Package explicitly due to the free
fields.
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In particular, the nonzeroV-charge forQα
a is equal to−1

and the nonzero V-charge for _Qα
a is equal to 1 from the

observation of Eq. (A2). This corresponds to Y-charge in
[11] up to sign. By simply counting the number of
supersymmetry generators in the multiple product of the
generators of (2.5), we can determine the V-charge. The
remaining ten generators have vanishing V-charges.

Note that the ordering of two operators in (2.4) or (2.5) is
important because sometimes we will have additional minus
sign when we interchange the ambitwistor fields each other.

B. The Lie superalgebra PSUð2;2j4Þ
We can calculate the OPEs between the conformal

weight-1 currents in (2.4) by using the defining relation
in (2.3) with the help of the footnote and it turns out that

JIJðzÞJKLðwÞ ¼ −
1

ðz−wÞ2 ð−1Þ
dJdKδILδ

K
J þ 1

ðz−wÞ ½δ
I
LJ

K
J

þ ð−1ÞðdLþdKÞðdIþdJÞþ1δKJJIL�ðwÞ
þ � � � : ð2:7Þ

The grading dI is defined in the footnote 2. We can also
check, from (2.7), that the second order pole of the OPE
between Jþ ≡ L1

2, J− ≡ L2
1 and J3 ≡ 1

2
ðL2

2 − L1
1Þ

implies that the level is equal to −1. Similarly, the OPE

between _Jþ ≡ _L
_1
_2, _J

− ≡ _L
_2
_1 and _J3 ≡ 1

2
ð _L_2

_2 − _L
_1
_1Þ leads

to the fact that the level is also equal to −1. We obtain
Appendix A from this defining relation (2.7) by specifying
the indices explicitly. The OPEs between the Uð1Þ gen-
erator C appearing in (2.5) and other generators ofUð2; 2j4Þ
do not have any singular terms in Eq. (A1) except the OPE
BðzÞCðwÞ. We are left with PSUð2; 2j4Þ after the Uð1Þ
generator C is “quotiented” [1,2].
We can calculate the OPEs between the single JIJðzÞ and

the quadratic term JKLJMNðwÞ and the OPEs between the
single JIJðzÞ and the cubic term JKLJMNJPQðwÞ but we do
not present them in this paper because they have long
expressions due to the presence of various gradings. Later
we will present the first order pole of the latter explicitly in
next section.

C. The stress energy tensor

By requiring that the ambitwistor fields (2.2) are weight-
1
2
primary and the generators (2.5) are weight-1 primary

(See also the footnote 4), we can determine the stress
energy tensor from the possible quadratic terms from (2.5)
completely and it is given by

T ¼ 1

2
ðλα∂μ†αþ μ _α∂λ†_α −ψa∂ψ†

a − ∂λαμ†α − ∂μ _αλ†_αþ ∂ψaψ†
aÞ

¼ 1

2
ð−1ÞdIðZI∂YI − ∂ZIYIÞ: ð2:8Þ

As before, the repeated indices are summed. Note that there
is an additional factor for the grading when we change the
order between the ambitwistor fields in the second expres-
sion of (2.8). This stress energy tensor satisfies the usual
standard OPE TðzÞTðwÞ and the central charge is equal to
zero. We will use the explicit expression (2.8) in order to
calculate the possible (quasi)primary operators in next
section.4

In this section, we summarize the extension of the Lie
superalgebra PSUð2; 2j4Þ generated by (2.5) in the world-
sheet theory. Implicitly it is given by (2.7) or explicitly it is
also given by Eq. (A1). If we focus on the zero modes for
these generators, then this will lead to the standard (anti)
commutator relations [27].

III. CONSTRUCTION OF THE LOWEST
GENERATORS OF THE HIGHER SPIN

SUPERALGEBRA hsð2;2j4Þ
Wewould like to construct the worldsheet description for

the higher spin generators of hsð2; 2j4Þ found in [11,12].
We have seen the conformal weight-1 generators which are
primary under the stress energy tensor (2.8). According to
the results of [11], the nontrivial lowest generators consist
of cubic terms in the above weight-1 generators corre-
sponding to the level l ¼ 1 case (For l ¼ 0 case, they are
linear in the weight-1 generators while for l ¼ 2 case they
are quintic in the weight-1 generators).

We observe that the (2lþ 1) can be identified with the
conformal dimension (or weight or spin) under (2.8) in
the worldsheet theory.

From the conformal field theory analysis [30–32], it is
known that in the OPE between the weight-1 operator
(which is a primary) and the weight-3 (quasi)primary
operator, in principle, there appear a (new) weight-1
operator in the third order pole and a (new) weight-2
operator in the second order pole. By simple counting the
relative coefficients for the descendant operators of these
operators which will appear in the second and first order
poles, they do not appear in the first order pole.

4Therefore, we have TðzÞZIðwÞ ¼ 1
ðz−wÞ2

1
2
ZIðwÞ þ

1
ðz−wÞ ∂ZIðwÞ þ � � �, TðzÞYIðwÞ¼ 1

ðz−wÞ2
1
2
YIðwÞþ 1

ðz−wÞ∂YIðwÞþ���,
TðzÞJIJðwÞ ¼ 1

ðz−wÞ2 J
I
JðwÞ þ 1

ðz−wÞ ∂JIJðwÞ þ � � � and from these

we can calculate the following OPE TðzÞJIJJKLðwÞ ¼
1

ðz−wÞ4 ð−1ÞdJdKþ1δILδ
K
J þ 1

ðz−wÞ3 ½δILJKJ þ ð−1ÞðdLþdKÞðdIþdJÞþ1×

δKJ J
I
L�ðwÞ þ 1

ðz−wÞ2 2J
I
JJKLðwÞ þ 1

ðz−wÞ ∂ðJIJJKLÞðwÞ þ � � �
which implies that this does not produce the (quasi)primary
operator in general. We can check whether this is really (quasi)
primary or not after specifying the indices explicitly.
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Therefore, we will focus on the first order pole in the
OPE between the weight-1 operator and the weight-3
operator. This first order pole provides a new (quasi)
primary operators. In doing this, we should check that
the weight-3 operator should be (quasi) primary. That
is, at least the third order pole of the OPE between the

stress energy tensor and this weight-3 operator should
vanish.

We have the following first order pole in the OPE
between JIJðzÞ and JKLJMNJPQðwÞ by using (2.7) suc-
cessively as follows:

JIjðzÞJKLJMNJPQðwÞj 1
ðz−wÞ

¼ δILJ
K
JJMNJPQðwÞ þ ð−1ÞðdIþdKÞðdIþdJÞþ1δKJ J

I
LJMNJPQðwÞ

þ ð−1ÞðdIþdJÞðdKþdLÞJKL½δINJMJJPQ þ ð−1ÞðdNþdMÞðdIþdJÞþ1δMJ J
I
NJPQ

þ ð−1ÞðdIþdJÞðdNþdMÞδIQJ
M
NJPJ þ ð−1ÞðdIþdJÞðdNþdMþdPþdQÞþ1δPJ J

M
NJIQ�ðwÞ: ð3:1Þ

Let us emphasize that the right-hand side of (3.1) is a (quasi)
primary operator as before as long as the third order pole of
Eq. (B1) vanishes. We obtain all the information on the
higher spin generators in this section from this (implicit)OPE
(3.1) by imposing the explicit indices on (3.1). In other
words, the first order pole can be written in terms of the
known operators by collecting them appropriately or if not,
then there appears in the new (quasi)primary operator.We do
not have to subtract the contributions from the descendant
operators as we mentioned before. Of course, there are also
fourth, third and second order poles in the above OPE.
We focus on the Tables 4 and 5 of [11] with l ¼ 1 case

and s ¼ 1; 3
2
; 2; 5

2
; 3; 7

2
and 4. Their l is related to the

numbers of bosonic and fermionic oscillators and is given
by the Eq. (3.6) in [11] and their s is related to the numbers
of bosonic oscillators and is given around Eq. (3.18) in
[11]. Furthermore, their Eq. (3.19) contains all the infor-
mation on the above two tables although it is not easy to
read off the relevant quantities properly.5

A. The s= 1 case: 10 and 150
Because their X appearing in Eq. (2.4) in [11] corre-

sponds to our V up to sign and normalization, we can
observe that the SUð4Þ singlet is a cubic in V which has
vanishing V-charge from Eq. (A2). Moreover, the SUð4Þ
nonsinglet contains the quadratic in X and we can identify
this as a quadratic in V together with Ra

b which is a 15
representation of SUð4Þ. Note that by construction of (2.5),
we observe the fact thatRa

a vanishes. In the tensor product
of 4 ⊗ 4̄ ¼ 1 ⊕ 15 [34,35], after subtracting the V part,
we are left with the representation 15. Once again, the
V-charge in the cubic of VVRa

b vanishes.

Therefore we identify the following higher spin gener-
ators corresponding to the representations 10 and 150
respectively as follows6:

W ≡ VVV;

Wa
b ≡ VVRa

b þ VRa
bV þRa

bVV: ð3:2Þ

We can check these higher spin generators in (3.2) are
quasiprimary operators under the stress energy tensor (2.8).
In other words, the OPEs between the stress energy tensor
and these generators contain nonzero fourth order poles
although the third order poles become zero according to
Eq. (B1) by specifying the indices correctly.
Although the OPE between V and Ra

b is regular and
they are commuting operators (the second and the third
terms in the right-hand side ofWa

b are the same as the first
one), we will keep its form in symmetrical way as in (3.2).
When we act the supersymmetry generators on the Wa

b,
then we will observe that each three terms contributes
differently due to the normal ordering.
In next subsections, we will determine the remaining

higher spin generators by acting the supersymmetry gen-
erators Qa

α and _Q _α
a on (3.2) successively.

B. The s= 3
2 case: 4− 1;4̄1;20− 1, and 201

Now we move on the next column of the Table 4 with
l ¼ 1 of [11]. Eventually we will present all the first order
poles in the OPEs between someweight-1 operators and the
weight-3 operators in next section with Appendix C.
However, in this section, we will focus on some of them
which determine the higher spin generators completely.
One way to determine these particular higher spin gen-
erators is to consider that we can calculate the first order
pole in the OPE between the supersymmetry generatorQa

α

which is fermionic and Wb
c which is introduced in

previous subsection (3.2). Either we can use Eq. (A1) or

5For l ¼ 0 in Table 4 of [11], there are generatorsRa
b;Qα

a; _Q
_α
a

andP _α
β corresponding to 150; 4−1; 4̄1 and 10 respectively. It is easy

to see that they are closed by themselves inEq. (A1). In the oscillator
construction, the remaining generators ofPSUð2; 2j4Þ acting on the
physical vacuum state vanish [27,33]. We will calculate the OPEs
between these weight-1 operators including the Uð1Þ operator V
relevant to Ra

b and the weight-3 operators in next section. The
algebra from these five weight-1 operators is closed.

6We denote the higher spin generators as the letter W with
appropriate group indices. For the additional new higher spin
generators we put a hat on W with some indices.
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the previous OPE (3.1) can be used by selecting the
corresponding indices for this particular OPE.
It turns out that by antisymmetrizing the upper indices7

Q½a
αðzÞWb�

cðwÞj 1
ðz−wÞ

¼ W ½ab�
cαðwÞ þ δ½ac Wb�

αðwÞ

−
1

4
δ½bc Wa�

αðwÞ; ð3:3Þ

where the right-hand side of (3.3) consists of two kinds of
higher spin generators as follows:

Wa
α≡VVQa

αþVQa
αVþQa

αVV;

W ½ab�
cα≡VQ½a

αRb�
cþQ½a

αVRb�
cþQ½a

αRb�
cV

þVR½b
cQa�

αþR½b
cVQa�

αþR½b
cQa�

αV: ð3:4Þ

Note that the first one in (3.4) is a quasiprimary operator
while the second one in (3.4) is a primary operator
according to Eq. (B1). Note that the second one is
antisymmetric in the upper indices. As mentioned before,
the weight-1 operator Qa

α has nontrivial OPE with V [See
also Eq. (A2)] and the ordering between them is not trivial
and if we interchange them, there appears a derivative term
of weight-1 operator. The quasiprimary condition of the
first operator requires all of three terms (this is the reason
why we have three terms in (3.2)) and we can easily
observe that the first operator corresponds to the repre-
sentation 4−1 because it contains a single weight-1 operator
which has V-charge −1 (Of course, the V-charge of V is
equal to zero) and it has upper index a which transforms as
a fundamental representation of SUð4Þ.
In the tensor product of 6̄ ⊗ 4̄ ¼ 20 ⊕ 4 [34,35], we

obtain the representation 20 by subtracting the fundamental
representation 4. The second higher spin generator in (3.4)
consists of the upper antisymmetric combination and the
lower antifundamental one. Therefore, in total, it provides
the tensor product 6̄ ⊗ 4̄. Now we consider the contracted
one which is given by Wab

aα which transforms as a
fundamental representation 4 of SUð4Þ. Then after sub-
tracting this representation from 6̄ ⊗ 4̄, we will eventually
obtain the representation 20−1. Furthermore, it has V-
charge −1 also because there exists a single Qa

α and the
operator Ra

b has a vanishing V-charge. Note that the
expression without the antisymmetric bracket in the second
higher spin generator in (3.4) is itself a primary operator
and it is obvious to see that the higher spin generatorWab

aα
also transforms as a primary operator after taking anti-
symmetric combination.

Therefore, we should consider the particular antisym-
metric combination in the OPE of (3.3). Without it, we
would not obtain the corresponding right higher spin
generator which transforms properly. In other words, the
antisymmetric combination in the indices a and b is crucial
for the presence of the representation 20−1 in the oscillator
construction in [11].8

C. The s= 2 case: 10;150;2000;6− 2;62;10− 2, and 102
Let us consider the next column of the Tables 4 and 5

with l ¼ 1 of [11]. Again, we can use either (3.1) or
Eq. (A1). We can calculate the OPEs between the super-
symmetry generators and the higher spin generators found
in previous subsection.
It turns out, from (3.4), that we have

_Q _α
aðzÞWb

βðwÞj 1
ðz−wÞ

¼ δbaW _α
βðwÞ þ Ŵb _α

aβ; ð3:5Þ

where the right hand side of (3.5) contains the following
higher spin generators

W _α
β ≡ VVP _α

β þ VP _α
βV þ P _α

βVV;

Ŵb _α
aα ≡Qb

α
_Q _α

aV þQb
αV _Q _α

a þ VQb
α
_Q _α

a

− _Q _α
aQb

αV − _Q _α
aVQb

α − V _Q _α
aQb

α: ð3:6Þ

Compared with the previous OPE, there is no (anti)
symmetric combination in the SUð4Þ indices. The first
higher spin generator of (3.6) is a quasiprimary operator by
using Eq. (B1). Because there is no SUð4Þ index, the V-
charge vanishes and moreover the quadratic expression in V
arises from the oscillator construction, we can identify this
as 10 in [11].9

Let us look at the second higher spin generator in (3.6)
which is a primary operator under the stress energy tensor
(2.8). We can view this as the tensor product of the
representation 4 corresponding to the upper index and
the representation 4̄ corresponding to the lower index and
moreover its V-charge vanishes because there appear two

7In this paper, the (anti)symmetric notations are for SUð4Þ
indices. The bracket ½� stands for antisymmetric one and the
bracket () stands for symmetric one without any overall numerical
factors.

8Similarly, we obtain _Q _α
½aðzÞWb

c�ðwÞj 1
ðz−wÞ

¼ − _Wb _α
½ac�ðwÞ−

δb½a _W _α
c�ðwÞ þ 1

4
δb½c _W _α

a�ðwÞ, where the right-hand side has the

following higher spin generators _W _α
a ≡ VV _Q _α

a þ V _Q _α
aV þ

_Q _α
aVV corresponding to the representation 4̄1, and

_Wb _α
½ac�≡V _Q _α

½aRb
c� þ _Q _α

½aVRb
c� þ _Q _α

½aRb
c�VþVRb ½c _Q

_α
a�þ

Rb ½cV _Q _α
a� þRb½c _Q

_α
a�V corresponding to the representation 201

from the analysis of the tensor product 6 ⊗ 4 ¼ 20 ⊕ 4̄.
9Note that the OPEs between P _α

β and the weight-1 operators
are regular except Lα

β, _L _α
_β, D, Sα

a, _Sa
_α, Kα

_β, U, and _U from
Eq. (A1). In other words, the OPEs between P _α

β and the five
weight-1 operators appearing in the footnote 5 do not have the
singular terms.
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kinds of supersymmetry generators. We do not find this
higher spin generator from the Tables 4 and 5 of [11]. As
mentioned before, we put a hat on this generator because
this is a new primary operator.10

Let us move on the following first order pole in the OPE
between the supersymmetry generator and the second
higher spin generator in (3.4) after antisymmetrizing for
the lower two indices

_Q _α
½aðzÞW ½bc�

d�βðwÞj 1
ðz−wÞ

¼δ½b½aW
c� _α

d�βðwÞþW ½bc� _α½ad�βðwÞ

þδ½c½aŴ
b� _α

d�βðwÞ−
1

4
δ½c½dŴ

b� _α
a�βðwÞ;
ð3:7Þ

where the right-hand side of (3.7) contains the following
higher spin generators together with the previous operator
in (3.6)

Wa _α
bβ ≡ VP _α

βRa
b þ P _α

βVRa
b þ P _α

βRa
bV

þ VRa
bP _α

β þRa
bVP _α

β þRa
bP _α

βV;

W ½ab� _α½cd�α ≡Q½a
α
_Q _α

½cRb�
d� þQ½a

αRb�½d _Q
_α
c�

þR½b½dQa�
α
_Q _α

c� − _Q _α
½cQ½a

αRb�
d�

− _Q _α
½cRb�

d�Qa�
α −R½b½d _Q

_α
c�Qa�

α: ð3:8Þ
We can easily identify the first operator of (3.8) which is a
primary as the representation 150. We have already
observed that the weight-1 operator Ra

b transforms as
this representation under the SUð4Þ. Moreover, there is a
single V in this expression (again from the result of [11])
and it is obvious that the V-charge is equal to zero.
There are two antisymmetric combinations between the

upper indices and lower indices from the second operator of
(3.8). It is known that in SUð4Þ, we have 6 ¼ 6̄. In the tensor
product of 6 ⊗ 6 ¼ 1 ⊕ 15 ⊕ 200 [34,35], after subtracting
the first two representations,weobtain the representation200.
That is, we observe that when we contract one index from
W ½ab� _α½cd�α, then the representation 15 corresponds to
W ½ab� _α½ad�α. Further contractionwill give usW ½ab� _α½ab�αwhich
has a representation 1. Therefore, we obtain the representa-
tion 200 by restricting to these two conditions. It is easy to see
that the V-charge vanishes. We can check this operator is a
primary under the stress energy tensor (2.8).11

We continue to analyze the next higher spin generators
which have nonzero V-charges. We can calculate the

following OPE and obtain the first order pole, from
(3.4), as follows:

Qa
αðzÞW ½bc�

aβðwÞj 1
ðz−wÞ

¼ W ½bc�a
aβαðwÞ

−
15

4
Ŵ ½bc�

βαðwÞ; ð3:9Þ

where the right-hand side of (3.9) consists of the following
higher spin generators

W ½ab�c
cαβ≡−Q½a

αRb�
cQc

β−R½b
cQa�

αQc
β−Q½a

αQc
βRb�

c

þQc
βR½b

cQa�
αþR½b

cQc
βQa�

αþQc
βQ½a

αRb�
c;

Ŵ ½ab�
αβ≡VQ½a

αQb�
βþQ½a

αVQb�
βþQ½a

αQb�
βV

−VQ½b
βQa�

α−Q½b
βVQa�

α−Q½b
βQa�

αV: ð3:10Þ

Note that the upper and lower index a is summed in the left-
hand side of the OPE of (3.9). We can identify the first
operator of (3.10) as 6−2 because the two upper SUð4Þ
indices are antisymmetric together with the contraction for
other two and due to the two supersymmetric generators,
the V-charge becomes −2 as before. On the other hands, the
second operator of (3.10), which has also V-charge −2 and
consists of the tensor product of 4 and 4 (again 6−2) of
SUð4Þ, can be regarded as a new primary operator which is
not present in [11]. We can check this is a primary operator
from Eq. (B1). As done before, we can obtain the
conjugated version of (3.9) with the footnote and there
exists a relevant generator.12

Finally, by considering the following OPE from (3.4)
we determine the higher spin generator having nonzero
V-charge, after symmetrizing the upper indices,

Qða
αðzÞWbÞ

βðwÞj 1
ðz−wÞ

¼ WðabÞ
αβðwÞ; ð3:11Þ

where the right-hand side of (3.11) can be written as

WðabÞ
αβ≡VQða

αQbÞ
βþQða

αVQbÞ
βþQða

αQbÞ
βV

−VQðb
βQaÞ

α−Qðb
βVQaÞ

α−Qðb
βQaÞ

αV: ð3:12Þ

It is obvious to see that this (3.12), which is a primary, has
the representation 10−2 from the symmetric combination of
the upper two indices. Simple counting of V-charge implies

10We have similar relationQa
αðzÞ _W _β

bðwÞj 1
ðz−wÞ

¼ δabW
_β
αðwÞþ

Ŵa _β
bαðwÞ where the generators of right-hand side are given by

(3.6). The SUð4Þ indices appear separately.
11The conjugated version of (3.7) appears as fol-

lows: Q½a
αðzÞ _Wc�_β

½bd�ðwÞj 1
ðz−wÞ

¼ δ½a½bW
c� _β

d�αðwÞþW ½ac� _β ½bd�αðwÞ−
δ½a½dŴ

c�_β
b�αðwÞ− 1

4
δ½c½dŴ

a� _β
b�αðwÞ together with the footnote 8, and

the relations (3.6) and (3.8).

12That is, we have the following first order pole, from
the footnote 8, _Q _α

aðzÞ _Wa _β
½bd�ðwÞj 1

ðz−wÞ
¼ − _Wa _β _α

½bd�aðwÞþ
15
4

_̂W
_β _α

½bd�ðwÞwhere _Wc _α _β
½ab�c≡− _Q _α

½aRc
b� _Q

_β
c−Rc½b _Q

_α
a� _Q

_β
c−

_Q _α
½a _Q

_β
cRc

b�þ _Q
_β
cRc½b _Q

_α
a�þRc½b _Q

_β
c
_Q _α

a�þ _Q
_β
c
_Q _α

½aRc
b� cor-

responding to the representation 6̄2 and the new higher spin

generator _̂W
_α _β

½ab� ≡ V _Q _α
½a _Q

_β
b� þ _Q _α

½aV _Q
_β
b� þ _Q _α

½a _Q
_β
b�V −

V _Q
_β
½b _Q

_α
a� − _Q

_β
½bV _Q _α

a� − _Q
_β
½b _Q

_α
a�V which transforms as 6̄2.
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that this higher spin generator has −2. Furthermore, it has
linear dependence of V as in [11].13

D. The s= 5
2 case: 4− 1;4̄1;4̄− 3;43;20− 1, and 201

From now on, all the higher spin generators can be
related to the corresponding multiplets in the Table 3 of
[11]. In the previous three cases, there are some mismatches
between the Table 3 and the Tables 4 and 5 of [11]. As done
in previous subsection, we compute the following OPE
from (3.8) and focus on the first order pole, after anti-
symmetrizing the upper indices,

Q½a
βðzÞWb� _α

cγðwÞj 1
ðz−wÞ

¼ W ½ab� _α
cβγðwÞ þ δ½ac Wb� _α

βγ

−
1

4
δ½bc Wa� _α

βγðwÞ; ð3:13Þ

where the right-hand side of (3.13) provides the following
higher spin generators

Wa _α
βγ≡VQa

βP _α
γþQa

βVP _α
γþQa

βP _α
γV

þVP _α
γQa

βþP _α
γVQa

βþP _α
γQa

βV;

W ½ab� _α
cβγ≡Q½a

βRb�
cP _α

γþR½b
cQa�

βP _α
γþQ½a

βP _α
γRb�

c

þP _α
γR½b

cQa�
βþR½b

cP _α
γQa�

βþP _α
γQ½a

βRb�
c:

ð3:14Þ

We can see that the first generator of (3.14) has the
representation 4−1 with V-charge −1. For the second
generator of (3.14), there are two upper antisymmetric
indices with a single lower index. We have seen the similar
structure around (3.4). As long as the SUð4Þ representation
with V-charge is concerned, there is no difference whether
there is a factor V in (3.4) or P _α

β in (3.14). This implies that
the above generator transforms as the representation 20−1
by subtracting the trace part (with a contraction in the
indices) with V-charge −1. They are primary under the
stress energy tensor.14

The next case can be obtained from the following OPE
result by using the higher spin generator (3.10) properly
(complete antisymmetrization of the upper indices)

Q½a
αðzÞWbcd�

dβγðwÞj 1
ðz−wÞ

¼ −δ½ad Wbcd�
βγαðwÞ

þ 1

4
δ½dd W

bca�
βγαðwÞ; ð3:15Þ

where the right-hand side of (3.15) contains the following
higher spin generator

W ½abc�
αβγ≡Q½a

αQb
βQc�

γþQ½c
γQa

αQb�
βþQ½b

βQc
γQa�

α

−Q½a
αQc

γQb�
β−Q½b

βQa
αQc�

γ −Q½c
γQb

βQa�
α:

ð3:16Þ

First of all, the V-charge of (3.16) is given by −3. From the
tensor product of 4 ⊗ 4 ⊗ 4 [34,35] due to the three
upper indices, we obtain the following decomposition
4̄ ⊕ 20 ⊕ 20 ⊕ 2000. Then by taking the totally antisym-
metric combination of the indices, the representation 4̄−3
with V-charge can be obtained and we can check this (3.16)
is a primary operator.15

E. The s= 3 case: 10;150;6− 2, and 62
Now we analyze the following OPE, from the previous

result in (3.14),

_Q _α
aðzÞWb _β

γδðwÞj 1
ðz−wÞ

¼ δbaW _α _β
γδðwÞ

þ Ŵb _β _α
aγδðwÞ; ð3:17Þ

where the right-hand side of (3.17) has the following higher
spin generators

W _α _β
γδ ≡ VP _α

γP
_β
δ þ P _α

γVP
_β
δ þ P _α

γP
_β
δV

þ VP _β
δP _α

γ þ P _β
δVP _α

γ þ P _β
δP _α

γV;

Ŵa _α _β
bγδ ≡Qa

γ
_Q
_β
bP _α

δ þQa
γP _α

δ
_Q
_β
b þ P _α

δQa
γ
_Q
_β
b

− _Q
_β
bQa

γP _α
δ − _Q

_β
bP _α

δQa
γ −Qa

γP _α
δ
_Q
_β
b:

ð3:18Þ

For the first generator of (3.18), there is no SUð4Þ index and
the V-charge is equal to zero. Then we can identify this
with the representation 10. For the second generator, the
V-charge vanishes also and it is given by the tensor product

13We obtain _Q _α
ðaðzÞ _W _β

bÞðwÞj 1
ðz−wÞ

¼ − _W _α _β
ðabÞðwÞ together

with _W _α _β
ðabÞ ≡ V _Q _α

ða _Q
_β
bÞ þ _Q _α

ðaV _Q
_β
bÞ þ _Q _α

ða _Q
_β
bÞV −

V _Q
_β
ðb _Q

_α
aÞ − _Q

_β
ðbV _Q _α

aÞ − _Q
_β
ðb _Q

_α
aÞV corresponding to 102.

14We can determine the similar OPE, by antisymmetrizing
the lower indices, _Q

_β
½aðzÞWb _α

c�γðwÞj 1
ðz−wÞ

¼ − _Wb _β _α
½ac�γðwÞ−

δb½a _W
_β _α

c�γ þ 1
4
δb½c _W

_β _α
c�γðwÞ with two higher spin generators

_W
_β _α

aγ ≡ V _Q
_β
aP _α

γ þ _Q
_β
aVP _α

γ þ _Q
_β
aP _α

γV þ VP _α
γ
_Q
_β
aþ

P _α
γV _Q

_β
a þ P _α

γ
_Q
_β
aV transforming as 4̄1 and _Wb _β _α

½ac�γ≡
_Q
_β
½aRb

c�P _α
γ þRb ½c _Q

_β
a�P _α

γ þ _Q
_β
½aP _α

γRb
c� þ P _α

γRb ½c _Q
_β
a� þ

Rb ½cP _α
γ
_Q
_β
a� þ P _α

γ
_Q
_β
½aRb

c� which transforms as 201.

15In this case, we have _Q _α
½aðzÞ _Wd _β _γ

bcd�ðwÞj 1
ðz−wÞ

¼
δd½a _W

_β _γ _α
bcd�ðwÞ − 1

4
δd½d _W

_β _γ _α
bca�ðwÞ together with the higher

spin generator _W _α _β _γ
½abc� ≡ _Q _α

½a _Q
_β
b
_Q_γ

c� þ _Q_γ
½c _Q

_α
a
_Q
_β
b�þ

_Q
_β
½b _Q

_γ
c
_Q _α

a� − _Q _α
½a _Q

_γ
c
_Q
_β
b� − _Q

_β
½b _Q

_α
a
_Q_γ

c� − _Q_γ
½c _Q

_β
b
_Q _α

a�
transforming as 43.
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between the representation 4 and 4̄. In the construction
of [11], we cannot find this higher spin generator. We can
check that they (3.18) are primary operators.16

Now we describe the following OPE together with (3.14)

_Q _α
aðzÞW ½bc� _β

dγδðwÞj 1
ðz−wÞ

¼ δ½ba Wc� _α _β
dγδðwÞ

þ δ½ca Ŵb� _β _α
dγδðwÞ

−
1

4
δ½cd Ŵ

b� _β _α
aγδðwÞ; ð3:19Þ

where the right-hand side of (3.19) contains the following
higher spin generator

Wa _α _β
bγδ ≡ P _α

γP
_β
δRa

b þ P _α
γRa

bP
_β
δ þRa

bP _α
γP

_β
δ

þ P _β
δP _α

γRa
b þ P _β

δRa
bP _α

γ þRa
bP

_β
δP _α

γ;

ð3:20Þ
which transforms as 150 with a vanishing V-charge and is a
primary operator.17

Finally, in this subsection, we consider the following
OPE with complete antisymmetric upper indices

Q½a
αðzÞWbc� _α

dβγðwÞj 1
ðz−wÞ

¼ −δ½ad Wbc� _α
βαγðwÞ

þ 1

4
δ½cdW

ba� _α
βαγðwÞ; ð3:21Þ

where the right-hand side of (3.21) contains the following
higher spin generator

W ½ab� _α
βγδ ≡Q½a

βQb�
γP _α

δ þQ½a
βP _α

δQb�
γ þP _α

δQ½a
βQb�

γ

−Q½b
γQ½a

βP _α
δ −Q½b

γP _α
δQa�

β −Q½a
βP _α

δQb�
γ;

ð3:22Þ

which transforms as 6−2 (from the antisymmetric combi-
nation of upper two indices) with V-charge −2 and is a
primary operator. In this case, we have the conjugated
version of this higher spin generator with corresponding
OPE as follows.18

F. The s= 7
2 case: 4− 1 and 4̄1

By using (3.22), we calculate the following OPE and
read off the first order pole

_Q _α
aðzÞW ½bc� _β

γδϵðwÞj 1
ðz−wÞ

¼δ½ba Wc� _α _β
δγϵðwÞ−δ½caWb� _α _β

δγϵðwÞ;
ð3:23Þ

where the right-hand side of (3.23) contains the higher spin
generator

Wa _α _β
γδϵ ≡Qa

γP _α
δP

_β
ϵ þ P _α

δQa
γP

_β
ϵ þ P _α

δP
_β
ϵQa

γ

þQa
γP

_β
ϵP _α

δ þ P _β
ϵQa

γP _α
δ

þ P _β
ϵP _α

δQa
γ; ð3:24Þ

which transforms as 4−1 from the upper index a with
V-charge −1 and is a primary operator. Furthermore, there
exists a relevant OPE with the conjugated higher spin
generator.19

G. The s= 4 case: 10
We obtain the following OPE, by using (3.24),

_Q _α
aðzÞWb_γ _δ

βϵρðwÞj 1
ðz−wÞ

¼ δbaW _α _γ _δ
βϵρðwÞ; ð3:25Þ

where the right-hand side of (3.25) has the higher spin
generator

W _α _β _γ
δϵρ ≡ P _α

δP
_β
ϵP _γ

ρ þ P _γ
ρP _α

δP
_β
ϵ þ P _β

ϵP _γ
ρP _α

δ

þ P _α
δP _γ

ρP
_β
ϵ þ P _β

ϵP _α
δP _γ

ρ

þ P _γ
ρP

_β
ϵP _α

δ : ð3:26Þ

Again this transforms as 10 with V-charge zero because
there is no SUð4Þ index. As described in the footnote 9, the
OPEs between the supersymmetry generators and the P _α

β

do not have any singular terms, we do not find any new
higher spin generators from (3.26).20

In this section, the higher spin generators are obtained in
(3.2), (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.16),
(3.18), (3.20), (3.22), (3.24), (3.26), the footnotes 8, 12,
13, 14, 15, 18, and 19 explicitly. They are written in terms
of the cubic terms between the weight-1 operators and are

16By using the higher spin generator appearing in the foot-
note 14, we obtainQa

αðzÞ _W _β _γ
bδðwÞj 1

ðz−wÞ
¼δabW

_γ _β
αδðwÞþŴa_γ _β

bαδ

where the relations in (3.18) are used.
17Again by using the higher spin generator in the footnote 14

we determine Qa
αðzÞ _Wc _β _γ

½bd�δðwÞj 1
ðz−wÞ

¼ δa½bW
c _β _γ

d�αδðwÞ −
δa½dŴ

c_γ _β
b�αδðwÞ þ 1

4
δc½dŴ

a_γ _β
b�αδðwÞ where the relations (3.18)

and (3.20) are used.
18That is, _Q _α

½aðzÞ _Wc _β _γ
bd�γðwÞj 1

ðz−wÞ
¼ δc½a _W

_β _α _γ
bd�γðwÞ −

1
4
δc½d _W

_β _α _γ
ba�γðwÞ with the higher spin generator _W

_β _γ _α
½ab�δ ≡

_Q
_β
½a _Q

_γ
b�P _α

δ þ _Q
_β
½aP _α

δ
_Q_γ

b� þ P _α
δ
_Q
_β
½a _Q

_γ
b� − _Q_γ

½b _Q
_β
a�P _α

δ −
_Q_γ

½bP _α
δ
_Q
_β
a� − _Q

_β
½aP _α

δ
_Q_γ

b� corresponding to the representa-
tion 6̄2.

19In other words, from the higher spin generator in the
footnote 18, we haveQa

αðzÞ _W _β _δ _γ
½bc�ϵðwÞj 1

ðz−wÞ
¼δa½b _W

_β _δ _γ
c�αϵðwÞ−

δa½c _W
_β _δ _γ

b�αϵðwÞ and _W _α _β _γ
aδϵ ≡ _Q_γ

aP _α
δP

_β
ϵ þ P _α

δ
_Q_γ

aP
_β
ϵ þ

P _α
δP

_β
ϵ
_Q_γ

a þ _Q_γ
aP

_β
ϵP _α

δ þ P _β
ϵ
_Q_γ

aP _α
δ þ P _β

ϵP _α
δ
_Q_γ

a trans-
forming as 4̄1.

20Similarly, from the higher spin generator in the footnote 19,
there is a relation Qa

αðzÞ _W _β _γ _δ
bϵρðwÞj 1

ðz−wÞ
¼ δabW

_β _γ _δ
αϵρðwÞ.
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summarized by the Table I with SUð4Þ representations and
V-charges.

IV. SOME OPEs BETWEEN THE GENERATORS
OF PSUð2;2j4Þ AND THE LOWEST

GENERATORS OF hsð2;2j4Þ
A. Primary or quasiprimary fields

By using the explicit OPE result in Eq. (B1), we can
determine the (quasi)primary fields of higher spin gener-
ators. As described before, only after checking this (quasi)
primary condition, then the first order poles in the OPEs
between the weight-1 operators and the weight-3 operators
provide the right (quasi)primary operators of weight-3 we
would like to construct.
The quasiprimary operators in the Table I are given by

the higher spin generators containing the quadratic V terms
including the cubic V term. The remaining higher spin
generators are primary operators.

B. The OPEs between the weight-1 generators
and the weight-3 generators

In Sec. III, we have computed some of the OPEs between
the conformal dimension-1 generators and the conformal
dimension-3 generators in order to determine the higher
spin generators. In Appendix C, we will present the
remaining OPEs between them. We observe that the first
order poles in the right-hand sides of these OPEs (together
with the symmetric or antisymmetric combinations of the
left-hand sides of the OPEs) contain the higher spin
generators as well as the new higher spin generators.21

In general, in these OPEs, there are also fourth, third and
second order poles we do not analyze them in this paper
explicitly. In the view point of two dimensional worldsheet

theory, it is important to calculate them in order to see their
algebraic structures.
Of course, we can calculate the OPEs between the

conformal dimension-3 generators and analyze the first
order pole in order to determine the next higher spin
generators which consist of the quintic terms of weight-5
operators. We will not consider all these computations in
this paper although it is straightforward to do so.

C. The additional generators

We have obtained the new higher spin generators (3.6),
(3.10), the footnote 12, (3.18) and Eq. (C1)

Ŵa _α
bβ; Ŵ ½ab�

αβ;
_̂W

_α _β
½ab�;

Ŵa _α _β
bγδ; Ŵab _α

cβγ;
_̂W
a _α _β

bcγ: ð4:1Þ

These also appear in the classical version of the OPEs
where there are no multiple contractions between the
operators. They appear in the computation of the higher
spin generators of s ¼ 2; 5

2
and s ¼ 3. Of course, we can

further compute the OPEs between the weight-1 operators
and the above higher spin generators (4.1) of weight-3 and
expect that the first order poles of the right hand sides of
these OPEs contain the higher spin generators in Table I
and the ones of (4.1). At the moment it is not clear to
observe what are the roles of (4.1). We need to calculate
further OPEs between the weight-1,2,3 operators including
(4.1). We do expect that when we consider the cases l ≥ 2,
the similar additional higher spin generators occur.

D. The next generators of hsð2;2j4Þ
So far, we have considered the l ¼ 1 case of [11]. When

l ¼ 2 case, we observe that the lowest spin s ¼ 2 higher spin
generator contains the following expressionVVVVP _α

β þ � � �
corresponding to 10 because there is no SUð4Þ index.

TABLE I. The higher spin generators with SUð4Þ representation and V-charge in the worldsheet theory,
corresponding to the Tables 4 and 5 with the level l ¼ 1 of [11]. We can observe that the two SUð2Þ spins of the
higher spin generators are given by the number of each indices α; β; γ; � � � and _α; _β; _γ; � � � divided by 2. For example,
the higher spin generator with s ¼ 4 has the corresponding spins ðjL; jRÞ ¼ ð3

2
; 3
2
Þ. Note that the spin s is given by

s ¼ 1þ jL þ jR. The V-charge is given by the number of lower indices of SUð4Þminus the number of upper indices
of SUð4Þ.

Higher spin generators

s ¼ 1 Wð10Þ;Wa
bð150Þ

s ¼ 3
2 Wa

αð4−1Þ; _W _α
að4̄1Þ;W ½ab�

cαð20−1Þ; _Wa _α
½bc�ð201Þ

s ¼ 2 W _α
βð10Þ;Wa _α

bβð150Þ;W ½ab� _α½cd�βð2000Þ;W ½ab�c
cαβð6−2Þ; _Wc _α _β

½ab�cð6̄2Þ;WðabÞ
αβð10−2Þ; _W _α _β

ðabÞð102Þ
s ¼ 5

2 Wa _α
βγð4−1Þ; _W _α _β

aγð4̄1Þ;W ½abc�
αβγð4̄−3Þ; _W _α _β _γ

½abc�ð43Þ;W ½ab� _α
cβγð20−1Þ; _Wa _α _β

½bc�γð201Þ
s ¼ 3 W _α _β

γδð10Þ;Wa _α _β
bγδð150Þ;W ½ab� _α

βγδð6−2Þ; _W _α _β _γ
½ab�γð6̄2Þ

s ¼ 7
2 Wa _α _β

γδϵð4−1Þ; _W _α _β _γ
aδϵð41Þ

s ¼ 4 W _α _β _γ
δϵρð10Þ

21In the right-hand sides of all these OPEs, the higher spin
generator W in (3.2) does not appear at the first order poles.
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According to (2.2) and (2.6), for the multiple product of V
whose number is greater than 4, there are still various
nonzero derivative terms between the fermionic fields
although there is no nonderivative term between them (Of
course, if we consider the classical OPEs inside the
Thielemans package [28], then the above multiplet product
of V is identically zero). On the other hands, in the oscillator
construction, the corresponding X’s in [11] appears only up
to the quartic term because the five product of fermionic
fields vanishes. The higher spin generators at l ¼ 2 consist
of the quintic terms in the weight-1 operators we have
considered. That is, they have weight-5 operators. One way
to obtain these higher spin generators is to calculate the
OPEs between the weight-3 higher spin generators and look
at the first order pole. It would be interesting to examine the
details. Contrary to the construction of [11,12], the multiple
product ofV, where the number ofV is greater than four, can
occur due to the above analysis.

V. CONCLUSIONS AND OUTLOOK

The world sheet realization of the higher spin generators
of [11] at l ¼ 1 is obtained. They are summarized in the
Table I in addition to (4.1).
According to the Table 3 of [11], there exist various

N ¼ 8 AdS5 PSUð2; 2j4Þ multiplets with the levels
l ¼ 0; 1; 2;…;∞. As mentioned before, the l ¼ 0 case is
the five dimensionalN ¼ 8 gauged supergravity multiplet.
The USpð8Þ representation in each level can be decom-
posed into the SUð4Þ with V-charge. See also [36] for this
l ¼ 0 multiplet in terms of two product of singletons.
The level l ¼ 1 multiplet can be interpreted as the

“massless” Konishi multiplet in the context of N ¼ 4
conformal supermultiplet in four dimensions [16].
According to the observation of [12], this multiplet can
be also obtained by the tensor product of the above l ¼ 0
supergravity multiplet (characterized by 420, 481

2
, 271, 83

2
,

12 with USpð8Þ representation together with SOð3Þ spin)
with the SUð4Þ singlet of SOð3Þ spin-2 (12). After then we
obtain 10, 81

2
, 281, 563

2
, 702, 565

2
, 283, 87

2
, and 14 where the

subscript s is the spin index appearing in the Table I.
The physical states [11,12] arise in the sectors of the

master scalar field and the master gauge field (in the five
dimensional higher spin gauge theory) corresponding to the
higher spin generators we have described in the above
Table I. Note that there exists one-to-one correspondence
between the Table 3 and Tables 4 and 5 only for s ¼ 5

2
; 3; 7

2
and 4 corresponding to 565

2
, 283, 87

2
and 14. That is, the

representations for s ¼ 0; 1
2
(10 and 81

2
) (and the represen-

tations 6 and 6̄ for s ¼ 1, the representations 4 and 4̄ for
s ¼ 3

2
, and the representations 1 and 1̄ for s ¼ 2) appear in

the Table 6 of [11]. See also (5.1) for their V-charges.
There are the following future directions we can study.

(i) The complete OPEs.
In this paper, we have focused on the construction

of the higher spin generators having weight-3. We
understand that there are weight-2 operators in the
OPEs between theweight-1 operators and theweight-
3 operators. Furthermore we did not consider the
OPEs between theweight-1 operators (the generators
of Lorentz symmetry and the generators of super
conformal boosts) (2.5) and the weight-3 operators
we have constructed in the world sheet theory. It
would be interesting to determine the complete OPEs
between these generators of weight-1,2,3 in the
context of the higher spin superalgebra hsð2; 2j4Þ.
Moreover, it will be interesting how they survive
when we act them on the physical vacuum state by
recalling the footnote on theweight-1 operators along
the line of [1,2]. Eventually, we would like to
construct the complete higher spin algebra which
contains the higher spin generators appearing in the
Tables 4 and 5 of [11] in closed form.

(ii) In the theory of N ¼ 4 super Yang-Mills coupled to
the N ¼ 4 conformal supergravity.

As before, in [12], the conserved currents corre-
sponding to the higher spin gauge theory described
in the Table 3 of [11] can be described from the
singleton superfield based on [15,16,36] for l ¼ 0
and l ¼ 1. Furthermore, in [9], their Tables 6 and 7
are related to the four dimensionalN ¼ 4 conformal
supergravity multiplet. They claim that the l ¼ 1
case of the Table 3 of [11] can be obtained also from
the tensor product of above Tables 6 and 7 (See also
[37] on the one loop contributions of N ¼ 4
conformal supergravity multiplet). It would be
interesting to study precise correspondence explic-
itly in the context of [38–40]. See also the review
paper [41] for conformal supergravity and [42] for
the twistor string theory description of conformal
supergravity.

(iii) The action of the higher spin generators on the
vacuum state.

In the oscillator construction, it is known that the
N ¼ 4 super Yang-Mills multiplet can be identified
with the multiple product of the various oscillators
acting on the physical vacuum state [27]. The similar
construction in the world sheet theory is obtained
from the multiple product of the various zero modes
of the ambitwistor fields acting on the Ramond
ground state [1,2]. As we have the complete ex-
pressions for the higher spin generators, we can
determine the precise action on the physical vacuum
state as mentioned before.

(iv) When the coupling of N ¼ 4 super Yang-Mills
becomes nonzero.

As the N ¼ 4 super Yang-Mills interaction is
turned on, then the higher spin generators in the
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Tables 4 and 5 of [11] with l ¼ 1; 2;…;∞will be no
longer conserved. As observed in [12], the
hsð2; 2j4Þ higher spin gauge theory maybe described
by a string theory having a left-moving and right-
moving PSUð2; 2j4Þ Kac-Moody superalgebra with
a critical level k ¼ 1. We have seen that this theory
admits a singleton representation [1,2]. Then the
question is whether the affine Kac-Moody extension
of the hsð2; 2j4Þ will give us some hints in order to
describe the theory for nonzero coupling of N ¼ 4
super Yang-Mills in four dimensions beyond the free
field construction of this paper. See also the previous
relevant paper [43].

(v) Any algebraic symmetries in the DDF-like operators.
In [1,2], the DDF-like operators [44] which are

given by the product of the modes of ambitwistor
fields (2.2) are introduced. They satisfy the nontrivial
(anti)commutator relations depending on the magni-
tude of the sum of the two each modes. The structure
constants appearing in the right-hand side of these
relations are given by the ones in the superalgebra
Uð2; 2j4Þ. They claim that the nontrivial triple prod-
ucts for the specific three modes vanish identically. It
would be interesting to describe the above products
for any three modes and observe whether there exist
any nontrivial behaviors or not.

(vi) How to interpret the mismatch between the Table 3
and the Tables 4 and 5 of [11].
There are some multiplets in Table 6 of [11]22

s ¼ 1∶ 6−2; 6̄2;

s ¼ 3

2
∶ 4̄−3; 43;

s ¼ 2∶ 1−4; 1̄4: ð5:1Þ

These are the elements of the Table 3 but their
corresponding higher spin generators do not appear
in the Tables 4 and 5. However, it seems that for
l ≥ 2, we can check the sum of the representations in
Table 4 [11] is given by 2 · 1 ⊕ 4 · 4 ⊕ 2 · 16 ⊕

4 · 24 ⊕ 36 and this is equal to 182 and the sum of
the representations in Table 5 is given by 2 · 1 ⊕
4 · 4 ⊕ 4 · 6 ⊕ 2 · 16 and this is 74. This leads to
182þ 74 ¼ 256. Then there is no mismatch be-
tween the Table 3 and the Tables 4 and 5 for l ≥ 2. It
is an open problem to understand how the higher
spin generators corresponding to (5.1) are not
allowed for small spin s in the oscillator construction
(or in the worldsheet theory).

(vii) Can the even power of oscillators survive in the
world sheet description?.

In the construction of [11], the higher spin
generators with equal odd numbers of oscillators
can appear only. See also [18] for relevant discus-
sion. It is not obvious to see this restriction in the
world sheet theory because in the OPEs between the
weight-1,2,3 operators, in general, the weight-2,4
operators as well as the weight-5 operators can
appear. See also [45] for different kinds of higher
spin generators. It would be interesting to study this
direction in order to describe the above restriction in
the world sheet theory.
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APPENDIX A: THE PSUð2;2j4Þ1 CURRENT
ALGEBRA

1. The algebra from the generators in (2.5)

We present the various OPEs between the generators in
(2.5) which did not appear in the literature before (although
some of (anti)commutator relations between them are in
[2]) and we take the order of generators as in
ðLα

β; _L
_α
_β;R

a
b;B; C;D;Qa

α; _Q
_α
a;P _α

β;Sα
a; _S

a
_α;Kα

_βÞ as
follows:

Lα
βðzÞLγ

δðwÞ ¼
1

ðz − wÞ2
�
1

2
δαβδ

γ
δ − δαδδ

γ
β

�
þ 1

ðz − wÞ ½δ
α
δL

γ
β − δγβL

α
δ �ðwÞ þ � � � ;

Lα
βðzÞQα

γðwÞ ¼
1

ðz − wÞ
�
δαγQa

β −
1

2
δαβQ

a
γ

�
ðwÞ þ � � � ;

Lα
βðzÞP _α

γðwÞ ¼
1

ðz − wÞ
�
δαγP _α

β −
1

2
δαβP

_α
γ

�
ðwÞ þ � � � ;

Lα
βðzÞSγ

aðwÞ ¼
1

ðz − wÞ
�
−δγβSα

a þ
1

2
δαβS

γ
a

�
ðwÞ þ � � � ;

22In addition to these, there are 10 for s ¼ 0 and 41 ⊕ 4̄−1 for s ¼ 1
2
as before.
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Lα
βðzÞKγ

_βðwÞ ¼
1

ðz − wÞ
�
−δγβKα

_β þ
1

2
δαβK

γ
_β

�
ðwÞ þ � � � ;

_L _α
_βðzÞ _L_γ

_δðwÞ ¼
1

ðz − wÞ2
�
1

2
δ _α_βδ

_γ
_δ
− δ _α_δδ

_γ
_β

�
þ 1

ðz − wÞ ½δ
_α
_δ
_L_γ
_β
− δ_γ_β

_L _α
_δ �ðwÞ þ � � � ;

_L _α
_βðzÞ _Q_γ

aðwÞ ¼
1

ðz − wÞ
�
−δ_γ_β

_Q _α
a þ

1

2
δ _α_β

_Q_γ
a

�
ðwÞ þ � � � ;

_L _α
_βðzÞP _γ

δðwÞ ¼
1

ðz − wÞ
�
−δ_γ_βP

_α
δ þ

1

2
δ _α_βP

_γ
δ

�
ðwÞ þ � � � ;

_L _α
_βðzÞ _Sa

_γðwÞ ¼
1

ðz − wÞ
�
δ _α_γS

a
_β −

1

2
δ _α_β

_Sa
_γ

�
ðwÞ þ � � � ;

_L _α
_βðzÞKγ

_δðwÞ ¼
1

ðz − wÞ
�
δ _α_δK

γ
_β −

1

2
δ _α_βK

γ
_δ

�
ðwÞ þ � � � ;

Ra
bðzÞRc

dðwÞ ¼
1

ðz − wÞ2
�
−
1

4
δabδ

c
d − δadδ

c
b

�
þ 1

ðz − wÞ ½δ
a
dR

c
b − δcbR

a
d�ðwÞ þ � � � ;

Ra
bðzÞQc

αðwÞ ¼
1

ðz − wÞ
�
−δcbQa

α þ
1

4
δabQ

c
α

�
ðwÞ þ � � � ;

Ra
bðzÞ _Q _α

cðwÞ ¼
1

ðz − wÞ
�
δac _Q

_α
b −

1

4
δab

_Q _α
c

�
ðwÞ þ � � � ;

Ra
bðzÞSα

cðwÞ ¼
1

ðz − wÞ
�
δacSα

b −
1

4
δabS

α
c

�
ðwÞ þ � � � ;

Ra
bðzÞ _Sc

_αðwÞ ¼
1

ðz − wÞ
�
−δcb _S

a
_α þ

1

4
δab

_Sc
_α

�
ðwÞ þ � � � ;

BðzÞBðwÞ ¼ −
1

ðz − wÞ2 þ � � � ; BðzÞCðwÞ ¼ −
1

ðz − wÞ2 þ � � � ;

BðzÞQa
αðwÞ ¼

1

ðz − wÞ
1

2
Qa

αðwÞ þ � � � ; BðzÞ _Q _α
aðwÞ ¼ −

1

ðz − wÞ
1

2
_Q _α

aðwÞ þ � � � ;

BðzÞSα
aðwÞ ¼ −

1

ðz − wÞ
1

2
Sα

aðwÞ þ � � � ; BðzÞ _Sa
_αðwÞ ¼

1

ðz − wÞ
1

2
_Sa

_αðwÞ þ � � � ;

DðzÞDðwÞ ¼ −
1

ðz − wÞ2 þ � � � ; DðzÞQa
αðwÞ ¼

1

ðz − wÞ
1

2
Qa

αðwÞ þ � � � ;

DðzÞ _Q _α
aðwÞ ¼

1

ðz − wÞ
1

2
_Q _α

aðwÞ þ � � � ; DðzÞP _α
βðwÞ ¼

1

ðz − wÞP
_α
βðwÞ þ � � � ;

DðzÞSα
aðwÞ ¼ −

1

ðz − wÞ
1

2
Sα

aðwÞ þ � � � ; DðzÞ _Sa
_αðwÞ ¼

1

ðz − wÞ
1

2
_Sa

_αðwÞ þ � � � ;

DðzÞKα
_βðwÞ ¼ −

1

ðz − wÞK
α
_βðwÞ þ � � � ; Qa

βðzÞ _Q _α
bðwÞ ¼

1

ðz − wÞ δ
a
bP

_α
βðwÞ þ � � � ;

Qa
αðzÞSβ

bðwÞ ¼
1

ðz − wÞ2 δ
a
bδ

β
α þ 1

ðz − wÞ
�
δβαRa

b þ δabL
β
α þ

1

2
δabδ

β
αðC þDÞ

�
ðwÞ þ � � � ;

Qa
αðzÞKβ

_γðwÞ ¼ −
1

ðz − wÞ δ
β
α
_Sa

_γðwÞ þ � � � ;

_Q _α
aðzÞ _Sb

_βðwÞ ¼
1

ðz − wÞ2 δ
b
aδ

_α
_β
þ 1

ðz − wÞ
�
δ _α_βR

b
a þ δba _L

_α
_β þ

1

2
δbaδ

_α
_β
ðC −DÞ

�
ðwÞ þ � � � ;

_Q _α
aðzÞKβ

_γðwÞ ¼
1

ðz − wÞ δ
_α
_γS

β
aðwÞ þ � � � ; P _α

βðzÞSγ
aðwÞ ¼ −

1

ðz − wÞ δ
γ
β
_Q _α

aðwÞ þ � � � ;
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P _α
βðzÞ _Sa

_γðwÞ ¼
1

ðz − wÞ δ
_α
_γQ

a
βðwÞ þ � � � ;

P _α
βðzÞKγ

_δðwÞ ¼ −
1

ðz − wÞ2 δ
γ
βδ

_α
_δ
þ 1

ðz − wÞ ½−δ
γ
β
_L _α

_δ þ δ _α_δL
γ
β þ δγβδ

_α
_δ
D�ðwÞ þ � � � ;

Sα
aðzÞ _Sb

_βðwÞ ¼
1

ðz − wÞ δ
b
aKα

_βðwÞ þ � � � : ðA1Þ

TheOPEs between thegenerators of ðRa
b;V;Qa

α; _Q
_α
a;P _α

βÞwithV ≡ 2ðC − BÞ are closed by themselves. See alsoEq. (A2).

2. Some OPEs with different Uð1Þ generators in (2.6)

By using (2.6), we can rewrite some OPEs in Eq. (A1) as follows:

UðzÞUðwÞ ¼ −
1

ðz − wÞ2 2þ � � � ; UðzÞBðwÞ ¼ −
1

ðz − wÞ2 þ � � � ;

UðzÞCðwÞ ¼ −
1

ðz − wÞ2 þ � � � ; UðzÞDðwÞ ¼ −
1

ðz − wÞ2 þ � � � ;

UðzÞQa
αðwÞ ¼

1

ðz − wÞQ
a
αðwÞ þ � � � ; UðzÞP _α

βðwÞ ¼
1

ðz − wÞP
_α
βðwÞ þ � � � ;

UðzÞSα
aðwÞ ¼ −

1

ðz − wÞS
α
aðwÞ þ � � � ; UðzÞKα

_βðwÞ ¼ −
1

ðz − wÞK
α
_βðwÞ þ � � � ;

_UðzÞ _UðwÞ ¼ −
1

ðz − wÞ2 2þ � � � ; _UðzÞBðwÞ ¼ −
1

ðz − wÞ2 þ � � � ;

_UðzÞCðwÞ ¼ −
1

ðz − wÞ2 þ � � � ; _UðzÞDðwÞ ¼ 1

ðz − wÞ2 þ � � � ;

_UðzÞ _Q _α
aðwÞ ¼ −

1

ðz − wÞ
_Q _α

aðwÞ þ � � � ; _UðzÞP _α
βðwÞ ¼ −

1

ðz − wÞP
_α
βðwÞ þ � � � ;

_UðzÞ _Sa
αðwÞ ¼

1

ðz − wÞ
_Sa

αðwÞ þ � � � ; _UðzÞKα
_βðwÞ ¼

1

ðz − wÞK
α
_βðwÞ þ � � � ;

VðzÞVðwÞ ¼ 1

ðz − wÞ2 4þ � � � ; VðzÞCðwÞ ¼ 1

ðz − wÞ2 2þ � � � ;

VðzÞQa
αðwÞ ¼ −

1

ðz − wÞQ
a
αðwÞ þ � � � ; VðzÞ _Q _α

aðwÞ ¼
1

ðz − wÞ
_Q _α

aðwÞ þ � � � ;

VðzÞSα
aðwÞ ¼

1

ðz − wÞS
α
aðwÞ þ � � � ; VðzÞ _Sa

_αðwÞ ¼ −
1

ðz − wÞ
_Sa

_αðwÞ þ � � � : ðA2Þ

Note that the nonzero V-charge can be obtained from the last four OPEs of (A2).

APPENDIX B: THE OPEs BETWEEN THE STRESS ENERGY TENSOR AND JIJJKLJMN

We write down the OPE between the stress energy tensor and the cubic term as follows:

TðzÞJIJJKLJMNðwÞ ¼
1

ðz − wÞ5 ½ð−1Þ
dJdMþ1δILδ

K
Nδ

M
J þ ð−1ÞðdLþdKÞðdIþdJÞþdLdMδKJ δ

I
Nδ

M
L �

þ 1

ðz − wÞ4 ½ð−1Þ
dLdMþ1δKNδ

M
L J

I
J þ ð−1ÞdJdKþ1δILδ

K
J J

M
N

þ ð−1ÞðdMþdNÞðdKþdJÞþ1δILδ
M
J J

K
N
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þ ð−1ÞðdLþdKÞðdIþdJÞþ1δKJ δ
I
NJ

M
L þ ð−1ÞðdLþdKÞðdIþdJÞþðdMþdNÞðdIþdJÞδKJ δ

M
L J

I
N

þ ð−1ÞðdIþdJÞðdLþdKÞþdJdMþ1δINδ
M
J J

K
L þ δILδ

K
NJ

M
J�ðwÞ

þ 1

ðz − wÞ3 ½δ
I
LJ

K
J J

M
N þ ð−1ÞðdLþdKÞðdIþdJÞþ1δKJ J

I
LJ

M
N

þ ð−1ÞðdIþdJÞðdLþdKÞδINJ
K
LJMJ

þ ð−1ÞðdIþdJÞðdLþdKþdMþdNÞþ1δMJ J
K
LJIN þ δKNJ

I
JJML

þ ð−1ÞðdNþdMÞðdKþdLÞþ1δML J
I
JJKN �ðwÞ þ

1

ðz − wÞ2 3J
I
JJKLJMNðwÞ

þ 1

ðz − wÞ ∂ðJ
I
JJKLJMNÞðwÞ þ � � � : ðB1Þ

We should obtain the weight-3 operators which transform as a quasiprimary.

APPENDIX C: THE REMAINING FIRST ORDER POLES IN THE OPEs DESCRIBED IN SEC. III

In this Appendix, we present the remaining first order poles in the OPEs between the weight-1 operators and the weight-3
operators.
Let us classify according to the spin of weight-3 operators.
(i) The s ¼ 1 case.

In addition to the corresponding OPEs of Sec. III B, there are the following OPEs with first order poles

Qa
αðzÞWðwÞj 1

ðz−wÞ
¼ Wa

αðwÞ; _Q _α
aðzÞWðwÞj 1

ðz−wÞ
¼ − _W _α

aðwÞ;
R½a

bðzÞWc�
dðwÞj 1

ðz−wÞ
¼ δ½ad W

c�
bðwÞ − δ½cbW

a�
dðwÞ:

(ii) The s ¼ 3
2
case.

There are the following first order poles in the OPEs as well as the ones in Sec. III C

VðzÞWa
αðwÞj 1

ðz−wÞ
¼ −Wa

αðwÞ;

Ra
bðzÞWc

αðwÞj 1
ðz−wÞ

¼ −δcbWa
αðwÞ þ

1

4
δabW

c
αðwÞ;

VðzÞW ½ab�
cαðwÞj 1

ðz−wÞ
¼ −W ½ab�

cαðwÞ;

R½a
bðzÞWcd�

eαðwÞj 1
ðz−wÞ

¼ −δ½cbWad�
eαðwÞ þ

1

4
δ½ab W

cd�
eαðwÞ þ δ½ae Wcd�

bαðwÞ − δ½db W
ca�

eαðwÞ;
VðzÞ _Wb _α

½ac�ðwÞj 1
ðz−wÞ

¼ _Wb _α
½ac�ðwÞ;

Ra½bðzÞ _Wd _α
ce�ðwÞj 1

ðz−wÞ
¼ δa½c _Wd _α

be�ðwÞ −
1

4
δa½b _Wd _α

ce�ðwÞ þ δa½e _Wd _α
cb�ðwÞ − δd½b _Wd _α

cb�ðwÞ;
VðzÞ _W _α

aðwÞj 1
ðz−wÞ

¼ _W _α
aðwÞ;

Ra
bðzÞ _W _α

cðwÞj 1
ðz−wÞ

¼ δac _W _α
bðwÞ −

1

4
δab

_W _α
cðwÞ:

(iii) The s ¼ 2 case.
There are the first order poles of the following OPEs in addition to the ones in Sec. III D
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Ra
bðzÞWc _α

dαðwÞj 1
ðz−wÞ

¼ δadW
c _α

bαðwÞ − δcbW
a _α

dαðwÞ;
VðzÞWðabÞ

αβðwÞj 1
ðz−wÞ

¼ −2WðabÞ
αβðwÞ;

Rða
bðzÞWcdÞ

αβðwÞj 1
ðz−wÞ

¼ −δðcb WadÞ
αβðwÞ þ

1

4
δðab W

cdÞ
αβðwÞ þ δðdb W

caÞ
αβðwÞ −

1

4
δðab W

cdÞ
αβðwÞ;

_Q _α
aðzÞWðbcÞ

βγðwÞj 1
ðz−wÞ

¼ −ŴðbcÞ _α
aβγðwÞ þ δðba WcÞ _α

βγðwÞ − δðca WbÞ _α
βγðwÞ;

Qa
αðzÞW _β

γðwÞj 1
ðz−wÞ

¼ Wa _β
αγðwÞ; _Q _α

aðzÞW _β
γðwÞj 1

ðz−wÞ
¼ − _W _α _β

aγðwÞ;
R½a½bðzÞWce� _α

df�βðwÞj 1
ðz−wÞ

¼ −δ½c½bW
ce� _α

df�βðwÞ þ δ½a½dW
ce� _α

df�βðwÞ þ δ½a½fW
ce� _α

db�βðwÞ − δ½e½bW
ca� _α

df�βðwÞ;

Q½a
αðzÞWbd� _β ½ce�γðwÞj 1

ðz−wÞ
¼ −δ½a½cW

bd� _β ½c�γαðwÞ þ δ½a½eŴ
bd� _β

c�γαðwÞ −
1

4
δd½eŴ

ba� _β
c�γαðwÞ;

_Q _α
½aðzÞW ½bd� _β

ce�γðwÞj 1
ðz−wÞ

¼ δ½b½a _Wd� _β _α
ce�γðwÞ − δ½d½a

_̂W
b� _α _β

ec�γðwÞ þ
1

4
δ½d½e

_̂W
b� _α _β

ac�γðwÞ;

VðzÞ _W _α _β
ðabÞðwÞj 1

ðz−wÞ
¼ 2 _W _α _β

ðabÞðwÞ;

RaðbðzÞ _W _α _β
cdÞðwÞj 1

ðz−wÞ
¼ δaðc _W _α _β

bdÞðwÞ −
1

2
δaðb _W _α _β

cdÞðwÞ þ δaðd _W _α _β
cbÞðwÞ;

Qa
αðzÞ _W _β _γ

ðbcÞðwÞj 1
ðz−wÞ

¼ _̂W
a_γ _β

ðbcÞαðwÞ þ δaðb _W _γ _β
cÞαðwÞ − δaðc _W _γ _β

bÞαðwÞ;
VðzÞW ½ab�c

cαβðwÞj 1
ðz−wÞ

¼ −2W ½ab�c
cαβðwÞ;

R½a
bðzÞWcd�e

eαβðwÞj 1
ðz−wÞ

¼ −δ½cbWad�e
eαβðwÞ þ

1

2
δ½ab W

cd�e
eαβðwÞ − δ½db W

ca�e
eαβðwÞ;

_Q _α
aðzÞW ½cd�e

eαβðwÞj 1
ðz−wÞ

¼ δ½caWde� _α
eβαðwÞ − δ½da Wce� _α

eαβðwÞ − δ½ea Ŵcd� _α
eαβðwÞ þ

1

4
δ½ee Ŵcd� _α

aαβðwÞ;

VðzÞ _Wc _α _β
½ab�cðwÞj 1

ðz−wÞ
¼ 2 _Wc _α _β

½ab�cðwÞ;

Ra
½b _Wc _α _β

de�cðwÞj 1
ðz−wÞ

¼ δa½d _Wc _α _β
be�cðwÞ −

1

2
δa½b _Wc _α _β

de�cðwÞ þ δa½e _Wc _α _β
db�cðwÞ;

where the new higher spin generators are given by

ŴðbcÞ _α
aβγ ≡ _Q _α

aQðb
βQcÞ

γ −Qðb
β
_Q _α

aQcÞ
γ þQðb

βQcÞ
γ
_Q _α

a − _Q _α
aQcÞ

γQbÞ
β þQcÞ

γ
_Q _α

aQbÞ
β −QcÞ

γQbÞ
β
_Q _α

a;

Ŵ ½bc�
aβγ ≡ _Q _α

aQ½b
βQc�

γ −Q½b
β
_Q _α

aQc�
γ þQ½b

βQc�
γ
_Q _α

a − _Q _α
aQ½c

γQ½b
β þQ½c

γ
_Q _α

aQ½b
β −Q½c

γQ½b
β
_Q _α

a;

_̂W
b _α _β

½cd�γ ≡Qb
γ
_Q
_β
½d _Q

_α
c� − _Q

_β
½dQb

γ
_Q _α

c� þ _Q
_β
½d _Q

_α
c�Qb

γ −Qb
γ
_Q _α

½c _Q
_β
d� þ _Q _α

½cQb
γ
_Q
_β
d� − _Q _α

½c _Q
_β
d�Qb

γ;

_̂W
b _α _β

ðcdÞγ ≡Qb
γ
_Q
_β
ðd _Q

_α
cÞ− _Q

_β
ðdQb

γ
_Q _α

cÞ þ _Q
_β
ðd _Q

_α
cÞQb

γ −Qb
γ
_Q _α

ðc _Q
_β
dÞ þ _Q _α

ðcQb
γ
_Q
_β
dÞ− _Q _α

ðc _Q
_β
dÞQb

γ: ðC1Þ

(iv) The s ¼ 5
2
case.

There exist the first order poles of the following OPEs (and the ones of Sec. III E)

VðzÞW ½ab� _α
cβγðwÞj 1

ðz−wÞ
¼ −W ½ab� _α

cβγðwÞ;

R½a
bWcd� _α

eβγðwÞj 1
ðz−wÞ

¼ −δ½cbWcd� _α
eβγðwÞ þ

1

4
δ½ab W

cd� _α
eβγðwÞ þ δ½ae Wcd� _α

bβγðwÞ − δ½db W
ca� _α

eβγðwÞ;
VðzÞWa _α

βγðwÞj 1
ðz−wÞ

¼ −Wa _α
βγðwÞ;

Ra
bðzÞWc _α

βγðwÞj 1
ðz−wÞ

¼ −δcbWa _α
βγðwÞ þ

1

4
δabW

c _α
βγðwÞ;
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Q½a
αðzÞWb� _α

βγðwÞj 1
ðz−wÞ

¼ W ½ab� _α
αβγðwÞ; VðzÞ _Wa _α _β

½bc�γðwÞj 1
ðz−wÞ

¼ _Wa _α _β
½bc�γðwÞ;

Ra½bðzÞ _Wc _α _β
de�γðwÞj 1

ðz−wÞ
¼ δa½d _Wc _α _β

be�γðwÞ −
1

4
δa½b _Wc _α _β

de�γðwÞ þ δa½e _Wc _α _β
db�γðwÞ − δc½e _Wa _α _β

db�γðwÞ;

VðzÞ _W _α _β
aγðwÞj 1

ðz−wÞ
¼ _W _α _β

aγðwÞ;

Ra
bðzÞ _W _α _β

cγðwÞj 1
ðz−wÞ

¼ δac _W _α _β
bγðwÞ −

1

4
δab

_W _α _β
cγðwÞ;

_Q _α
½aðzÞ _W _β _γ

b�γðwÞj 1
ðz−wÞ

¼ − _W _α _β _γ
½ab�γðwÞ; VðzÞW ½abc�

αβγðwÞj 1
ðz−wÞ

¼ −3W ½abc�
αβγðwÞ;

R½a
bðzÞWcde�

αβγðwÞj 1
ðz−wÞ

¼ −δ½cbWade�
αβγðwÞ − δ½db W

cae�
αβγðwÞ − δ½ebW

cda�
αβγðwÞ þ

3

4
δ½ab W

cde�
αβγðwÞ;

_Q _α
aðzÞW ½bcd�

αβγðwÞj 1
ðz−wÞ

¼ δ½ba Wcd� _α
βγαðwÞ; VðzÞ _W _α _β _γ

½abc�ðwÞj 1
ðz−wÞ

¼ 3 _W _α _β _γ
½abc�ðwÞ;

Ra½bðzÞ _W _α _β _γ
cde�ðwÞj 1

ðz−wÞ
¼ δa½c _W _α _β _γ

bde�ðwÞ þ δa½d _W _α _β _γ
cbe�ðwÞ þ δa½e _W _α _β _γ

cdb�ðwÞ −
3

4
δa½b _W _α _β _γ

cde�ðwÞ;

Qa
αðzÞ _W _α _β _γ

½bcd�ðwÞj 1
ðz−wÞ

¼ δa½b _W
_β _γ _α

cd�αðwÞ:

(v) The s ¼ 3 case.
We have the following OPEs with first order poles in addition to the ones of the subsection III. 6

VðzÞW ½ab� _α
βγδðwÞj 1

ðz−wÞ
¼ −2W ½ab� _α

βγδðwÞ;

R½a½bðzÞWcd� _α
βγαðwÞj 1

ðz−wÞ
¼ −δ½cbWad� _α

βγαðwÞ þ
1

2
δ½ab W

cd� _α
βγαðwÞ − δ½db W

ca� _α
βγαðwÞ;

VðzÞ _W _α _β _γ
½ab�δðwÞj 1

ðz−wÞ
¼ 2 _W _α _β _γ

½ab�δðwÞ;

Ra½bðzÞ _W _α _β _γ
cd�δðwÞj 1

ðz−wÞ
¼ δa½c _W _α _β _γ

bd�δðwÞ −
1

2
δa½b _W _α _β _γ

cd�δðwÞ þ δa½d _W _α _β _γ
cb�δðwÞ;

Ra
bðzÞWc _α _β

dγδðwÞj 1
ðz−wÞ

¼ δadW
c _α _β

bγδðwÞ − δcbW
a _α _β

dγδðwÞ;

Qa
αðzÞWc _α _β

dγδðwÞj 1
ðz−wÞ

¼ δadW
c _α _β

αγδðwÞ −
1

4
δcdW

a _α _β
αγδðwÞ;

_Q _α
aðzÞWc _β _γ

dβγðwÞj 1
ðz−wÞ

¼ −δcaW _α _β _γ
dβγðwÞ þ

1

4
δcdW

_α _β _γ
aβγðwÞ;

Qa
αðzÞW _β _γ

βγðwÞj 1
ðz−wÞ

¼ Wa_β _γ
αβγðwÞ; _Q _α

aðzÞW _β _γ
βγðwÞj 1

ðz−wÞ
¼ − _W _α _β _γ

aβγðwÞ:

(vi) The s ¼ 7
2
case.

As well as the OPEs in Sec. III G there are following OPEs with first order poles

VðzÞWa _α _β
γδϵðwÞj 1

ðz−wÞ
¼ −Wa _α _β

γδϵðwÞ;

Ra
bðzÞWc _β _γ

αβγðwÞj 1
ðz−wÞ

¼ −δcbWa _β _γ
αβγðwÞ þ

1

4
δabW

c _β _γ
αβγðwÞ:

(vii) The s ¼ 4 case.
Finally, we have the following first order poles

VðzÞ _W _α _β _γ
bδϵðwÞj 1

ðz−wÞ
¼ _W _α _β _γ

bδϵðwÞ;

Ra
bðzÞ _W _α _β _γ

cδϵðwÞðwÞj 1
ðz−wÞ

¼ δac _W _α _β _γ
bδϵðwÞ −

1

4
δab _W _α _β _γ

cδϵðwÞ:
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Therefore, we have calculated the first order poles in the OPEs between five weight-1 operators and the weight-3
operators appearing in the Table I.

APPENDIX D: THE COMPLETE OPE BETWEEN JIJðzÞ AND JKLJMNJPQðwÞ
From the defining OPE in (2.7), we can calculate the remaining fourth, third, and second order poles of the OPE

JIJðzÞJKLJMNJPQðwÞ. The first order pole is given by (3.1).
The fourth order pole can be written as

JIJðzÞJKLJMNJPQðwÞj 1

ðz−wÞ4
¼ ð−1ÞdJdPþ1δILδ

K
Nδ

M
Qδ

P
J þ ð−1ÞðdNþdMÞðdKþdJÞþdNdPδILδ

M
Jδ

K
Qδ

P
N þ ð−1ÞðdLþdKÞðdIþdJÞþ1

× ½ð−1ÞdLdPþ1δKJδ
I
Nδ

M
Qδ

P
L þ ð−1ÞðdNþdMÞðdIþdLÞþdNdPδKJδ

M
Lδ

I
Qδ

P
N �: ðD1Þ

The third order pole is summarized by

JIJðzÞJKLJMNJPQðwÞj 1

ðz−wÞ3
¼ ½ð−1ÞdJdMþ1δILδ

K
Nδ

M
JJPQ þ δILδ

K
Nδ

M
QJPJ

þ ð−1ÞðdPþdQÞðdMþdJÞþ1δILδ
K
Nδ

P
JJMQ þ ð−1ÞðdNþdMÞðdKþdJÞþ1δILδ

M
Jδ

M
Jδ

K
QJPN

þ ð−1ÞðdNþdMÞðdKþdJÞþðdPþdQÞðdKþdNÞδILδMJδ
P
NJKQ

þ ð−1ÞðdKþdJÞðdNþdMÞþdJdPþ1δILδ
K
Qδ

P
JJMN

þ ð−1ÞðdLþdKÞðdIþdJÞþ1ðð−1ÞdLdMþ1δKJδ
I
Nδ

M
LJPQ þ δKJδ

I
Nδ

M
QJPL

þ ð−1ÞðdPþdQÞðdMþdLÞþ1δKJδ
I
Nδ

P
LJMQ þ ð−1ÞðdNþdMÞðdIþdLÞþ1δKJδ

M
Lδ

I
QJPN

þ ð−1ÞðdNþdMÞðdIþdLÞþðdPþdQÞðdIþdNÞδKJδ
M
Lδ

P
NJIQ

þ ð−1ÞðdIþdLÞðdNþdMÞþdLdPþ1δKJδ
I
Qδ

P
LJMNÞ

þ ð−1ÞðdIþdJÞðdKþdLÞðð−1ÞdJdPþ1δINδ
M
Qδ

P
JJKL

þ ð−1ÞðdNþdMÞðdIþdJÞþdNdPδMJδ
I
Qδ

P
NJKLÞ�ðwÞ: ðD2Þ

Finally, the second order pole is described by

JIJðzÞJKLJMNJPQðwÞj 1

ðz−wÞ2
¼ ½ð−1ÞdJdKþ1δILδ

K
JJMNJPQ þ δILδ

K
NJMJJPQ

þ ð−1ÞðdNþdMÞðdKþdJÞþ1δILδ
M
JJKNJPQ þ ð−1ÞðdKþdJÞðdNþdMÞδILδKQJMNJPJ

þ ð−1ÞðdKþdJÞðdNþdMþdPþdQÞþ1δILδ
P
JJMNJKQ

þ ð−1ÞðdLþdKÞðdIþdJÞþ1δKJðδINJMLJPQ þ ð−1ÞðdNþdMÞðdIþdLÞþ1δMLJINJPQ

þ ð−1ÞðdIþdLÞðdNþdMÞδIQJMNJPL þ ð−1ÞðdIþdLÞðdNþdMþdPþdQÞþ1δPLJMNJIQÞ
þ ð−1ÞðdIþdJÞðdKþdLÞJKLðð−1ÞdJdMþ1δINδ

M
JJPQ þ δINδ

M
QJPJ

þ ð−1ÞðdPþdQÞðdMþdJÞþ1δINδ
P
JJMQ þ ð−1ÞðdNþdMÞðdIþdJÞþ1δMJδ

I
QJPN

þ ð−1ÞðdNþdMÞðdIþdJÞþðdPþdQÞðdIþdNÞδMJδ
P
NJIQ

þ ð−1ÞðdIþdJÞðdNþdMÞþdJdPþ1δIQδ
P
JJMNÞ�ðwÞ: ðD3Þ

Therefore, the complete OPE is given by Eqs. (D1)–(D3) and (3.1).

We can also express the various (anti)commutator
relations by using the above OPE. See the Ref. [31] for
explicit formula. Let us consider the first OPE in (3.5)
having an extra generator. It is obvious to obtain that the
third order pole is given by δbaP _α

β from Eq. (D2) and the

second order pole is given by − 1
2
δba∂P _α

β þ Vb _α
aβ with

Vb _α
aβ≡−3δbaVP _α

β−3Qb
β
_Q _α

aþ3
2
δba∂P _α

β from Eq. (D3).
Here we intentionally split the second order pole into the
descendant of the weight-1 operator δbaP _α

β and the (quasi)
primary operator. The first order pole is again given in (3.5).
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Then we obtain the following anticommutator relation
by using the formula in [31] or performing the two contour
integrals in conformal field theory explicitly

fð _Q _α
aÞm; ðWb

βÞng ¼ 1

2
mð2mþ nÞδbaðP _α

βÞmþn

þmðVb _α
aβÞmþn þ δbaðW _α

βÞmþn

þ ðŴb _α
aβÞmþn: ðD4Þ

Note that the coefficients, 1
2
mð2mþ nÞ, m, 1 and 1,

appearing in the right-hand side of Eq. (D4) hold for
any (anti)commutator relations we are considering in the
OPEs between the weight-1 operator and the weight-3
operator. The nonzero central terms can appear in the
corresponding (anti)commutator relations. We should sub-
tract the right descendant terms with coefficient − 1

2
in the

second order pole explained before in order to use the

above general behavior. The weight-3 operator is not a
quasiprimary operator, in general, from Eq. (B1). In order
to use the formula in [31], we should check the quasipri-
mary condition on the weight-3 operator.
Compared to the result of [11,13], the first three terms of

Eq. (D4) should appear and the last term reflects the new
generator coming from the world sheet symmetry algebra.
We expect that all the other (anti)commutator relations like
as Eq. (D4) with possible central terms or new generators
can be obtained and they (without new generators) with
some normalizations should appear in hsð2; 2j4Þ in the
work of [11,13]. Although we observe that there are no
vanishing terms of the right-hand sides in Eq. (D4) under
the restriction of wedge modes, it is an open problem to
check whether the possibility of vanishings for the right-
hand sides in the (anti)commutator relations under the
wedge constraints (when we consider other OPEs for
higher weights) arises or not.
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